WO2019111654A1 - 信号処理装置及び信号処理方法 - Google Patents

信号処理装置及び信号処理方法 Download PDF

Info

Publication number
WO2019111654A1
WO2019111654A1 PCT/JP2018/041995 JP2018041995W WO2019111654A1 WO 2019111654 A1 WO2019111654 A1 WO 2019111654A1 JP 2018041995 W JP2018041995 W JP 2018041995W WO 2019111654 A1 WO2019111654 A1 WO 2019111654A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal processing
data
reliability index
doppler
Prior art date
Application number
PCT/JP2018/041995
Other languages
English (en)
French (fr)
Inventor
浜木 井之口
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to EP18885414.5A priority Critical patent/EP3722828B1/en
Priority to US16/769,447 priority patent/US11796655B2/en
Publication of WO2019111654A1 publication Critical patent/WO2019111654A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/953Radar or analogous systems specially adapted for specific applications for meteorological use mounted on aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/885Meteorological systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the turbulence in the forward direction of the flight is transmitted to the pilot, and the pilot transmits the airflow information to the on-board computer, as well as a method for coping with avoidance flight and seat belt sign lighting.
  • a method of automatically controlling the control surface to reduce the motion of the airframe at the time of entry into a turbulent air flow see, for example, Patent Document 2.
  • Patent Document 3 As a method of improving the performance of a Doppler lidar, Patent Document 3 was proposed, as a method of reducing unnecessary noise, Patent Document 4 was proposed, and as a method of accurately determining an airflow vector, Patent Document 5 was proposed. Although the method of removing an erroneous detection is shown by patent document 5, since it is a process in the downstream of a signal, the effect of the erroneous detection removal increases by reducing an erroneous detection in an upstream.
  • the false signal is generated by noise that is always present, it can not be nullified, but false detection can be invalidated if it can be correctly recognized as false detection.
  • a signal processing apparatus includes: a first integration unit that intermittently integrates a signal sequence according to a received signal in a plurality of systems to obtain a plurality of integrated data; And a reliability index calculator configured to calculate a reliability index of the received signal by comparison based on the plurality of integral data.
  • a signal sequence corresponding to a received signal is intermittently integrated in a plurality of systems to obtain a plurality of integrated data, and the reliability index of the received signal is calculated by comparison based on the integrated data. .
  • the reliability index can appropriately evaluate the reliability of the received signal.
  • the image processing apparatus may further include a second integration unit that integrates the Doppler shift amount of each of the integrated data.
  • the reliability index calculation unit may calculate, as the reliability index, a difference between Doppler shift amounts of the integrated data.
  • an index capable of quantitatively determining the reliability can be added to the measurement value, and based on the reliability index, it can be used as a factor of availability or weighting of the measurement value.
  • the remote air flow measurement device is applied to an optical remote air flow measurement device of a Doppler lidar method mounted on an aircraft, and emits, for example, laser light to the atmosphere.
  • the reflected light from the aerosol particles (dust, fine particles) is received, and the moving speed is measured as the wind speed.
  • the present invention can be applied not only to aircraft mounting but also to ground equipment. Moreover, it is applicable not only to Doppler lidar but also to Doppler radar.
  • pulsed laser light is emitted into the atmosphere, Mie scattering by aerosol particles in the atmosphere, or Rayleigh scattering by air molecules.
  • Receive The received pulse train generates a pulse train intermittently integrated with the transmission pulse train in a plurality of patterns, and the peak value of each frequency is determined. From the difference between the frequency of the transmitted light and the peak value of the frequency of the received light, the wind speed can be determined based on the Doppler effect.
  • Each peak value is a candidate for wind speed value, but if each peak value is equal, it is considered to be a correct measurement value, and if different, it includes false detection due to peak value due to noise It is thought that Therefore, if the absolute value of the difference between the measurement values is used as the reliability index, highly reliable data can be selectively used.
  • use of reliability information in airflow measurement enables weighting of signals according to reliability, invalidates unreliable signals, and reduces the possibility of using illegal data. Do.
  • the measuring unit 10 emits laser light in the form of pulses into the atmosphere, receives this reflected light, and based on the Doppler shift amount of the frequency between the emitted laser light and the reflected light, the optical axis direction (radial axis direction)
  • the wind speed is measured, and includes an optical telescope 11 and an optical transceiver 12.
  • the optical transceiver 12 generates laser light of a single wavelength, for example 1.5 ⁇ m, and receives the scattered light in the atmosphere to measure the amount of frequency change (wavelength change) due to the Doppler effect. It measures the That is, the amount of change in frequency due to the Doppler effect is measured by comparing the received light (scattered light) received through the optical telescope 11 with the transmitted light. The amount of frequency change due to the Doppler effect is typically used to measure the wind speed. Generally, this is called a Doppler lidar, and the lidar (LIDAR) is an abbreviation of "Light Detection And Ranging" in a remote observation method using light.
  • LIDAR lidar
  • the signal processing unit 20 intermittently integrates the frequency change amount due to the above-mentioned Doppler effect, which is a pulse train, in two systems to obtain two integrated data.
  • the number of integrations is assumed to be 100 to 4000, for example.
  • the signal processing unit 20 calculates the reliability index of the received signal by comparison based on the two integral data.
  • FIG. 2 is a block diagram showing the configuration of the signal processing unit 20.
  • FIG. 3 is a conceptual diagram for explaining integration of two systems to obtain two integrated data.
  • FIG. 4 is a graph showing the relationship between transmission light (transmission pulse signal) and reception light (reception pulse signal).
  • the signal processing unit 20 has a first integration unit 21, a Doppler detection unit 22, and a comparison circuit 28 as a reliability index calculation unit.
  • the first integration unit 21 intermittently integrates a pulse train corresponding to the received signal in two systems to obtain two integrated data.
  • the first integrating unit 21 has a pulse sorting circuit 23 and two integrating circuits 24a and 24b.
  • the Doppler detection unit 22 time-divides the two integral data into a plurality of range bins, obtains the relationship between the frequency and the intensity for each range bin for each of the two integral data, and detects the Doppler shift amount from the relationship.
  • the Doppler detection unit 22 has two range division circuits 25a and 25b, two frequency conversion circuits 26a and 26b, and two Doppler detection circuits 27a and 27b.
  • the range division circuits 25a and 25b time-divide the received pulse signal from the integration data as shown in FIG. 4 to specify range bins.
  • FIG. 4 shows the appearance of received light which is one received pulse train for transmitted light which is one transmitted pulse train.
  • wind speed at each position (distance) can be measured.
  • the distance at which the signal strength is equal to or greater than the noise floor is the maximum observation range.
  • the comparison circuit 28 calculates the reliability index of the received signal by comparing the respective Doppler shift amounts (wind speed values) output from the two Doppler detection circuits 27a and 27b. Typically, the comparison circuit 28 outputs the absolute value of the difference between the two wind speed values as the reliability index.
  • the SN ratio can be improved by integrating the two Doppler shift amounts output from the two Doppler detection circuits 27a and 27b by the second integration circuit 201, thereby improving the measurement accuracy of the wind speed. it can.
  • the second integration circuit 201 may be implemented, for example, in the signal processing unit 20 configured by hardware, but may be configured by software in the control computer 200 in the subsequent stage because the amount of data is small. Also, instead of the second integration circuit 201, a selection unit is used to select the Doppler shift amount of the higher SN ratio when the Doppler shift amounts output from the two Doppler detection circuits 27a and 27b are different. You may
