WO2019111784A1 - 識別装置、識別システム、および樹脂選別システム - Google Patents
識別装置、識別システム、および樹脂選別システム Download PDFInfo
- Publication number
- WO2019111784A1 WO2019111784A1 PCT/JP2018/043794 JP2018043794W WO2019111784A1 WO 2019111784 A1 WO2019111784 A1 WO 2019111784A1 JP 2018043794 W JP2018043794 W JP 2018043794W WO 2019111784 A1 WO2019111784 A1 WO 2019111784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical system
- identification device
- transport
- raman scattered
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims description 28
- 239000011347 resin Substances 0.000 title claims description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 247
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 86
- 230000003595 spectral effect Effects 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 13
- 238000005286 illumination Methods 0.000 claims description 96
- 239000013307 optical fiber Substances 0.000 claims description 42
- 238000003384 imaging method Methods 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 210000001747 pupil Anatomy 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 6
- 230000032258 transport Effects 0.000 description 110
- 239000004065 semiconductor Substances 0.000 description 16
- 230000005284 excitation Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000000284 extract Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000001237 Raman spectrum Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 235000007173 Abies balsamea Nutrition 0.000 description 2
- 239000004857 Balsam Substances 0.000 description 2
- 244000018716 Impatiens biflora Species 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000010791 domestic waste Substances 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
- G01J3/4412—Scattering spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0218—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/44—Resins; Plastics; Rubber; Leather
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/845—Objects on a conveyor
Definitions
- the present invention relates to an identification device, an identification system using the same, and a resin sorting system.
- One of the methods for separating samples such as plastics is a method using Raman scattering.
- Raman scattering By using Raman scattering, it becomes possible to identify the material of the resin and to investigate the component composition and its distribution.
- a high-throughput identification system can be configured by transporting the resin by transport means such as a belt conveyor and detecting and identifying Raman scattered light from the transported resin.
- JP 2008-209128 A and JP 10-038807 A describe an identification device for identifying the type of plastic using Raman scattering.
- the identification device described in JP 2008-209128 A has a configuration in which the illumination optical system for irradiating the sample with the laser beam and the light receiving optical system for collecting the Raman scattered light from the sample are coaxial, and both are transported. It is arranged perpendicular to the plane.
- a laser device disposed so that laser light is obliquely incident on the transport surface, and a Raman spectrometer disposed perpendicularly to the transport surface And.
- the shape of the sample to be identified is not uniform, and the posture at the time of being transported by transport means such as a belt conveyor is also various. Further, when being transported by the transport means, the position of the sample is likely to fluctuate due to vibration or the like. Therefore, the position in the height direction of the sample being transported by the transport means largely varies, and the distance between the identification device and the sample to be identified also largely varies.
- the Raman scattering light is weak, so in order to increase the intensity of the Raman scattering light to be detected, the sample is irradiated with high intensity light to increase the intensity of the Raman scattering light generated. It is necessary to collect Raman scattered light with a highly efficient light collection optical system.
- the illumination optical system and the light collection optical system are coaxial, when the distance between the identification device and the sample largely fluctuates, the intensity of the generated Raman scattered light decreases. At the same time, the intensity of the Raman scattered light to be collected is also reduced, so the sensitivity is likely to be reduced.
- Japanese Patent Application Laid-Open No. 10-038807 does not disclose the setting of the optical system for both illumination and light collection, and the influence of the change in the distance between the identification device and the specimen is not taken into consideration.
- an object of the present invention is to provide a highly robust discrimination device against change in distance between the discrimination device and the specimen.
- An identification apparatus is an identification apparatus for identifying the type of resin contained in a sample to be conveyed by a conveyer, and is provided on the conveyance surface of the conveyance means.
- An illumination optical system for illuminating the sample with light from a light source; a light collection optical system for collecting Raman scattered light from the sample illuminated by the illumination optical system; and the Raman scattered light collected by the light collection optical system Spectral data of the Raman scattered light is acquired from the spectral element that disperses the light, the light receiving element that receives the Raman scattered light separated by the spectral element, and the light receiving element, and the identification processing of the sample based on the spectral data
- the optical axis of the illumination optical system and the optical axis of the light collection optical system intersect, and the illumination optical system is the carrier of the light collection optical system. It is characterized in that the imaging optical system has a numerical aperture on the side of the transport surface which is smaller than a numerical aperture on the surface side.
- an identification device is an identification device for identifying the type of resin contained in the sample transported by the transport means, and faces the transport surface of the transport means, and Illumination disposed at different positions in a transverse direction of conveyance that intersects with the conveyance direction of the conveyance means, each illuminating a specimen on the conveyance surface of the conveyance means with light from a light source
- a plurality of light collecting units having an optical system and a light collecting optical system for collecting Raman scattered light from the sample illuminated by the illumination optical system, and the Raman scattered light collected by the plurality of light collecting units
- An optical fiber bundle having a plurality of optical fibers for guiding light, wherein the plurality of optical fibers are bundled at the emission end side, and a plurality of optical fibers guided by the fiber bundle Obtaining spectral data of the plurality of Raman scattered lights from the light receiving element, a spectral element that splits the number of the Raman scattered light, a light receiving element that receives the plurality of Raman
- FIG. 1 is a view schematically showing the configuration of an identification device and an identification system according to the first embodiment.
- the identification device 1 of the present embodiment is a device that is disposed to face the transport surface of the transport unit 108 and identifies the type of the sample 109 transported by the transport unit 108.
- the identification device 1 includes an illumination optical system 107, a light reception optical system 113, a light separating element 117, a light receiving element 119, and a data processing unit 121.
- the identification system 10 which is a modification of the present embodiment, includes the transport unit 108, the transport unit driving device 122, and the identification device 1 disposed to face the transport unit 108.
- straight lines connecting the components and straight lines with arrows respectively indicate an optical path and an electrical wiring.
- the illumination optical system 107 is an optical system that illuminates the specimen 109 on the transport surface of the transport means 108 with light from a light source.
- the specimen 109 illuminated by the illumination optical system 107 emits Raman scattered light.
- the illumination optical system 107 includes a semiconductor laser 101, a laser mount 102, a laser driver 103, a collimator lens 104, a cylindrical lens 105, and a condenser lens 106.
- the semiconductor laser 101 is a light source of light for illuminating the subject 109.
- the semiconductor laser 101 is a continuous oscillation laser, and emits high-power light from the specimen 109 in order to generate Raman scattered light.
- Raman scattering as the wavelength of the illumination light is shorter, the generation efficiency of the Raman scattered light is higher, and as the wavelength of the illumination light is longer, the fluorescence to be the background is reduced.
- light from a light source such as the semiconductor laser 101 for example, light of any one of 532 nm, 633 nm, and 780 nm can be used.
- the semiconductor laser 101 is used as the light source of the illumination optical system 107 has been described here, the present invention is not limited thereto, and other laser light sources such as a semiconductor-excited solid laser and a gas laser can also be used.
- the laser mount 102 holds the semiconductor laser 101 and radiates heat.
- the laser driver 103 supplies a current to the semiconductor laser 101 via the laser mount 102 to oscillate the semiconductor laser 101 and at the same time keep the temperature of the semiconductor laser 101 constant.
- the collimator lens 104 and the cylindrical lens 105 suppress the spread of the light emitted from the semiconductor laser 101 and shapes the light into parallel light.
- the cylindrical lens 105 may use another collimating optical element such as an anamorphic prism pair.
- the illumination optical system 107 may have a wavelength filter such as a laser line filter at the position of the pupil plane. Thereby, it is possible to improve the wavelength characteristics of the light irradiated to the specimen 109 by the illumination optical system 107.
- the condensing lens 106 condenses the light from the semiconductor laser 101 on the specimen 109.
- the collimator lens 104, the cylindrical lens 105, and the condenser lens 106 are irradiated with light of high output from the semiconductor laser 101, so a lens made of synthetic quartz to reduce background fluorescence or Raman scattered light is used. It is preferred to use.
- the emitting end is often a flat elliptical shape, in which case the cross section of parallel light collimated by the collimator optical system and the spot collected by the imaging optical system also become elliptical.
- the irradiation time of the illumination light to the specimen 109 being conveyed is increased. be able to. Thereby, it is possible to increase the signal amount of the Raman scattered light.
- the angle formed by the two directions is preferably 0 degrees or more and 15 degrees or less, and more preferably 0 degrees or more and 5 degrees or less.
- the long axis of the illumination area does not match the transport direction 200.
- the fixing direction of the semiconductor laser 101 or the laser mount 102 may be changed such that the long axis of the illumination area coincides with the transport direction 200, or the entire illumination optical system 107 may be rotated around the optical axis.
- the optical axis of the illumination optical system 107 be disposed on the upstream side or the downstream side of the conveyance direction 200 with respect to the normal to the conveyance surface of the conveyance means 108. Thereby, the spot on the transport surface of the light irradiated by the illumination optical system 107 can be spread in the transport direction 200 of the transport means 108. As a result, the irradiation time of the illumination light to the specimen 109 being transported can be lengthened, and the signal amount of the Raman scattered light can be increased.
- the illumination optical system 107 forms an illumination area illuminated by the light on the conveyance surface of the conveyance means 108, and the shape of the illumination area is the width of the conveyance means 108 in the conveyance direction 200. Is preferably larger than the width in the conveyance width direction 220 intersecting the conveyance direction 200.
- a plane including the optical axis of the illumination optical system 107 and the optical axis of the light collection optical system 113 be substantially parallel to the conveyance direction 200 of the conveyance means 108.
- the angle between the plane and the transport direction 200 is preferably 0 degrees or more and 15 degrees or less, more preferably 0 degrees or more and 5 degrees or less, and particularly preferably 0 degrees. That is, it is particularly preferable to make the plane and the transport direction 200 parallel.
- the spot on the transport surface of the light irradiated by the illumination optical system 107 can be spread in the transport direction 200 of the transport means 108.
- the irradiation time of the illumination light to the specimen 109 being transported can be lengthened, and the signal amount of the Raman scattered light can be increased.
- the transport means 108 transports the sample 109 input from the sample supply unit (not shown) to the measurement position at a constant speed.
- a means capable of transporting the sample 109 placed on the transport surface can be used, and for example, a belt conveyor can be used.
