WO2021244216A1 - 一种显示面板及其显示方法和显示装置 - Google Patents

一种显示面板及其显示方法和显示装置 Download PDF

Info

Publication number
WO2021244216A1
WO2021244216A1 PCT/CN2021/092299 CN2021092299W WO2021244216A1 WO 2021244216 A1 WO2021244216 A1 WO 2021244216A1 CN 2021092299 W CN2021092299 W CN 2021092299W WO 2021244216 A1 WO2021244216 A1 WO 2021244216A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
display
display panel
pixel unit
cylindrical lens
Prior art date
Application number
PCT/CN2021/092299
Other languages
English (en)
French (fr)
Inventor
高健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/765,504 priority Critical patent/US11909949B2/en
Publication of WO2021244216A1 publication Critical patent/WO2021244216A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes

Definitions

  • the embodiments of the present disclosure belong to the field of display technology, and specifically relate to a display panel, a display method thereof, and a display device.
  • 2D display the plane display.
  • Parallax 3D display As shown in Figure 1, the parallax 3D scene changes in conjunction with the viewing angle.
  • True 3D display As shown in Figures 2a and 2b, it is the same as viewing the real world. You can view different depth-of-field planes by focusing on the monocular lens, and realize the clear/blurred transformation between different depth-of-field planes. This 3D display solves the problem of monocular Focus on visual fatigue that conflicts with binocular convergence.
  • the embodiments of the present disclosure provide a display panel, a display method thereof, and a display device.
  • an embodiment of the present disclosure provides a display panel including a display substrate and a lenticular lens array arranged on the light emitting side of the display substrate;
  • the display substrate includes a backplane, a pixel definition layer disposed on the backplane, and an array of sub-pixel units, the sub-pixel units are located in the pixel area defined by the pixel definition layer; the sub-pixel units include at least two Sub-pixels;
  • the cylindrical lens is arranged corresponding to the sub-pixel unit, the cylindrical surface of the cylindrical lens faces away from the back plate, and the focal point of the cylindrical lens is located on the surface of the sub-pixel unit away from the back plate.
  • the sub-pixels are arranged along a first direction; the axis of the cylindrical lens is perpendicular to the first direction; the extending direction of the axis of the cylindrical lens is the second direction;
  • the shape of the display substrate includes a rectangle, the long side of the display substrate extends in the first direction, and the wide side of the display substrate extends in the second direction;
  • the shape of the sub-pixel unit includes a rectangle, the long side of the sub-pixel unit extends along the first direction, and the wide side of the sub-pixel unit extends along the second direction;
  • the shape of the sub-pixel includes a rectangle, the wide side of the sub-pixel extends in the first direction, and the long side of the sub-pixel extends in the second direction.
  • each sub-pixel unit in the sub-pixel unit array are the same; the size and shape of each sub-pixel in the sub-pixel unit are the same.
  • the orthographic projection of the cylindrical lens on the backplane falls within the orthographic projection range of the sub-pixel unit on the backplane
  • the diameter of the cylindrical lens satisfies the formula: Wherein, Dy is the diameter of the cylindrical lens; y is the length of the sub-pixel unit in the first direction; W lens is the length of the cylindrical lens array in the first direction; W panel is the display The length of the substrate along the first direction; L is the best viewing distance of the display panel in parallax 3D display; f is the focal length of the cylindrical lens.
  • m film layers are provided between the cylindrical lens and the sub-pixel unit, and between the apex of the cylindrical surface of the cylindrical lens and the surface of the sub-pixel unit facing away from the back plate
  • the sub-pixels with the same arrangement position form a spatial projection of the view along the first direction on the parallax 3D display best viewing distance section of the display panel.
  • the width a y satisfies the formula: And a y ⁇ e, Na y ⁇ e; where L is the optimal viewing distance of the display panel in parallax 3D display; t y is the width of the sub-pixel in the first direction; f is the The focal length of the cylindrical lens; N is the number of the sub-pixels in the sub-pixel unit; e is the pupil distance of the human eye;
  • the spacing b y along the first direction of the spatial projection of the adjacent sub-pixels forming view on the parallax 3D display of the display panel on the shortest viewing distance section of the display panel satisfies the formula: And (N-1)b y ⁇ e; where W y is the length of the display substrate along the first direction;
  • the spacing c y along the first direction of the spatial projection of the view formed by adjacent sub-pixels on the parallax 3D display section of the display panel along the first direction satisfies the formula: And c y ⁇ e.
  • the sub-pixels with the same arrangement position form a spatial projection of the view along the first direction on the parallax 3D display best viewing distance section of the display panel.
  • the width is equal to the center distance along the first direction of the spatial projection of the view formed by the adjacent sub-pixels on the parallax 3D display best viewing distance section of the display panel.
  • the width of the non-light-emitting area between adjacent sub-pixels along the first direction is ⁇ 0.05 ⁇ m.
  • the size of the viewing area formed by the light from the sub-pixel propagating to the pupil position of the human eye along the first direction is less than or equal to the size of the half pupil of the human eye.
  • the distance L between the pupil of the human eye and the display panel satisfies: Wherein, 6mm is the minimum distance between the eyelashes of the human eye without contacting the cylindrical lens array; ⁇ is the pupil diameter of the human eye; ⁇ is the angle of view of the main lobe of the cylindrical lens; N is the number of the sub-pixels in the sub-pixel unit.
  • the number M of rays entering the eye when the display panel performs 3D light field display satisfies:
  • the imaging angular resolution ⁇ when the display panel performs 3D light field display satisfies: Wherein, Dy is the diameter of the cylindrical lens; L is the distance between the pupil of the human eye and the display panel.
  • embodiments of the present disclosure provide a display device including the above-mentioned display panel.
  • an embodiment of the present disclosure provides a display method of a display panel, the display panel is the above-mentioned display panel, and the display method includes: when the display panel performs a parallax 3D display, the sub-pixel unit of the display panel Input image signals of different parallaxes for each sub-pixel of;
  • an image signal with the same parallax is input to each sub-pixel in the sub-pixel unit of the display panel.
  • the display panel is the above-mentioned display panel
  • the display method includes: when the display panel performs light field 3D display, inputting a light field image to each sub-pixel in the sub-pixel unit of the display panel Signal.
  • the sub-pixel unit is configured as at least two sub-pixels, and the focal point of the cylindrical lens is located on the surface of the sub-pixel unit away from the back plate, so that the sub-pixels form at least two sub-pixels in the visible space.
  • the display panel is not only effective Reducing the crosstalk of the parallax 3D display is also conducive to improving the moiré phenomenon during the parallax 3D display, enhancing the stereoscopic effect of the parallax 3D display, and by being compatible with the near-eye light field display (ie true 3D display), it can solve the single-eye focus and the binocular Visual fatigue that converges conflicts.
  • the display device provided by the embodiment of the present disclosure can improve the display effect of the parallax 3D display of the display device by using the above-mentioned display panel, and can make the display device compatible with light field 3D display, and can improve the light field 3D of the display device. display effect.
  • Figure 1 is a schematic diagram of the linkage change of the parallax 3D scene with the viewing angle
  • Fig. 2a is a schematic diagram showing the clear/blurred images of different depths of field in true 3D
  • Fig. 2b is a schematic diagram showing the clear/blurred transformation of different depth of field planes in true 3D;
  • FIG. 3 is a schematic diagram of the structure of a display panel in an embodiment of the disclosure.
  • FIG. 4 is a structural cross-sectional view of the display panel in FIG. 3 along the AA section line;
  • FIG. 5 is a schematic top view of a structure of a display substrate in a display panel in an embodiment of the disclosure
  • FIG. 6 is an enlarged schematic diagram of the structure of the sub-pixel unit in FIG. 5;
  • FIG. 7 is a schematic diagram of the angle of view of the main lobe of a cylindrical lens in an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of ensuring that the peak values of two different views can enter the left eye and the right eye at the same time when the parallax 3D display is implemented in the embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the view area formed by each sub-pixel in the sub-pixel unit for ensuring the correctness of the parallax 3D image information in an embodiment of the disclosure