  • the signal processing unit 20 outputs the Doppler shift amount (wind speed V) output from the two Doppler detection circuits 27a and 27b and the reliability index output from the comparison circuit 28 to the control computer 200 in the subsequent stage.
  • data of the wind speed variance value W frequency width of signal
  • data of signal-to-noise ratio (SN ratio) may also be output from the signal processing unit 20 to the control computer 200 in the subsequent stage.
  • FIG. 5 shows a specific example of the erroneous detection measurement.
  • 1 m / s of the reliability index according to the present invention is set as a threshold of fraudulent data judgment, false detection occurs at random frequency (wind speed)
  • the probability of false detection occurring continuously within the range of ⁇ 1 m / s is 1/40. Therefore, in this example, invalid data can be reduced to 1/40.
  • the variation in signal detection is about 0.22 m / s
  • the threshold of 1 m / s is a realistic value with enough margin to avoid mistaking normal data as incorrect data. .
  • the first integration unit 21 intermittently integrates the pulse train according to the received signal in two systems to obtain two integrated data.
  • the pulse trains according to the signals may be intermittently integrated in three systems to obtain three integrated data. Alternatively, more integral data may be obtained. This can further reduce fraudulent data.
  • the invalid data is 1/1600. If the number of divisions is further increased, the accuracy of the reliability information is improved, but the number of integrations is reduced, so the SN ratio is reduced.
  • the appropriate number of divisions should be determined by experimentation and design.
  • the reliability index of the three divisions may be the sum or average of the differences among the three, or may be the difference between the minimum value and the maximum value. When two persons are close and one is separated, it may be adopted as a measurement value by integrating the two close persons.
  • the pulse trains of the respective systems may be intermittently integrated without being equally spaced.
  • the reception pulse trains of the respective systems may have overlapping pulses. This makes it possible to mitigate the above-mentioned decrease in the number of integrations.
  • the received pulse trains A and A ′ are integrated, and the absolute value of the difference between the result of integrating the received pulse trains B and B ′ is used as the reliability index.
  • B may be integrated and may be obtained from the result of integration of the received pulse trains A ′ and B ′. This can improve the sampling rate.
  • the control gain may be multiplied by the reciprocal of the reliability indicator. This inverse may be multiplied by an appropriate factor.
  • the actual received pulse is to receive the scattered light in each range in the atmosphere, as shown in FIG. 4, it has a smooth shape with respect to the transmitted light.
  • the wind speed can be determined independently for each range bin.
  • the pulse frequency is 1 kHz
  • the distance in which light travels back and forth is about 300 km
  • the reception intensity of the scattered light decreases at a long distance, it is rare to be able to observe 30 km or more.
  • the length of the range bin is, for example, 50 to 300 m.
  • FIG. 9 shows received data actually observed. Detectability is obtained by multiplying the signal-to-noise ratio in one pulse by the square root of the number of integrations, and indicates that the received power is high if this value is high. For example, the detectability of received light in the range 6 km is 5 dB.
  • FIG. 10 shows an example in which the relationship between Detectability and false signal rate is measured.
  • the detectability is 5 dB
  • a false signal of about 5% occurs.
  • the integration method for obtaining integration data in two systems shown in FIG. 3 the number of integrations is 1 ⁇ 2, so that the detectability is ⁇ (1 ⁇ 2) times, which is about 3.5 dB. If this is the case, the false signal rate will be about 30%, but if the present invention is applied and the fraud data is removed based on the confidence index, the fraud data will be reduced to 1/40 as described above, so the fraud data is 0.75. %, Which is sharply reduced from 5% where the present invention is not applied.
  • a control computer 200 is connected to the subsequent stage of the remote air flow measurement device 100 mounted on an aircraft, and typically the control computer 200 controls the control surface 400 using an autopilot 300.
  • the remote air flow measurement device 100 adds a reliability index for each range bin to the measured wind speed of each range bin, and transmits it to the control computer 200.
  • the control computer 200 performs control calculation to reduce the motion of the vehicle according to the change in wind speed, and sends a control signal of lift to the autopilot 300. At that time, when the measurement reliability is low according to the reliability index. Lowers the control gain or stops the control surface control itself. In the autopilot 300, the control surface 400 is operated optimally in accordance with aircraft specifications.
  • the Doppler lidar has the feature that remote air currents can be observed even in fine weather, the shortness of the effective observation range has been pointed out by pilots of operating companies, which has been a hindrance to practical use. However, even with a short observation range of about 500 m, it is possible to prevent a turbulent accident by reducing the motion of the aircraft by automatic control of the control surface.
  • the remote air flow measurement device having the signal processing device according to the present invention the measurement reliability of forward air flow information is improved, and application to a passenger plane becomes possible as prior information for automatic control surface control.
  • the remote air flow measurement device having the signal processing device according to the present invention was mounted on an aircraft, but the remote air flow measurement device having the signal processing device according to the present invention is also used as a ground device Good.
  • the remote air flow measurement device having the signal processing device according to the present invention can be applied not only to Doppler lidar using light waves, but also to Doppler radar using radio waves and Doppler soda using sound waves.
  • the invention can be applied not only to these measuring devices, but also to, for example, receivers having a large number of receiving elements.
  • the signal output from the transmission source 3 is received by the receiving unit 4 including the plurality of receiving elements 4a.
  • a signal from the receiving element 4a is obtained by two integrating circuits 5a and 5b to obtain integrated data of two systems.
  • the two integration circuits 5a and 5b integrate reception signals of different combinations, and the determination circuit 6 calculates the reliability index of the reception signal by comparison based on the integration data of the two systems, and the reliability is low. By removing the information, the reception quality can be improved.
  • the receiving element 4a may be an antenna of radio waves, an audio microphone, or an imaging element.
  • the combination of integration may be varied to maximize available information.
  • the pulse train has been described as an example, but in this case, the received signal does not have to be a pulse because the signal can be compared even with a time-varying value.
  • the present invention is also applicable to a distance meter and the like.
  • a small, high efficiency laser diode is used without amplification because high pulse rate and low pulse energy are sufficient even if the principle is the same as a normal laser distance meter. be able to.
  • the pulse rate is 100 kHz and the pulse energy is 10 ⁇ J, although the output is 1 W on average, distance information up to 1.5 km can be output at a cycle of 50 Hz, for example. It can be used for proximity sensors of vehicles, ships, satellites, etc. In this case, as shown in FIG.
  • the transmission light and the reception light have a one-to-one relationship, distance division and frequency measurement are not necessary, and the reception light is simply integrated by two integration circuits, and these integrations are performed.
  • the reliability index may be calculated from the comparison of and the unreliable information may be removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】受信信号の信頼性を適切に評価すること。 【解決手段】 信号処理部20は、第1の積分部21と、ドップラー検出部22と、信頼性指標算出部としての比較回路28とを有する。第1の積分部21は、受信信号に応じたパルス列を間欠状に2つの系統で積分して2つの積分データを得る。ドップラー検出部22は、2つの積分データをそれぞれ複数のレンジビンに時分割し、2つの積分データそれぞれについて、レンジビンごとに周波数と強度との関係を求めて当該関係からドップラーシフト量を検出する。比較回路28は、それぞれのドップラーシフト量(風速値)の比較により受信信号の信頼性指標を算出する。

