WO2022133751A1 - 一种显示装置及其制备方法 - Google Patents

一种显示装置及其制备方法 Download PDF

Info

Publication number
WO2022133751A1
WO2022133751A1 PCT/CN2020/138414 CN2020138414W WO2022133751A1 WO 2022133751 A1 WO2022133751 A1 WO 2022133751A1 CN 2020138414 W CN2020138414 W CN 2020138414W WO 2022133751 A1 WO2022133751 A1 WO 2022133751A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting
display device
display panel
spacer layer
Prior art date
Application number
PCT/CN2020/138414
Other languages
English (en)
French (fr)
Inventor
程芳
高健
马森
张庆训
孙艳六
徐成福
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/253,735 priority Critical patent/US20240015275A1/en
Priority to PCT/CN2020/138414 priority patent/WO2022133751A1/zh
Priority to CN202080003510.8A priority patent/CN115039405A/zh
Publication of WO2022133751A1 publication Critical patent/WO2022133751A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0127Head-up displays characterised by optical features comprising devices increasing the depth of field
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device and a manufacturing method thereof.
  • 3D objects form stereoscopic vision by displaying different images to the left and right eyes of the user, while the 3D display formed based on human stereoscopic vision will lead to the problem of vergence conflict, that is, monocular focusing and binocular convergence are not the same.
  • vergence conflict On the plane, the vergence conflict will cause visual fatigue and dizziness. How to solve the vergence conflict has become an urgent problem to be solved.
  • a display device provided by an embodiment of the present disclosure includes:
  • a display panel including a plurality of pixel groups, each pixel group including a plurality of pixels;
  • the light-transmitting spacer layer is located on the light-emitting side of the display panel
  • the imaging structure is located on the side of the light-transmitting spacer layer away from the display panel, and includes a light-shielding layer, and the light-shielding layer includes a plurality of light-transmitting holes matched with the pixel group; the light emitted by the pixels passes through the light-transmitting holes, and the light emitted by at least two pixels Through the light-transmitting hole, it enters the pupil of the user's single eye at the same time.
  • the difference between the luminous fluxes passing through any two different light-transmitting holes is smaller than a preset value.
  • the plurality of light-transmitting holes are arranged in an array along a first direction and a second direction, wherein the first direction intersects the second direction;
  • Different straight lines parallel to the first direction pass through the same number of light-transmitting holes; different straight lines parallel to the second direction pass through the same number of light-transmitting holes.
  • the radius of the image spot formed by the light emitted by the pixel group passing through the light transmission hole is smaller than or equal to the interval between adjacent image points formed by the light emitted by the pixel group passing through the light transmission hole.
  • the aperture of the light-transmitting hole and the distance between the centers of two adjacent light-transmitting holes satisfy the following conditions:
  • O is the aperture of the light-transmitting hole
  • e is the eye movement range of the display device
  • L is the distance between the human eye and the light-transmitting hole
  • D is the distance between the centers of two adjacent light-transmitting holes
  • is the pixel output The wavelength of the emitted light
  • P_p is the pixel size.
  • the thickness f of the light-transmitting spacer layer satisfies the following conditions: Wherein, n is the refractive index of the light-transmitting spacer layer.
  • the light emitted from each pixel corresponds to one viewpoint; the number of viewpoints N of the user's single eye entrance pupil satisfies the following conditions:
  • is the pupil diameter
  • each pixel group includes a light-emitting area, and only the light emitted from the pixels in the light-emitting area passes through the light-transmitting hole during display.
  • the display device further includes a light-transmitting layer on a side of the light-shielding layer away from the light-transmitting spacer layer.
  • a method for manufacturing a display device provided by an embodiment of the present disclosure, the method includes:
  • the display panel includes a plurality of pixel groups, and the pixel group includes a plurality of pixels;
  • the display panel, the light-transmitting spacer layer and the imaging structure are bonded together, so that the light-transmitting spacer layer is located on the light-emitting side of the display panel, and the light-transmitting holes are located on the side of the light-transmitting spacer layer away from the display panel; wherein, the light emitted by the pixels After passing through the light-transmitting hole, the light emitted from at least two pixels enters the user's monocular pupil simultaneously through the light-transmitting hole.
  • the light-transmitting spacer layer is multiplexed into a light-transmitting substrate, and a light-shielding layer is formed on the light-transmitting substrate, which specifically includes:
  • the light-shielding layer is patterned to form light-transmitting holes
  • Laminate the display panel, the light-transmitting spacer layer and the imaging structure including:
  • the side of the light-transmitting spacer layer away from the light-shielding layer is attached to the display panel.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a top view of a light-shielding layer and a light-transmitting hole in a display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an imaging principle of a display device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a preset drawing rule of a display device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic imaging diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 6 is a light field diagram of superimposed three depth-of-field planes of a display device according to an embodiment of the present disclosure
  • FIG. 7 is a viewing effect diagram of FIG. 6 viewed by the human eye through the light-transmitting hole array according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of another preset drawing rule of a display device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 11 and FIG. 12 are simulation diagrams of projection of each pixel in an eye movement range in a display device provided by an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a method for fabricating a display device according to an embodiment of the present disclosure.
  • the display device includes:
  • the display panel 1 includes a plurality of pixel groups, and each pixel group includes a plurality of pixels;
  • the light-transmitting spacer layer 3 is located on the light-emitting side of the display panel 1;
  • the imaging structure 4 is located on the side of the light-transmitting spacer layer 3 away from the display panel 1, and includes a light-shielding layer 5, and the light-shielding layer 5 includes a plurality of light-transmitting holes 6 matched with the pixel groups; the light emitted by the pixels passes through the light-transmitting holes 6, and The light emitted from the at least two pixels enters the pupil of the user's monocular through the light-transmitting hole 6 at the same time.
  • the display device provided by the embodiment of the present disclosure is a three-dimensional (3D) display device based on light field display, wherein the light field display can realize a true 3D scene that is the same as the real world.
  • a light beam with a known direction is called a light field in space, or light field for short.
  • the beam entering the pupil needs to have an intersection point in space for imaging. Therefore, according to the geometric relationship, it is necessary to have two or more collimated beams exiting the pixel enter the pupil of the single eye at the same time.
  • One pixel represents a ray and corresponds to a viewpoint.
  • the pupil of a single eye needs to receive at least two viewpoints at the same time, and the light emitted by the pixel propagates to the pupil position through the light-transmitting aperture to form a view area.
  • the light field display can adjust the depth of field of the single eye, and the focus of the human eye lens can achieve clear and blurred transformation of different depths of field, so that the focusing of the single eye and the convergence of the eyes can be achieved on the same plane.
  • an imaging structure with light-transmitting holes is arranged on the light-emitting side of the display panel, and a distance between the imaging structure and the display panel is ensured by arranging a light-transmitting spacer layer between the imaging structure and the display panel.
