WO2019111476A1 - Procédé de traitement d'eau concentrée par membrane d'osmose inverse - Google Patents

Procédé de traitement d'eau concentrée par membrane d'osmose inverse Download PDF

Info

Publication number
WO2019111476A1
WO2019111476A1 PCT/JP2018/033474 JP2018033474W WO2019111476A1 WO 2019111476 A1 WO2019111476 A1 WO 2019111476A1 JP 2018033474 W JP2018033474 W JP 2018033474W WO 2019111476 A1 WO2019111476 A1 WO 2019111476A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
concentrated water
osmosis membrane
chamber
concentration
Prior art date
Application number
PCT/JP2018/033474
Other languages
English (en)
Japanese (ja)
Inventor
孝博 川勝
中馬 高明
村松 篤
加藤 晃久
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019111476A1 publication Critical patent/WO2019111476A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/54Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus

Definitions

  • the present invention relates to a method of treating concentrated water of a reverse osmosis membrane, and more particularly to a method of treating concentrated water produced by water treatment using a reverse osmosis membrane using an ion exchange membrane.
  • Examples of techniques for concentrating the concentrated water of the reverse osmosis membrane include evaporation, reverse osmosis membrane / nanofiltration membrane method, and electrodialysis method (paragraphs 0002 to 0006 of Patent Document 1).
  • the evaporation method involves a phase change, which results in a large consumption of energy.
  • the reverse osmosis membrane / nanofiltration membrane method and the electrodialysis method are energy saving techniques.
  • divalent ions such as calcium have higher rejection than monovalent ions such as sodium, divalent ions are easily concentrated.
  • divalent ions such as calcium have higher mobility than monovalent ions such as sodium, so that divalent ions are easily concentrated.
  • scale is generated, which causes a problem that the scale is attached to the reverse osmosis membrane / nanofiltration membrane or the electrodialysis membrane to lower the performance.
  • Non-Patent Document 1 In order to suppress an increase in calcium ion concentration in the concentration chamber, seawater is treated using a monovalent selective cation exchange membrane as an electrodialysis membrane in a salt production step or the like (Non-Patent Document 1).
  • An object of the present invention is to provide a method of treating concentrated water of a reverse osmosis membrane which can stably electrodialyze concentrated water of the reverse osmosis membrane.
  • the method for treating retentate of reverse osmosis membrane according to the present invention is to use monovalent selective cation exchange membrane for part or all of cation exchange membrane in the method for treating concentrate of reverse osmosis membrane by electrodialysis It features.
  • the calcium concentration in the concentrated water of the reverse osmosis membrane is 2 mM or more.
  • the flow rate in the concentration chamber of the electrodialysis is higher than the flow rate in the desalting chamber.
  • At least one of hydrochloric acid, sulfuric acid and nitric acid is added to the feed water to the concentration chamber.
  • a scale inhibitor is added to the feed water to the concentration chamber.
  • the scale inhibitor has a phosphate or sulfonate group.
  • the cation exchange membrane is a monovalent selective cation exchange membrane, the transfer of multivalent cations such as calcium ion and magnesium ion to the concentration chamber It is suppressed and the scale formation in the concentration chamber is suppressed. Thereby, it is possible to stably electrodialyze reverse osmosis membrane concentrated water having a high concentration such as calcium.
  • concentrated water generated when the river water, well water, tap water, industrial water, waste water collected water, etc. are subjected to membrane separation treatment using a reverse osmosis membrane device is treated using a monovalent selective cation exchange membrane.
  • the concentrated water generally has an inorganic salt concentration of about 0.5 to 2 wt%, a calcium concentration of 2 mM or more, for example, about 2 to 20 mM, and an organic concentration of about 5 to 100 mg / L as TOC.
  • this concentrated water is treated using a monovalent selective cation exchange membrane. It is usually treated with an electrodialysis apparatus equipped with a monovalent selective cation exchange membrane.
  • FIG. 1 shows a preferred example of this electrodialysis apparatus.
  • This electrodialysis apparatus comprises an acid chamber, an anion exchange membrane AM, a desalting chamber, a first cation exchange membrane CM, a concentration chamber, a desalting chamber, between a positive electrode and a negative electrode respectively via a positive electrode chamber and a bipolar membrane BPM.
  • a second cation exchange membrane CM, an alkali chamber, a bipolar membrane BPM, and a negative electrode chamber are provided.