  • FIG. 10 is a schematic diagram of the placement height of the cylindrical lens in the embodiment of the disclosure.
  • FIG. 11 is a schematic diagram showing the minimum crosstalk between views formed by adjacent sub-pixels after optimizing the placement height of the cylindrical lens in the embodiment of the disclosure;
  • FIG. 12 is a schematic diagram of a view size formed by each sub-pixel in a sub-pixel unit in an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of the principle of crosstalk between views formed by each sub-pixel
  • FIG. 14 is a schematic diagram of a 3D scene viewed when the human eye is in a view formed by sub-pixels 1 and 3 in an embodiment of the disclosure;
  • 15 is a schematic diagram of a 3D scene viewed when the human eye is in a view formed by sub-pixels 2 and 4 in an embodiment of the disclosure
  • 16 is a schematic diagram of the principle analysis of the influence of discontinuous light emission of sub-pixels on the parallax 3D display effect
  • FIG. 17 is a schematic diagram of the moiré fringe phenomenon formed by discontinuous light emission of sub-pixels
  • FIG. 19 is a schematic diagram of a light field of a display panel compatible with light field 3D display in an embodiment of the disclosure.
  • 20 is a schematic diagram of the light field of the compatible light field 3D display of the display panel in combination with specific structural design parameter data in the embodiment of the disclosure;
  • FIG. 21 is a schematic diagram of setting the exit pupil distance to ensure that more than two viewpoints are always distributed in the pupil in an embodiment of the disclosure.
  • the optical devices such as cylindrical lenses
  • OLED Organic Light-Emitting Diode, organic light-emitting semiconductor
  • the optical devices adopts a defocus design, that is, the focal point of the optical device is far away
  • the surface of the light-emitting element consisting of the anode, the light-emitting functional layer and the cathode
  • the current parallax 3D display is not compatible with near-eye light field display (ie true 3D display) ,
  • near-eye light field display ie true 3D display
  • the sub-pixel units are still arranged independently, that is, a single sub-pixel is arranged in the sub-pixel island defined by the pixel definition layer. Since the sub-pixels are not continuously distributed, they will appear during display. Moiré phenomenon; At the same time, in the current parallax 3D display, crosstalk and moiré have a restrictive relationship. Eliminating the influence of moiré will increase the crosstalk between views, resulting in a small stereoscopic effect of the parallax 3D display.
  • exemplary embodiments of the present disclosure provide a display panel, a display method thereof, and a display device.
  • An exemplary embodiment of the present disclosure provides a display panel, as shown in FIGS. 3 and 4, including a display substrate 1, an array of cylindrical lenses 2 arranged on the light-emitting side of the display substrate 1;
  • the pixel definition layer 12 and the sub-pixel unit 13 on the backplane 11 are arrayed.
  • the sub-pixel unit 13 is located in the pixel area defined by the pixel definition layer 12; the sub-pixel unit 13 includes at least two sub-pixels 130; the cylindrical lens 2 and the sub-pixel unit 13
  • the cylindrical surface of the cylindrical lens 2 faces away from the back plate 11, and the focal point of the cylindrical lens 2 is located on the surface of the sub-pixel unit 13 away from the back plate 11.
  • the sub-pixel unit 13 refers to a sub-pixel (also called a sub-pixel) in a pixel unit.
  • one sub-pixel is set to be composed of at least two sub-pixels 130, that is, one sub-pixel is finely divided. Divided into multiple sub-pixels.
  • the cylindrical lenses 2 and the sub-pixel units 13 are arranged in one-to-one correspondence.
  • the sub-pixel unit 13 includes a red sub-pixel unit, a green sub-pixel unit, and a blue sub-pixel unit. Each sub-pixel in the red sub-pixel unit emits red light; each sub-pixel in the green sub-pixel unit emits green light; and each sub-pixel in the blue sub-pixel unit emits blue light.
  • Each sub-pixel is composed of an anode, a light-emitting functional layer, and a cathode that are sequentially stacked, that is, the display substrate 1 is an OLED display substrate.
  • the sub-pixel 130 By arranging the sub-pixel unit 13 as at least two sub-pixels 130, and positioning the focal point of the cylindrical lens 2 on the surface of the sub-pixel unit 13 facing away from the back plate 11, the sub-pixel 130 forms at least two viewpoint areas in the visible space, By controlling the gray scale of the sub-pixel 130 and adjusting the viewing distance, a multi-viewpoint parallax 3D display, a light field display compatible with near-eye viewing, and a 2D display with the same gray scale of the sub-pixel 130 are realized.
  • the display panel can not only effectively reduce parallax
  • the crosstalk of 3D display is also conducive to improving the moiré phenomenon during parallax 3D display, enhancing the three-dimensional effect of parallax 3D display, and by being compatible with near-eye light field display (ie true 3D display), it can solve the conflict between monocular focus and binocular convergence The problem of visual fatigue.
  • the sub-pixels 130 are arranged along the first direction Y; the axis of the cylindrical lens is perpendicular to the first direction Y; the extending direction of the axis of the cylindrical lens is the second direction X;
  • the shape of the display substrate 1 includes a rectangle, the long side of the display substrate 1 extends along the first direction Y, and the wide side of the display substrate 1 extends along the second direction X;
  • the shape of the sub-pixel unit 13 includes a rectangle, and the long side of the sub-pixel unit 13 extends along the first direction.
  • the direction Y extends, the wide side of the sub-pixel unit 13 extends along the second direction X; the shape of the sub-pixel 130 includes a rectangle, the wide side of the sub-pixel 130 extends along the first direction Y, and the long side of the sub-pixel 130 extends along the second direction X.
  • each sub-pixel unit 13 in the sub-pixel unit 13 array are the same; the size and shape of each sub-pixel 130 in the sub-pixel unit 13 are all the same.
  • the relevant parameter settings of the display substrate are as shown in Table 1, and the calculation results of some design parameters of the subsequent cylindrical lens are obtained based on the data in Table 1.
  • the main lobe angle of view of the cylindrical lens 2 is the angle formed by the sub-pixel unit 13 and the corresponding cylindrical lens 2, according to the process capability of the cylindrical lens 2 (D/f ⁇ 0.768, where D is the cylindrical lens 2 diameter, D ⁇ 54.9 ⁇ m), combined with the data in Table 1 that the pitch of the sub-pixel unit 13 is 20 ⁇ m, it can be obtained that ⁇ 27.4°.
  • the matching relationship between the main lobe angle of view and the pupil distance p is shown in FIG. 7, as shown in FIG.
  • the peaks of the views formed by two sub-pixels with different layout positions can enter the left eye and the right eye respectively (for example: the peak brightness of the 1, 3 views enter the left and right eyes respectively, Figure 8 represents the 4 views spread to the best The energy distribution at the viewing distance L), the angle of view of the main lobe of the cylindrical lens 2 needs to meet In this way, the parallax 3D display of the display panel can be realized.
  • the relevant parameter setting data of the substrate shown in Table 1 the specific data of the main lobe angle of view and the focal length of the cylindrical lens obtained by calculation are shown in Table 2.
  • the orthographic projection of the cylindrical lens 2 on the backplane falls within the orthographic projection range of the sub-pixel unit 13 on the backplane; the diameter of the cylindrical lens 2 satisfies the formula:
  • Dy is the diameter of the cylindrical lens 2; y is the length of the sub-pixel unit 13 along the first direction Y; W lens is the length of the cylindrical lens 2 array along the first direction Y; W panel is the length of the display substrate along the first direction Y Length; L is the best viewing distance of the display panel in parallax 3D display; f is the focal length of the cylindrical lens 2.
  • m film layers are provided between the cylindrical lens 2 and the sub-pixel unit 13.
  • h is the thickness of the cylindrical lens 2 and n is the column
  • the refractive index of the lens 2; h1 is the thickness of the first film layer between the cylindrical lens 2 and the sub-pixel unit 13, n1 is the refractive index of the first film layer; h2 is between the cylindrical lens 2 and the sub-pixel unit 13
  • the focal point of the cylindrical lens 2 can be located on the surface of the sub-pixel unit 13 away from the back plate 11, which not only effectively reduces the crosstalk of the parallax 3D display, but also makes the display panel compatible with near-eye light field display (ie true 3D display), which can solve the problem of visual fatigue caused by the conflict between monocular focus and binocular convergence.
  • the film layer provided between the cylindrical lens 2 and the sub-pixel unit 13 includes: an encapsulation layer 14 and a circular polarizer 15.
  • the encapsulation layer 14 includes three sub-layers of different materials, and the circular polarizer 15 includes four different materials.
  • the optimized data is drawn as the curve shown in Figure 11, which can be It can be seen that the adjacent sub-pixels propagate to the best viewing distance, and the crosstalk between the views formed is basically zero.