  • the light emitted by different pixels in the display panel can reach the pupil of the human eye through the corresponding light-transmitting holes, and the light emitted by at least two elements can enter the user's monocular pupil through the light-transmitting holes at the same time, so that a near- The 3D display of the eye light field realizes the focusing of one eye and the convergence of the eyes on the same plane, so there will be no problems of visual fatigue and dizziness.
  • the process of arranging the light-transmitting holes is simple, which can avoid increasing the difficulty of manufacturing the display device.
  • the number of pixel groups is equal to the number of light-transmitting holes.
  • the top view of the light-shielding layer and the light-transmitting hole is shown in FIG. 2 , and the shape of the orthographic projection of the light-transmitting hole perpendicular to the plane where the display device is located is a circle.
  • the difference between the luminous fluxes passing through any two different light-transmitting holes is smaller than a preset value.
  • the preset value can be set according to actual needs.
  • the preset value is greater than zero.
  • the preset value is zero.
  • the apertures O of the light-transmitting holes are equal.
  • a plurality of light-transmitting holes are arranged in an array along a first direction X and a second direction Y, wherein the first direction X and the second direction Y intersect;
  • the direction X is perpendicular to the second direction Y;
  • Different straight lines parallel to the first direction X pass through the same number of light-transmitting holes 6 ; different straight lines parallel to the second direction Y pass through the same number of light-transmitting holes 6 .
  • different rows of the light-transmitting hole array include the same number of light-transmitting holes, and different columns include the same number of light-transmitting holes.
  • the distance D between the centers of any two adjacent light-transmitting holes 6 is equal.
  • the distance D between the centers of any two adjacent light-transmitting holes 6 is equal, and in the second direction Y, the distance D between the centers of any two adjacent light-transmitting holes 6 is equal, and the first The distance D between the centers of any two adjacent light-transmitting holes 6 in one direction X is equal to the distance D between the centers of any two adjacent light-transmitting holes 6 in the second direction Y.
  • the light emitted by one pixel in the display panel 1 corresponds to one light ray 8
  • one light ray 8 corresponds to one viewpoint.
  • N viewpoints cover the pupil 9
  • the pupil diameter is ⁇
  • the component of each viewpoint in the pupil 9 is ⁇ /N. According to the properties of similar triangles, it can be known that:
  • L is the distance between the human eye and the light-shielding layer, that is, the viewing distance
  • P_p is the pixel size
  • f' is the thickness of the air layer equivalent to the light-transmitting spacer layer.
  • e is the eye movement range of the display device.
  • the length and width of the eye movement range are equal, and only the eye movement range along the first direction X is shown in FIG. 4 .
  • the light emitted by the pixel passes through the light-transmitting hole and then goes to the pupil and lens of the human eye, and then converges on the retina.
  • the reverse extension lines of multiple light rays converge to the same point, these light rays will converge into the same image point on the retina after entering the human eye.
  • the reverse extension lines of multiple rays converge to different points, these rays will converge into different image points on the retina after entering the human eye.
  • the distance between adjacent image points is d.
  • FIG. 5 takes the image spot radius and adjacent image points of a depth of field surface as an example for illustration.
  • the radius r of the image spot formed by the light emitted from the pixel passing through the light transmission hole is less than or equal to the interval d between adjacent image points formed by the light emitted from the pixel passing through the light transmission hole .
  • the imaging of adjacent pixels is clear, and the 3D display effect is ensured.
  • the radius r of the image spot is:
  • is the wavelength of the light emitted by the pixel
  • L' is the distance between the depth of field surface and the light-shielding layer.
  • the interval d between adjacent image points is:
  • L' is the distance between the depth of field surface and the shading layer.
  • Equation (3) Substituting Equation (4) and Equation (5) into Equation (3), we get:
  • the geometric effect causes the radius of the image spot to become larger; when the aperture of the light-transmitting hole is smaller, the diffraction effect causes the radius of the image spot to become larger.
  • the aperture of the light-transmitting hole satisfies the following conditions:
  • formula (8) is the aperture O of the light-transmitting hole corresponding to the minimum value of r.
  • the distance between the centers of two adjacent light-transmitting holes satisfies the following conditions:
  • the light field design resolution needs to be considered when designing the display device.
  • the light field design resolution refers to the angular resolution of each depth of field plane, and at the same time, the angular resolution of each depth of field plane equal;
  • the angular resolution ⁇ is expressed as:
  • the size of the angular resolution ⁇ is related to the distance D between the centers of two adjacent light-transmitting holes and the viewing distance L.
  • the minimum distance D between the centers of two adjacent light-transmitting holes when the viewing distance L is constant, the smaller the distance D between the centers of two adjacent light-transmitting holes, the higher the light field design resolution. Therefore, in order to obtain the light field imaging effect with the highest light field design resolution, it is necessary to design the minimum distance D between the centers of two adjacent light-transmitting holes. when , the minimum value of the distance D between the centers of two adjacent light-transmitting holes that satisfies the clear imaging condition that the image spot radius is less than or equal to the image point interval can be obtained, and at the same time, the highest light field design resolution that satisfies the clear imaging condition can be obtained. Rate.
  • the display device provided by the embodiment of the present disclosure can flexibly design the distance D between the centers of two adjacent light-transmitting holes for different eye movement ranges e, viewing distances L, and pixel sizes P_p, so as to obtain the best imaging effect.
  • the thickness f' of the air layer equivalent to the light-transmitting spacer layer can be determined according to the minimum value of the distance D between the centers of two adjacent light-transmitting holes and formula (2), Therefore, in some embodiments, the thickness f of the light-transmitting spacer layer satisfies the following conditions: Wherein, n is the refractive index of the light-transmitting spacer layer.
  • the light emitted from each pixel corresponds to one viewpoint; the number of viewpoints N of the user's single eye entrance pupil can be determined according to the distance D between the centers of two adjacent light-transmitting holes, formula (1) and formula (2), The user's monocular entrance pupil viewpoint number N satisfies the following conditions:
  • the display device stores the preset light field mapping rules matching the parameters of the display device, so that the display panel display image corresponding to the 3D image to be displayed can be obtained.
  • a light field database is established according to the coordinate information of the light-transmitting holes of the display device and the coordinate information of the pixels of the display panel, and the light field information matching the display device is obtained, wherein one pixel represents one light ray. It is also necessary to define the area corresponding to the pixel of each light-transmitting hole.
  • the display panel corresponding to the 3D image to be displayed displays the image, combined with the light field information database, the depth of field surface to be displayed and the light field of the space are intersected, the pixels on the display panel are determined according to the mapping relationship, and the light field of the depth of field surface is obtained. Render the image, superimpose the rendered light field images of each depth of field surface, and give the corresponding display information to drive the pixels to emit light, so that through the light-transmitting hole array, it can be restored to the real world.
  • 3D scene For example, a light field image where three depth-of-field planes are superimposed together is shown in Figure 6, and the human eye can see the image through the light-transmitting hole array, and the effect shown in Figure 7 can be seen.