  • An anion exchange membrane, a desalting chamber, a first cation exchange membrane, and a plurality of concentration chambers are provided as a repeating unit (n pieces), and a concentration chamber of the nth repeating unit is an anion exchange membrane, a desalting chamber, and It may be provided so as to be connected to the alkali chamber via a cation exchange membrane.
  • anion X - and cation Y + constituting salts (XY) in the water to be treated which passes through the inside of the deionization chamber pass through the anion exchange membrane AM and the cation exchange membrane CM, respectively, into the concentration chamber
  • XY anion X - and cation Y + constituting salts
  • a monovalent selective cation exchange membrane is used as the first cation exchange membrane (first CM).
  • first CM the first cation exchange membrane
  • monovalent cations preferentially permeate the first cation exchange membrane (first CM) and move to the concentration chamber.
  • the rise in concentration of divalent cations, in particular, calcium ions and magnesium ions in the concentration chamber is suppressed, scale formation in the concentration chamber is suppressed, and the electrodialysis apparatus can be stably operated over a long period of time.
  • Increasing the flow rate in the concentration chamber or adding an acid and a scale inhibitor to the concentration chamber is also effective in suppressing scale formation in the concentration chamber.
  • the flow rate of the concentration chamber is preferable to twice or more, for example, 2 to 10 times, particularly 3 to 5 times the flow velocity of the desalting chamber.
  • the acid hydrochloric acid, sulfuric acid or nitric acid is preferable, and it is preferable to add it so that the pH after addition is about 1 to 3.
  • the scale inhibitor those having a phosphoric acid group or a sulfonic acid group are suitable.
  • Comparative Example 1 The simulated reverse osmosis membrane concentrated water was treated using the electrodialysis apparatus having the membrane arrangement structure shown in FIG.
  • a bipolar membrane (BP1-E manufactured by Astom Co., Ltd.), an anion exchange membrane (AHA manufactured by Astom Co., Ltd.), a cation exchange membrane (CMX manufactured by Astom Co., Ltd.), an anion exchange membrane (stock Seven chambers (positive chamber, acid chamber, desalting chamber, etc.) formed by laminating the film in this order: AHA made by Astom Co., Ltd., cation exchange membrane (CMX made by Astom Co., Ltd.), and bipolar membrane (BP1-E made by Astom)
  • the electrodialysis apparatus of a concentration chamber, a desalting chamber, an alkali chamber, and a negative electrode chamber was used.
  • a 0.5 M NaOH aqueous solution is passed at 100 mL / min through the positive and negative electrode chambers of this electrodialysis apparatus, and a simulated reverse osmosis membrane concentrated water is passed at 5 mL / min through the desalting chamber and the concentration chamber.
  • a simulated reverse osmosis membrane concentrated water is passed at 5 mL / min through the desalting chamber and the concentration chamber.
  • 25 mM aqueous sodium chloride solution was passed at 5 mL / min.
  • the treatment was performed at a constant voltage operation of 50 V, and when the treatment was performed for 1 hour, the conductivity of the treatment liquid from the demineralization chamber was 100 mS / m or less until the first 15 minutes, and thereafter 100 mS / m. It exceeded and rose to nearly 250 mS / m (see Fig. 2). In addition, a large amount of calcium carbonate scale was observed in the concentration chamber.
  • Example 1 Using an electrodialyzer having the same structure as Comparative Example 1 except that the first cation exchange membrane (first CM) between the desalting room and the concentration room is a monovalent selective cation exchange membrane (CIMS manufactured by Astom Co., Ltd.) The same simulated reverse osmosis membrane concentrated water was treated under the same conditions as in Comparative Example 1.
  • first CM first cation exchange membrane
  • CIMS monovalent selective cation exchange membrane
  • the conductivity of the treatment liquid from the desalting chamber was 100 mS / m or less. Some calcium carbonate scale was observed in the concentration chamber.
  • Example 2 In Example 1, 1 M hydrochloric acid was added so as to be diluted 100 times at the inlet of the concentration chamber, and the same simulated reverse osmosis membrane concentrated water was treated under the same conditions except that the flow rate in the concentration chamber was 15 mL / min. . As a result, the conductivity of the treatment liquid from the desalting chamber was 100 mS / m or less until the first 30 mim and thereafter between 100 mS / m and 125 mS / m (see FIG. 2). Moreover, the scale of calcium carbonate was not seen in the concentration chamber.
  • the treated water quality from the deionization chamber can be stabilized, and the formation of calcium carbonate scale in the concentration chamber can also be suppressed.
  • the addition of the acid to the concentration chamber and the increase of the flow rate in the concentration chamber further suppressed the formation of the calcium carbonate scale.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