- the Raman scattering measurement by the identification device 1 according to the present embodiment is performed while the sample 109 is being transported by the transport means 108, and after the measurement, the sample 109 is transported as it is in the same direction. It is discharged to a basket (not shown) etc.
- the specimen 109 is a piece made of resin, and household waste, industrial waste, and the like are crushed.
- the resin in the present specification means all polymers including thermoplastic resin (plastic), thermosetting resin, rubber, elastomer and the like.
- the specimen 109 may contain, in addition to the resin, fillers such as glass and fibers, and various additives such as a flame retardant.
- the identification device 1 of the present embodiment in addition to identifying the type of resin that constitutes the sample, that is, the type of material of the sample, it is also possible to identify the presence or absence and the type of these additives.
- the light collection optical system 113 is an optical system which extracts Raman scattered light from the specimen 109 illuminated by the illumination optical system 107.
- the Raman scattered light collected by the light collection optical system 113 is guided to the light separating element 117 by a light guiding means such as the optical fiber 114.
- the light collection optical system 113 has an objective lens 110, an excitation light cut filter 111, and a fiber condensing lens 112.
- the identification device 1 may have light guiding means for guiding the Raman scattered light collected by the light collecting optical system 113 to the light separating element 117. Specifically, the identification device 1 may have an optical fiber 114.
- the objective lens 110 extracts Raman scattered light from the specimen 109 illuminated by the illumination optical system 107. Since each lens constituting the light-collecting optical system 113 such as the objective lens 110 may be irradiated with light having a high output depending on the specimen 109, synthetic quartz is used to reduce background fluorescence and Raman scattered light. It is preferable to use the produced lens. Similarly, it is preferable not to use a cemented lens in order to suppress background from balsam and to suppress balsam peeling due to heat generation. That is, it is preferable that each lens which comprises the light emission optical system 113, such as the objective lens 110, be a single lens. Moreover, in order to improve the coupling efficiency to the optical fiber 114 which is the light guiding means, the objective lens 110 is preferably an aspheric lens.
- the excitation light cut filter 111 is a wavelength filter such as a band pass filter or a long pass filter, and blocks light of at least a part of the wavelength range of light collected by the objective lens 110 and transmits Raman scattered light. Thus, the light unnecessary for the measurement of the Raman scattered light is blocked, and the Raman scattered light is transmitted. From the viewpoint of filter characteristics, the excitation light cut filter 111 is preferably disposed in the parallel light flux between the objective lens 110 and the fiber condensing lens 112, that is, on the pupil plane of the light receiving optical system 113.
- the fiber condenser lens 112 couples the Raman scattered light to the optical fiber 114.
- the coupling efficiency such as to the optical fiber 114 is prioritized, and the aberration is caused using the cemented lens such as the doublet lens. It is good to reduce the
- the optical fiber 114 guides the Raman scattered light collected by the light collection optical system 113 to the spectrometer 120.
- the optical fiber 114 is used as the light guiding means in the present embodiment, the present invention is not limited to this, and other light guiding means such as an optical waveguide or a mirror may be used.
- the spectroscope 120 includes at least a spectral element that disperses the Raman scattered light collected by the light collection optical system 113, and a light receiving element that receives the Raman scattered light separated by the spectral element, and the Raman scattered light is dispersed. And generate a spectral signal.
- the spectroscope 120 includes an imaging lens 115, a long pass filter 116, a diffraction grating 117 which is a spectral element, an imaging lens 118, and a CCD 119 which is a light receiving element.
- the imaging lens 115 collimates the light from the optical fiber 114.
- the long pass filter 116 is disposed between the imaging lens 115 and the diffraction grating 117, removes the remaining excitation light component, and transmits only the Raman scattered light.
- the diffraction grating 117 disperses the Raman scattered light collected by the light collection optical system 113, and disperses the Raman scattered light one-dimensionally for each wavelength.
- the imaging lens 118 focuses the light separated by the diffraction grating 117 onto the CCD 119.
- the optical arrangement and the spectroscopic method of each component in the spectroscope 120 may be appropriately changed to other generally used forms such as the Rowland arrangement and the Zernitaner method.
- the CCD 119 is a light receiving element which receives Raman scattered light one-dimensionally dispersed by the diffraction grating 117 which is a spectral element, and converts it into an electric signal.
- the spectrum signal generated by the CCD 119 is sent to the computer 121 which is a data processing device.
- the Raman scattered light separated by the spectral element is a wavelength component It is sufficient if it is a light receiving element capable of receiving light each time and outputting the intensity as a signal. Therefore, the light receiving element may be a line sensor in which photoelectric conversion units are one-dimensionally arranged. Also, a CMOS sensor can be used as the light receiving element.
- the conveyance means driving device 122 drives the conveyance means 108.
- the computer 121 acquires spectral data of Raman scattered light from the CCD 119 which is a light receiving element. Further, the computer 121 appropriately sends a drive signal and a stop signal to the transport means 108. Further, the computer 121 extracts the Raman spectrum of the sample 109 from the received measurement data and analyzes it to perform identification processing for identifying the type of the measured sample 109.
- the identification method can be implemented, for example, by comparison with the characteristic peak of Raman spectrum or the known spectrum as described in JP-A-2008-209128 or JP-A-10-038807.
- the computer 121 can also perform analysis generally available by Raman spectroscopy such as identification of additives and impurity components by detection of specific peaks of Raman spectrum and comparison with a database.
- the computer 121 may include a display unit such as a flat panel display, and an input unit such as a keyboard, a mouse, and a touch panel, and may receive an instruction from the user or provide information to the user.
- the optical axis of the illumination optical system 107 and the optical axis of the light collection optical system 113 intersect with each other. More specifically, the optical axis of the illumination optical system 107 and the optical axis of the light collection optical system 113 are set on the transport surface of the transport unit 108 through which the sample 109 transported by the transport unit 108 passes. It crosses in the area. As a result, stray light can be reduced, and collection of Raman scattered light from the specimen 109 can be performed with high sensitivity.
- the optical axis of the illumination optical system 107 and the optical axis of the light collection optical system 113 intersect with each other and are not coaxial, the illumination optical system 107 and the light collection optical system 113 can be designed separately. There is an advantage that it is easy to design an optimal configuration for each purpose.
- the illumination optical system 107 is an imaging optical system having a numerical aperture on the side of the transport surface smaller than the numerical aperture on the side of the transport surface of the transport means 108 of the light-collecting optical system 113. That is, in the illumination optical system 107, the numerical aperture of the condenser lens 106 for condensing the light on the specimen 109 is smaller than the numerical aperture of the objective lens 110 of the light collection optical system 113. As a result, the focal depth of the illumination optical system 107 can be increased, and the range in the optical axis direction of the illumination optical system 107 in which the spot diameter of the light irradiated by the illumination optical system 107 becomes equal to or smaller than a predetermined value can be enlarged.
- the condenser lens 106 is not necessarily essential, and the specimen 109 is irradiated with light collimated by the collimator lens 104 and / or the cylindrical lens 105 as it is. It may be a configuration. That is, the illumination optical system 107 may be a collimator optical system that converts light from the semiconductor laser 101 as a light source into parallel light. In this case, the spot diameter of the light irradiated by the illumination optical system 107 can be made substantially the same diameter at any position in the optical axis direction of the illumination optical system 107. As a result, as described above, the robustness to variations in the distance between the identification device 1 and the specimen 109 can be improved. Note that "parallel light” referred to herein may not be perfect parallel light for light diffraction, and may be substantially parallel light (substantially parallel light).
- the numerical aperture (the numerical aperture of the objective lens 110) on the side of the transport surface of the light collection optical system 113 is larger than the numerical aperture (the numerical aperture of the condenser lens 106) on the side of the transport surface of the illumination optical system 107.
- the Raman scattered light can be collected at a larger solid angle, and the sensitivity of the identification device 1 can be improved.
- the numerical aperture (numerical aperture of the fiber condensing lens 112) on the optical fiber 114 side (optical fiber side) of the light receiving optical system 113 is smaller than the numerical aperture of the optical fiber 114 as the light guiding means.
- the Raman scattered light can be guided to the spectroscope 120 at a numerical aperture substantially higher than the numerical aperture of the optical fiber 114, so that the sensitivity of the identification device 1 can be improved.
- the numerical aperture of the objective lens 110 may be equal to or less than the numerical aperture of the optical fiber 114, and the fiber condensing lens 112 may be omitted.
- the angle formed by the optical axis of the illumination optical system 107 and the transport surface of the transport means 108 be different from the angle formed by the optical axis of the light collection optical system 113 and the transport surface of the transport means 108. That is, it is preferable not to set the illumination optical system 107 and the light collection optical system 113 in a mirror surface arrangement which is symmetrical with respect to the normal to the transport surface of the transport means 108.
- FIG. 2 shows an example of the optical arrangement of the illumination optical system 107 and the light collection optical system 113.
- ⁇ i (°) and ⁇ o (°) are the angle between the optical axis of the illumination optical system 107 and the normal to the transport surface, and the optical axis of the light collection optical system 113 to the normal to the transport surface. It is a horn.
- the angle between the optical axis of the illumination optical system 107 and the transport surface of the transport means 108 is represented by (90 ° - ⁇ i), and the angle between the optical axis of the light collection optical system 113 and the transport surface of the transport means 108 is (90 It is expressed by ° - ⁇ o).
- FIG. 2 shows an example of the optical arrangement of the illumination optical system 107 and the light collection optical system 113.
- ⁇ i (°) and ⁇ o (°) are the angle between the optical axis of the illumination optical system 107 and the normal to the transport surface, and the optical axis of the light collection optical system
- a dashed-dotted line indicates an optical axis in which the optical axis of the light receiving optical system 113 is mirror-arranged with the optical axis of the illumination optical system 107.
- the optical axis represented by the one-dot broken line indicates the optical axis through which the reflected light component from the specimen 109 propagates, ⁇ r (°) is the angle between the optical axis and the normal to the transport surface, and ⁇ r is ⁇ i Equal to
- the illumination optical system 107 and the light collection optical system 113 are disposed such that the angle ⁇ o formed by the optical axis of the light collection optical system 113 and the normal to the transport surface is larger than ⁇ r.