  • the human eye when the human eye is watching, when the object is at the front without occlusion, the human eye obtains more information. When the object is in the back, the human eye obtains less information due to the occlusion relationship. Therefore, for multi-depth-of-field stereoscopic images , do light field image rendering one by one, it should be noted that the light used by the foreground deep surface cannot be reused, so that the same foreground as viewing the real world can be formed and the background will have a certain occlusion relationship, so according to After the display panel display image corresponding to the 3D image to be displayed obtained by the preset light field mapping rule is displayed on the display panel and passes through the light-transmitting hole, the 3D image that is the same as the real world can be restored.
  • each pixel group 2 includes a light-emitting area 10, and only the light emitted from the pixels in the light-emitting area 10 passes through the light-transmitting hole during display. That is, the light-emitting area is the area corresponding to each light-transmitting hole and the pixel in the preset light field mapping rule.
  • each light-transmitting hole is in close contact with a region corresponding to a pixel, that is, the spacing between adjacent light-emitting regions is equal to zero. That is, all the pixels in each pixel group are located in the light-emitting area.
  • each light-emitting area is closely connected, that is, each light-transmitting hole in the preset light field mapping rule is closely connected to the area corresponding to the pixel.
  • this layout method can obtain a larger eye box, it will be subject to large viewing angles. The influence of light deflection under the field angle leads to the overlapping of the areas corresponding to the adjacent light-transmitting holes under the large field angle, resulting in the problem of layout conflict.
  • the interval between adjacent light-emitting areas is greater than 0.
  • the spacing between adjacent light-emitting areas is greater than 0, that is, the areas corresponding to adjacent light-transmitting holes under large viewing angles are not closely connected, thereby avoiding overlapping of areas corresponding to adjacent light-transmitting holes under large viewing angles.
  • pixels can still be set normally in areas outside the light-emitting area, and pixels outside the light-emitting area do not emit light during display.
  • the display device further includes a light-transmitting layer 7 located on the side of the light-shielding layer 5 away from the light-transmitting spacer layer 3 .
  • the light-transmitting layer can be used as a light-transmitting substrate for forming the light-shielding layer, for example. That is, a light-shielding layer with light-transmitting holes can be formed on the light-transmitting layer, and then the side of the light-shielding layer facing away from the light-transmitting layer can be attached to the light-transmitting spacer layer.
  • the thickness of the light-transmitting layer is 0.5 mm. That is, a light-shielding layer can be formed on a light-transmitting substrate with a relatively thin thickness, so as to avoid increasing the difficulty of the preparation process of the light-shielding layer.
  • the material of the light transmissive layer includes glass.
  • the light-transmitting layer can be used as a protective film covering the light-shielding layer and the light-transmitting holes. That is, a light-shielding layer with light-transmitting holes can be made on the light-transmitting spacer layer, and then a layer of light-transmitting layer is set to cover the light-shielding layer to protect the light-shielding layer with light-transmitting holes and avoid the light-shielding layer with light-transmitting holes. cause damage.
  • the material of the light-transmitting spacer layer includes glass.
  • the display panel may be an electroluminescent display panel, such as an organic light emitting diode display panel or a quantum dot light emitting diode display panel.
  • the display panel may or may be a liquid crystal display panel.
  • the display device provided by the embodiment of the present disclosure may be a TV, a mobile phone, or the like.
  • the display device is a mobile phone, taking a liquid crystal display panel as an example, as shown in FIG. 10 , the display panel 1 includes: an array substrate 11 , a liquid crystal layer 12 , and an opposite substrate 13 .
  • the room also includes: a polarizer 14 , a bonding glue 15 covering a protective layer 16 and a tempered glass protective layer 17 .
  • the parameter design of the display device provided by the embodiment of the present disclosure is illustrated by taking display devices of different sizes as examples, wherein the size of the display device 1 is 4.7 inches, and the size of the display device 2 is 6.44 inches.
  • Table 1 the eye movement range e, viewing distance L, the wavelength ⁇ of the outgoing light, and the refractive index n of the light-transmitting spacer layer of the display device 1 and the display device 2 are the same.
  • the minimum value of the distance D between the centers of two light-transmitting holes after determining the actual distance D between the centers of two adjacent light-transmitting holes according to the minimum value of the distance D between the centers of two adjacent light-transmitting holes, according to the formula (8 ) (11) (12) (13), determine the aperture O of the light-transmitting hole, the angular resolution ⁇ , the thickness f of the light-transmitting spacer layer, and the number of viewpoints N of the entrance pupil of one eye, as shown in Table 2.
  • the simulation results are shown in Figure 11 and Figure 12.
  • the number of viewpoints in the first direction X projected to the eyebox of 10 millimeters (mm) is 76.
  • the number of viewpoints of the pupil is 26;
  • the number of viewpoints in the second direction Y in the eyebox projected to 10mm in FIG. 12 is 29, and the number of viewpoints entering the pupil of the human eye is 10.
  • an embodiment of the present disclosure also provides a method for manufacturing a display device, as shown in FIG. 13 , the method includes:
  • the light-shielding layer and the light-transmitting spacer layer may be bonded first, and then the light-transmitting spacer layer may be bonded to the display panel on the side away from the light-shielding layer.
  • the light-transmitting substrate may be, for example, glass with a thin thickness
  • the thickness of the light-transmitting substrate may be, for example, 0.5 mm
  • a light-shielding layer is formed on the light-transmitting substrate with a relatively thin thickness to avoid increasing the difficulty of the preparation process of the light-shielding layer.
  • the light-transmitting spacer layer is multiplexed into a light-transmitting substrate, and a light-shielding layer is formed on the light-transmitting substrate, which specifically includes:
  • the light-shielding layer is patterned to form light-transmitting holes
  • Laminate the display panel, the light-transmitting spacer layer and the imaging structure including:
  • the side of the light-transmitting spacer layer away from the light-shielding layer is attached to the display panel.
  • the thickness of the light shielding layer is in the order of micrometers, for example, it may be less than 10 micrometers, and the material of the light shielding layer may be, for example, a black matrix material commonly used in display panels.
  • the light-shielding layer can be directly fabricated on the light-transmitting spacer layer, which can reduce the manufacturing process of the display device.
  • a method for fabricating a display device includes:
  • a light-transmitting layer is formed on the side of the light-shielding layer away from the light-transmitting spacer layer.
  • the light-transmitting layer thus formed can protect the light-shielding layer with the light-transmitting holes, so as to avoid damage to the light-shielding layer with the light-transmitting holes caused by the subsequent process.
  • an imaging structure with light-transmitting holes is arranged on the light-emitting side of the display panel, and the imaging structure is ensured by arranging a light-transmitting spacer layer between the imaging structure and the display panel. The distance between the display panel and the display panel, so that the light emitted by different pixels in the display panel can reach the pupil of the human eye through the corresponding light-transmitting holes, and the light emitted by at least two pixels can enter the user's eye through the light-transmitting holes at the same time.
  • the pupil of one eye can realize 3D display of near-eye light field, and realize the focusing of one eye and the convergence of both eyes on the same plane, so there will be no problems of visual fatigue and dizziness.
  • the process of arranging the light-transmitting holes is simple, which can avoid increasing the difficulty of manufacturing the display device.