Description

信号処理装置及び信号処理方法
 本発明は、例えば航空機が遭遇する乱気流を検知する遠隔気流計測装置に用いられる信号処理装置及び信号処理方法に関する。
 航空機事故の主要因として近年乱気流が注目されており、航空機に搭載して乱気流を事前に検知する装置として、レーザ光を利用したドップラーライダーに関する技術が研究開発されている。(例えば、非特許文献1を参照)。
 ドップラーライダーを航空機の乱気流事故防止として使用するには、飛行方向前方の乱気流をパイロットに伝達し、パイロットが回避飛行やシートベルトサイン点灯などにより対処する方法の他、気流情報を搭載コンピューターに伝達して、自動的に舵面を制御することにより乱気流突入時の機体の動揺を低減する方法等がある(例えば、特許文献2を参照)。
 上記の舵面を制御するためには、鉛直気流ベクトルを求める必要がある。本発明者らは、特許文献1において2組のドップラーライダーによる観測値を幾何学的に変換して鉛直気流ベクトルを求める技術を提唱した。
 ドップラーライダーの性能を向上させる方法としては、特許文献3、不要なノイズを低減する手法としては、特許文献4、気流ベクトルを精度よく求める手法としては、特許文献5を提唱した。特許文献5では、誤検知を除去する手法が示されているが、信号の下流での処理であるため、上流で誤検知を減らしておくことにより、誤検知除去の効果が増大する。
特許5398001号公報 特許5771893号公報 特許5252696号公報 特許5881099号公報 特開2017-67680号公報 H.Inokuchi,H.Tanaka,and T.Ando, "Development of an Onboard Doppler LIDAR for Flight Safety," Journal of Aircraft,Vo1.46, No.4, PP.1411-1415, AIAA, July-August, 2009.
 例えば、上記のように舵面自動制御用として気流情報を用いる場合、誤信号や観測誤差による舵面の不適切な制御は、航空機の運航安全上許容できない。にもかかわらず、これまでの技術では、まれに誤信号を出力することがあった。すなわち、これまでの技術では、受信信号としての観測信号の信頼性を適切に評価することができなかったため、SN比が低い場合にノイズを信号と誤認することに加え、SN比が高く信頼性が高い情報のみを利用すると、遠距離の観測情報を放棄せざるを得なくなり、観測距離性能が著しく劣化する欠点があった。誤信号は常時存在するノイズによって生じるものであるから、皆無とすることはできないが、誤検知は誤検知として正しく認識できれば無効化することが可能となる。
 以上のような事情に鑑み、本発明の目的は、受信信号の信頼性を適切に評価することができる信号処理装置及び信号処理方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る信号処理装置は、受信信号に応じた信号列を間欠状に複数の系統で積分して複数の積分データを得る第1の積分部と、前記複数の積分データに基づいた比較により前記受信信号の信頼性指標を算出する信頼性指標算出部とを具備する。
 本発明では、受信信号に応じた信号列を間欠状に複数の系統で積分して複数の積分データを得て、これらの積分データに基づいた比較により受信信号の信頼性指標を算出している。この信頼性指標により受信信号の信頼性を適切に評価することができる。
 前記受信信号に応じた信号列は、大気中に向けて放射された連続するパルス列からなる送信信号の反射信号を受信した受信信号の周波数と前記送信信号の周波数との差分の信号列であり、各前記積分データをそれぞれ複数のレンジビンに時分割し、各前記積分データそれぞれについて、前記レンジビンごとに周波数と強度との関係を求めて当該関係からドップラーシフト量を検出するドップラー検出部を設け、前記信頼性指標算出部は、各前記積分データのドップラーシフト量の比較により前記受信信号の信頼性指標を算出してもよい。
 連続するパルス列を間欠状に積分すると、それぞれ異なるパルスを積分することができるが、ほぼ同等の空間、ほぼ同等の時刻の計測であるために、信号はほぼ同等である。したがって、ノイズが少なくて適切な信号が認識できた場合には、異なるパルスを積分して得られた風速はほぼ同等となる。これに対して、ノイズが多くて適切な信号が認識できなかった場合は、異なるパルスを積分して得られた風速は異なる値となるため、それぞれの積分データから得られた風速値の差分を計測の信頼性指標として出力する。
 各前記積分データのドップラーシフト量を積分する第2の積分部を更に具備してもよい。
 前記信頼性指標算出部は、前記信頼性指標として各前記積分データのドップラーシフト量の差分を算出してもよい。
 本発明の一形態に係る信号処理方法は、受信信号に応じた信号列を間欠状に複数の系統で積分して複数の積分データを得て、前記複数の積分データに基づいた比較により前記受信信号の信頼性指標を算出する。これにより、受信信号の信頼性を適切に評価することができる。
 本発明の一形態に係る遠隔気流計測装置は、大気中に向けてパルス状の信号を放射し、大気中からの反射信号を受信し、反射信号のパルスを間欠状に積分する受信部と、それぞれ異なるパルスを積分することにより、2以上の積分データを得て、前記放射した信号と反射信号との間の周波数のドップラーシフト量に基づき放射軸方向の風速を計測する計測部と、それぞれの積分データから得られた風速値の差分を計測の信頼性指標として出力する処理部とを具備する。
 これにより、信頼性を定量的に判断可能な指標を計測値に付加することができ、信頼性指標に基づき、計測値の使用可否または重みづけの係数として利用することができる。