- the angle ⁇ o formed by the optical axis of the light collection optical system 113 and the normal to the transport surface is larger than ⁇ r.
- the excitation light cut filter 111 may be omitted. Further, as shown in FIG. 2B, by arranging the illumination optical system 107 and the light collection optical system 113 such that the angle ⁇ o formed by the optical axis of the light collection optical system 113 and the normal to the transport surface is smaller than ⁇ r. Also, similar effects can be obtained.
- both the illumination optical system 107 and the light collection optical system 113 are arranged to be inclined with respect to the normal to the transport surface of the transport means 108, the present invention is not limited to this.
- the optical axis of one of the illumination optical system 107 and the light collection optical system 113 may be disposed on the normal to the transport surface. That is, one of the illumination optical system 107 and the light collection optical system 113 may be disposed such that the optical axis thereof is perpendicular to the transport surface of the transport means 108.
- the optical axis of the illumination optical system 107 and the optical axis of the light collection optical system 113 intersect, and the illumination optical system 107 having a smaller numerical aperture than the light collection optical system 113 is included. doing. According to this embodiment, this can reduce stray light and provide a highly robust identification device against fluctuations in the distance between the identification device 1 and the specimen 109 which is a sample.
- FIG. 4 is a view schematically showing the configuration of an identification apparatus and an identification system according to a second embodiment.
- the identification device 2 includes a plurality of light collection units 201 each having an illumination optical system 107 and a light collection optical system 113.
- the optical fiber bundle 202 includes a plurality of optical fibers 114 for guiding the Raman scattered light collected by the plurality of light collection units 201, and the plurality of optical fibers 114 are bundled at the emission end side. There is.
- the plurality of light collecting units 201 are disposed at different positions in the conveyance direction 200 of the conveyance means 108 and in the conveyance width direction perpendicular to the conveyance direction 200, facing the conveyance surface of the conveyance means 108.
- the identification device 2 identifies the type of the sample 109 transported by the transport means 108.
- the identification system 20, which is a modification of the present embodiment, includes the transport means 108, the transport means driving device 122, and the identification device 2 disposed to face the transport means 108.
- FIG. 4 shows the identification device 2 having two light collecting units 201a and 201b, the identification device 2 may have three or more light collecting units 201.
- the light collection unit 201 includes an illumination optical system 107 and a light collection optical system 113, illuminates the sample 109 transported by the transport means 108, and extracts light from the sample 109.
- the configurations of the illumination optical system 107 and the light collection optical system 113 included in the light collection unit 201 are the same as in the first embodiment, and thus the description thereof is omitted.
- FIG. 4 shows a configuration in which the semiconductor laser 101 included in each of the plurality of light collecting units 201 is driven by one laser driver 103, the present invention is not limited thereto, and the laser driver 103 may be used for each light collecting unit 201. You may provide.
- the plurality of light collecting units 201 are disposed at different positions in the transport width direction 220 intersecting the transport direction 200 of the transport means 108. That is, the plurality of light collecting units 201 are disposed at different positions in the transport width direction 220 of the transport means 108.
- Each of the daylighting units 201 irradiates light to the specimen 109 in a predetermined area on the transport surface of the transport means 108 and daylights the Raman scattered light from within the predetermined area. The area which can be done is limited. Therefore, in the present embodiment, as shown in FIG. 4, a plurality of light collecting units 201 are provided, and the plurality of light collecting units 201 are shifted in both the conveying direction 200 of the conveying unit 108 and the conveying width direction 220.
- the plurality of light collecting units 201 are arranged to have portions overlapping each other in the transport width direction 220. By arranging in this manner, it is possible to reduce the non-lighting area which is not lighted in the transport width direction 220.
- the number of light collecting units 201 arranged per unit transport width of the transport unit 108 that is, the arrangement density, does not interfere with each other. In other words, it can be raised.
- the transport number of specimens per unit transport width of the transport unit 108 can be increased.
- the plurality of illumination optical systems 107 at different positions in the transport direction 200 the plurality of illumination optical systems per unit transport width of the transport means 108 do not interfere with each other.
- the arrangement density of the system 107 can be increased.
- the plurality of light collecting optical systems 113 at different positions in the transport width direction 220 the number of transports of the specimen 109 per unit transport width of the transport means 108 can be increased.
- the plurality of light collecting optical systems 113 are arranged at different positions in the conveyance direction 200, the plurality of light collecting optical systems per unit conveyance width of the conveyance means 108 do not interfere with each other.
- the arrangement density of the system 113 can be increased.
- the plurality of light collecting units 201 be arranged at different positions also in the transport direction 200 of the transport means 108.
- Each light collecting unit 201 has a certain size in order to have the illumination optical system 107 and the light collecting optical system 113. Therefore, as described above, the density of the light collecting units 201 in the width direction of the transfer means 108 is increased by obliquely arranging the plurality of light collecting units 201 when viewed from the direction perpendicular to the transfer surface of the transfer means 108. Can. As a result, the resolution of the identification of the identification device 2 can be enhanced, and the type of resin contained in the specimen 109 of a smaller size can be identified.
- the optical fiber bundle 202 is a light guiding means for guiding the Raman scattered light collected by each of the plurality of light collecting units 201 to the spectroscope 120.
- the optical fiber bundle 202 has a plurality of optical fibers 114 corresponding to each of the plurality of daylighting units 201.
- the incident ends of the respective optical fibers 114 are arranged such that the light from the light-collecting optical system 113 of the corresponding light-collecting unit 201 is incident.
- the output end of each optical fiber 114 is bundled, and it is comprised so that the Raman scattered light from the several light collection unit 201 may be light-guided to one spectroscope 120. As shown in FIG.
- the number of spectroscopes 120 may be smaller than the number of light collection units 201. With such a configuration, the number of expensive spectroscopes 120 can generally be reduced, and the cost of the identification device can be reduced. In addition, measurement errors and variations resulting from the spectroscope 120 can be reduced, and the identification accuracy of the identification device can be improved.
- the basic configuration of the spectroscope 120 is the same as that of the first embodiment, but in this embodiment, it differs from the first embodiment in that Raman scattered light from a plurality of light collecting units 201 is incident. .
- the plurality of optical fibers 114 constituting the optical fiber bundle 202 are bundled on the side of the emission end (end on the side of the spectroscope 120) of the optical fiber bundle 202, and arranged in a line in the direction perpendicular to the paper of FIG. Lined up.
- the output ends of the plurality of optical fibers 114 are arranged in a row along the transport width direction 220 intersecting the transport direction 200. Therefore, the Raman scattered light guided by the respective optical fibers 114 also enters the spectroscope 120 in line in the direction perpendicular to the paper surface.
- Each of the plurality of Raman scattered lights is split by the diffraction grating 117, which is a splitting element, and split in a direction perpendicular to the arrangement direction of the optical fibers 114, that is, in the direction parallel to the paper surface in FIG.
- an area image sensor is used as the light receiving element. More specifically, an area image sensor in which photoelectric conversion elements are two-dimensionally arranged along the paper surface vertical direction and the paper surface parallel direction of FIG. 4 is used as the light receiving element.
- a spectrum in which one Raman scattered light is split by the light separating element is distributed in the horizontal direction in the drawing, and the Raman scattered light from the plurality of optical fibers 114 is aligned in the vertical direction in the drawing.
- the area image sensor as the light receiving element as in the present embodiment, two or more Raman scattering spectra on the light receiving surface can be simultaneously obtained, and the spectroscope 120 can be miniaturized and the cost can be reduced. can do.
- the computer 121 acquires spectral data of Raman scattered light from the CCD 119 which is a light receiving element, analyzes the spectral data, and performs identification processing for identifying the type of the specimen 109.
- the arrangement order of the plurality of optical fibers 114 connected to the spectroscope 120 and the arrangement order of the plurality of Raman scattered lights formed on the light receiving surface of the light receiving element are reversed. Therefore, at the time of identification processing, the computer 121 associates the position of each of the light collecting units 201 with the position of the spectrum on the light receiving surface of the light receiving element or on the acquired image. As a result, the types of the specimens 109a and 109b detected by the respective light collecting units 201a and 201b can be identified.
- the structures and optical arrangements of the illumination optical system 107 and the light collection optical system 113 which the plurality of light collection units 201 respectively have are the same as those of the first embodiment. That is, in each of the plurality of light collecting units 201, the optical axis of the illumination optical system 107 and the optical axis of the light collecting optical system 113 intersect with each other. Further, in each of the plurality of light collecting units 201, the illumination optical system 107 is an imaging optical system having a numerical aperture on the transport surface side smaller than the numerical aperture on the transport surface side of the transport means 108, or Is a collimator optical system that converts the light of the above into parallel light. As a result, even in the case where a plurality of light collection units 201 are provided, the robustness of the identification device 2 to fluctuations in the distance between the identification device 2 and the specimen 109 can be improved.
- FIG. 5 is a figure which shows typically the structure of the resin sorting system which concerns on 3rd Embodiment.
- the resin sorting system 3 is the downstream side of the conveying means 108 than the identification device 1 of the first embodiment or the identification device 2 of the second embodiment, the conveying means 108, and the identification device 1 or 2. And sorting means disposed at The sorting means sorts the sample 109 based on the identification result of the identification device 1 or 2.
- the resin sorting system 3 includes the identification device 2, that is, a configuration including a plurality of light collecting units 201 is described, the configuration is not limited thereto, and the resin sorting system 3 includes a single light collecting unit 201. It may be.
- the sorting means included in the resin sorting system 3 according to the present embodiment includes an air gun drive device 301 and an air gun 302.
- the sorting means has a plurality of air guns 302 arranged in the transport width direction 220 intersecting with the transport direction 200 of the transport means 108.
- the spectroscope 120 splits the input light from the plurality of optical fibers 114 and generates image data in which the spectrum of the Raman scattered light collected by each of the light collecting units 201 is integrated. It is transmitted to the computer 121.
- the computer 121 extracts a Raman spectrum corresponding to each of the light receiving units 201 from the received image data, and identifies the type of the sample 109 which is a measurement target of each of the light receiving units 201.
- the computer 121 transmits an air gun drive signal to the air gun drive device 301 according to the identification result.