  • the sub-pixels arranged in the same position form a spatial projection of the view along the first direction Y on the parallax 3D display best viewing distance section of the display panel.
  • the width a y satisfies the formula: And a y ⁇ e, Na y ⁇ e; where, L is the best viewing distance of the display panel in parallax 3D display; t y is the width of the sub-pixel in the first direction Y; f is the focal length of the cylindrical lens 2; N Is the number of sub-pixels in the sub-pixel unit 13; e is the interpupillary distance of the human eye.
  • the spacing b y along the first direction Y of the spatial projection of the view formed by adjacent sub-pixels on the parallax 3D display of the display panel on the shortest viewing distance section of the display panel satisfies the formula: And (N-1)b y ⁇ e; where W y is the length of the display substrate along the first direction Y.
  • the spacing c y along the first direction Y of the spatial projection of the view formed by adjacent sub-pixels on the parallax 3D display of the display panel at the farthest viewing distance section satisfies the formula: And c y ⁇ e.
  • L1 is the distance from the shortest viewing distance of the display panel in the parallax 3D display to the best viewing distance of the display panel in the parallax 3D display;
  • L2 is the longest viewing distance of the display panel in the parallax 3D display The distance of the display panel at the best viewing distance for parallax 3D display.
  • a y in the above formula needs to satisfy a y ⁇ e, Na y ⁇ e; b y needs to satisfy (N-1) b y ⁇ e; c y needs to satisfy c y ⁇ e. This ensures that good parallax 3D images can be viewed within the range of the parallax 3D viewing zone.
  • the sub-pixels arranged in the same position form the spatial projection of the view on the parallax 3D display of the display panel.
  • the width a y along the first direction Y is equal to the adjacent sub-pixels.
  • the spatial projection of the pixels forming the view is the center spacing g y along the first direction Y on the parallax 3D display best viewing distance section of the display panel. This setting can further ensure that the display panel is at the best viewing distance during the parallax 3D display.
  • the 3D viewport is continuous.
  • E b , E c , E d , E A represent the peak value of the view energy (such as light energy) of each sub-pixel.
  • Table 5 the data shown in Table 5 is obtained. It can be seen that the crosstalk between views of the multi-view parallax 3D display panel in this embodiment is close to 0, that is, the structure of the display panel in this embodiment And parameter settings, so that there is no mutual restriction between crosstalk and moiré, so large parallax images can be loaded to achieve a large depth of field stereo image.
  • the parallax 3D image we get can also change with the viewing angle of view. As shown in Figure 14 and Figure 15, when the human eye is in the 1, 3 and 2, 4 views respectively, 3D images at different angles can be viewed.
  • the width of the non-light-emitting area between adjacent sub-pixels along the first direction Y is ⁇ 0.05 ⁇ m.
  • the curve relationship between the width of the non-light-emitting area and the degree of moiré between the sub-pixels in Figure 18 shows that when the sub-pixels When the width of the non-light emitting area is less than 0.05 ⁇ m, the degree of moiré is less than 5%. Therefore, it can be considered that the parallax 3D display of the display panel has no influence of moiré at this time, and the sub-pixels emit light continuously.
  • the size of the viewing area formed by the light rays from the sub-pixel propagating to the pupil position of the human eye along the first direction Y is less than or equal to the size of the half pupil of the human eye.
  • the display panel is compatible with near-eye light field display.
  • the light field display is a true 3D display, which is the same as viewing the real world through a single-eye lens. Focusing to see different depth of field planes to realize the clear/blurred transformation between different depth planes, this 3D display solves the visual fatigue problem of the conflict between monocular focus and binocular convergence.
  • the benchmark for realizing near-eye light field display is: 1.
  • the focal point of the cylindrical lens is located on the surface of the sub-pixel unit away from the back plate, so that the beams emitted by the sub-pixel units are collimated to form a single-directional beam, and each sub-pixel unit emits light in a known direction.
  • the light beam is called the light field in space (light field for short); 2.
  • the single direction light beam entering the pupil has intersection points in space. These intersection points are the image points of the light field imaging, and the image points formed by the adjacent cylindrical lens beams are near the screen. , The image point formed by the beams of separated cylindrical lenses is at the far screen.
  • the light from two or more adjacent sub-pixels must enter the pupil of a single eye (that is, there are more than two viewpoints in the pupil of a single eye). Therefore, the light emitted by the sub-pixel propagates to the position of the pupil of the human eye.
  • the size of the viewing area along the first direction Y needs to be smaller than or equal to the size of the half pupil of the human eye.
  • the light emitted by the sub-pixel propagates to 350mm, and the size of the viewing area along the first direction Y is 32.573mm, and the pupil of the human eye usually has only Therefore, if the light emitted by the sub-pixel is to be transmitted to the pupil position of the human eye, the size of the viewing area along the first direction Y needs to be less than or equal to the size of the half pupil of the human eye, and the viewing distance of the human eye (that is, the exit pupil Distance) is less than or equal to 16.29mm.
  • the exit pupil distance, the number of rays entering the eye, and the resolution of the imaging angle can be calculated for the realization of the near-eye light field display based on the above-mentioned reference for near-eye light field display. Evaluate the display effect of near-eye light field display (ie true 3D display).
  • the exit pupil distance that is, the distance L between the pupil of the human eye and the display panel satisfies:
  • 6mm is the minimum distance between the eyelashes of the human eye without contacting the cylindrical lens 2 array;
  • is the pupil diameter of the human eye;
  • is the angle of view of the main lobe of the cylindrical lens 2;
  • N is the number of sub-pixels in the sub-pixel unit 13. The larger the range of the exit pupil distance, the better the display effect of the near-eye light field display.
  • the imaging angle resolution is used to evaluate the light field 3D display resolution of the display panel.
  • the imaging angular resolution ⁇ when the display panel performs 3D light field display satisfies: Among them, Dy is the diameter of the cylindrical lens 2; L is the distance between the pupil of the human eye and the display panel. The smaller the imaging angular resolution, the higher the resolution of the light field 3D display.
  • this embodiment also provides a display method of the display panel.
  • the display method includes: when the display panel performs parallax 3D display, inputting to each sub-pixel in the sub-pixel unit of the display panel Image signals with different parallaxes; when the display panel performs 2D display, the image signals with the same parallax are input to each sub-pixel in the sub-pixel unit of the display panel.
  • the display method of the display panel further includes: when the display panel performs light field 3D display, inputting a light field image signal to each sub-pixel in the sub-pixel unit of the display panel.
  • the sub-pixel unit is configured as at least two sub-pixels, and the focal point of the cylindrical lens is located on the surface of the sub-pixel unit away from the back plate, so that the sub-pixels are formed at least in the visible space.
  • the two viewpoint areas by controlling the gray scale of the sub-pixels and adjusting the viewing distance, a multi-view parallax 3D display, a light field display compatible with near-eye viewing, and a 2D display with the same gray scale sub-pixels can be realized.
  • the display panel can not only Effectively reduce the crosstalk of the parallax 3D display, it is also beneficial to improve the moiré phenomenon during the parallax 3D display, and enhance the stereoscopic effect of the parallax 3D display. Moreover, it is compatible with the near-eye light field display (ie true 3D display), which can solve the problem of monocular focusing and The visual fatigue problem of binocular convergent conflict.
  • An embodiment of the present disclosure also provides a display device, including the display panel in the above-mentioned embodiment.
  • the display effect of the parallax 3D display of the display device can be improved, the display device can be compatible with the light field 3D display, and the light field 3D display effect of the display device can be improved.
  • the display device provided by the exemplary embodiment of the present disclosure may be any product or component with a display function, such as an OLED panel, an OLED TV, a display, a mobile phone, and a navigator.
  • a display function such as an OLED panel, an OLED TV, a display, a mobile phone, and a navigator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种显示面板、显示方法和显示装置。显示面板包括显示基板(1)、设置在显示基板(1)出光侧的柱透镜(2)阵列;显示基板(1)包括背板(11)、设置在背板(11)上的像素定义层(12)和亚像素单元(13)阵列,亚像素单元(13)位于像素定义层(12)限定的像素区域内;亚像素单元(13)包括至少两个子像素(130);柱透镜(2)与亚像素单元(13)对应设置,且柱透镜(2)的焦点位于亚像素单元(13)背离背板(11)的表面上。显示面板能够实现多视点3D显示、可兼容近眼观看的光场显示以及2D显示,有效降低3D显示的串扰,改善3D显示时的莫尔纹现象,而且能够解决单眼聚焦与双眼汇聚冲突的视觉疲劳问题。

