CN107381886B - 一种反渗透浓水近零排放的方法 - Google Patents

一种反渗透浓水近零排放的方法 Download PDF

Info

Publication number
CN107381886B
CN107381886B CN201710651539.7A CN201710651539A CN107381886B CN 107381886 B CN107381886 B CN 107381886B CN 201710651539 A CN201710651539 A CN 201710651539A CN 107381886 B CN107381886 B CN 107381886B
Authority
CN
China
Prior art keywords
water
reverse osmosis
nanofiltration
membrane
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710651539.7A
Other languages
English (en)
Other versions
CN107381886A (zh
Inventor
郭春禹
贾春花
张丽丽
郭雄军
刘芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Tingrun Membrane Technology Development Co ltd
Original Assignee
Beijing Tingrun Membrane Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Tingrun Membrane Technology Development Co ltd filed Critical Beijing Tingrun Membrane Technology Development Co ltd
Priority to CN201710651539.7A priority Critical patent/CN107381886B/zh
Publication of CN107381886A publication Critical patent/CN107381886A/zh
Application granted granted Critical
Publication of CN107381886B publication Critical patent/CN107381886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents

Abstract

本发明公开了一种反渗透浓水近零排放的方法,包括如下步骤:反渗透浓缩分离、纳滤分离、化学软化、钠树脂软化和双极膜电渗析产出酸碱。本发明提供的反渗透浓水近零排放的方法,通过反渗透浓缩分离系统使低浓度进水盐水浓缩,浓缩后的盐溶液进入纳滤膜处理系统,达到进一步的浓缩目的,接着纳滤出水回流到未进入反渗透浓缩分离系统的原水中,纳滤浓水进入钠树脂软化装置进行离子交换,交换后的出水进入双极膜电渗析装置产出酸碱。通过各个装置相互配合将反渗透浓水最终用于生产酸和碱,达到反渗透浓水近零排放的目的。本发明提供的反渗透浓水零排放的方法简单易行,可见工艺简单,可操作性强,以较低的能耗实现了最大化的浓水回收利用。