- the air gun drive signal calculates the transport time of the transport means 108, the air firing time of the air gun 302, and the like, and transmits an air gun drive signal with an appropriate delay time. As a result, compressed air can be applied to only a desired one of the specimens 109 while the specimen is falling.
- the sorting cage 303 is disposed downstream of the transport means 108.
- the specimen 109 transported by the transport means 108 pops out from the end of the transport means 108 and falls and enters the sorting cage 303.
- the sorting cage 303 is divided into a plurality of small rooms, receives the sorting by the sorting means, and accommodates the specimens 109 for each type.
- the air gun 302 knocks down only the target sample of the samples 109 toward the upstream side in the transport direction 200 by emitting compressed air when the air gun drive signal is ON.
- the target sample is accommodated in the small room disposed on the upstream side of the transport direction 200 of the sorting cage 303.
- the sorting means can sort the sample according to the identification result of the identification device.
- the above-described sorting means is an example, and the present invention is not limited to this.
- other sorting means such as a robot hand may be employed as the sorting means.
- an alignment means for aligning the plurality of specimens 109 transported by the transportation means 108 and a pretreatment means for adjusting the shapes and particle sizes of the plurality of specimens 109 to be uniform are provided on the upstream side of the transportation means 108 It is also good.
- a vibrating conveyor, a vibrating sieve, a crushed grain controller or the like can be used as the alignment means and the pretreatment means.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Environmental & Geological Engineering (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Mechanical Engineering (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
識別装置1は、搬送手段108によって搬送される検体109の種類を識別する識別装置であって、検体109を光源からの光で照明する照明光学系107と、検体109からのラマン散乱光を採光する採光光学系113と、ラマン散乱光を分光する分光素子117と、分光素子117によって分光されたラマン散乱光を受光する受光素子119と、受光素子119からラマン散乱光のスペクトルデータを取得し、識別処理を行うデータ処理手段121と、を有する。照明光学系107の光軸と採光光学系113の光軸とは、交差しており、照明光学系107は、採光光学系113の搬送面側の開口数よりも小さい搬送面側の開口数を有する結像光学系、または、光源からの光を平行光に変換するコリメータ光学系である。
Description
本発明は、識別装置、およびそれを用いた識別システム、樹脂選別システムに関する。
家庭ごみや産業廃棄物に含まれている様々な種類のプラスチックやエラストマー等の樹脂を新しい製品の原料として再生利用する際には、廃棄物中の樹脂を材質ごとに選別することが求められる。リサイクル施設においては、これらの廃棄物を機械的に破砕して検体や金属片等が混合した破砕物とした後に、さまざまな方法で分別することが行われている。
プラスチック等の検体を分別する方法の一つに、ラマン散乱を利用した方法がある。ラマン散乱を利用することで、樹脂の材質を識別したり、成分組成やその分布を調べたりすることが可能となる。樹脂をベルトコンベアなどの搬送手段によって搬送し、搬送されている樹脂からラマン散乱光を検出して識別することで、高スループットの識別システムを構成することができる。
特開2008-209128号公報および特開平10-038807号公報には、ラマン散乱を利用してプラスチックの種別を識別する識別装置が記載されている。特開2008-209128号公報に記載の識別装置は、試料にレーザ光を照射する照明光学系と試料からのラマン散乱光を集光する採光光学系とが同軸である構成であり、いずれも搬送面に対して垂直に配置されている。また、特開平10-038807号公報に記載の判別装置は、搬送面に対して斜めにレーザ光が入射するように配置されたレーザ装置と、搬送面に対して垂直に配置されたラマン分光器とを有している。
識別の対象となる検体の形状は不均一であり、ベルトコンベア等の搬送手段によって搬送される際の姿勢も様々である。また、搬送手段によって搬送される際には振動等によって検体の位置が変動しやすい。そのため、搬送手段によって搬送されている検体の高さ方向の位置は大きく変動し、識別装置と識別対象の検体との間の距離も大きく変動する。
一般的にラマン散乱光は微弱であるため、検出されるラマン散乱光の強度を高めるためには、試料に対して高強度な光を照射して発生するラマン散乱光の強度を高め、発生したラマン散乱光を高効率な採光光学系で採光する必要がある。特開2008-209128号公報に記載の装置では照明光学系と採光光学系が同軸構成であるため、識別装置と検体との間の距離が大きく変動すると、発生するラマン散乱光の強度が低下するとともに採光されるラマン散乱光の強度も低下するために感度が低下しやすい。また、特開平10-038807号公報には照明、採光ともに光学系の設定について何ら開示されておらず、識別装置と検体との間の距離の変動による影響は考慮されていない。
すなわち、ラマン散乱を利用した従来の識別装置では、識別装置と検体との間の距離が大きく変動するとラマン散乱光の強度も大きく変動してしまい、安定的な識別が困難であるという課題があった。
そこで本発明では、上述の課題に鑑み、識別装置と検体との間の距離の変動に対するロバスト性の高い識別装置を提供することを目的とする。
本発明の一側面としての識別装置は、搬送手段(conveyor)によって搬送される(to be conveyed)検体に含有される樹脂の種類を識別する識別装置であって、前記搬送手段の搬送面上の前記検体を光源からの光で照明する照明光学系と、前記照明光学系によって照明された前記検体からのラマン散乱光を採光する採光光学系と、前記採光光学系によって採光された前記ラマン散乱光を分光する分光素子と、前記分光素子によって分光された前記ラマン散乱光を受光する受光素子と、前記受光素子から前記ラマン散乱光のスペクトルデータを取得し、前記スペクトルデータに基づき前記検体の識別処理を行うデータ処理手段と、を有し、前記照明光学系の光軸と前記採光光学系の光軸とは、交差しており、前記照明光学系は、前記採光光学系の前記搬送面側の開口数よりも小さい前記搬送面側の開口数を有する結像光学系であることを特徴とする。
また、本発明の別の一側面としての識別装置は、搬送手段によって搬送される検体に含有される樹脂の種類を識別する識別装置であって、前記搬送手段の搬送面に対向し、かつ、前記搬送手段の搬送方向(conveyance direction)と交差する搬送幅方向(traverse direction of conveyance)において異なる位置に配置され、それぞれが、前記搬送手段の搬送面上の検体を光源からの光で照明する照明光学系と、前記照明光学系によって照明された前記検体からのラマン散乱光を採光する採光光学系と、を有する複数の採光ユニットと、前記複数の採光ユニットによって採光された前記ラマン散乱光をそれぞれ導光する複数の光ファイバを有し、出射端側において前記複数の光ファイバが束ねられている光ファイバ束と、前記ファイバ束によって導光された複数の前記ラマン散乱光を分光する分光素子と、前記分光素子によって分光された前記複数のラマン散乱光を受光する受光素子と、前記受光素子から前記複数のラマン散乱光のスペクトルデータを取得し、識別処理を行うデータ処理手段と、を有し、前記採光ユニットにおいて、前記照明光学系の光軸と前記採光光学系の光軸とは、互いに交差していることを特徴とする。
以下、本発明を実施するための形態について図面を参照しながら説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対して適宜変更、改良等が加えられたものも本発明の範囲に含まれる。
(第1の実施形態)
図1を参照して、本発明の第1の実施形態に係る識別装置について説明する。図1は、第1の実施形態に係る識別装置および識別システムの構成を模式的に示す図である。
図1を参照して、本発明の第1の実施形態に係る識別装置について説明する。図1は、第1の実施形態に係る識別装置および識別システムの構成を模式的に示す図である。
本実施形態の識別装置1は、搬送手段108の搬送面に対向して配置され、搬送手段108によって搬送される検体109の種類を識別する装置である。識別装置1は、図1に示すように、照明光学系107と、採光光学系113と、分光素子117と、受光素子119と、データ処理手段121と、を有している。また、本実施形態の変形例である識別システム10は、搬送手段108と、搬送手段駆動装置122と、搬送手段108に対向して配置された識別装置1と、を有している。なお、図1において、各構成部品を結ぶ直線および矢印付き直線はそれぞれ、光路および電気配線を表す。
照明光学系107は、搬送手段108の搬送面上の検体109を、光源からの光で照明する光学系である。照明光学系107によって照明された検体109は、ラマン散乱光を発する。照明光学系107は、半導体レーザ101と、レーザマウント102と、レーザドライバ103と、コリメータレンズ104と、シリンドリカルレンズ105と、集光レンズ106と、を有する。
半導体レーザ101は、検体109を照明する光の光源である。本実施形態においては、半導体レーザ101は連続発振レーザであり、検体109からラマン散乱光を発生させるために高出力の光を出射する。ラマン散乱においては、照明光の波長が短いほどラマン散乱光の発生効率が上がり、照明光の波長が長いほどバックグラウンドとなる蛍光が低減する。半導体レーザ101などの光源からの光としては、例えば532nm、633nm、780nmのいずれかの波長の光を利用できる。なお、ここでは照明光学系107の光源として半導体レーザ101を用いる場合を説明したが、これに限定はされず、半導体励起固体レーザやガスレーザなどの他のレーザ光源を用いることもできる。