Description

一种显示面板及其显示方法和显示装置 技术领域
本公开实施例属于显示技术领域,具体涉及一种显示面板及其显示方法和显示装置。
背景技术
2D显示:即平面显示。
视差3D显示:如图1所示,视差3D景象随观看视角联动变化。
真3D显示:如图2a、2b所示,它与观看真实世界一样,可通过单眼晶状体调焦来观看不同的景深面,实现不同景深面间的清晰/模糊变换,这种3D显示解决了单眼聚焦与双眼汇聚冲突的视觉疲劳问题。
发明内容
本公开实施例提供一种显示面板及其显示方法和显示装置。
第一方面,本公开实施例提供一种显示面板,包括显示基板、设置在所述显示基板出光侧的柱透镜阵列;
所述显示基板包括背板、设置在所述背板上的像素定义层和亚像素单元阵列,所述亚像素单元位于所述像素定义层限定的像素区域内;所述亚像素单元包括至少两个子像素;
所述柱透镜与所述亚像素单元对应设置,所述柱透镜的圆柱面背离所述背板,且所述柱透镜的焦点位于所述亚像素单元背离所述背板的表面上。
在一些实施例中,所述子像素沿第一方向排布;所述柱透镜的轴线垂直于所述第一方向;所述柱透镜的轴线的延伸方向为第二方向;
所述显示基板的形状包括矩形,所述显示基板的长边沿所述第一方向延伸,所述显示基板的宽边沿所述第二方向延伸;
所述亚像素单元的形状包括矩形,所述亚像素单元的长边沿所述第一 方向延伸,所述亚像素单元的宽边沿所述第二方向延伸;
所述子像素的形状包括矩形,所述子像素的宽边沿所述第一方向延伸,所述子像素的长边沿所述第二方向延伸。
在一些实施例中,所述亚像素单元阵列中各所述亚像素单元的大小形状相同;所述亚像素单元中各所述子像素的大小形状均相同。
在一些实施例中,所述柱透镜的主瓣视角和所述柱透镜的焦距满足公式:
Figure PCTCN2021092299-appb-000001
其中,ω为所述柱透镜的主瓣视角;N为所述亚像素单元中所述子像素的数量;p y为所述亚像素单元中相邻两个所述子像素的中心间距;f为所述柱透镜的焦距;i=1、2、3…,i为整数;α为人眼瞳距相对所述显示基板的夹角。
在一些实施例中,所述柱透镜在所述背板上的正投影落入所述亚像素单元在所述背板上的正投影范围内;
所述柱透镜的口径满足公式:
Figure PCTCN2021092299-appb-000002
其中,Dy为所述柱透镜的口径;y为所述亚像素单元沿所述第一方向的长度;W lens为所述柱透镜阵列沿所述第一方向的长度;W panel为所述显示基板沿所述第一方向的长度;L为所述显示面板在视差3D显示时的最佳观看距离;f为所述柱透镜的焦距。
在一些实施例中,所述柱透镜与所述亚像素单元之间设置有m个膜层,所述柱透镜的圆柱面顶点与所述亚像素单元背离所述背板的一侧表面之间的距离H满足公式:h/n+h1/n1+h2/n2+…+hm/nm=f;H=h+h1+h2+…+hm;其中,h为所述柱透镜的厚度,n为所述柱透镜的折射率;h1为所述柱透镜与所述亚像素单元之间的第1个膜层的厚度,n1为所述第1个膜层的折射率;h2为所述柱透镜与所述亚像素单元之间的第2个膜层的厚度,n2为所述第2个膜层的折射率;hm为所述柱透镜与所述亚像素单元之间的第m个膜层 的厚度,nm为所述第m个膜层的折射率;f为所述柱透镜的焦距。
在一些实施例中,所述亚像素单元阵列中,排布位置相同的所述子像素形成视图的空间投影在所述显示面板视差3D显示最佳观看距离截面上的沿所述第一方向的宽度a y满足公式:
Figure PCTCN2021092299-appb-000003
且a y≤e、Na y≥e;其中,L为所述显示面板在视差3D显示时的最佳观看距离;t y为所述子像素沿所述第一方向的宽度;f为所述柱透镜的焦距;N为所述亚像素单元中所述子像素的数量;e为人眼瞳距;
所述亚像素单元阵列中,相邻的所述子像素形成视图的空间投影在所述显示面板视差3D显示最近观看距离截面上的沿所述第一方向的间距b y满足公式:
Figure PCTCN2021092299-appb-000004
且(N-1)b y≥e;其中,W y为所述显示基板沿所述第一方向的长度;
所述亚像素单元阵列中,相邻的所述子像素形成视图的空间投影在所述显示面板视差3D显示最远观看距离截面上的沿所述第一方向的间距c y满足公式:
Figure PCTCN2021092299-appb-000005
且c y≤e。
在一些实施例中,所述亚像素单元阵列中,排布位置相同的所述子像素形成视图的空间投影在所述显示面板视差3D显示最佳观看距离截面上的沿所述第一方向的宽度等于相邻的所述子像素形成视图的空间投影在所述显示面板视差3D显示最佳观看距离截面上的沿所述第一方向的中心间距。
在一些实施例中,所述亚像素单元中,相邻所述子像素之间的不发光区域沿所述第一方向的宽度≤0.05μm。
在一些实施例中,所述子像素发出的光线传播到人眼瞳孔位置形成的视图区域沿所述第一方向的尺寸小于或等于人眼半瞳孔的尺寸。
在一些实施例中,人眼瞳孔与所述显示面板之间的间距L满足:
Figure PCTCN2021092299-appb-000006
其中,6mm为人眼眼睫毛不接触所述柱透镜阵列的最小距离;φ为人眼瞳孔直径;ω为所述柱透镜的主瓣视角;N为所述亚像素单元中所述子像素的数量。
在一些实施例中,所述显示面板进行3D光场显示时的入眼光线数M满足:
Figure PCTCN2021092299-appb-000007
其中,INT为向下取整函数、v=2Ltan(ω/2),Z为所述显示基板沿所述第二方向的所述亚像素单元排布数量;φ为人眼瞳孔直径;ω为所述柱透镜的主瓣视角;N为所述亚像素单元中所述子像素的数量。
在一些实施例中,所述显示面板进行3D光场显示时的成像角分辨率β满足:
Figure PCTCN2021092299-appb-000008
其中,Dy为所述柱透镜的口径;L为人眼瞳孔与所述显示面板之间的间距。
第二方面,本公开实施例提供一种显示装置,包括上述显示面板。
第三方面,本公开实施例提供一种显示面板的显示方法,所述显示面板为上述显示面板,所述显示方法包括:当所述显示面板进行视差3D显示时,向显示面板亚像素单元中的各子像素输入不同视差的图像信号;
当所述显示面板进行2D显示时,向所述显示面板亚像素单元中的各子像素输入相同视差的图像信号。
在一些实施例中,所述显示面板为上述显示面板,所述显示方法包括:当所述显示面板进行光场3D显示时,向所述显示面板亚像素单元中的各子像素输入光场图像信号。
本公开实施例所提供的显示面板,通过将亚像素单元设置为至少两个子像素,且使柱透镜的焦点位于亚像素单元背离背板的表面上,使子像素在可视空间上形成至少两个视点区域,通过控制子像素的灰阶和调整观看距离,实现多视点视差3D显示、同时可兼容近眼观看的光场显示、以及子像素为同一灰阶的2D显示,该显示面板不仅能有效降低视差3D显示的串扰,还有利于改善视差3D显示时的莫尔纹现象,提升视差3D显示的立体感效果,而且通过兼容近眼光场显示(即真3D显示),能够解决单眼聚焦与双眼汇聚冲突的视觉疲劳问题。
本公开实施例所提供的显示装置,通过采用上述显示面板,能够提升该显示装置视差3D显示的显示效果,且能使该显示装置兼容光场3D显示,并能提升该显示装置的光场3D显示效果。
附图说明
附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1为视差3D景象随观看视角联动变化示意图;
图2a为真3D显示不同景深面的清晰/模糊示意图;
图2b为真3D显示不同景深面的清晰/模糊变换示意图;
图3为本公开实施例中显示面板的结构示意图;
图4为图3中显示面板沿AA剖切线的结构剖视图;
图5为本公开实施例中显示面板中显示基板的结构俯视示意图;
图6为图5中亚像素单元的结构放大示意图;
图7为本公开实施例中柱透镜主瓣视角的示意图;
图8为本公开实施例中实现视差3D显示时确保两个不同视图的峰值能 同时分别进入左眼和右眼的示意图。
图9为本公开实施例中确保视差3D图像信息正确性的亚像素单元中各子像素形成视图区域的示意图;
图10为本公开实施例中柱透镜的放置高度示意图;
图11为本公开实施例中对柱透镜的放置高度进行优化后,相邻子像素形成的视图之间串扰最小的示意图;
图12为本公开实施例中亚像素单元中的各子像素形成的视图大小的示意图;
图13为各子像素形成的视图间发生串扰的原理示意图;
图14为本公开实施例中人眼处于1、3子像素形成的视图时观看到的3D景象示意图;
图15为本公开实施例中人眼处于2、4子像素形成的视图时观看到的3D景象示意图
图16为子像素不连续发光对视差3D显示效果影响的原理分析示意图;
图17为子像素不连续发光形成的莫尔暗条纹现象示意图;
图18为本公开实施例中子像素间不发光区域宽度与莫尔纹程度的对应关系曲线图;
图19为本公开实施例中显示面板兼容光场3D显示的光场示意图;
图20为本公开实施例中显示面板结合具体结构设计参数数据的兼容光场3D显示的光场示意图;
图21为本公开实施例中保证瞳孔内始终分布两个以上视点的出瞳距设置示意图。
其中附图标记为:
1、显示基板;11、背板;12、像素定义层;13、亚像素单元;130、子像素;14、封装层;15、圆偏光片;2、柱透镜;Y、第一方向;X、第二方向。
具体实施方式
为使本领域技术人员更好地理解本公开实施例的技术方案,下面结合附图和具体实施方式对本公开实施例提供的一种显示面板及其显示方法和显示装置作进一步详细描述。