 なお、白色ノイズによる誤検知はランダムな周波数で生ずる。ランダムでないノイズは、有色ノイズであるため、例えば特許文献4に示す技術を用いで除去することが可能である。
 典型的には、本発明の一形態に係る遠隔気流計測装置は、航空機に搭載されるドップラーライダー方式の光学式遠隔気流計測装置に適用されるもので、例えばレーザ光を放射して、大気中のエアロゾル粒子(塵、微粒子)からの反射光を受信し、その移動速度を風速として計測するものである。
 本発明は、航空機搭載用だけではなく、地上装置にも適用できる。また、ドップラーライダーだけでなく、ドップラーレーダにも適用できる。
 ここで、ドップラーライダーを例にとると、本発明の一形態に係る遠隔気流計測装置では、パルス状のレーザ光を大気中に放射し、大気中のエアロゾル粒子によるミー散乱または空気分子によるレーリー散乱を受信する。受信パルス列は送信パルス列に対して間欠状に積分するパルス列を複数のパターンで生成し、各々の周波数のピーク値を求める。送信光の周波数と受信光の周波数のピーク値の差からは、ドップラー効果に基づき風速を求めることができる。
 各々のピーク値は、風速値の候補となるものであるが、もし各々のピーク値が同等であるならば、正しい計測値であると考えられ、異なる場合はノイズによるピーク値による誤検知が含まれていると考えられる。したがって、各々の計測値の差の絶対値を信頼性指標とすれば、信頼性の高いデータを選択的に利用することができる。
 本発明によれば、気流計測における信頼性情報の利用により、信頼性に応じた信号の重み付ができたり、信頼性のない信号の無効化ができ、不正なデータを利用する可能性が低減する。
 本発明によれば、受信信号の信頼性を適切に評価することができる。
本発明の一実施形態に係る遠隔気流計測装置の構成を示すブロック図である。 図1に示した信号処理部の構成を示すブロック図である。 2つの系統で積分して2つの積分データを得ることを説明するための概念図である。 送信光と受信光との関係を示すグラフである。 誤検知計測の具体例を示すグラフである。 3つの系統で積分して3つの積分データを得ることを説明するための概念図である。 各系統のパルス列を等間隔とせずに間欠積分として積分データを得ることを説明するための概念図である。 サンプリングレートを向上させるための積分データを得ることを説明するための概念図である。 実際に観測した受信データを示すグラフである。 Detectabilityと誤信号率との関係を実測した例を示すグラフである。 本発明の他の実施形態に係るシステムの構成を示すブロック図である。 本発明の更に別の実施形態における送信光と受信光との関係を示すグラフである。
 以下、図面を参照しながら、本発明の実施形態を説明する。
[遠隔気流計測装置]
 本発明に係る信号処理装置を航空機に搭載されるドップラーライダー方式の光学式の遠隔気流計測装置に適用した実施形態を説明する。
 図1は、本発明の一実施形態に係る遠隔気流計測装置の構成を示すブロック図である。
 図1に示すように、この遠隔気流計測装置100は、計測部10と、信号処理部20とを備える。
 遠隔気流計測装置を航空機の動揺低減制御用に使用する場合、通常は上下の気流ベクトルを算出する必要があるため、複数の方向にレーザ光を放射するが、ここでは気流ベクトル展開の手法は説明しないため、1方向に簡略化した図を用いる。
 <計測部>
 計測部10は、大気中にレーザ光をパルス状に放射し、この反射光を受信し、放射したレーザ光と反射光との間の周波数のドップラーシフト量に基づき光軸方向(放射軸方向)の風速を計測するものであり、光学望遠鏡11と光送受信機12とを有する。
 光学望遠鏡11は、光送受信機12で生成されたレーザ光(送信光)を大気中に向けて放射する。放射されたレーザ光は、大気中に浮遊する微小なエアロゾル粒子によって散乱される。散乱光は、光学望遠鏡11を介してこの遠隔気流計測装置100により受信される。
 光送受信機12は、単一波長、例えば1.5μmのレーザ光を生成すると共に、その大気中での散乱光を受信してドップラー効果による周波数変化量(波長変化量)を測定することによって風速を計測するものである。つまり、光学望遠鏡11を介して受信した受信光(散乱光)を送信光との比較によりドップラー効果による周波数変化量を測定する。ドップラー効果による周波数変化量は典型的には風速の計測に用いられる。一般にこれはドップラーライダーと呼ばれており、ライダー(LIDAR)とは、光を利用した遠隔観測手法で「Light Detection And Ranging」を略したものである。
 本実施形態では、送信信号であるレーザ光は大気中に向けて放射された連続するパルス列であるので、受信信号もパルス列であり、ドップラー効果による周波数変化量、つまり送信信号の反射信号を受信した受信信号の周波数と送信信号の周波数との差分の信号列はパルス列である。
 <信号処理部>
 信号処理部20は、パルス列である上記のドップラー効果による周波数変化量を間欠状に2つの系統で積分して2つ積分データを得る。積分数は例えば100~4000回が想定される。信号処理部20は、2つの積分データに基づいた比較により受信信号の信頼性指標を算出する。
 図2は信号処理部20の構成を示すブロック図である。図3は2つの系統で積分して2つの積分データを得ることを説明するための概念図である。図4は送信光(送信パルス信号)と受信光(受信パルス信号)との関係を示すグラフである。
 図2に示すように、信号処理部20は、第1の積分部21と、ドップラー検出部22と、信頼性指標算出部としての比較回路28とを有する。
 第1の積分部21は、受信信号に応じたパルス列を間欠状に2つの系統で積分して2つの積分データを得る。
 第1の積分部21は、パルス分別回路23と、2つの積分回路24a、24bとを有する。