レーザマウント102は、半導体レーザ101を保持し、放熱を行う。レーザドライバ103はレーザマウント102を介して半導体レーザ101に電流を供給し、半導体レーザ101を発振させ、同時に半導体レーザ101の温度を一定に保つ。
コリメータレンズ104およびシリンドリカルレンズ105は半導体レーザ101の出射光の拡がりを抑制し、平行光に整形する。シリンドリカルレンズ105はアナモルフィックプリズムペアなど他のコリメート用光学素子を利用してもよい。また、照明光学系107は、その瞳面の位置に、レーザラインフィルタ等の波長フィルタを有していてもよい。これにより、照明光学系107によって検体109に照射される光の波長特性を改善することができる。集光レンズ106は、半導体レーザ101からの光を検体109に集光する。コリメータレンズ104、シリンドリカルレンズ105、および集光レンズ106は半導体レーザ101から出力の高い光が照射されるため、バックグラウンドとなる蛍光やラマン散乱光を低減するために合成石英から作製されたレンズを用いることが好ましい。
半導体レーザの場合、出射端が扁平な楕円形状であることが多く、その場合、コリメータ光学系によってコリメートされた平行光の断面や、結像光学系によって集光されたスポットも楕円形状となる。このとき、楕円の長軸が搬送手段108の搬送方向200と略一致するように照明光学系107の向きを設定しておくことで、搬送中の検体109への照明光の照射時間を増加させることができる。これにより、ラマン散乱光の信号量を増大させることが可能である。すなわち、照明光学系107によって照射される光のスポットが楕円形状である場合には、光のスポットの長軸方向と搬送手段108の搬送方向200とがなす角を小さくしておくことが好ましい。具体的には、当該2つの方向がなす角を0度以上15度以下とすることが好ましく、0度以上5度以下とすることがより好ましい。なお、集光レンズ106を用いない場合など照明光学系107の構成によっては照明領域の長軸が搬送方向200と一致しない。その場合は照明領域の長軸が搬送方向200と一致するように半導体レーザ101またはレーザマウント102の固定方向を変更する、または照明光学系107全体を光軸回りに回転させて配置すればよい。
照明光学系107の光軸は、搬送手段108の搬送面の法線に対して搬送方向200の上流側または下流側に傾斜して配置されていることが好ましい。これにより、照明光学系107によって照射される光の搬送面上におけるスポットを搬送手段108の搬送方向200に広げることができる。その結果、搬送中の検体109への照明光の照射時間を長くすることができ、ラマン散乱光の信号量を増大させることが可能である。
以上のように、照明光学系107は、搬送手段108の搬送面上に、照射する光によって照明される照明領域を形成するが、この照明領域の形状は、搬送手段108の搬送方向200における幅が、搬送方向200と交差する搬送幅方向220における幅よりも大きいことが好ましい。
照明光学系107の光軸と採光光学系113の光軸とを含む平面は、搬送手段108の搬送方向200に略平行であることが好ましい。具体的には、当該平面と搬送方向200とがなす角を0度以上15度以下とすることが好ましく、0度以上5度以下とすることがより好ましく、0度とすることが特に好ましい。すなわち、当該平面と搬送方向200とを平行にすることが特に好ましい。これにより、照明光学系107によって照射される光の搬送面上におけるスポットを搬送手段108の搬送方向200に広げることができる。その結果、搬送中の検体109への照明光の照射時間を長くすることができ、ラマン散乱光の信号量を増大させることが可能である。
搬送手段108は、不図示の検体供給部から投入された検体109を測定位置へ一定速度で搬送する。搬送手段108としては、検体109を搬送面上に載置した状態で搬送できる手段を用いることができ、例えば、ベルトコンベアなどを用いることができる。本実施形態に係る識別装置1によるラマン散乱測定は、検体109が搬送手段108によって搬送されている間に行われ、測定後、検体109はそのまま同一の方向へ搬送され、適宜、搬出カゴや選別カゴ(不図示)等へ排出される。
検体109は、樹脂製の欠片であり、家庭ごみや産業廃棄物等が破砕されたものである。ここで、本明細書における樹脂は、熱可塑性樹脂(プラスチック)や熱硬化性樹脂、ゴム、エラストマー等を含む、重合体全般を意味する。なお、検体109は、樹脂以外にガラスや繊維等のフィラーや、難燃剤などの各種添加物を含んでいてもよい。本実施形態に係る識別装置1によれば、検体を構成する樹脂の種類、すなわち検体の材種を識別することに加えて、これらの添加物の有無や種類を識別することもできる。
採光光学系113は、照明光学系107によって照明された検体109からのラマン散乱光を採光する光学系である。採光光学系113によって採光されたラマン散乱光は、光ファイバ114などの導光手段によって分光素子117へと導光される。採光光学系113は、対物レンズ110、励起光カットフィルタ111、ファイバ集光レンズ112を有する。
識別装置1は、採光光学系113によって採光されたラマン散乱光を分光素子117へと導光する導光手段を有していてもよい。具体的には、識別装置1は、光ファイバ114を有していてもよい。
対物レンズ110は、照明光学系107によって照明された検体109からのラマン散乱光を採光する。対物レンズ110などの採光光学系113を構成する各レンズは、検体109によっては出力の高い光が照射される場合があるため、バックグラウンドとなる蛍光やラマン散乱光を低減するために合成石英から作製されたレンズを用いることが好ましい。同様に、バルサムからのバックグラウンドの抑制、また、発熱によるバルサム剥がれの抑制のため、貼り合わせレンズは利用しない方が好ましい。すなわち、対物レンズ110などの採光光学系113を構成する各レンズは、単レンズであることが好ましい。また、導光手段である光ファイバ114へのカップリング効率を向上させるために、対物レンズ110は非球面レンズであることが好ましい。
励起光カットフィルタ111は、バンドパスフィルタやロングパスフィルタ等の波長フィルタであり、対物レンズ110によって採光された光のうちの少なくとも一部の波長域の光を遮光してラマン散乱光を透過させる。これにより、ラマン散乱光の測定に不要な光を遮光し、ラマン散乱光を透過させる。フィルタ特性の観点から、励起光カットフィルタ111は対物レンズ110とファイバ集光レンズ112の間の平行光束中、すなわち、採光光学系113の瞳面に配置されることが好ましい。
ファイバ集光レンズ112は、ラマン散乱光を光ファイバ114にカップリングする。励起光カットフィルタ111が挿入されている場合、ファイバ集光レンズ112からのラマン散乱光は無視できるため、光ファイバ114へのカップリング効率を優先してダブレットレンズなどの貼り合わせレンズを用いて収差を抑えるようにするとよい。
光ファイバ114は、採光光学系113によって採光されたラマン散乱光を分光器120に導光する。本実施形態では導光手段として光ファイバ114を用いたが、これに限定はされず、光導波路やミラーなどの他の導光手段を用いてもよい。
分光器120は、採光光学系113によって採光されたラマン散乱光を分光する分光素子と、分光素子によって分光されたラマン散乱光を受光する受光素子と、を少なくとも有し、該ラマン散乱光を分光し、スペクトル信号を生成する。分光器120は、結像レンズ115と、ロングパスフィルタ116と、分光素子である回折格子117と、結像レンズ118と、受光素子であるCCD119と、を有する。
結像レンズ115は、光ファイバ114からの光を平行光化する。ロングパスフィルタ116は、結像レンズ115と回折格子117との間に配置され、残存する励起光成分を除去し、ラマン散乱光のみを透過させる。
回折格子117は、採光光学系113によって採光されたラマン散乱光を分光し、ラマン散乱光を波長ごとに一次元的に分散させる。結像レンズ118は回折格子117で分光された光をCCD119上に結像する。分光器120中の各構成要素の光学配置や分光方式は、ローランド配置やツェルニターナー方式等、適宜他の一般的に利用される形態に変更してもよい。
CCD119は、分光素子である回折格子117によって一次元的に分光されたラマン散乱光を受光し、電気信号に変換する受光素子である。CCD119によって生成されたスペクトル信号は、データ処理装置であるコンピュータ121へと送られる。なお、ここでは受光素子として、フォトダイオードなどの光電変換部が二次元的に配列されたエリアイメージセンサを用いたが、これに限定はされず、分光素子によって分光されたラマン散乱光を波長成分ごとに受光してそれぞれの強度を信号として出力できる受光素子であればよい。したがって、受光素子としては、光電変換部が一次元的に配列されたラインセンサであってもよい。また、受光素子としてはCMOSセンサを用いることもできる。
搬送手段駆動装置122は、搬送手段108を駆動する。
コンピュータ121は、受光素子であるCCD119からラマン散乱光のスペクトルデータを取得する。また、コンピュータ121は、搬送手段108へ駆動信号、停止信号を適宜送出する。また、コンピュータ121は受信した測定データから検体109のラマンスペクトルを抽出し、分析することで、測定した検体109の種類を識別する識別処理を行う。識別手法としては、例えば特開2008-209128号公報や特開平10-038807号公報に記載されているような、ラマンスペクトルの特徴ピークや既知スペクトルとの照合によって実施することができる。コンピュータ121は樹脂材種の識別に加えて、ラマンスペクトルの特定ピークの検出やデータベースとの照合によって添加物や不純物成分の特定など、ラマン分光法によって一般的に利用可能な解析を行うこともできる。なお、コンピュータ121は、フラットパネルディスプレイのような表示部や、キーボードやマウス、タッチパネルのような入力部を備え、ユーザからの指示を受け付けたり、ユーザに情報を提供したりしてもよい。
樹脂選別装置1において、照明光学系107の光軸と採光光学系113の光軸とは、交差している。より具体的には、照明光学系107の光軸と採光光学系113の光軸とは、搬送手段108によって搬送されている検体109が通過する、搬送手段108の搬送面上に設定された測定領域内で、交差している。これにより、迷光を低減し、検体109からのラマン散乱光の採光を高感度に行うことができる。また、照明光学系107の光軸と採光光学系113の光軸とが交差しており、同軸ではないことにより、照明光学系107と採光光学系113とを別々に設計することができ、それぞれをそれぞれの目的に最適な構成に設計しやすいというメリットがある。
また、照明光学系107は、採光光学系113の搬送手段108の搬送面側の開口数よりも小さい搬送面側の開口数を有する結像光学系である。すなわち、照明光学系107において、検体109に集光する集光レンズ106の開口数は、採光光学系113の対物レンズ110の開口数よりも小さい。これにより、照明光学系107の焦点深度を深くし、照明光学系107によって照射される光のスポット径が所定値以下となる、照明光学系107の光軸方向の範囲を大きくすることができる。これにより、検体109の高さ方向が変動し、識別装置1と検体109との間の距離が変動しても、安定的にラマン散乱光を発生させることができる。その結果、識別装置1の、識別装置1と検体109との間の距離の変動に対するロバスト性を向上させることができる。
なお、検体109から識別に十分な強度のラマン散乱光が得られれば、集光レンズ106は必ずしも必須ではなく、コリメータレンズ104および/またはシリンドリカルレンズ105によってコリメートされた光をそのまま検体109に照射する構成であってもよい。すなわち、照明光学系107は、光源である半導体レーザ101からの光を平行光に変換するコリメータ光学系であってもよい。この場合には、照明光学系107によって照射される光のスポット径は照明光学系107の光軸方向のどの位置においても実質的に同じ径にすることができる。これにより、上述のように、識別装置1と検体109との間の距離の変動に対するロバスト性を向上させることができる。なお、ここでいう「平行光」は光の回折のために完全な平行光でなくてもよく、実質的な平行光(略平行光)であってもよい。
また、採光光学系113の搬送面側の開口数(対物レンズ110の開口数)は照明光学系107の搬送面側の開口数(集光レンズ106の開口数)よりも大きい。これにより、より大きな立体角でラマン散乱光を採光することができ、識別装置1の感度を向上させることができる。