在下文中将参考附图更充分地描述本公开实施例,但是所示的实施例可以以不同形式来体现,且不应当被解释为限于本公开阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了区的具体形状,但并不是旨在限制性的。
目前公开技术中的视差3D显示,设置于OLED(Organic Light-Emitting Diode,有机电激光显示、有机发光半导体)显示基板上的光学器件(如柱透镜)采用离焦设计,即光学器件的焦点远离发光元件(由依次叠置的阳极、发光功能层和阴极构成)的表面,这使得视差3D显示串扰高,显示效果差;且目前的视差3D显示无法兼容近眼光场显示(即真3D显示),从而无法解决单眼聚焦与双眼汇聚冲突的视觉疲劳问题。另外,目前的视差3D显示基板中,亚像素单元仍然按照常规的独立设置,即由像素定义层限定的亚像素岛内设置有单个子像素,由于子像素不连续分布,所以在显示时会出现莫尔纹现象;同时,目前的视差3D显示中,串扰与莫尔纹存在制约关系,消除了莫尔纹影响就会使得视图间的串扰增大,从而导致视差3D显示的立体感小。
针对目前视差3D显示中存在的上述问题,本公开的示意性实施例提供一种显示面板及其显示方法和显示装置。
本公开的示意性实施例提供一种显示面板,如图3和图4所示,包括显示基板1、设置在显示基板1出光侧的柱透镜2阵列;显示基板1包括背板11、设置在背板11上的像素定义层12和亚像素单元13阵列,亚像素单元13位于像素定义层12限定的像素区域内;亚像素单元13包括至少两个子像素130;柱透镜2与亚像素单元13对应设置,柱透镜2的圆柱面背离背板11,且柱透镜2的焦点位于亚像素单元13背离背板11的表面上。
其中,亚像素单元13指的是像素单元中的亚像素(也称子像素),在本公开实施例中,是将一个亚像素设置为由至少两个子像素130构成,即将一个亚像素又细分为多个子像素。柱透镜2与亚像素单元13一一对应设置。亚像素单元13包括红色亚像素单元、绿色亚像素单元和蓝色亚像素单元。红色亚像素单元中的各子像素均发红色光;绿色亚像素单元中的各子像素均发绿色光;蓝色亚像素单元中的各子像素均发蓝色光。各子像素均由依次叠置的阳极、发光功能层和阴极构成,即该显示基板1为OLED显示基板。
通过将亚像素单元13设置为至少两个子像素130,且使柱透镜2的焦点位于亚像素单元13背离背板11的表面上,使子像素130在可视空间上形成至少两个视点区域,通过控制子像素130的灰阶和调整观看距离,实现多视点视差3D显示、同时可兼容近眼观看的光场显示、以及子像素130为同一灰阶的2D显示,该显示面板不仅能有效降低视差3D显示的串扰,还有利于改善视差3D显示时的莫尔纹现象,提升视差3D显示的立体感效果,而且通过兼容近眼光场显示(即真3D显示),能够解决单眼聚焦与双眼汇聚冲突的视觉疲劳问题。
在一些实施例中,如图5和图6所示,子像素130沿第一方向Y排布;柱透镜的轴线垂直于第一方向Y;柱透镜的轴线的延伸方向为第二方向X;显示基板1的形状包括矩形,显示基板1的长边沿第一方向Y延伸,显示基板1的宽边沿第二方向X延伸;亚像素单元13的形状包括矩形,亚像素 单元13的长边沿第一方向Y延伸,亚像素单元13的宽边沿第二方向X延伸;子像素130的形状包括矩形,子像素130的宽边沿第一方向Y延伸,子像素130的长边沿第二方向X延伸。
在一些实施例中,亚像素单元13阵列中各亚像素单元13的大小形状相同;亚像素单元13中各子像素130的大小形状均相同。
在一些实施例中,显示基板的相关参数设置如表1,后续柱透镜的一些设计参数计算结果是基于表1中的数据得到的。
表1
Figure PCTCN2021092299-appb-000009
在一些实施例中,如图7所示,柱透镜2的主瓣视角和柱透镜2的焦距满足公式:
Figure PCTCN2021092299-appb-000010
其中,ω为柱透镜2的主瓣视角;N为亚像素单元13中子像素的数量;p y为亚像素单元13中相邻两个子像素的中心间距;f为柱透镜2的焦距;i=1、2、3…,i为整数;α为人眼瞳距p相对显示基板的夹角。
其中,如图7所示,柱透镜2的主瓣视角为亚像素单元13与相对应柱透镜2所形成的视角,根据柱透镜2的工艺能力(D/f≤0.768,其中D为柱透镜2的口径,D≈54.9μm),结合表1中亚像素单元13间距为20μm 的数据,可以得到ω≤27.4°。在视差3D显示的最佳观看距离L处,主瓣视角与瞳距p的配合关系如图7所示,如图8所示,为了确保两个不同视图(即亚像素单元13阵列中,排布位置不同的两个子像素形成的视图)的峰值能同时分别进入左眼和右眼(例如:1、3视图峰值亮度分别进入左眼和右眼,图8代表了4个视图传播到最佳观看距离L处的能量分布),柱透镜2的主瓣视角需要满足
Figure PCTCN2021092299-appb-000011
如此才能实现显示面板的视差3D显示。根据表1中显示基板的相关参数设置数据,计算获得的主瓣视角和柱透镜的焦距的具体数据如表2所示。
表2
Figure PCTCN2021092299-appb-000012
需要说明的是,只要柱透镜2的主瓣视角满足
Figure PCTCN2021092299-appb-000013
就能确保两个不同视图的峰值能同时分别进入左眼和右眼,从而实现立体感较大的视差3D显示;其中,i为整数,例如,当i=1时,1、2视图峰值亮度分别进入左眼和右眼;当i=2时,1、3视图峰值亮度分别进入左眼和右眼;当i=3时,1、4视图峰值亮度分别进入左眼和右眼;依次类推。
在一些实施例中,如图9所示,柱透镜2在背板上的正投影落入亚像素单元13在背板上的正投影范围内;柱透镜2的口径满足公式:
Figure PCTCN2021092299-appb-000014
其中,Dy为柱透镜2的口径;y为亚像素单元13沿第一方向Y的长度;W lens为柱透镜2阵列沿第一方向Y的长度;W panel为显示基板沿第一方向Y的长度;L为显示面板在视差3D显示时的最佳观看距离;f为柱透镜2的焦距。其中,为了确保视差3D图像信息的正确性,需要使亚像素单元13中的全部的1子像素(即排布在相同的第1位置的子像素)投射到1视图区域、2子像素(即排布在相同的第2位置的子像素)投射到2视图区域、3子像素(即排布在相同的第3位置的子像素)投射到3视图区域……,则柱透镜2的口径相对亚像素单元13沿第一方向Y的长度有一定的收缩关系,例如:根据表1中显示基板的相关参数设置数据,本实施例中,
Figure PCTCN2021092299-appb-000015
在一些实施例中,如图10所示,柱透镜2与亚像素单元13之间设置有m个膜层,柱透镜2的圆柱面顶点与亚像素单元13背离背板11的一侧表面之间的距离H满足公式:h/n+h1/n1+h2/n2+…+hm/nm=f;H=h+h1+h2+…+hm;其中,h为柱透镜2的厚度,n为柱透镜2的折射率;h1为柱透镜2与亚像素单元13之间的第1个膜层的厚度,n1为第1个膜层的折射率;h2为柱透镜2与亚像素单元13之间的第2个膜层的厚度,n2为第2个膜层的折射率;hm为柱透镜2与亚像素单元13之间的第m个膜层的厚度,nm为第m个膜层的折射率;f为柱透镜2的焦距。根据上述公式,能使柱透镜2的焦点位于亚像素单元13背离背板11的表面上,从而不仅有效降低了视差3D显示的串扰,而且还能使该显示面板兼容近眼光场显示(即真3D显示),从而能够解决单眼聚焦与双眼汇聚冲突的视觉疲劳问题。
例如,柱透镜2与亚像素单元13之间设置的膜层有:封装层14和圆偏光片15,封装层14又包括三个不同材料的子层,圆偏光片15又包括四个不同材料的子层。柱透镜2与亚像素单元13之间膜层的设置具体如表3 中所示,根据实际膜层厚度和折射率对柱透镜2的圆柱面顶点与亚像素单元13背离背板11的一侧表面之间的距离H进行优化,使相邻子像素间视图串扰最小,根据上述公式计算可得到H=140.8μm,优化数据绘制成了如图11所示的曲线,由图11中的曲线可以看出,相邻子像素传播到最佳观看距离处,形成的视图之间串扰基本为0。
表3
Figure PCTCN2021092299-appb-000016
综合上述参数设置计算过程和表1中序号1的已知数据,得到了表4中的设计参数。
表4
Figure PCTCN2021092299-appb-000017
在一些实施例中,如图12所示,亚像素单元13阵列中,排布位置相同的子像素形成视图的空间投影在显示面板视差3D显示最佳观看距离截面上的沿第一方向Y的宽度a y满足公式:
Figure PCTCN2021092299-appb-000018
且a y≤e、Na y≥e;其中, L为显示面板在视差3D显示时的最佳观看距离;t y为子像素沿第一方向Y的宽度;f为柱透镜2的焦距;N为亚像素单元13中子像素的数量;e为人眼瞳距。亚像素单元13阵列中,相邻的子像素形成视图的空间投影在显示面板视差3D显示最近观看距离截面上的沿第一方向Y的间距b y满足公式:
Figure PCTCN2021092299-appb-000019
且(N-1)b y≥e;其中,W y为显示基板沿第一方向Y的长度。亚像素单元阵列中,相邻的子像素形成视图的空间投影在显示面板视差3D显示最远观看距离截面上的沿第一方向Y的间距c y满足公式:
Figure PCTCN2021092299-appb-000020