Abstract

本公开实施例提供的一种显示装置及其制备方法。显示装置包括:显示面板,包括多个像素组,每一像素组包括多个像素;透光隔垫层,位于显示面板的出光侧;成像结构,位于透光隔垫层背离显示面板一侧,包括遮光层,遮光层包括与像素组匹配的多个透光孔;像素出射的光线经过透光孔,且至少两个像素出射的光线通过透光孔同时进入用户的单眼瞳孔。

Description

一种显示装置及其制备方法 技术领域
本公开涉及显示技术领域,尤其涉及一种显示装置及其制备方法。
背景技术
当前近眼显示技术中,3D物体是通过向用户的左右眼分别显示不同的图像而形成立体视觉,而基于人眼立体视觉形成的3D显示会导致辐辏冲突问题,即单眼聚焦与双眼汇聚不在同一个平面,辐辏冲突会导致视觉疲劳和眩晕问题,如何解决辐辏冲突问题成为亟待解决的问题。
发明内容
本公开实施例提供的一种显示装置,显示装置包括:
显示面板,包括多个像素组,每一像素组包括多个像素;
透光隔垫层,位于显示面板的出光侧;
成像结构,位于透光隔垫层背离显示面板一侧,包括遮光层,遮光层包括与像素组匹配的多个透光孔;像素出射的光线经过透光孔,且至少两个像素出射的光线通过透光孔同时进入用户的单眼瞳孔。
在一些实施例中,通过任意不同两个透光孔的光通量的差值小于预设值。
在一些实施例中,多个透光孔沿第一方向以及沿第二方向阵列排布,其中,第一方向与第二方向交叉;
与第一方向平行的不同直线,穿过相同数量的透光孔;与第二方向平行的不同直线,穿过相同数量的透光孔。
在一些实施例中,像素组出射的光线经过透光孔形成的像斑的半径,小于或等于像素组出射的光线经过透光孔形成的相邻像点之间的间隔。
在一些实施例中,透光孔的孔径、以及相邻两个透光孔中心之间的间距满足如下条件:
Figure PCTCN2020138414-appb-000001
Figure PCTCN2020138414-appb-000002
其中,O为透光孔的孔径,e为显示装置的眼动范围,L为人眼与透光孔之间的间距,D为相邻两个透光孔中心之间的间距,λ为像素出射光的波长,P_p为像素尺寸。
在一些实施例中,透光隔垫层的厚度f满足如下条件:
Figure PCTCN2020138414-appb-000003
其中,n为透光隔垫层的折射率。
在一些实施例中,每一像素出射的光线对应一个视点;用户单眼入瞳视点数N满足如下条件:
Figure PCTCN2020138414-appb-000004
其中,φ为瞳孔直径。
在一些实施例中,其中,每一像素组包括一个发光区域,在显示时仅发光区域的像素出射光线通过透光孔。
在一些实施例中,显示装置还包括位于遮光层背离透光隔垫层一侧的透光层。
本公开实施例提供的一种显示装置的制备方法,方法包括:
制备显示面板,其中,显示面板包括多个像素组,像素组包括多个像素;
提供透光隔垫层;
在透光衬底上形成遮光层,并对遮光层采用图形化工艺形成与像素组匹配的多个透光孔,获得成像结构;
将显示面板、透光隔垫层以及成像结构贴合,以使透光隔垫层位于显示面板的出光侧,透光孔位于透光隔垫层背离显示面板一侧;其中,像素出射的光线经过透光孔,且至少两个像素出射的光线通过透光孔同时进入用户的单眼瞳孔。
在一些实施例中,透光隔垫层复用为透光衬底,在透光衬底上形成遮光层,具体包括:
在透光隔垫层上形成遮光层;
对遮光层采用图形化工艺形成透光孔;
将显示面板、透光隔垫层以及成像结构贴合,具体包括:
将透光隔垫层背离遮光层一侧与显示面板贴合。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种显示装置的结构示意图;
图2为本公开实施例提供的一种显示装置中遮光层和透光孔的俯视图;
图3为本公开实施例提供的一种显示装置的成像原理示意图;
图4为本公开实施例提供的显示装置的一种预设作图规则示意图;
图5为本公开实施例提供的一种显示装置的成像示意图;
图6为本公开实施例提供的一种显示装置的三个景深面叠加的光场图;
图7为本公开实施例提供的人眼通过透光孔阵列观看图6的观看效果图;
图8为本公开实施例提供的显示装置的另一种预设作图规则示意图;
图9为本公开实施例提供的另一种显示装置的结构示意图;
图10为本公开实施例提供的又一种显示装置的结构示意图;
图11、图12为本公开实施例提供的一种显示装置中各像素在眼动范围投影的模拟图;
图13为本公开实施例提供的一种显示装置的制备方法示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
本公开实施例提供了一种显示装置,如图1所示,显示装置包括:
显示面板1,包括多个像素组,每一像素组包括多个像素;
透光隔垫层3,位于显示面板1的出光侧;
成像结构4,位于透光隔垫层3背离显示面板1一侧,包括遮光层5,遮光层5包括与像素组匹配的多个透光孔6;像素出射的光线经过透光孔6,且至少两个像素出射的光线通过透光孔6同时进入用户的单眼瞳孔。
本公开实施例提供的显示装置为基于光场显示的三维(3D)显示装置,其中,光场显示能够实现与真实世界一样的真3D场景。一般将具有已知方向的光束叫做空间上的光线场,简称光场。光场中,进入眼瞳的光束在空间上成像需要有交点,因此根据几何关系可知,需要有两个以上像素出射的准直 光束同时进入单眼眼瞳,一个像素代表一条光线,对应一个视点,即单眼眼瞳需要同时接收至少两个视点,由此像素发出的光线经过透光孔传播到瞳孔位置,形成视图区域。光场显示单眼景深面可调节,通过人眼晶状体调焦可实现不同景深面的清晰模糊变换,从而可以实现单眼聚焦与双眼汇聚在同一个平面。
本公开实施例提供的显示装置,在显示面板的出光侧设置具有透光孔的成像结构,并通过在成像结构与显示面板之间设置透光隔垫层保证成像结构与显示面板之间的间距,这样,显示面板中不同像素出射的光线可以通过相对应的透光孔到达人眼眼瞳,并且至少两个述素出射的光线通过透光孔可以同时进入用户的单眼瞳孔,从而可以实现近眼光场3D显示,实现单眼聚焦与双眼汇聚在同一个平面,因此不会出现视觉疲劳和眩晕问题。并且,设置透光孔工艺简单,可以避免增加显示装置制作难度。
在一些实施例中,像素组的数量与透光孔的数量相等。
在一些实施例中,遮光层以及透光孔的俯视图如图2所示,透光孔在垂直于显示装置所在平面的正投影的形状为圆形。
在一些实施例中,通过任意不同两个透光孔的光通量的差值小于预设值。
在具体实施时,预设值可以根据实际需要进行设置。
在一些实施例中,预设值大于0。
或者,在一些实施例中,预设值为0。
在一些实施例中,如图1、图2所示,各透光孔的孔径O相等。
在一些实施例中,如图2所示,多个透光孔沿第一方向X以及沿第二方向Y阵列排布,其中,第一方向X与第二方向Y交叉;图2中第一方向X与第二方向Y垂直;