L'invention concerne un procédé de traitement d'eau concentrée à partir de membranes d'osmose inverse, caractérisé par l'utilisation d'une membrane échangeuse de cations sélective monovalente pour une partie ou la totalité des membranes échangeuses de cations et le traitement de l'eau concentrée par électrodialyse. La concentration en calcium dans l'eau concentrée provenant de la membrane d'osmose inverse est idéalement d'au moins 2 mM Au moins un type d'acide chlorhydrique, d'acide sulfurique et d'acide nitrique peut être ajouté à l'eau fournie à une chambre de concentration et un inhibiteur de tartre peut également être ajouté.
PCT/JP2018/033474 2017-12-07 2018-09-10 Procédé de traitement d'eau concentrée par membrane d'osmose inverse WO2019111476A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-235319 2017-12-07
JP2017235319A JP2019098300A (ja) 2017-12-07 2017-12-07 逆浸透膜の濃縮水の処理方法

Publications (1)

Publication Number Publication Date
WO2019111476A1 true WO2019111476A1 (fr) 2019-06-13

Family

ID=66750902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033474 WO2019111476A1 (fr) 2017-12-07 2018-09-10 Procédé de traitement d'eau concentrée par membrane d'osmose inverse

Country Status (3)

Country Link
JP (1) JP2019098300A (fr)
TW (1) TW201924770A (fr)
WO (1) WO2019111476A1 (fr)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269777A (ja) * 1993-03-16 1994-09-27 Asahi Glass Co Ltd 造水プロセス
JPH0747365A (ja) * 1993-08-10 1995-02-21 Nomura Micro Sci Co Ltd 超純水製造装置
JPH10323673A (ja) * 1997-03-28 1998-12-08 Asahi Glass Co Ltd 脱イオン水製造方法
JP2000000571A (ja) * 1998-06-16 2000-01-07 Japan Organo Co Ltd 電気式脱イオン水製造装置
JP2000140853A (ja) * 1998-11-10 2000-05-23 Kurita Water Ind Ltd 電気再生式脱イオン装置及びその運転方法
JP2002292371A (ja) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk 海洋深層水より分離した淡水と濃縮深層水とミネラル濃縮液と濃縮塩水と苦汁と特殊塩
US20040055955A1 (en) * 2002-08-02 2004-03-25 University Of South Carolina Production of purified water and high value chemicals from salt water
JP2008100175A (ja) * 2006-10-19 2008-05-01 Japan Organo Co Ltd 生活用水供給方法及び装置
JP2008223115A (ja) * 2007-03-15 2008-09-25 Asahi Kasei Chemicals Corp 塩水の処理方法
WO2008153274A1 (fr) * 2007-06-11 2008-12-18 Yoo, Yung-Geun Procédé de préparation d'eau minérale et de sels minéraux provenant des eaux profondes de l'océan
JP2015029933A (ja) * 2013-07-31 2015-02-16 三菱重工業株式会社 飲料水製造装置及び方法
JP2015524787A (ja) * 2012-08-16 2015-08-27 ラマン, アヒランRAMAN, Ahilan 塩化ナトリウム鹹水の製造方法及びシステム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269777A (ja) * 1993-03-16 1994-09-27 Asahi Glass Co Ltd 造水プロセス
JPH0747365A (ja) * 1993-08-10 1995-02-21 Nomura Micro Sci Co Ltd 超純水製造装置
JPH10323673A (ja) * 1997-03-28 1998-12-08 Asahi Glass Co Ltd 脱イオン水製造方法
JP2000000571A (ja) * 1998-06-16 2000-01-07 Japan Organo Co Ltd 電気式脱イオン水製造装置
JP2000140853A (ja) * 1998-11-10 2000-05-23 Kurita Water Ind Ltd 電気再生式脱イオン装置及びその運転方法
JP2002292371A (ja) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk 海洋深層水より分離した淡水と濃縮深層水とミネラル濃縮液と濃縮塩水と苦汁と特殊塩
US20040055955A1 (en) * 2002-08-02 2004-03-25 University Of South Carolina Production of purified water and high value chemicals from salt water
JP2008100175A (ja) * 2006-10-19 2008-05-01 Japan Organo Co Ltd 生活用水供給方法及び装置
JP2008223115A (ja) * 2007-03-15 2008-09-25 Asahi Kasei Chemicals Corp 塩水の処理方法
WO2008153274A1 (fr) * 2007-06-11 2008-12-18 Yoo, Yung-Geun Procédé de préparation d'eau minérale et de sels minéraux provenant des eaux profondes de l'océan
JP2015524787A (ja) * 2012-08-16 2015-08-27 ラマン, アヒランRAMAN, Ahilan 塩化ナトリウム鹹水の製造方法及びシステム
JP2015029933A (ja) * 2013-07-31 2015-02-16 三菱重工業株式会社 飲料水製造装置及び方法