且c y≤e。
其中,排布位置相同的子像素形成视图的空间投影的垂直于显示基板所在面的截面形状为如图12所示的菱形,菱形中上述参数a y、b y、c y的关系式如下:
Figure PCTCN2021092299-appb-000021
Figure PCTCN2021092299-appb-000022
Figure PCTCN2021092299-appb-000023
Figure PCTCN2021092299-appb-000024
整理,得到:
Figure PCTCN2021092299-appb-000025
Figure PCTCN2021092299-appb-000026
Figure PCTCN2021092299-appb-000027
Figure PCTCN2021092299-appb-000028
Figure PCTCN2021092299-appb-000029
式中,L1为显示面板在视差3D显示时的最近观看距离处到显示面板在视差3D显示时的最佳观看距离处的距离;L2为显示面板在视差3D显示时的最远观看距离处到显示面板在视差3D显示时的最佳观看距离处的距离。
为了使显示面板在视差3D显示时的最佳观看距离处的3D视区连续,并且在最近观看距离处和最远观看距离处存在视差3D视区,则上式中的a y需要满足a y≤e、Na y≥e;b y需要满足(N-1)b y≥e;c y需要满足c y≤e。如此确保在视差3D视区范围内能够观看到良好的视差3D图像。
进一步可选地,亚像素单元阵列中,排布位置相同的子像素形成视图的空间投影在显示面板视差3D显示最佳观看距离截面上的沿第一方向Y的宽度a y等于相邻的子像素形成视图的空间投影在显示面板视差3D显示最佳观看距离截面上的沿第一方向Y的中心间距g y,如此设置,能够进一步确保显示面板在视差3D显示时的最佳观看距离处的3D视区连续。
子像素形成的视图间串扰的定义如图13所示,为其它子像素视图对目标子像素视图峰值亮度(如E A)的干扰,其表达式为:
Figure PCTCN2021092299-appb-000030
其中,E b、E c、E d、E A表示各子像素视图能量(如光能)的峰值。串扰越小,3D图像视差就可以越大,得到的立体景深就会越大。根据上述参数设置效果分析,得到如表5中所示的数据,可以看出,本实施例中的多视点视差3D显示面板,视图间串扰接近于0,即本实施例中的显示面板的结构及参数设置,使串扰与摩尔纹之间不再存在相互制约关系,因此可以加载大视差图像,实现大景深的立体图像。另外,我们所 得到的视差3D图像还能随观看视角联动变化,如图14和图15所示,人眼分别处于1、3视图和2、4视图时,可观看到不同角度的3D图像。
表5
Figure PCTCN2021092299-appb-000031
柱透镜阵列制作工艺偏差对视差3D显示效果的影响分析:参考表4中的柱透镜阵列参数工艺偏差数据,利用光学设计软件,主要针对柱透镜曲率半径、口径、放置高度进行了正交模拟实现,得到64组模拟数据,这里取前16组数据进行示意,具体的数据如表6所示。
表6
Figure PCTCN2021092299-appb-000032
由表6中数据可以看出:
最差的组合:序号13(曲率半径48.5μm、放置高度138.3μm),串扰值为15.9%,在该组合下的图像视差(3D景深)不宜过大,否则会出现图像不融合(即重影)现象。
较好的组合:除了序号9和13外,其余的串扰值均满足小于6%的视差3D显示行标要求。
在一些实施例中,亚像素单元中,相邻子像素之间的不发光区域沿第一方向Y的宽度≤0.05μm。如此设置,能够确保子像素连续发光,从而消除了莫尔纹对视差3D显示的影响。
子像素不连续发光对视差3D显示效果影响的原理分析(即莫尔纹产生的原因分析):如图16所示,当子像素不连续发光时,观看到的柱透镜区 域有亮有暗,把所有暗区域连接在一起就形成了类似于图17所示的莫尔暗条纹现象。用暗区亮度和发光区亮度的明暗差异来定义莫尔纹程度,通过光学软件模拟,得到如图18所示的子像素间不发光区域宽度与莫尔纹程度的对应关系。由于人眼的特性,对于暗区亮度和发光区亮度小于5%的差异是无法识别的,因此通过图18中的子像素间不发光区域宽度与莫尔纹程度的曲线关系可知,当子像素间不发光区域宽度小于0.05μm时,其莫尔纹程度小于5%,因此可以认为,此时显示面板的视差3D显示没有莫尔纹的影响,子像素是连续发光的。
在一些实施例中,如图19所示,子像素发出的光线传播到人眼瞳孔位置形成的视图区域沿第一方向Y的尺寸小于或等于人眼半瞳孔的尺寸。基于该设置以及柱透镜的焦点位于亚像素单元背离背板的表面上,该显示面板能够兼容近眼光场显示,光场显示是一种真3D显示,它与观看真实世界一样,可通过单眼晶状体调焦来观看不同的景深面,实现不同景深面间的清晰/模糊变换,这种3D显示解决了单眼聚焦与双眼汇聚冲突的视觉疲劳问题。
近眼光场显示的实现基准是:一、柱透镜的焦点位于亚像素单元背离背板的表面上,使亚像素单元出射光束准直,形成单一方向光束,各亚像素单元射出的已知方向的光束叫做空间上的光线场(简称光场);二、进入瞳孔的单一方向光束在空间上有交点,这些交点为光场成像的像点,相邻柱透镜光束形成的像点在近屏处,相隔柱透镜光束形成的像点在远屏处。在满足上述基准第二条时,必有两个以上相邻子像素的光线进入单眼瞳孔(即单眼瞳孔内有两个以上视点),因此,子像素发出的光线传播到人眼瞳孔位置形成的视图区域沿第一方向Y的尺寸需要小于或等于人眼半瞳孔的尺寸。
本实施例中,利用前述能实现多视点视差3D显示的显示面板结构,要兼容上述的真3D光场显示效果,需要人眼处于近屏位置观看才能实现。例 如表5中序号1的结构设计参数数据,再结合图20所示,子像素发出的光线传播到350mm处,形成的视图区域沿第一方向Y的尺寸为32.573mm,而人眼瞳孔通常只有3mm左右,因此,若要实现子像素发出的光线传播到人眼瞳孔位置形成的视图区域沿第一方向Y的尺寸需要小于或等于人眼半瞳孔的尺寸,需要人眼观看距离(即出瞳距)小于或等于16.29mm。
本实施例中,根据上述近眼光场显示的实现基准,可以计算出实现近光场显示的出瞳距、入眼光线数和成像角分辨率,出瞳距、入眼光线数和成像角分辨率能够评价近眼光场显示(即真3D显示)的显示效果。
其中,如图21所示,要保证瞳孔内始终分布两个以上视点,则出瞳距,即人眼瞳孔与显示面板之间的间距L满足:
Figure PCTCN2021092299-appb-000033
其中,6mm为人眼眼睫毛不接触柱透镜2阵列的最小距离;φ为人眼瞳孔直径;ω为柱透镜2的主瓣视角;N为亚像素单元13中子像素的数量。出瞳距的范围越大,近眼光场显示的显示效果越好。
显示面板进行3D光场显示时的入眼光线数M满足:
Figure PCTCN2021092299-appb-000034
其中,INT为向下取整函数、v=2Ltan(ω/2),Z为显示基板沿第二方向X的亚像素单元排布数量;φ为人眼瞳孔直径;ω为柱透镜2的主瓣视角;N为亚像素单元13中子像素的数量。入眼光线数越多,其景深面的数量就会越多,光场3D显示的立体图像就会越连续,光场3D显示效果也越好。
由于无论是近屏成像还是远屏成像,相邻像点相对人眼的夹角都相等,所以采用成像角分辨率评价显示面板的光场3D显示分辨率。显示面板进行 3D光场显示时的成像角分辨率β满足:
Figure PCTCN2021092299-appb-000035
其中,Dy为柱透镜2的口径;L为人眼瞳孔与显示面板之间的间距。成像角分辨率越小,光场3D显示分辨率越高。
根据上述近眼光场显示(即真3D显示)的评价参数:出瞳距、入眼光线数和成像角分辨率,并再结合表1、表2中的数据,能够得到如表7所示的光场3D显示效果。
表7
Figure PCTCN2021092299-appb-000036
基于显示面板的上述结构及参数设置,本实施例还提供一种该显示面板的显示方法,该显示方法包括:当显示面板进行视差3D显示时,向显示面板亚像素单元中的各子像素输入不同视差的图像信号;当显示面板进行2D显示时,向显示面板亚像素单元中的各子像素输入相同视差的图像信号。
本实施例中,显示面板的显示方法还包括:当显示面板进行光场3D显示时,向显示面板亚像素单元中的各子像素输入光场图像信号。
本公开实施例中所提供的显示面板,通过将亚像素单元设置为至少两个子像素,且使柱透镜的焦点位于亚像素单元背离背板的表面上,使子像素在可视空间上形成至少两个视点区域,通过控制子像素的灰阶和调整观看距离,实现多视点视差3D显示、同时可兼容近眼观看的光场显示、以及子像素为同一灰阶的2D显示,该显示面板不仅能有效降低视差3D显示的串扰,还有利于改善视差3D显示时的莫尔纹现象,提升视差3D显示的立 体感效果,而且通过兼容近眼光场显示(即真3D显示),能够解决单眼聚焦与双眼汇聚冲突的视觉疲劳问题。
本公开实施例还提供一种显示装置,包括上述实施例中的显示面板。
通过采用上述实施例中的显示面板,能够提升该显示装置视差3D显示的显示效果,且能使该显示装置兼容光场3D显示,并能提升该显示装置的光场3D显示效果。
本公开示意性实施例所提供的显示装置可以为OLED面板、OLED电视、显示器、手机、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (16)