与第一方向X平行的不同直线,穿过相同数量的透光孔6;与第二方向Y平行的不同直线,穿过相同数量的透光孔6。
即透光孔阵列不同行包括的透光孔数量相同,不同列包括的透光孔数量相同。
在一些实施例中,如图1、图2所示,在透光孔6的排列方向上,任意相邻两个透光孔6中心之间的间距D相等。
即在第一方向X上,任意相邻两个透光孔6中心之间的间距D相等,在第二方向Y上,任意相邻两个透光孔6中心之间的间距D相等,第一方向X上任意相邻两个透光孔6中心之间的间距D与在第二方向Y上任意相邻两个透光孔6中心之间的间距D相等。
接下来对本公开实施例提供的显示装置的实现原理进行具体说明。如图3所示,显示面板1中的一个像素发出的光对应一条光线8,一条光线8对应一个视点,本公开实施例提供的显示装置,N个视点铺满眼瞳9,瞳孔直径为Φ,则每个视点在眼瞳9中所占的分量为Φ/N,根据相似三角形的性质可知:
Figure PCTCN2020138414-appb-000005
其中,L为人眼与遮光层之间的间距,即观看距离,P_p为像素尺寸,f’为透光隔垫层等效的空气层的厚度。
在具体实施时,如图4所示,设计显示面板上所有像素投影到眼动范围(eye box)内,则根据相似三角形的性质可知:
Figure PCTCN2020138414-appb-000006
其中,e为显示装置的眼动范围。通常眼动范围长度和宽度相等,图4中仅示出沿第一方向X的眼动范围。
需要说明的是,像素发射的光线经过透光孔后射向人眼眼瞳晶状体,进而在视网膜上汇聚。如图5所示,对于通过透光孔且到达眼瞳的各光线,若多条光线的反向延长线汇聚至同一点,则这些光线进入人眼后在视网膜上汇聚成同一像点,若多条光线的反向延长线汇聚至不同点则这些光线进入人眼后将在视网膜上汇聚成不同的像点。如图5所示,相邻像点之间的间距为d。由于透光孔阵列的存在,像素出射的光线经过透光孔会形成像斑,像斑的半径为r,像斑为几何像斑和衍射像斑的叠加。需要说明的是,图5以一个景深面的像斑半径和相邻像点为例进行举例说明。
在一些实施例中,如图5所示,像素出射的光线经过透光孔形成的像斑的半径r,小于或等于像素出射的光线经过透光孔形成的相邻像点之间的间隔d。即:
r≤d    (3);
从而可以保证本公开实施例提供的显示装置中,相邻像素成像清晰,保证3D显示效果。
由于像斑为几何像斑和衍射像斑的叠加,因此像斑的半径r为:
Figure PCTCN2020138414-appb-000007
其中,λ为像素出射光的波长,L’为景深面与遮光层之间的间距。
根据相似三角形性质,相邻像点之间的间隔d为:
Figure PCTCN2020138414-appb-000008
其中L’为景深面与遮光层之间的间距。
将公式(4)和公式(5)带入公式(3)得到:
Figure PCTCN2020138414-appb-000009
近眼观看时,有L<<L′关系式,公式(6)有如下近似:
Figure PCTCN2020138414-appb-000010
其中
Figure PCTCN2020138414-appb-000011
为几何效果,
Figure PCTCN2020138414-appb-000012
为衍射效果。当透光孔开口越大时,几何效应导致像斑半径变大;当透光孔开口越小时,衍射效应导致像斑半径变大。
为提高成像质量,需要平衡几何效果和衍射效果使像斑半径r最小,结合公式(2)和公式(4),在一些实施例中,透光孔的孔径满足如下条件:
Figure PCTCN2020138414-appb-000013
即公式(8)为使r值最小所对应的透光孔的孔径O。
将公式(8)带入公式(7)中,在一些实施例中,相邻两个透光孔中心之间的间距满足如下条件:
Figure PCTCN2020138414-appb-000014
通过公式(9)可以看出,当相邻两个透光孔中心之间的间距D增大时,不等式左侧数值变小,不等式右侧数值变大。
需要说明的是,在对显示装置进行设计时需要考虑光场设计分辨率,本公开实施例中光场设计分辨率指的是各景深面的角分辨率,同时,各景深面的角分辨率相等;
角分辨率α表达式为:
Figure PCTCN2020138414-appb-000015
根据公式(11)可知角分辨率α的大小与相邻两个透光孔中心之间的间距D和观看间距L相关,角分辨率的数值越小,光场分辨率越高,故有以下结论:
相邻两个透光孔中心之间的间距D一定时,观看间距L越大,光场设计分辨率越高,观看间距L越小,光场设计分辨率越低;观看间距L一定时,相邻两个透光孔中心之间的间距D越小,光场设计分辨率越高,相邻两个透光孔中心之间的间距D越大,光场设计分辨率越低;
由于当观看间距L一定时,相邻两个透光孔中心之间的间距D越小,光场设计分辨率越高。因此,为获得最高光场设计分辨率的光场成像效果,需要设计最小的相邻两个透光孔中心之间的间距D。当
Figure PCTCN2020138414-appb-000016
Figure PCTCN2020138414-appb-000017
时,可以得到满足像斑半径小于或等于像点间隔这一清晰成像条件的相邻两个透光孔中心之间的间距D的最小值,同时获得满足清晰成像条件下的最高光场设计分辨率。本公开实施例提供的显示装置,可以针对不同的眼动范围e、观看距离L、像素尺寸P_p对相邻两个透光孔中心之间的间距D进行灵活设计,以获得最佳成像效果。
在一些实施例中,可以根据相邻两个透光孔中心之间的间距D的最小值 以及公式(2)确定透光隔垫层等效的空气层的厚度f’,
Figure PCTCN2020138414-appb-000018
因此,在一些实施例中,透光隔垫层的厚度f满足如下条件:
Figure PCTCN2020138414-appb-000019
其中,n为透光隔垫层的折射率。
在一些实施例中,每一像素出射的光线对应一个视点;可以根据相邻两个透光孔中心之间的间距D、公式(1)以及公式(2)确定用户单眼入瞳视点数N,用户单眼入瞳视点数N满足如下条件:
Figure PCTCN2020138414-appb-000020