また、採光光学系113の光ファイバ114側(光ファイバ側)の開口数(ファイバ集光レンズ112の開口数)は、導光手段である光ファイバ114の開口数よりも小さいことが好ましい。これにより、光ファイバ114の開口数よりも実質的に高い開口数でラマン散乱光を分光器120へ導光することができるため、識別装置1の感度を向上させることができる。識別装置1の感度が十分であれば、対物レンズ110の開口数を光ファイバ114の開口数以下にして、ファイバ集光レンズ112もなくしてもよい。
また、照明光学系107の光軸と搬送手段108の搬送面とがなす角と、採光光学系113の光軸と搬送手段108の搬送面とがなす角は、異なることが好ましい。すなわち、照明光学系107と採光光学系113は搬送手段108の搬送面の法線に対して対称となる鏡面配置に設定しないことが好ましい。
図2に、照明光学系107と採光光学系113の光学配置の例を示す。図2において、θi(°)、θo(°)は、それぞれ照明光学系107の光軸と搬送面の法線とがなす角、採光光学系113の光軸と搬送面の法線とがなす角である。照明光学系107の光軸と搬送手段108の搬送面とがなす角は(90°-θi)で表され、採光光学系113の光軸と搬送手段108の搬送面とがなす角は(90°-θo)で表される。また、図2において、一点破線は採光光学系113の光軸が照明光学系107の光軸と鏡面配置となる光軸を表す。この一点破線で表される光軸は、検体109からの反射光成分が伝搬する光軸を示し、θr(°)はその光軸と搬送面の法線とがなす角であり、θrはθiと等しい。
図2Aの構成例では、採光光学系113の光軸と搬送面の法線とがなす角θoがθrよりも大きくなるように、照明光学系107と採光光学系113を配置している。これにより、照明光学系107によって照射された光が検体109で反射された光が採光光学系113に入射しないようにしている。このように、採光光学系113の光軸と搬送面の法線とがなす角を、鏡面配置の場合の角度よりも大きくすることで、分光器120に入射する励起光の検体109からの反射成分を低減することができる。励起光の反射成分の入射の影響が小さい場合には、励起光カットフィルタ111は省略してもよい。また、図2Bに示すように、採光光学系113の光軸と搬送面の法線とがなす角θoがθrよりも小さくなるように、照明光学系107と採光光学系113を配置することによっても、同様の効果を得ることができる。
なお、図1および図2では、搬送手段108の搬送面の法線に対して照明光学系107および採光光学系113の両方が傾斜して配置されているが、これに限定はされない。図3に示すように、照明光学系107および採光光学系113のうちの一方が、その光軸が搬送面の法線上に配置されていてもよい。すなわち、照明光学系107および採光光学系113のうちの一方が、その光軸が搬送手段108の搬送面と垂直になるように配置されていてもよい。
本実施形態の識別装置1は、上述のように、照明光学系107の光軸と採光光学系113の光軸とが交差し、採光光学系113よりも開口数の小さい照明光学系107を有している。本実施形態によれば、これにより、迷光を低減し、識別装置1と試料である検体109との間の距離の変動に対するロバスト性の高い識別装置を提供することができる。
(第2の実施形態)
図4を参照して、本発明の第2の実施形態に係る識別装置について説明する。なお、第1の実施形態と共通する部分については同じ符号を付し、説明を省略する場合がある。図4は、第2の実施形態に係る識別装置および識別システムの構成を模式的に示す図である。
図4を参照して、本発明の第2の実施形態に係る識別装置について説明する。なお、第1の実施形態と共通する部分については同じ符号を付し、説明を省略する場合がある。図4は、第2の実施形態に係る識別装置および識別システムの構成を模式的に示す図である。
本実施形態に係る識別装置2は、照明光学系107と採光光学系113を有する採光ユニット201を複数有している。また、複数の採光ユニット201によって採光されたラマン散乱光をそれぞれ導光する複数の光ファイバ114を有し、出射端側において複数の光ファイバ114が束ねられている光ファイバ束202を有している。複数の採光ユニット201は、搬送手段108の搬送面に対向し、かつ、搬送手段108の搬送方向200と搬送方向200に垂直な搬送幅方向とにおいて異なる位置に配置されている。識別装置2は、搬送手段108によって搬送される検体109の種類を識別する。また、本実施形態の変形例である識別システム20は、搬送手段108と、搬送手段駆動装置122と、搬送手段108に対向して配置された識別装置2と、を有している。なお、図4には2つの採光ユニット201a,201bを有する識別装置2を示したが、識別装置2は3つ以上の採光ユニット201を有していてもよい。
採光ユニット201は、照明光学系107と採光光学系113とを有し、搬送手段108によって搬送される検体109を照明し、検体109からの光を採光する。採光ユニット201の有する照明光学系107および採光光学系113の構成は第1の実施形態と同様であるため、説明を省略する。なお、図4では複数の採光ユニット201のそれぞれが有する半導体レーザ101を、1つのレーザドライバ103で駆動する構成を示しているが、これに限定はされず、採光ユニット201ごとにレーザドライバ103を設けてもよい。
上述のように、複数の採光ユニット201は、搬送手段108の搬送方向200と交差する搬送幅方向220において異なる位置に配置されている。すなわち、複数の採光ユニット201は、搬送手段108の搬送幅方向220において異なる位置に配置されている。採光ユニット201のそれぞれは、搬送手段108の搬送面上の所定の領域内の検体109に光を照射して、所定の領域内からのラマン散乱光を採光するため、それぞれの採光ユニット201が採光できる領域は限定的である。そこで、本実施形態は、図4に示すように複数の採光ユニット201を設け、かかる複数の採光ユニット201を搬送手段108の搬送方向200と搬送幅方向220との両方向においてずらして配置している。このように、複数の採光ユニット201をずらして配置することで、識別装置2によって検体109の種類の識別を行うことのできる採光範囲を広げることができる。これにより、識別のスループットを向上させることができる。換言すると、複数の採光ユニット201は、搬送幅方向220において互いに重なる部分を有するように配置されている。このように配置することにより、搬送幅方向220における採光されない非採光エリアを低減することができる。このように、複数の採光ユニット201を搬送方向にずらして配置することで、複数の採光ユニット201が互いに干渉することなく、搬送手段108の単位搬送幅あたりの採光ユニット201の配置数すなわち配置密度を高めることができると換言される。同様にして、搬送幅方向220において複数の照明光学系107を異なる位置に配置する形態とすることにより、搬送手段108の単位搬送幅あたりの検体の搬送数を高めることができる。また、搬送方向200において複数の照明光学系107を異なる位置に配置する形態とすることにより、複数の照明光学系107が互いに干渉することなく、搬送手段108の単位搬送幅あたりの複数の照明光学系107の配置密度を高めることができる。同様にして、搬送幅方向220において複数の採光光学系113を異なる位置に配置する形態とすることにより、搬送手段108の単位搬送幅あたりの検体109の搬送数を高めることができる。また、搬送方向200において複数の採光光学系113を異なる位置に配置する形態とすることにより、複数の採光光学系113が互いに干渉することなく、搬送手段108の単位搬送幅あたりの複数の採光光学系113の配置密度を高めることができる。
また、複数の採光ユニット201は、搬送手段108の搬送方向200においても異なる位置に配置されていることが好ましい。それぞれの採光ユニット201は照明光学系107および採光光学系113を有するためにある程度の大きさを有している。そこで、上述のように、搬送手段108の搬送面に垂直な方向から見たときに複数の採光ユニット201を斜めに配列することで、搬送手段108の幅方向における採光ユニット201の密度を高めることができる。これにより、識別装置2の識別の分解能を高めることができ、より小さなサイズの検体109に含まれる樹脂の種類を識別することができるようになる。
光ファイバ束202は、複数の採光ユニット201のそれぞれによって採光されたラマン散乱光を分光器120に導光する導光手段である。光ファイバ束202は、複数の採光ユニット201のそれぞれに対応する複数の光ファイバ114を有している。それぞれの光ファイバ114の入射端は、対応する採光ユニット201の採光光学系113からの光が入射するように配置されている。一方、それぞれの光ファイバ114の出射端は束ねられており、複数の採光ユニット201からのラマン散乱光が1つの分光器120に導光されるように構成されている。なお、ここでは分光器120を1つだけ設けた例について説明したが、分光器120の数は採光ユニット201の数よりも少なければよい。このような構成にすることで、一般に高価な分光器120の数を低減することができ、識別装置のコストを低減することができる。また、分光器120に起因する測定誤差やばらつきを低減することができ、識別装置の識別精度を向上させることができる。
分光器120の基本的な構成は第1の実施形態と同様であるが、本実施形態においては複数の採光ユニット201からのラマン散乱光が入射される点で、第1の実施形態とは異なる。
図4において、光ファイバ束202を構成する複数の光ファイバ114は、光ファイバ束202の出射端(分光器120側の端部)側において束ねられており、図4の紙面垂直方向に一列に並んでいる。換言すると、複数の光ファイバ114の出射端は、搬送方向200と交差する搬送幅方向220に沿って列状に配置されている。したがって、それぞれの光ファイバ114によって導光されたラマン散乱光も、紙面垂直方向に一列に並んで、分光器120に入射する。この複数のラマン散乱光のそれぞれは、分光素子である回折格子117によって分光され、光ファイバ114の配列方向に垂直な方向、すなわち図4における紙面平行方向に分光される。
本実施形態においては、受光素子としてエリアイメージセンサを用いる。より具体的には、受光素子として、図4の紙面垂直方向および紙面平行方向に沿って光電変換素子が二次元的に配列されたエリアイメージセンサを用いる。これにより、受光素子の受光面上には、1つのラマン散乱光が分光素子によって分光されたスペクトルが紙面水平方向に分布し、複数の光ファイバ114からのラマン散乱光が紙面垂直方向に並ぶ。このように、本実施形態のように受光素子としてエリアイメージセンサを用いることで、受光面上の2つ以上のラマン散乱スペクトルを同時に取得することができ、分光器120を小型化、低コスト化することができる。
コンピュータ121は、第1の実施形態と同様に、受光素子であるCCD119からラマン散乱光のスペクトルデータを取得し、スペクトルデータを解析し、検体109の種類を識別する識別処理を行う。図4の構成においては、分光器120に接続される複数の光ファイバ114の並び順と、受光素子の受光面上に結像される複数のラマン散乱光の並び順は反転している。そこでコンピュータ121は、識別処理の際に、それぞれの採光ユニット201の位置と、受光素子の受光面上または取得された画像上のスペクトルの位置と、の対応づけを行う。これにより、それぞれの採光ユニット201a,201bで検出した検体109a,109bの種類をそれぞれ識別することができる。
複数の採光ユニット201がそれぞれ有する照明光学系107と採光光学系113の構造や光学配置は、第1の実施形態と同様である。すなわち、複数の採光ユニット201のそれぞれにおいて、照明光学系107の光軸と採光光学系113の光軸とは、交差している。また、複数の採光ユニット201のそれぞれにおいて、照明光学系107は、搬送手段108の搬送面側の開口数よりも小さい搬送面側の開口数を有する結像光学系であるか、または、光源からの光を平行光に変換するコリメータ光学系である。これにより、採光ユニット201を複数有する場合であっても、識別装置2の、識別装置2と検体109との間の距離の変動に対するロバスト性を向上させることができる。
(第3の実施形態)
図5を参照して、本発明の第3の実施形態に係る樹脂選別システムについて説明する。なお、第1の実施形態または第2の実施形態と共通する部分については同じ符号を付し、説明を省略する場合がある。図5は、第3の実施形態に係る樹脂選別システムの構成を模式的に示す図である。