 パルス分別回路23は、計測部10よりパルス列である上記のドップラー効果による周波数変化量を入力し、積分すべき受信パルス信号を時系列で分別する。つまり、パルス分別回路23は、図3に示すように、計測部10より受信パルス信号を取得し、送信パルス列に対して、一つおきの受信パルス列Aと、それと一つずれた受信パルス列Bとを生成する。
 積分回路24aは、受信パルス列Aを積分して積分データを算出する。積分回路24bは、受信パルス列Bを積分して積分データを算出する。
 積分データを用いることでSN比を向上させることができる。
 ドップラー検出部22は、2つの積分データをそれぞれ複数のレンジビンに時分割し、2つの積分データそれぞれについて、レンジビンごとに周波数と強度との関係を求めて当該関係からドップラーシフト量を検出する。
 ドップラー検出部22は、2つのレンジ分割回路25a、25b、2つの周波数変換回路26a、26bと、2つのドップラー検出回路27a、27bとを有する。
 レンジ分割回路25a、25bは、それぞれ積分データから、図4に示すように、受信パルス信号を時分割してレンジビンを特定する。図4は1つの送信パルス列である送信光に対する1つの受信パルス列である受信光の様子を示している。受信パルス列は反射物の移動速度(風速)に応じて波長変化すると共に反射する位置(距離=時間)にしたがって例えば図4のように散乱する。時分割したレンジビンごとに波長変化を観測することで、各位置(離間距離)の風速を計測することができる。なお、信号強度がノイズフロア以上である距離が最大観測レンジとなる。
 周波数変換回路26a、26bは、それぞれ、レンジ分割回路25a、25bからのレンジビンごとの信号を周波数変換し、レンジビンごとの信号の周波数(風速)と強度(パワースペクトル密度)との関係を求める。
 ドップラー検出回路27a、27bは、それぞれ、レンジビンごとの信号の周波数別の強度から周波数ピーク値等を検出することで、ドップラーシフト量を求める。
 比較回路28は、2つのドップラー検出回路27a、27bから出力されるそれぞれのドップラーシフト量(風速値)の比較により受信信号の信頼性指標を算出する。典型的には、比較回路28は、2つの風速値の差の絶対値を信頼性指標として出力する。
 なお、第2の積分回路201により2つのドップラー検出回路27a、27bから出力される2つのドップラーシフト量を積分することでSN比を向上させることができ、これにより風速の計測精度を向上させることできる。第2の積分回路201は、例えばハードウェアにより構成される信号処理部20に実装してもよいが、データ量が少ないので、後段の制御計算機200でのソフトウェアにより構成してもよい。また、第2の積分回路201に代えて、2つのドップラー検出回路27a、27bから出力されるそれぞれのドップラーシフト量が異なるときに、SN比が高い方のドップラーシフト量を選択する選択部を採用してもよい。
 以上のように2つのドップラー検出回路27a、27bから出力されるドップラーシフト量(風速V)及び比較回路28から出力される信頼性指標が、信号処理部20から後段の制御計算機200に出力されるが、風速分散値W(信号の周波数幅)や信号対雑音比(SN比)のデータも信号処理部20から後段の制御計算機200に出力されるように構成してもよい。
 ここで、図5に誤検知計測の具体例を示す。同図に示すように±40m/sの測定範囲がある場合に、本発明による信頼性指標の1m/sを不正データ判定の閾値として設定すると、誤検知はランダムな周波数(風速)で発生するものであることから、誤検知が±1m/sの範囲内に連続して生ずる確率は1/40である。したがって、この例では不正データを1/40に減少させることができる。これまでの観測データから、信号検出のばらつきは0.22m/s程度であり、1m/sの閾値は、正常なデータを不正データと誤らないために十分余裕を持った現実的な数値である。
 <他の形態>
 上記の実施形態では、第1の積分部21は受信信号に応じたパルス列を間欠状に2つの系統で積分して2つの積分データを得るものであったが、図6に示すように、受信信号に応じたパルス列を間欠状に3つの系統で積分して3つの積分データを得るものであってもよい。或いはそれ以上の積分データを得るものであってもよい。これにより不正データを更に減少させることができる。
 例えば積分を図6に示すように3分割すると、不正データは1/1600になる。更に分割数を増やすと信頼性の情報の厳密性は向上するが、積分数が減少するため、SN比は低下する。適切な分割数は実験及び設計で決定されるべきであろう。3分割の信頼性指標は、3者それぞれの差の合計や平均でもよいし、最小値と最大値との差でもよい。2者が近い値で、1者が離れている場合は、近い2者を積分することにより計測値として採用してもよい。
 図7に示すように、各系統のパルス列を等間隔とせずに間欠積分としてもよい。この場合に、例えば各系統の受信パルス列が重複するパルスを持つようにしてもよい。これにより、上記の積分数の減少を緩和することができる。
 図8に示すように、受信パルス列A及びA'を積分して、受信パルス列B及びB'を積分した結果との差の絶対値を信頼性指標とし、出力する風速データは、受信パルス列A及びBを積分して、受信パルス列A'及びB'を積分した結果から求めるようにしてもよい。これにより、サンプリングレートを向上させることができる。
 信頼性指標を重みづけに利用するには、例えば制御ゲインに信頼性指標の逆数を乗算すればよい。この逆数には適切な係数を乗算してもよい。
 <実測例>
 実際の受信パルスは、大気中の各レンジで散乱されたものを受信するものであるから、図4に示したように、送信光に対してなだらかな形状となる。上記したように受信光を時分割することにより、レンジビンごとに風速を独立して求めることができる。