接下来对本公开实施例提供的显示装置的光场作图规则进行简单介绍。需要说明的是,显示装置存储与该显示装置各参数匹配的预设光场作图规则,从而可以获得与待显示3D图像对应的显示面板显示图像。在具体实施时,根据显示装置透光孔的坐标信息以及显示面板像素的坐标信息,建立光场数据库,得到与该显示装置匹配的光场信息,其中,一个像素代表一条光线。还需要限定每个透光孔与像素对应的区域。当确定与待显示3D图像对应的显示面板显示图像时,结合光场信息数据库,将要显示的景深面和空间的光线场相交,根据映射关系确定显示面板上的像素,得到该景深面的光场渲染图像,将渲染得到的各景深面光场图像叠加到一起,并给出相对应的显示信息驱动像素发光,这样通过透光孔阵列,可还原与真实世界一样,人眼可调焦观看的3D景象。例如,三个景深面叠加到一起的光场图像如图6所示,人眼通过透光孔阵列观看该图像,可以看到如图7所示的效果。需要说明的是,人眼观看时,当物体处于无遮挡的最前方时,人眼获取的信息多,当物体处于后方,由于遮挡关系,人眼获取的信息少,因此对于多景深面立体图像,逐一做光场图像渲染需注意的是,前景深面利用过的光线,后景深面不可再次利用,由此可形成与观看真实世界相同的前景会对后景产生一定的遮挡关系,从而根据预设光场作图规则获得的与待显示3D图像对应的显示面板显示图像经过显示面板显示并通过透光孔后,可还原与真实世界一样的3D图像。
在一些实施例中,如图4、图8所示,每一像素组2包括一个发光区域 10,在显示时仅发光区域10的像素出射光线通过透光孔。即发光区域为预设光场作图规则中每个透光孔与像素对应的区域。
在一些实施例中,如图8所示,预设光场作图规则中,每个透光孔与像素对应的区域密接,即相邻发光区域之间的间距等于0。即每一像素组中的所有像素位于发光区域内。每个发光区域密接,从而可以最大程度利用显示面板的空间,并且根据几何关系可知,D/e=f’/(f’+L),从而可以获得较大的eye box。
需要说明的是,每个发光区域密接,即预设光场作图规则中每个透光孔与像素对应的区域密接,这种排图方式虽然可以获得较大eye box,但会受到大视场角下光线偏折的影响,导致大视场角下相邻透光孔对应的区域重叠,产生排图冲突问题。
在一些实施例中,如图4所示,预设光场作图规则中,每个透光孔与像素对应的区域之间具有间隔,即相邻发光区域之间的间距大于0。相邻发光区域之间的间距大于0,即大视场角下相邻透光孔对应的区域非密接,从而可以避免大视场角下相邻透光孔对应的区域重叠。
需要说明的是,在具体实施时,对于相邻发光区域之间的间距大于0的方案,发光区域之外的区域,仍可正常设置像素,发光区域之外的像素在显示时不发光。
在一些实施例中,如图9所示,显示装置还包括位于遮光层5背离透光隔垫层3一侧的透光层7。
在具体实施时,透光层例如可以作为形成遮光层的透光衬底。即可以在透光层上形成具有透光孔的遮光层,之后再将遮光层背离透光层一侧与透光隔垫层贴合。
当透光层作为形成遮光层的透光衬底时,在一些实施例中,透光层的厚度为0.5毫米。即可以在厚度较薄的透光衬底上形成遮光层,避免增加遮光层制备工艺难度。
在一些实施例中,透光层的材料包括玻璃。
或者,在具体实施时,透光层可以作为覆盖遮光层和透光孔的保护膜。 即可以在透光隔垫层上制作具有透光孔的遮光层,之后再设置一层透光层覆盖遮光层,对具有透光孔的遮光层进行保护,避免对具有透光孔的遮光层造成损伤。
在一些实施例中,透光隔垫层的材料包括玻璃。
在一些实施例中,显示面板可以是电致发光显示面板,例如有机发光二极管显示面板或量子点发光二极管显示面板。显示面板可以是也可以是液晶显示面板。
本公开实施例提供的显示装置,可以是电视、手机等装置。当显示装置为手机时,以液晶显示面板为例,如图10所示,显示面板1包括:阵列基板11、液晶层12以及对向基板13,对向基板13与透光隔垫层3之间还包括:偏光片14、贴合胶15覆盖保护层16以及钢化玻璃保护层17。
接下来,以不同尺寸的显示装置为例,对本公开实施例提供的显示装置的参数设计进行举例说明,其中,显示装置1的尺寸为4.7寸,显示装置2的尺寸为6.44寸。如表1所示,显示装置1、显示装置2的眼动范围e、观看距离L,出射光波长λ、透光隔垫层折射率n相同,从而,可以根据公式(9)确定相邻两个透光孔中心之间的间距D最小值,根据相邻两个透光孔中心之间的间距D最小值确定实际相邻两个透光孔中心之间的间距D后,根据公式(8)(11)(12)(13),确定透光孔的孔径O、角分辨率α、透光隔垫层的厚度f、单眼入瞳视点数N,如表2所示。
表1
Figure PCTCN2020138414-appb-000021
表2
Figure PCTCN2020138414-appb-000022
以显示装置1为例进行模拟仿真,模拟结果如图11、图12所示,图11中,投影至10毫米(mm)的eyebox中第一方向X的视点数为76,其中进入人眼眼瞳的视点数为26;图12中投影至10mm的eyebox中第二方向Y的视点数为29,其中进入人眼眼瞳的视点数为10。
基于同一发明构思,本公开实施例还提供了一种显示装置的制备方法,如图13所示,方法包括:
S101、制备显示面板,其中,显示面板包括多个像素组,像素组包括多个像素;
S102、提供透光隔垫层;
S103、在透光衬底上形成遮光层,并对遮光层采用图形化工艺形成与像素组匹配的多个透光孔,获得成像结构;
S104、将显示面板、透光隔垫层以及成像结构贴合,以使透光隔垫层位于显示面板的出光侧,透光孔位于透光隔垫层背离显示面板一侧;其中,像素出射的光线经过透光孔,且至少两个像素出射的光线通过透光孔同时进入用户的单眼瞳孔。
具体实施时,可以先将遮光层与透光隔垫层贴合,在将透光隔垫层背离遮光层一侧与显示面板贴合。
具体实施时,透光衬底例如可以是厚度较薄的玻璃,透光衬底的厚度例如可以是0.5毫米,在厚度较薄的透光衬底上形成遮光层,避免增加遮光层制备工艺难度。
或者,在一些实施例中,透光隔垫层复用为透光衬底,在透光衬底上形 成遮光层,具体包括:
在透光隔垫层上形成遮光层;
对遮光层采用图形化工艺形成透光孔;
将显示面板、透光隔垫层以及成像结构贴合,具体包括:
将透光隔垫层背离遮光层一侧与显示面板贴合。
在具体实施时,遮光层的厚度为微米量级,例如可以小于10微米,遮光层的材料例如可以采用显示面板常使用的黑矩阵材料。
即可以在透光隔垫层上直接制作遮光层,可以减少显示装置制备流程。
在一些实施例中,当透光隔垫层复用为透光衬底,在透光隔垫层上形成遮光层,以及对遮光层采用图形化工艺形成透光孔之后,显示装置的制备方法还包括:
在遮光层背离透光隔垫层一侧形成透光层。
从而形成的透光层可以对具有透光孔的遮光层进行保护,避免后续工艺对具有透光孔的遮光层造成损伤。
综上,本公开实施例提供的显示装置及其制备方法,在显示面板的出光侧设置具有透光孔的成像结构,并通过在成像结构与显示面板之间设置透光隔垫层保证成像结构与显示面板之间的间距,这样,显示面板中不同像素出射的光线可以通过相对应的透光孔到达人眼眼瞳,并且至少两个述素出射的光线通过透光孔可以同时进入用户的单眼瞳孔,从而可以实现近眼光场3D显示,实现单眼聚焦与双眼汇聚在同一个平面,因此不会出现视觉疲劳和眩晕问题。并且,设置透光孔工艺简单,可以避免增加显示装置制作难度。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些 改动和变型在内。