  1. 一种显示面板,其特征在于,包括显示基板、设置在所述显示基板出光侧的柱透镜阵列;
    所述显示基板包括背板、设置在所述背板上的像素定义层和亚像素单元阵列,所述亚像素单元位于所述像素定义层限定的像素区域内;所述亚像素单元包括至少两个子像素;
    所述柱透镜与所述亚像素单元对应设置,所述柱透镜的圆柱面背离所述背板,且所述柱透镜的焦点位于所述亚像素单元背离所述背板的表面上。
  2. 根据权利要求1所述的显示面板,其特征在于,所述子像素沿第一方向排布;所述柱透镜的轴线垂直于所述第一方向;所述柱透镜的轴线的延伸方向为第二方向;
    所述显示基板的形状包括矩形,所述显示基板的长边沿所述第一方向延伸,所述显示基板的宽边沿所述第二方向延伸;
    所述亚像素单元的形状包括矩形,所述亚像素单元的长边沿所述第一方向延伸,所述亚像素单元的宽边沿所述第二方向延伸;
    所述子像素的形状包括矩形,所述子像素的宽边沿所述第一方向延伸,所述子像素的长边沿所述第二方向延伸。
  3. 根据权利要求2所述的显示面板,其特征在于,所述亚像素单元阵列中各所述亚像素单元的大小形状相同;所述亚像素单元中各所述子像素的大小形状均相同。
  4. 根据权利要求3所述的显示面板,其特征在于,所述柱透镜的主瓣 视角和所述柱透镜的焦距满足公式:
    Figure PCTCN2021092299-appb-100001
    其中,ω为所述柱透镜的主瓣视角;N为所述亚像素单元中所述子像素的数量;p y为所述亚像素单元中相邻两个所述子像素的中心间距;f为所述柱透镜的焦距;i=1、2、3…,i为整数;α为人眼瞳距相对所述显示基板的夹角。
  5. 根据权利要求4所述的显示面板,其特征在于,所述柱透镜在所述背板上的正投影落入所述亚像素单元在所述背板上的正投影范围内;
    所述柱透镜的口径满足公式:
    Figure PCTCN2021092299-appb-100002
    其中,Dy为所述柱透镜的口径;y为所述亚像素单元沿所述第一方向的长度;W lens为所述柱透镜阵列沿所述第一方向的长度;W panel为所述显示基板沿所述第一方向的长度;L为所述显示面板在视差3D显示时的最佳观看距离;f为所述柱透镜的焦距。
  6. 根据权利要求5所述的显示面板,其特征在于,所述柱透镜与所述亚像素单元之间设置有m个膜层,所述柱透镜的圆柱面顶点与所述亚像素单元背离所述背板的一侧表面之间的距离H满足公式:h/n+h1/n1+h2/n2+…+hm/nm=f;H=h+h1+h2+…+hm;其中,h为所述柱透镜的厚度,n为所述柱透镜的折射率;h1为所述柱透镜与所述亚像素单元之间的第1个膜层的厚度,n1为所述第1个膜层的折射率;h2为所述柱透镜与所述亚像素单元之间的第2个膜层的厚度,n2为所述第2个膜层的折射率;hm为所述柱透镜与所述亚像素单元之间的第m个膜层的厚度,nm为所述第m个膜层的折射率;f为所述柱透镜的焦距。
  7. 根据权利要求6所述的显示面板,其特征在于,所述亚像素单元阵 列中,排布位置相同的所述子像素形成视图的空间投影在所述显示面板视差3D显示最佳观看距离截面上的沿所述第一方向的宽度a y满足公式:
    Figure PCTCN2021092299-appb-100003
    且a y≤e、Na y≥e;其中,L为所述显示面板在视差3D显示时的最佳观看距离;t y为所述子像素沿所述第一方向的宽度;f为所述柱透镜的焦距;N为所述亚像素单元中所述子像素的数量;e为人眼瞳距;
    所述亚像素单元阵列中,相邻的所述子像素形成视图的空间投影在所述显示面板视差3D显示最近观看距离截面上的沿所述第一方向的间距b y满足公式:
    Figure PCTCN2021092299-appb-100004
    且(N-1)b y≥e;其中,W y为所述显示基板沿所述第一方向的长度;
    所述亚像素单元阵列中,相邻的所述子像素形成视图的空间投影在所述显示面板视差3D显示最远观看距离截面上的沿所述第一方向的间距c y满足公式:
    Figure PCTCN2021092299-appb-100005
    且c y≤e。
  8. 根据权利要求7所述的显示面板,其特征在于,所述亚像素单元阵列中,排布位置相同的所述子像素形成视图的空间投影在所述显示面板视差3D显示最佳观看距离截面上的沿所述第一方向的宽度等于相邻的所述子像素形成视图的空间投影在所述显示面板视差3D显示最佳观看距离截面上的沿所述第一方向的中心间距。
  9. 根据权利要求8所述的显示面板,其特征在于,所述亚像素单元中,相邻所述子像素之间的不发光区域沿所述第一方向的宽度≤0.05μm。
  10. 根据权利要求6所述的显示面板,其特征在于,所述子像素发出的光线传播到人眼瞳孔位置形成的视图区域沿所述第一方向的尺寸小于或 等于人眼半瞳孔的尺寸。
  11. 根据权利要求10所述的显示面板,其特征在于,人眼瞳孔与所述显示面板之间的间距L满足:
    Figure PCTCN2021092299-appb-100006
    其中,6mm为人眼眼睫毛不接触所述柱透镜阵列的最小距离;φ为人眼瞳孔直径;ω为所述柱透镜的主瓣视角;N为所述亚像素单元中所述子像素的数量。
  12. 根据权利要求11所述的显示面板,其特征在于,所述显示面板进行3D光场显示时的入眼光线数M满足:
    Figure PCTCN2021092299-appb-100007
    其中,INT为向下取整函数、v=2Ltan(ω/2),Z为所述显示基板沿所述第二方向的所述亚像素单元排布数量;φ为人眼瞳孔直径;ω为所述柱透镜的主瓣视角;N为所述亚像素单元中所述子像素的数量。
  13. 根据权利要求12所述的显示面板,其特征在于,所述显示面板进行3D光场显示时的成像角分辨率β满足:
    Figure PCTCN2021092299-appb-100008
    其中,Dy为所述柱透镜的口径;L为人眼瞳孔与所述显示面板之间的间距。
  14. 一种显示装置,其特征在于,包括权利要求1-13任意一项所述的显示面板。
  15. 一种显示面板的显示方法,其特征在于,所述显示面板为权利要求1-13任意一项所述的显示面板,所述显示方法包括:当所述显示面板进行视差3D显示时,向显示面板亚像素单元中的各子像素输入不同视差的图像信号;
    当所述显示面板进行2D显示时,向所述显示面板亚像素单元中的各子像素输入相同视差的图像信号。
  16. 根据权利要求15所述的显示面板的显示方法,其特征在于,所述显示面板为权利要求10-13任意一项所述的显示面板,所述显示方法包括:当所述显示面板进行光场3D显示时,向所述显示面板亚像素单元中的各子像素输入光场图像信号。
PCT/CN2021/092299 2020-06-05 2021-05-08 一种显示面板及其显示方法和显示装置 WO2021244216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/765,504 US11909949B2 (en) 2020-06-05 2021-05-08 Display panel, display method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010504934.4 2020-06-05
CN202010504934.4A CN111552093B (zh) 2020-06-05 2020-06-05 一种显示面板及其显示方法和显示装置