 ここで、パルス周波数を1kHzとした場合には、光が往復する距離が約300kmであることから、150km以下のレンジについて風速計算することが可能である。ただし、遠距離では散乱光の受信強度が低下することから、30km以上が観測できることは稀である。なお、ここではレンジビンの長さは、例えば50~300mである。
 図9に実際に観測した受信データを示す。Detectabilityは、1パルスでのSN比に積分回数の平方根を乗算したものであり、この数値が高ければ受信強度が高いことを示している。例えばレンジ6kmの受信光のDetectabilityは、5dBである。
 図10にDetectabilityと誤信号率との関係を実測した例を示す。この例では、Detectabilityが5dBのとき約5%の誤信号が発生している。この場合に、図3に示した2系統で積分データを求める積分方法を適用すると、積分数が1/2となるため、Detectabilityは√(1/2)倍となり、約3.5dBである。このままでは、誤信号率は約30%となるが、本発明を適用して、信頼指標に基づき不正データを除去すると、前述のとおり不正データは1/40に減るので、不正データは0.75%となり、本発明を適用しない5%に対して激減する。なお、この例では、良好データの利用率が70%に低下してしまうが、これは図での説明をわかりやくするためにDetectabilityが低い部分で説明したからであって、実際にはもっと高い部分で利用して、不正データの率を下げるべきである。従来は、Detectabilityが7dBを超えていてもわずかに不正データが発生していたが、本発明を適用することでこれを限りなく0に近づけることができる。
 <出力情報の利用>
 図1に示したように、航空機に搭載された遠隔気流計測装置100の後段には、制御計算機200が接続され、典型的には制御計算機200はオートパイロット300を使って舵面400を制御する。
 ここで、遠隔気流計測装置100は、計測した各レンジビンの風速に、レンジビンごとに信頼性指標を付加し、制御計算機200に伝達する。
 制御計算機200では、風速変化に応じて機体の動揺を低減する制御計算を行い、オートパイロット300に揚力の制御信号を送るが、その際に信頼性指標に応じて計測の信頼性が低い場合には制御ゲインを低下させ、或いは舵面制御自体を停止させる。オートパイロット300では、機体諸元に応じて、舵面400を最適に動作させる。
 <産業上の利用可能性>
 ドップラーライダーは晴天時でも遠隔気流が観測できるという特徴があるものの、有効観測レンジの短さが運航会社のパイロットから指摘されており、実用化の足かせとなっていた。しかし、500m程度の短い観測レンジであっても、舵面の自動制御によって機体の動揺を低減することにより乱気流事故を防止することが可能である。本発明に係る信号処理装置を有する遠隔気流計測装置を適用することにより、前方気流情報の計測信頼性が向上し、舵面自動制御用の事前情報として旅客機への適用が可能となる。
[その他]
 本発明は、上記の実施形態に限定されるものではなく、様々に変形して実施することが可能であり、その実施の範囲も本発明の技術思想の範囲に属するものである。
 例えば、上記の実施形態では、本発明に係る信号処理装置を有する遠隔気流計測装置を航空機に搭載した例を説明したが、本発明に係る信号処理装置を有する遠隔気流計測装置を地上装置としてもよい。
 また、本発明に係る信号処理装置を有する遠隔気流計測装置は、光波を使うドップラーライダーだけでなく、電波を使うドップラーレーダや音波を使うドップラーソーダにも適用することができる。
 更に、本発明は、これらの計測装置ばかりでなく、例えば多数の受信素子を有する受信機にも適用できる。図11に示すように、発信源3から出力される信号を複数の受信素子4aからなる受信部4で受信する。受信素子4aから信号を、2つの積分回路5a、5bによって2つの系統の積分データを得る。2つの積分回路5a、5bでは、それぞれ異なる組み合わせの受信信号を積分して、判定回路6は、2つの系統の積分データに基づいた比較により受信信号の信頼性指標を算出し、信頼性の低い情報を除去することにより受信品質を向上させることができる。
 ここで、受信素子4aは、電波のアンテナであっても、音声マイクであっても撮像素子であってもよい。実時間処理が不要な場合は、積分の組み合わせを変化させることにより、利用できる情報を最大にしてもよい。
 また、上記の実施形態では、パルス列を例にして説明したが、この場合に、信号が時間的に変化する値でも比較可能であるので、受信信号はパルスである必要はない。
 また、本発明は、距離計などにも適用できる。
 距離計に本発明を適用する場合には、通常のレーザ距離計と原理は同じであっても、高パルスレート、低パルスエネルギーで良いため、小型高効率のレーザダイオードを増幅せずに使用することができる。例えばパルスレートを100kHz、パルスエネルギーを10μJとすると、平均1Wの出力であるが、1.5kmまでの距離情報を例えば50Hzの周期で出力できる。車両、船舶、衛星等の近接センサに利用できる。
 この場合に、図12に示すように、送信光と受信光は1対1の関係であるので、距離分割や周波数計測は不要で、単に受信光を2つの積分回路で積分し、これらの積分の比較から信頼性指標を算出し、信頼性の低い情報を除去すればよい。
20  :信号処理部
21  :積分部
22  :ドップラー検出部
23  :パルス分別回路
24a :積分回路
24b :積分回路
25a :レンジ分割回路
25b :レンジ分割回路
26a :周波数変換回路
26b :周波数変換回路
27a :ドップラー検出回路
27b :ドップラー検出回路
28  :比較回路
201 :第2の積分回路