Claims (11)

  1. 一种显示装置,其中,所述显示装置包括:
    显示面板,包括多个像素组,每一所述像素组包括多个像素;
    透光隔垫层,位于所述显示面板的出光侧;
    成像结构,位于所述透光隔垫层背离所述显示面板一侧,包括遮光层,所述遮光层包括与所述像素组匹配的多个透光孔;所述像素出射的光线经过所述透光孔,且至少两个所述像素出射的光线通过所述透光孔同时进入用户的单眼瞳孔。
  2. 根据权利要求1所述的显示装置,其中,通过任意不同两个所述透光孔的光通量的差值小于预设值。
  3. 根据权利要求2所述的显示装置,其中,多个所述透光孔沿第一方向以及沿第二方向阵列排布,其中,所述第一方向与所述第二方向交叉;
    与所述第一方向平行的不同直线,穿过相同数量的所述透光孔;与所述第二方向平行的不同直线,穿过相同数量的所述透光孔。
  4. 根据权利要求3所述的显示装置,其中,所述像素组出射的光线经过所述透光孔形成的像斑的半径,小于或等于所述像素组出射的光线经过所述透光孔形成的相邻像点之间的间隔。
  5. 根据权利要求4所述的显示装置,其中,所述透光孔的孔径、以及相邻两个所述透光孔中心之间的间距满足如下条件:
    Figure PCTCN2020138414-appb-100001
    Figure PCTCN2020138414-appb-100002
    其中,O为所述透光孔的孔径,所述e为所述显示装置的眼动范围,L为人眼与所述遮光层之间的间距,D为相邻两个所述透光孔中心之间的间距,λ为所述像素出射光的波长,P_p为像素尺寸。
  6. 根据权利要求5所述的显示装置,其中,所述透光隔垫层的厚度f满足如下条件:
    Figure PCTCN2020138414-appb-100003
    其中,n为所述透光隔垫层的折射率。
  7. 根据权利要求5所述的显示装置,其中,每一所述像素出射的光线对应一个视点;用户单眼入瞳视点数N满足如下条件:
    Figure PCTCN2020138414-appb-100004
    其中,φ为瞳孔直径。
  8. 根据权利要求1所述的显示装置,其中,每一所述像素组包括一个发光区域,显示时仅所述发光区域的像素出射光线通过所述透光孔。
  9. 根据权利要求1所述的显示装置,其中,所述显示装置还包括位于所述遮光层背离所述透光隔垫层一侧的透光层。
  10. 一种显示装置的制备方法,其中,所述方法包括:
    制备显示面板,其中,所述显示面板包括多个像素组,所述像素组包括多个像素;
    提供透光隔垫层;
    在透光衬底上形成遮光层,并对所述遮光层采用图形化工艺形成与所述像素组匹配的多个透光孔,获得成像结构;
    将所述显示面板、所述透光隔垫层以及所述成像结构贴合,以使所述透光隔垫层位于所述显示面板的出光侧,所述透光孔位于所述透光隔垫层背离所述显示面板一侧;其中,所述像素出射的光线经过所述透光孔,且至少两个所述像素出射的光线通过所述透光孔同时进入用户的单眼瞳孔。
  11. 根据权利要求10所述的方法,其中,所述透光隔垫层复用为所述透光衬底,在透光衬底上形成遮光层,具体包括:
    在所述透光隔垫层上形成遮光层;
    对所述遮光层采用图形化工艺形成透光孔;
    将所述显示面板、所述透光隔垫层以及所述成像结构贴合,具体包括:
    将所述透光隔垫层背离所述遮光层一侧与所述显示面板贴合。
PCT/CN2020/138414 2020-12-22 2020-12-22 一种显示装置及其制备方法 WO2022133751A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/253,735 US20240015275A1 (en) 2020-12-22 2020-12-22 Display apparatus and method for manufacturing same
PCT/CN2020/138414 WO2022133751A1 (zh) 2020-12-22 2020-12-22 一种显示装置及其制备方法
CN202080003510.8A CN115039405A (zh) 2020-12-22 2020-12-22 一种显示装置及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138414 WO2022133751A1 (zh) 2020-12-22 2020-12-22 一种显示装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2022133751A1 true WO2022133751A1 (zh) 2022-06-30