Also Published As

Publication number Publication date
JP2019098300A (ja) 2019-06-24
TW201924770A (zh) 2019-07-01

Similar Documents

Publication Publication Date Title
CA2663906C (fr) Procede et appareil de desalinisation
CN107381886B (zh) 一种反渗透浓水近零排放的方法
US7459088B2 (en) Water desalination process and apparatus
US20100282675A1 (en) System and method for reversible cation-exchange desalination
JP2015029931A (ja) 淡水化装置及び淡水化方法、並びに淡水の製造方法、淡水、塩及び有価物の併産方法
JP6053631B2 (ja) 淡水化装置及び淡水化方法、並びに淡水、塩及び有価物の併産方法
JP2009095821A (ja) 塩水の処理方法
Turek et al. Energy consumption and gypsum scaling assessment in a hybrid nanofiltration‐reverse osmosis‐electrodialysis system
KR20080094303A (ko) 전처리 공정을 포함한 고효율 해수 전해장치 및 전해방법
JP2005342664A (ja) ミネラル水の製造方法
JP5731262B2 (ja) 脱塩処理方法及び脱塩処理システム
JPH08108184A (ja) 水処理システム
US20230295019A1 (en) Hybrid electrochemical and membrane-based processes for treating water with high silica concentrations
WO2019111476A1 (fr) Procédé de traitement d'eau concentrée par membrane d'osmose inverse
JP5995747B2 (ja) 水処理システム及び海水からの有価物製造方法
CN108341527B (zh) 高回收率脱盐水装置
Turek et al. Boron removal from dual-staged seawater nanofiltration permeate by electrodialysis
JPH06254356A (ja) 難溶性塩類を含む塩水のpH調節方法
US20240238727A1 (en) Systems and methods for reducing magnesium, calcium, and/or sulfate from sodium chloride brine during concentration by high-pressure nanlfiltration
JP2014024013A (ja) 海水などの淡水化方法
TWI487671B (zh) 廢水處理系統與廢水處理方法
JPH1085755A (ja) 電気透析装置による脱塩方法
JP2004290894A (ja) 海洋深層水脱塩処理システム
Karimi et al. The electrodialysis advantage
JP2018135277A (ja) 浴用塩の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886131

Country of ref document: EP

Kind code of ref document: A1