Claims (5)

  1.  受信信号に応じた信号列を間欠状に複数の系統で積分して複数の積分データを得る第1の積分部と、
     前記複数の積分データに基づいた比較により前記受信信号の信頼性指標を算出する信頼性指標算出部と
     を具備する信号処理装置。
  2.  請求項1に記載の信号処理装置であって、
     前記受信信号に応じた信号列は、大気中に向けて放射された連続するパルス列からなる送信信号の反射信号を受信した受信信号の周波数と前記送信信号の周波数との差分の信号列であり、
     各前記積分データをそれぞれ複数のレンジビンに時分割し、各前記積分データそれぞれについて、前記レンジビンごとに周波数と強度との関係を求めて当該関係からドップラーシフト量を検出するドップラー検出部を有し、
     前記信頼性指標算出部は、各前記積分データのドップラーシフト量の比較により前記受信信号の信頼性指標を算出する
     信号処理装置。
  3.  請求項2に記載の信号処理装置であって、
     各前記積分データのドップラーシフト量を積分する第2の積分部
     を更に具備する信号処理装置。
  4.  請求項1乃至3のうちいずれか1項に記載の信号処理装置であって、
     前記信頼性指標算出部は、前記信頼性指標として各前記積分データのドップラーシフト量の差分を算出する
     信号処理装置。
  5.  受信信号に応じた信号列を間欠状に複数の系統で積分して複数の積分データを得て、
     前記複数の積分データに基づいた比較により前記受信信号の信頼性指標を算出する
     信号処理方法。
PCT/JP2018/041995 2017-12-06 2018-11-13 信号処理装置及び信号処理方法 WO2019111654A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18885414.5A EP3722828B1 (en) 2017-12-06 2018-11-13 Signal processing device and signal processing method
US16/769,447 US11796655B2 (en) 2017-12-06 2018-11-13 Signal processing device and signal processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017234165A JP7051081B2 (ja) 2017-12-06 2017-12-06 信号処理装置及び信号処理方法
JP2017-234165 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019111654A1 true WO2019111654A1 (ja) 2019-06-13

Family

ID=66750958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041995 WO2019111654A1 (ja) 2017-12-06 2018-11-13 信号処理装置及び信号処理方法

Country Status (4)