Publications (1)

Publication Number Publication Date
WO2021244216A1 true WO2021244216A1 (zh) 2021-12-09

Family

ID=72002253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092299 WO2021244216A1 (zh) 2020-06-05 2021-05-08 一种显示面板及其显示方法和显示装置

Country Status (3)

Country Link
US (1) US11909949B2 (zh)
CN (1) CN111552093B (zh)
WO (1) WO2021244216A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118348691A (zh) * 2024-06-17 2024-07-16 成都工业学院 一种折面立体显示装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552093B (zh) * 2020-06-05 2022-07-12 京东方科技集团股份有限公司 一种显示面板及其显示方法和显示装置
CN114545650B (zh) * 2020-11-24 2024-07-26 京东方科技集团股份有限公司 一种显示模组、显示装置和显示方法
CN115136227B (zh) * 2020-11-30 2023-11-17 京东方科技集团股份有限公司 显示装置及其显示方法
WO2022133681A1 (zh) * 2020-12-21 2022-06-30 京东方科技集团股份有限公司 显示装置及其驱动方法
CN115039405B (zh) * 2020-12-22 2024-06-21 京东方科技集团股份有限公司 一种显示装置及其制备方法
CN112269271B (zh) * 2020-12-23 2021-12-10 苏州苏大维格科技集团股份有限公司 裸眼三维显示装置
WO2022155969A1 (zh) * 2021-01-25 2022-07-28 京东方科技集团股份有限公司 显示装置及其驱动方法
CN115136315B (zh) * 2021-01-25 2023-12-29 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
US12051344B2 (en) 2021-01-25 2024-07-30 Boe Technology Group Co., Ltd. Display apparatus with light-splitting component and driving method thereof
CN113035915A (zh) * 2021-03-01 2021-06-25 京东方科技集团股份有限公司 3d显示组件及其显示面板、显示面板的制作方法
WO2022198455A1 (zh) * 2021-03-23 2022-09-29 京东方科技集团股份有限公司 显示装置及其显示方法
TWI777476B (zh) * 2021-03-31 2022-09-11 幻景啟動股份有限公司 立體影像顯示裝置
CN113050294B (zh) * 2021-04-09 2022-08-26 成都工业学院 一种无彩色摩尔条纹的低串扰立体显示装置
CN113093402B (zh) * 2021-04-16 2022-12-02 业成科技(成都)有限公司 立体显示器及其制造方法与立体显示系统
US12066642B2 (en) 2021-04-28 2024-08-20 Boe Technology Group Co., Ltd. Light field display apparatus and display method thereof
CN115497386A (zh) * 2021-06-17 2022-12-20 京东方科技集团股份有限公司 显示装置
CN116547590A (zh) * 2021-12-02 2023-08-04 京东方科技集团股份有限公司 一种微透镜结构、其制作方法及相关应用
WO2023245551A1 (zh) * 2022-06-23 2023-12-28 京东方科技集团股份有限公司 显示装置及其驱动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945203A (zh) * 2013-12-19 2014-07-23 上海天马微电子有限公司 一种立体图像显示装置
US20180003995A1 (en) * 2015-08-01 2018-01-04 Dac Thong Bui Stereoscopic displays, arrangements and methods
CN110824725A (zh) * 2019-11-26 2020-02-21 京东方科技集团股份有限公司 3d显示基板、3d显示装置及显示方法
CN111552093A (zh) * 2020-06-05 2020-08-18 京东方科技集团股份有限公司 一种显示面板及其显示方法和显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873824B1 (fr) 2004-07-30 2006-10-27 Pierre Allio Procede d'affichage d'une image autostereoscopique a n points de vue
EP1902343B1 (en) * 2005-06-24 2011-05-18 RealD Inc. Autostereoscopic display with increased sharpness for non-primary viewing zones
CN101201498A (zh) * 2006-10-23 2008-06-18 Nec液晶技术株式会社 显示设备、终端设备、显示面板和光学构件
CN102566059B (zh) 2010-12-31 2015-01-21 康佳集团股份有限公司 无摩尔纹干扰的自由立体显示器
WO2013042440A1 (ja) * 2011-09-21 2013-03-28 富士フイルム株式会社 画像処理装置、方法、プログラム及び記録媒体並びに立体撮像装置、携帯電子機器、プリンタ及び立体画像再生装置
CN104160699B (zh) * 2012-03-07 2016-12-21 富士通株式会社 立体图像显示装置以及立体图像显示方法
US8963808B2 (en) * 2012-10-29 2015-02-24 Corning Incorporated Autostereoscopic display device and method of displaying image
TWI477817B (zh) * 2013-07-18 2015-03-21 Au Optronics Corp 顯示器以及顯示具有不同視差的三維影像的方法
CN103995361B (zh) 2014-06-17 2017-01-11 上海新视觉立体显示科技有限公司 裸眼3d显示像素单元及多视图裸眼3d图像显示设备
US20170150131A1 (en) * 2014-06-27 2017-05-25 Koninklijke Philips N.V. Autostereoscopic display system
CN104320648B (zh) 2014-10-24 2016-08-17 西安电子科技大学 二维与三维显示模式可切换的显示装置及方法
CN104570370B (zh) * 2015-02-05 2017-02-22 京东方科技集团股份有限公司 一种立体显示装置
CN106291958B (zh) 2016-10-21 2021-04-23 京东方科技集团股份有限公司 一种显示装置及图像显示方法
CN111223904B (zh) * 2019-12-20 2023-04-18 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945203A (zh) * 2013-12-19 2014-07-23 上海天马微电子有限公司 一种立体图像显示装置
US20180003995A1 (en) * 2015-08-01 2018-01-04 Dac Thong Bui Stereoscopic displays, arrangements and methods
CN110824725A (zh) * 2019-11-26 2020-02-21 京东方科技集团股份有限公司 3d显示基板、3d显示装置及显示方法
CN111552093A (zh) * 2020-06-05 2020-08-18 京东方科技集团股份有限公司 一种显示面板及其显示方法和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118348691A (zh) * 2024-06-17 2024-07-16 成都工业学院 一种折面立体显示装置

Also Published As

Publication number Publication date
US20220394236A1 (en) 2022-12-08
CN111552093B (zh) 2022-07-12
CN111552093A (zh) 2020-08-18
US11909949B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2021244216A1 (zh) 一种显示面板及其显示方法和显示装置
JP5316909B2 (ja) 立体画像表示装置、及び表示パネル
JP5377960B2 (ja) オートステレオスコピックディスプレイシステム
CN106291958B (zh) 一种显示装置及图像显示方法
US10274742B2 (en) Display device
CN104898292B (zh) 3d显示基板及其制作方法、3d显示装置
JP2018506735A (ja) マルチビューピクセル指向性バックライトモジュール及び裸眼3d表示装置
CN106324847A (zh) 一种三维显示装置
US11378816B2 (en) Display device
CN113692547B (zh) 显示装置及其显示方法
US20200379268A1 (en) Near-eye display device and near-eye display method
US20240036351A1 (en) Display panel and display apparatus
CN109491092A (zh) 一种显示装置、制作方法和可穿戴设备
WO2022105095A1 (zh) 光场3d显示装置及其驱动方法
WO2022226829A1 (zh) 一种光场显示装置及其显示方法
CN116300132A (zh) 光场显示装置
TWI765842B (zh) 裸視立體顯示裝置及顯示方法
WO2023000543A1 (zh) 扩束光学膜、显示装置和多方向扩束光学膜
JP5149438B1 (ja) 立体映像表示装置および立体映像表示方法
Sawada et al. Coarse integral volumetric imaging with flat screen and wide viewing angle
WO2022198455A1 (zh) 显示装置及其显示方法
WO2022133751A1 (zh) 一种显示装置及其制备方法
CN109407331B (zh) 立体显示装置、立体显示面板及其制备方法
JP3243849U (ja) 裸眼立体視光学フィルム及び表示装置
WO2024119456A1 (zh) 三维显示设备以及相关的光束整形结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817508

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21817508

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.06.2023)