図5を参照して、本発明の第3の実施形態に係る樹脂選別システムについて説明する。なお、第1の実施形態または第2の実施形態と共通する部分については同じ符号を付し、説明を省略する場合がある。図5は、第3の実施形態に係る樹脂選別システムの構成を模式的に示す図である。
本実施形態に係る樹脂選別システム3は、第1の実施形態の識別装置1または第2の実施形態の識別装置2と、搬送手段108と、識別装置1または2よりも搬送手段108の下流側に配置された選別手段と、を有する。選別手段は、識別装置1または2の識別結果に基づいて検体109の選別を行う。以下、樹脂選別システム3が識別装置2を有する構成、すなわち複数の採光ユニット201を有する構成について説明するが、これに限定はされず、樹脂選別システム3は、1つの採光ユニット201を有する構成であってもよい。
本実施形態に係る樹脂選別システム3が有する選別手段は、エアガン駆動装置301と、エアガン302とを有する。本実施形態において、選別手段は、搬送手段108の搬送方向200と交差する搬送幅方向220に配列された複数のエアガン302を有している。
分光器120は、第2の実施形態と同様に、複数の光ファイバ114からの入力光をそれぞれ分光して、採光ユニット201のそれぞれで採光されたラマン散乱光のスペクトルが集積された画像データをコンピュータ121に送信する。コンピュータ121は、受信した画像データから各採光ユニット201に対応するラマンスペクトルを抽出し、各採光ユニット201の測定対象である検体109の種類の識別を行う。
コンピュータ121は、上記識別結果に応じて、エアガン駆動装置301にエアガン駆動信号を送信する。このとき、エアガン駆動信号は搬送手段108の搬送時間、エアガン302のエア発射時間などを計算し、適当な遅延時間を与えてエアガン駆動信号を送信する。これにより、検体109のうちの所望の検体のみに、検体が落下している間に圧縮空気を当てることができる。
選別カゴ303は、搬送手段108の下流側に配置されている。搬送手段108によって搬送された検体109は搬送手段108の端部から飛び出して落下し、選別カゴ303に入る。選別カゴ303は複数の小部屋に仕切られており、選別手段による選別を受けて、種類ごとに検体109を収容する。
図5の例においては、エアガン302は、エアガン駆動信号がONのときに圧縮空気を発射することによって、検体109のうちの対象検体のみを搬送方向200の上流側に向かって打ち落とす。これにより、対象検体は選別カゴ303の搬送方向200の上流側に配置された小部屋に収容される。
これにより、選別手段は識別装置の識別結果に応じて、検体を選別することができる。なお、上述の選別手段は一例であり、これに限定されるものではない。選別手段として、例えばロボットハンドなどの他の選別手段を採用してもよい。
また、搬送手段108によって搬送される複数の検体109を整列させる整列手段や、複数の検体109の形状や粒度を均一になるように調整する前処理手段を、搬送手段108の上流側に設けてもよい。整列手段や前処理手段としては、例えば、振動コンベアや振動篩機、破砕粒調機等を用いることができる。
本実施形態によれば、大量の検体を安定的に識別、選別することが可能な樹脂選別システムを提供することができる。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
本願は、2017年12月5日提出の日本国特許出願特願2017-233788を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
Claims (23)
- 搬送手段(conveyor)によって搬送される(to be conveyed)検体に含有される樹脂の種類を識別する識別装置であって、
前記搬送手段の搬送面上の前記検体を光源からの光で照明する照明光学系と、
前記照明光学系によって照明された前記検体からのラマン散乱光を採光する採光光学系と、
前記採光光学系によって採光された前記ラマン散乱光を分光する分光素子と、
前記分光素子によって分光された前記ラマン散乱光を受光する受光素子と、
前記受光素子から前記ラマン散乱光のスペクトルデータを取得し、前記スペクトルデータに基づき前記検体の識別処理を行うデータ処理手段と、を有し、
前記照明光学系の光軸と前記採光光学系の光軸とは、交差しており、
前記照明光学系は、前記採光光学系の前記搬送面側の開口数よりも小さい前記搬送面側の開口数を有する結像光学系である
ことを特徴とする識別装置。 - 前記採光光学系によって採光された前記ラマン散乱光を前記分光素子へと導光する光ファイバをさらに有する
ことを特徴とする請求項1に記載の識別装置。 - 前記照明光学系の光軸と前記採光光学系の光軸とを含む平面と前記搬送手段の搬送方向(conveyance direction)とがなす角は、0度以上15度以下である
ことを特徴とする請求項1または2に記載の識別装置。 - 前記照明光学系の光軸と前記採光光学系の光軸とを含む平面は、前記搬送手段の搬送方向に平行である
ことを特徴とする請求項1または2に記載の識別装置。 - 前記照明光学系の光軸と前記搬送面とがなす角と、前記採光光学系の光軸と前記搬送面とがなす角は、異なる
ことを特徴とする請求項1乃至4のいずれか一項に記載の識別装置。 - 前記採光光学系は、前記光のうちの少なくとも一部の波長域の光を遮光して前記ラマン散乱光を透過する波長フィルタを有し、
前記波長フィルタは、前記採光光学系の瞳面に配置されている
ことを特徴とする請求項1乃至5のいずれか一項に記載の識別装置。 - 前記照明光学系は、前記搬送面上に照明領域を形成し、
前記照明領域の前記搬送手段の搬送方向における幅は、前記照明領域の前記搬送手段の搬送方向に垂直な方向における幅よりも大きい
ことを特徴とする請求項1乃至6のいずれか一項に記載の識別装置。 - 前記採光光学系の前記搬送面側の開口数は、前記採光光学系の前記光ファイバ側の開口数よりも大きい
ことを特徴とする請求項2乃至7のいずれか一項に記載の識別装置。 - 前記採光光学系の前記光ファイバ側の開口数は、前記光ファイバの入射端の開口数よりも小さい
ことを特徴とする請求項8に記載の識別装置。 - 前記証明光学系は、前記光源からの光を平行光に変換するコリメータ光学系であることを特徴とする請求項1乃至9のいずれか1項に記載の識別装置。
- 搬送手段によって搬送される検体に含有される樹脂の種類を識別する識別装置であって、
前記搬送手段の搬送面に対向し、かつ、前記搬送手段の搬送方向(conveyance direction)と交差する搬送幅方向(traverse direction of conveyance)において異なる位置に配置され、それぞれが、
前記搬送手段の搬送面上の検体を光源からの光で照明する照明光学系と、
前記照明光学系によって照明された前記検体からのラマン散乱光を採光する採光光学系と、
を有する複数の採光ユニットと、
前記複数の採光ユニットによって採光された前記ラマン散乱光をそれぞれ導光する複数の光ファイバを有し、出射端側において前記複数の光ファイバが束ねられている光ファイバ束と、
前記ファイバ束によって導光された複数の前記ラマン散乱光を分光する分光素子と、
前記分光素子によって分光された前記複数のラマン散乱光を受光する受光素子と、
前記受光素子から前記複数のラマン散乱光のスペクトルデータを取得し、識別処理を行うデータ処理手段と、を有し、
前記採光ユニットにおいて、前記照明光学系の光軸と前記採光光学系の光軸とは、互いに交差している
ことを特徴とする識別装置。 - 前記複数の採光ユニットのそれぞれにおいて、前記照明光学系は、前記採光光学系の前記搬送面側の開口数よりも小さい前記搬送面側の開口数を有する結像光学系である
ことを特徴とする請求項11に記載の識別装置。 - 前記照明光学系は、前記光源からの光を平行光に変換するコリメータ光学系である
ことを特徴とする請求項11または12に記載の識別装置。 - 前記複数の光ファイバの出射端は、前記搬送幅方向に沿って列状に配置されている
ことを特徴とする請求項11乃至13のいずれか1項に記載の識別装置。 - 前記複数の採光ユニットは、前記搬送幅方向において異なる位置に配置されていることを特徴とする請求項11乃至14のいずれか一項に記載の識別装置。
- 前記複数の採光ユニットは、前記搬送方向において異なる位置に配置されていることを特徴とする請求項11乃至15のいずれか一項に記載の識別装置。
- 前記複数の採光ユニットは、前記搬送幅方向において互いに重なる部分を有するように配置されていることを特徴とする請求項11乃至16のいずれか一項に記載の識別装置。
- 前記複数の採光ユニットのそれぞれにおいて、前記照明光学系の光軸と前記採光光学系の光軸とを含む平面と前記搬送手段の搬送方向とがなす角は、0度以上15度以下であることを特徴とする請求項11乃至17のいずれか一項に記載の識別装置。
- 前記複数の採光ユニットのそれぞれにおいて、前記照明光学系の光軸と前記採光光学系の光軸とを含む平面は、前記搬送手段の搬送方向に平行である
ことを特徴とする請求項18に記載の樹脂選別装置。 - 前記受光素子は、光電変換素子が二次元的に配置されているエリアイメージセンサである
ことを特徴とする請求項1乃至19のいずれか一項に記載の識別装置。 - 前記検体は、破砕された検体である
ことを特徴とする請求項1乃至20のいずれか一項に記載の識別装置。 - 請求項1乃至21のいずれか一項に記載の識別装置と、
前記搬送手段と、
を有することを特徴とする識別システム。 - 請求項1乃至21のいずれか一項に記載の識別装置と、
前記搬送手段と、
前記識別装置よりも前記搬送手段の下流側に配置され、前記識別装置の識別結果に基づいて前記検体を選別する選別手段と、
を有することを特徴とする選別システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/892,017 US11099073B2 (en) | 2017-12-05 | 2020-06-03 | Identification apparatus, identification system, and resin-selecting system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017233788A JP6869878B2 (ja) | 2017-12-05 | 2017-12-05 | 識別装置、識別システム、および選別システム |
JP2017-233788 | 2017-12-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/892,017 Continuation US11099073B2 (en) | 2017-12-05 | 2020-06-03 | Identification apparatus, identification system, and resin-selecting system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019111784A1 true WO2019111784A1 (ja) | 2019-06-13 |
Family
ID=66750967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/043794 WO2019111784A1 (ja) | 2017-12-05 | 2018-11-28 | 識別装置、識別システム、および樹脂選別システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US11099073B2 (ja) |
JP (1) | JP6869878B2 (ja) |
WO (1) | WO2019111784A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3951365A1 (en) * | 2020-07-29 | 2022-02-09 | Canon Kabushiki Kaisha | Identification apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7392856B2 (ja) * | 2020-06-24 | 2023-12-06 | 株式会社島津製作所 | 顕微ラマン分光測定装置、及び顕微ラマン分光測定装置の調整方法 |