Country Link
US (1) US11796655B2 (ja)
EP (1) EP3722828B1 (ja)
JP (1) JP7051081B2 (ja)
WO (1) WO2019111654A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047507A1 (ja) * 2021-09-24 2023-03-30 日本電気株式会社 領域特定システム、領域特定方法及び領域特定プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336134B2 (ja) * 2019-08-08 2023-08-31 国立研究開発法人宇宙航空研究開発機構 遠隔気流観測装置、遠隔気流観測方法及びプログラム
JP2024035272A (ja) * 2022-09-02 2024-03-14 国立研究開発法人宇宙航空研究開発機構 航空機の自動制御システム、その有効性評価方法およびその自動制御システム用の計測装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113613A (ja) * 1995-10-13 1997-05-02 Nec Corp 二次監視レーダ目標検出装置
JPH11128226A (ja) * 1997-10-31 1999-05-18 Toshiba Corp 画像診断装置及び超音波診断装置
JP2002311130A (ja) * 2001-04-10 2002-10-23 Nissan Motor Co Ltd 車両用レーダ装置
JP2005050187A (ja) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd 周辺車両検出装置
US20070202887A1 (en) * 2006-02-28 2007-08-30 Microsoft Corporation Determining physical location based upon received signals
JP5252696B2 (ja) 2008-06-11 2013-07-31 独立行政法人 宇宙航空研究開発機構 航空機搭載用光学式遠隔気流計測装置
JP5398001B2 (ja) 2009-12-07 2014-01-29 独立行政法人 宇宙航空研究開発機構 航空機搭載用乱気流事故防止装置
JP5771893B2 (ja) 2009-11-20 2015-09-02 国立研究開発法人宇宙航空研究開発機構 乱気流抑制制御方法
JP5881099B2 (ja) 2011-10-06 2016-03-09 国立研究開発法人宇宙航空研究開発機構 光学式遠隔気流計測装置の有色ノイズ低減方法とその装置
WO2016125399A1 (ja) * 2015-02-02 2016-08-11 古野電気株式会社 探知装置、および、探知方法
JP2017067680A (ja) 2015-10-01 2017-04-06 国立研究開発法人宇宙航空研究開発機構 遠隔気流計測装置、遠隔気流計測方法及びプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152382A (ja) * 1987-12-10 1989-06-14 Nec Corp レベル判定装置
EP0730166B1 (de) * 1995-03-03 2001-06-27 Siemens Aktiengesellschaft Verfahren und Anordnung zur Verkehrserfassung mit einem Radargerät
JP3335832B2 (ja) * 1996-02-05 2002-10-21 株式会社東芝 レーダ受信装置
WO2005076035A1 (ja) 2004-02-09 2005-08-18 Anritsu Corporation レーダ装置
JP4806949B2 (ja) * 2005-03-31 2011-11-02 三菱電機株式会社 レーザレーダ装置
US9575184B2 (en) * 2014-07-03 2017-02-21 Continental Advanced Lidar Solutions Us, Inc. LADAR sensor for a dense environment
US10416292B2 (en) * 2016-05-24 2019-09-17 Veoneer Us, Inc. Direct detection LiDAR system and method with frequency modulation (FM) transmitter and quadrature receiver
KR101807522B1 (ko) * 2016-06-29 2017-12-12 재단법인대구경북과학기술원 자기 간섭을 이용한 레이더의 수신 채널 보상 장치 및 그 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113613A (ja) * 1995-10-13 1997-05-02 Nec Corp 二次監視レーダ目標検出装置
JPH11128226A (ja) * 1997-10-31 1999-05-18 Toshiba Corp 画像診断装置及び超音波診断装置
JP2002311130A (ja) * 2001-04-10 2002-10-23 Nissan Motor Co Ltd 車両用レーダ装置
JP2005050187A (ja) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd 周辺車両検出装置
US20070202887A1 (en) * 2006-02-28 2007-08-30 Microsoft Corporation Determining physical location based upon received signals
JP5252696B2 (ja) 2008-06-11 2013-07-31 独立行政法人 宇宙航空研究開発機構 航空機搭載用光学式遠隔気流計測装置
JP5771893B2 (ja) 2009-11-20 2015-09-02 国立研究開発法人宇宙航空研究開発機構 乱気流抑制制御方法
JP5398001B2 (ja) 2009-12-07 2014-01-29 独立行政法人 宇宙航空研究開発機構 航空機搭載用乱気流事故防止装置
JP5881099B2 (ja) 2011-10-06 2016-03-09 国立研究開発法人宇宙航空研究開発機構 光学式遠隔気流計測装置の有色ノイズ低減方法とその装置
WO2016125399A1 (ja) * 2015-02-02 2016-08-11 古野電気株式会社 探知装置、および、探知方法
JP2017067680A (ja) 2015-10-01 2017-04-06 国立研究開発法人宇宙航空研究開発機構 遠隔気流計測装置、遠隔気流計測方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. INOKUCHIH. TANAKAT. ANDO: "Journal of Aircraft", vol. 46, July 2009, AIAA, article "Development of an Onboard Doppler LIDAR for Flight Safety", pages: 1411 - 1415

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047507A1 (ja) * 2021-09-24 2023-03-30 日本電気株式会社 領域特定システム、領域特定方法及び領域特定プログラム

Also Published As

Publication number Publication date
JP2019100943A (ja) 2019-06-24
EP3722828A1 (en) 2020-10-14
US11796655B2 (en) 2023-10-24
JP7051081B2 (ja) 2022-04-11
EP3722828A4 (en) 2021-09-01
US20200371218A1 (en) 2020-11-26
EP3722828B1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2019111654A1 (ja) 信号処理装置及び信号処理方法
US9019481B2 (en) Colored noise reduction method and device for optical remote airflow measurement apparatus
JP4806949B2 (ja) レーザレーダ装置
JP5252696B2 (ja) 航空機搭載用光学式遠隔気流計測装置
JP5717174B2 (ja) 遠隔乱気流検知方法及びそれを実施する装置
US20190339384A1 (en) System and method of radar-based obstacle avoidance for unmanned aerial vehicles
JP2012083267A (ja) マルチライダーシステム
KR101802533B1 (ko) 무선 통신 시스템에서의 환경을 추정하기 위한 방법, 장치, 시스템, 및 컴퓨터 프로그램 제품
EP2214028A1 (en) Wind velocity measurement system
JP6244862B2 (ja) レーザレーダ装置
JP6583677B2 (ja) 遠隔気流計測装置、遠隔気流計測方法及びプログラム
JP2009162678A (ja) レーザレーダ装置
KR20150051679A (ko) 가변 파형을 이용하여 허위 타켓 판별하는 차량용 레이더 및 이를 이용한 허위 타겟 판별 방법
JP5376440B2 (ja) 光学式遠隔気流計測装置
CN107831492B (zh) 一种机载风切变仪及风切变探测方法
CN106687775A (zh) 用于检测飞机引起的尾流湍流的方法和系统
CA2095367C (en) Passive aircraft monitoring system
JP2022170737A (ja) 多波長ドップラー・ライダー
Inokuchi et al. Development of a long range airborne Doppler Lidar
Inokuchi et al. Flight demonstration of a long range onboard Doppler lidar
CN112327279A (zh) 基于轨道角动量调制的抗云雾后向散射激光探测系统
JP2000147120A (ja) レーザーレーダー装置
US20220155460A1 (en) Remote airflow observation device, remote airflow observation method, and program
JP7143552B2 (ja) 風検出装置、風検出方法及び観測装置
Inokuchi et al. Development of an airborne wind measurement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885414

Country of ref document: EP

Effective date: 20200706