Family

ID=82157099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138414 WO2022133751A1 (zh) 2020-12-22 2020-12-22 一种显示装置及其制备方法

Country Status (3)

Country Link
US (1) US20240015275A1 (zh)
CN (1) CN115039405A (zh)
WO (1) WO2022133751A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918257A (zh) * 2011-11-09 2014-07-09 皇家飞利浦有限公司 显示设备和方法
CN105572884A (zh) * 2014-11-04 2016-05-11 群创光电股份有限公司 3d影像显示设备
CN105657417A (zh) * 2016-04-13 2016-06-08 京东方科技集团股份有限公司 一种对位检测方法和对位检测装置
CN107067980A (zh) * 2017-03-17 2017-08-18 京东方科技集团股份有限公司 虚拟曲面显示面板及显示装置
CN108803060A (zh) * 2018-07-03 2018-11-13 京东方科技集团股份有限公司 单眼立体显示器
US10205935B2 (en) * 2011-01-26 2019-02-12 Nikolay Ledentsov Laser system for generation of colored three-dimensional images

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201200959A (en) * 2010-06-29 2012-01-01 Fujifilm Corp One-eyed stereo photographic device
CN103246071B (zh) * 2013-04-28 2015-10-14 京东方科技集团股份有限公司 一种3d显示装置
CN105404010B (zh) * 2015-12-10 2018-06-26 中山大学 允许时间复用的光栅式三维显示系统和方法
WO2019058811A1 (ja) * 2017-09-19 2019-03-28 ソニー株式会社 表示装置および表示制御方法
CN108469682A (zh) * 2018-03-30 2018-08-31 京东方科技集团股份有限公司 一种三维显示装置及其三维显示方法
CN111552093B (zh) * 2020-06-05 2022-07-12 京东方科技集团股份有限公司 一种显示面板及其显示方法和显示装置
CN111624784B (zh) * 2020-06-23 2022-10-18 京东方科技集团股份有限公司 一种光场显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10205935B2 (en) * 2011-01-26 2019-02-12 Nikolay Ledentsov Laser system for generation of colored three-dimensional images
CN103918257A (zh) * 2011-11-09 2014-07-09 皇家飞利浦有限公司 显示设备和方法
CN105572884A (zh) * 2014-11-04 2016-05-11 群创光电股份有限公司 3d影像显示设备
CN105657417A (zh) * 2016-04-13 2016-06-08 京东方科技集团股份有限公司 一种对位检测方法和对位检测装置
CN107067980A (zh) * 2017-03-17 2017-08-18 京东方科技集团股份有限公司 虚拟曲面显示面板及显示装置
CN108803060A (zh) * 2018-07-03 2018-11-13 京东方科技集团股份有限公司 单眼立体显示器

Also Published As

Publication number Publication date
CN115039405A (zh) 2022-09-09
US20240015275A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2021244216A1 (zh) 一种显示面板及其显示方法和显示装置
US11402636B2 (en) Method and system for waveguide projector with wide field of view
US10684408B2 (en) Display device and image display method
JP5454661B2 (ja) 画像表示装置
CN110908134B (zh) 一种显示装置及显示系统
WO2022028020A1 (zh) 显示组件、显示装置和驱动方法
WO2017000433A1 (zh) 3d显示基板及其制作方法、3d显示装置
WO2019179136A1 (zh) 显示装置及显示方法
WO2019111927A1 (ja) 表示装置及びヘッドマウントディスプレイ
CN106291945B (zh) 一种显示面板和显示装置
TW202014758A (zh) 用於擴增實境或虛擬實境顯示器之裝置
CN110703459A (zh) 一种浮空3d显示装置及其实现方法
WO2019111820A1 (ja) 表示装置及びヘッドマウントディスプレイ
WO2022133751A1 (zh) 一种显示装置及其制备方法
US10509230B2 (en) Virtual display apparatus
WO2022226829A1 (zh) 一种光场显示装置及其显示方法
WO2019111926A1 (ja) 表示装置及びヘッドマウントディスプレイ
CN110275311B (zh) 一种基于液晶透镜阵列的透视三维显示装置及三维显示系统
CN109471259B (zh) 近眼显示装置
TW202034026A (zh) 3d立體影像顯示裝置
CN104252046A (zh) 多层显示设备及游戏机
WO2019044501A1 (ja) ヘッドマウントディスプレイ
JP4893821B2 (ja) 画像表示装置
CN112083582B (zh) 用于显示立体光场的薄膜结构
CN109407331B (zh) 立体显示装置、立体显示面板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966331

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18253735

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24-10-2023)