JP2022071291A (ja) * | 2020-10-28 | 2022-05-16 | キヤノン株式会社 | 識別装置 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1038807A (ja) * | 1996-07-23 | 1998-02-13 | Hamamatsu Photonics Kk | プラスチックの判別方法およびプラスチックの判別装置 |
JP2008209128A (ja) * | 2007-02-23 | 2008-09-11 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | プラスチックの識別方法および識別装置 |
JP2009092458A (ja) * | 2007-10-05 | 2009-04-30 | Saimu:Kk | ラマン散乱信号取得方法ならびにラマン散乱信号取得装置、および、プラスチックの識別方法ならびに識別装置 |
JP2010133842A (ja) * | 2008-12-05 | 2010-06-17 | Fujifilm Corp | 非線形ラマン散乱光測定装置およびそれを用いた内視鏡装置ならびに顕微鏡装置 |
JP2011089085A (ja) * | 2009-10-26 | 2011-05-06 | Miike Iron Works Co Ltd | 混合廃棄物を用いた固形燃料の製造プラント |
JP2011226821A (ja) * | 2010-04-15 | 2011-11-10 | Saimu Corp | 識別装置および識別方法 |
WO2012035785A1 (ja) * | 2010-09-17 | 2012-03-22 | パナソニック株式会社 | 臭素系難燃剤判定方法、臭素系難燃剤判定装置、リサイクル方法、及び、リサイクル装置 |
WO2012120779A1 (ja) * | 2011-03-09 | 2012-09-13 | パナソニック株式会社 | リサイクル樹脂の判定装置、及び、リサイクル樹脂再生品の製造方法 |
JP2013036971A (ja) * | 2011-07-11 | 2013-02-21 | Kazuyoshi Arikata | ラマン散乱信号取得装置、ラマン散乱識別装置、ラマン散乱信号取得方法およびラマン散乱識別方法 |
US20130229510A1 (en) * | 2010-11-25 | 2013-09-05 | Dirk Killmann | Method and device for individual grain sorting of objects from bulk materials |
JP2014115193A (ja) * | 2012-12-10 | 2014-06-26 | Daio Engineering Co Ltd | 黒色廃プラスチックの材質選別装置 |
JP2014113792A (ja) * | 2012-12-12 | 2014-06-26 | Mitsubishi Electric Corp | 樹脂選別装置および樹脂選別方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012035875A1 (ja) * | 2010-09-14 | 2014-02-03 | 日立化成株式会社 | 脂環式ポリエステル及びその製造方法 |
US9599507B2 (en) * | 2013-02-05 | 2017-03-21 | Rafal Pawluczyk | Fiber optic probe for remote spectroscopy |
GB201302886D0 (en) * | 2013-02-19 | 2013-04-03 | Univ Singapore | Diagnostic instrument and method |
-
2017
- 2017-12-05 JP JP2017233788A patent/JP6869878B2/ja active Active
-
2018
- 2018-11-28 WO PCT/JP2018/043794 patent/WO2019111784A1/ja active Application Filing
-
2020
- 2020-06-03 US US16/892,017 patent/US11099073B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1038807A (ja) * | 1996-07-23 | 1998-02-13 | Hamamatsu Photonics Kk | プラスチックの判別方法およびプラスチックの判別装置 |
JP2008209128A (ja) * | 2007-02-23 | 2008-09-11 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | プラスチックの識別方法および識別装置 |
JP2009092458A (ja) * | 2007-10-05 | 2009-04-30 | Saimu:Kk | ラマン散乱信号取得方法ならびにラマン散乱信号取得装置、および、プラスチックの識別方法ならびに識別装置 |
JP2010133842A (ja) * | 2008-12-05 | 2010-06-17 | Fujifilm Corp | 非線形ラマン散乱光測定装置およびそれを用いた内視鏡装置ならびに顕微鏡装置 |
JP2011089085A (ja) * | 2009-10-26 | 2011-05-06 | Miike Iron Works Co Ltd | 混合廃棄物を用いた固形燃料の製造プラント |
JP2011226821A (ja) * | 2010-04-15 | 2011-11-10 | Saimu Corp | 識別装置および識別方法 |
WO2012035785A1 (ja) * | 2010-09-17 | 2012-03-22 | パナソニック株式会社 | 臭素系難燃剤判定方法、臭素系難燃剤判定装置、リサイクル方法、及び、リサイクル装置 |
US20130229510A1 (en) * | 2010-11-25 | 2013-09-05 | Dirk Killmann | Method and device for individual grain sorting of objects from bulk materials |
WO2012120779A1 (ja) * | 2011-03-09 | 2012-09-13 | パナソニック株式会社 | リサイクル樹脂の判定装置、及び、リサイクル樹脂再生品の製造方法 |
JP2013036971A (ja) * | 2011-07-11 | 2013-02-21 | Kazuyoshi Arikata | ラマン散乱信号取得装置、ラマン散乱識別装置、ラマン散乱信号取得方法およびラマン散乱識別方法 |
JP2014115193A (ja) * | 2012-12-10 | 2014-06-26 | Daio Engineering Co Ltd | 黒色廃プラスチックの材質選別装置 |
JP2014113792A (ja) * | 2012-12-12 | 2014-06-26 | Mitsubishi Electric Corp | 樹脂選別装置および樹脂選別方法 |
Non-Patent Citations (1)
Title |
---|
"A novel separation method for plastic of discarded appliance including black plastic by using raman spectroscopy", RESOURCES PROCESSING, vol. 60, no. 2, February 2013 (2013-02-01), pages 65 - 71, XP55615452 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3951365A1 (en) * | 2020-07-29 | 2022-02-09 | Canon Kabushiki Kaisha | Identification apparatus |
US11619579B2 (en) | 2020-07-29 | 2023-04-04 | Canon Kabushiki Kaisha | Identification apparatus |
Also Published As
Publication number | Publication date |
---|---|
US11099073B2 (en) | 2021-08-24 |
JP6869878B2 (ja) | 2021-05-12 |
US20200292389A1 (en) | 2020-09-17 |
JP2019100927A (ja) | 2019-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7106503B2 (ja) | 識別ユニット、識別装置および選別システム | |
JP5265632B2 (ja) | プラスチック等識別装置およびプラスチック等識別方法 | |
WO2019111785A1 (ja) | 識別装置、選別システム | |
WO2019111784A1 (ja) | 識別装置、識別システム、および樹脂選別システム | |
US9024224B2 (en) | Brominated flame retardant determining method, brominated flame retardant determining apparatus, recycling method, and recycling apparatus | |
JP5695935B2 (ja) | 赤外線分析装置 | |
US6610981B2 (en) | Method and apparatus for near-infrared sorting of recycled plastic waste | |
KR101060589B1 (ko) | 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치 | |
JP4932053B1 (ja) | ラマン散乱信号取得装置、ラマン散乱識別装置、ラマン散乱信号取得方法およびラマン散乱識別方法 | |
US7557922B2 (en) | Detection system for use in a sorting apparatus, a method for determining drift in the detection system and a sorting apparatus comprising such detection system | |
JP2011226821A (ja) | 識別装置および識別方法 | |
EP1724030A2 (en) | Detection system for use in a sorting apparatus, a method for determining drift in the detection system and a sorting apparatus comprising such detection system | |
WO2012147717A1 (ja) | 樹脂識別装置 | |
JP2022025379A (ja) | 識別装置 | |
RU2602482C1 (ru) | Устройство для сортировки материалов | |
CN114518353A (zh) | 识别装置 | |
JP2022155138A (ja) | 識別装置 | |
CN114486842A (zh) | 识别装置 | |
AU2004100065A4 (en) | Optical Ore Sorter | |
JP2022006883A (ja) | 識別装置 | |
WO2024231351A1 (en) | Single point analyzer | |
CN117581091A (zh) | 识别装置 | |
JP2016045145A (ja) | 赤外分光測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18885201 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18885201 Country of ref document: EP Kind code of ref document: A1 |