Description

一种反渗透浓水近零排放的方法
技术领域
本发明涉及浓水处理技术领域,特别是指一种反渗透浓水近零排放的方法。
背景技术
反渗透膜在净水、脱盐以及污水资源化过程中,受到水体中无机盐容度积、离子浓度渗透压、浓缩物对有机膜的污染等方面影响,只能产出一部分净水,剩余部分浓水要排放掉。反渗透浓水的排放存在着巨大的负面影响,一方面:造成水的利用率低,浪费水源,增加预处理的负荷与成本。另一方面:反渗透浓水也存在着的对环境的二次污染问题。这就造成了反渗透膜技术在应用过程中,不能从根本上处理污水,只起到了分离与富积的目的,这也大大的影响和限定了他的使用领域。
针对浓水近零排放,目前也进行了大量的探讨和尝试,例如采取加药剂的办法来提高反渗透回收率,但只能对无机盐的浓缩倍数有所改善,而且阻垢剂也是价格高昂,甚至达到10000~20000万/吨,造成吨产水处理成本大幅增加;另外,也有采取浓水再一级反渗透的办法,但受到渗透压的限制,膜污染增加,且渗透膜使用寿命下降;而采取电渗析进一步浓缩到再进行蒸发,如减压蒸发,成固体排出,也是存在投资成本过高,工艺过于复杂的问题。
可以看出,目前对于反渗透浓水回收与利用的改进只在有限程度上使问题缓解,没有全面解决运行成本与投资成本过高的问题,因此仍然普遍存在适用性差,投入较高以及使用不便等缺陷。
发明内容
有鉴于此,本发明的目的在于提出一种成本低、工艺简单且可操作性强的反渗透浓水近零排放的方法。
基于上述目的本发明提供的反渗透浓水近零排放的方法,包括如下步骤:
反渗透浓缩分离:经过预处理的原水进入反渗透浓缩分离系统进行浓缩分离,得到淡水和反渗透浓水;
纳滤分离:所述反渗透浓水进入纳滤膜处理系统,所述纳滤膜处理系统拦截高价离子,得到纳滤出水和纳滤浓水,其中,所述纳滤出水回流到未进入所述反渗透浓缩分离系统的原水中;
化学软化:所述纳滤浓水进入到化学软化系统进行酸碱中和,得到中和出水;
钠树脂软化:所述中和出水进入钠树脂软化装置进行钠离子交换,除去高价金属阳离子,得到钠树脂软化出水;
双极膜电渗析:所述钠树脂软化出水进入双极膜电渗析装置进行电渗析,产出酸和碱以及双极膜出水;其中,所述双极膜出水回流到未进入所述反渗透浓缩分离系统的原水中;产出的部分酸回流到所述原水中,用于调节所述原水酸碱度,剩余部分酸进行回收;产出的部分碱回流到经反渗透浓缩分离系统进行浓缩分离得到的淡水中,用于调节所述淡水的酸碱度;部分碱回流到所述化学软化系统;剩余部分碱进行回收。
优选地,反渗透浓缩分离系统中设置待处理反渗透浓盐水的进入口和处理后反渗透浓盐水的排出口;其中排出口处的浓盐水通过提升泵连接选取的过滤器和所述的纳滤膜处理系统中的纳滤膜机组;过滤器可依据用户需求选择石英过滤器、介质过滤器、保安过滤器的一种或者几种组合;反渗透浓缩分离系统内部液体的PH值介于2-11,所述反渗透浓缩分离系统盐的截留率为98%~99.5%。
优选地,纳滤膜处理系统使用的纳滤膜在压力作用下透过水分子与小分子的物质,截留大分析物质和高价离子,从而将反渗透浓水进一步的浓缩和淡化,得到纳滤出水和纳滤浓水;纳滤膜处理系统内部液体的PH值介于1-14,所述纳滤膜处理系统对一价盐的截留率为30~50%,对高价离子的截留率为98~99%。
优选地,纳滤膜处理系统的进水口与反渗透浓缩分离系统的出口相连;纳滤膜处理系统淡水出水排放到纳滤产水池,之后进入反渗透系统的进水箱或者进水池,纳滤膜处理系统浓水出水口与化学软化系统的进水口相连。
优选地,纳滤膜处理系统产生的浓盐水经过高压泵进入到化学软化进行酸碱中和,得到中性出水。沉降装置中,酸碱中和的作用时间为10~100min;依据纳滤膜处理系统产生的浓盐水的酸碱性向中和池中加入相应量的酸液或者碱液进入化学软化池进行中和反应,化学软化系统产水的pH值为6.5-7.5。
优选地,将化学软化系统产水池中的水送到钠树脂软化装置,除去高价金属阳离子使钠离子交换器出水硬度低于1.5mmol/L得到钠树脂软化出水。钠树脂软化系统使用钠型的强酸性阳离子交换树脂,采取了逆流再生方式,以去除化学软化系统产水中所有的致垢离子,以保障后续双极膜电渗膜组器的使用寿命。
优选地,所述钠树脂软化系统包括:强阳型钠离子交换器、钠树脂再生设备和软化水池;其中,所述钠型树脂软化设备设有连接所述化学软化系统产水池的进水管和连接所述钠树脂软化水池的出水管;所述钠树脂软化水池设有连接所述双极膜电渗析器的出水管;所述钠型树脂再生设备设有连接所述反渗透处理区的反渗透浓缩液回流管的回流口和连接所述蒸发结晶器的再生废水管。
优选地,所述钠树脂软化出水进入双极膜电渗析装置进行电渗析,产出酸和碱以及双极膜出水;其中,所述双极膜出水回流到未进入所述反渗透浓缩分离系统的原水中;所述产出的部分酸回流到所述原水中,用于调节所述原水酸碱度,剩余部分酸进行回收;所述产出的部分碱回流到经反渗透浓缩分离系统进行浓缩分离得到淡水中,用于调节所述淡水的酸碱度;部分碱回流到所述化学软化系统;剩余部分碱进行回收。
优选地,双极膜电渗析中使用的双极膜膜堆中的阳极采用钛涂钌电极,阴极采用不锈钢电极;双极膜电渗析采用三隔室组装,每组隔室由一张双极膜、一张均相阴离子交换膜、一张均相阳离子交换膜组成,其中双极膜的阳面与均相阴离子交换膜之间构成酸室,均相阴离子交换膜与均相阳离子交换膜之间构成盐室,均相阳离子交换膜与双极膜的阴面之间构成碱室;双极膜电渗析系统中使用的阴离子交换膜是季铵盐型阴膜的,阳离子交换膜为磺酸型阳膜,双极膜为BPM-1型单片型双极膜。
优选地,双极膜电渗析装置的盐室进水为经反渗透–纳滤–化学软化-钠树脂软化后的浓盐水,酸室与碱室进水为自来水,极液进水为0.5-2mol/L的Na2SO4溶液;电流密度依据浓盐水含盐量选取,为50-500A/m2,膜表面流速为2-8cm/s;双极膜电渗析装置运行时采用局部进水的方式,使酸室回收的酸液浓度在1%-10%,使碱室回收的碱液浓度在1%-10%;当酸室或者碱室中溶液浓度达到预设值时,则排出,重新进自来水,如此循环;当盐室中废水的浓度,达到预设浓度时,则排出再加入新的处理后的浓盐水废水,循环进行。
从上面所述可以看出,本发明提供的反渗透浓水零排放的方法,通过反渗透浓缩分离系统使低浓度进水浓缩,然后进入纳滤膜处理系统,拦截高价的离子并达到进一步的浓缩目的,接着纳滤出水回流到未进入反渗透浓缩分离系统的原水中,纳滤浓水进入钠树脂软化装置进行离子交换,离子交换后的出水进入双极膜电渗析装置生产酸碱。通过各个装置相互配合将反渗透浓水最终用于生产酸和碱,达到反渗透浓水近零排放的目的。本发明提供的反渗透浓水近零排放的方法简单易行,可见工艺简单,可操作性强;需要的装置较常见,因此成本较低;可见本方法以较低的能耗、投资实现了最大化的浓水回收利用,并产出副产酸、碱与多价离子沉降物,实现了资源化。
附图说明
图1为本发明实施例提供的反渗透浓水近零排放的方法流程图;
图2为本发明实施例提供的反渗透浓水近零排放的方法应用于装置的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
结合图1,为本发明所提供的反渗透浓水近零排放的方法实施例流程图,和图2,为本发明提供的反渗透浓水近零排放的方法应用于装置的实施例流程图,对本发明浓水近零排放的方法进行说明,该方法包括:
步骤101,反渗透浓缩分离:经过预处理的原水进入反渗透浓缩分离系统201进行浓缩分离,得到淡水和反渗透浓水;
步骤102,纳滤分离:所述反渗透浓水进入纳滤膜处理系统202,所述纳滤膜处理系统202拦截高价离子,得到纳滤出水和纳滤浓水,其中,所述纳滤出水回流到未进入所述反渗透浓缩分离系统201的原水中;
步骤103,化学软化:所述纳滤浓水进入到化学软化装置203进行酸碱中和,得到中和出水;
步骤104,钠树脂软化:所述中和出水进入钠树脂软化装置204进行钠离子交换,除去高价金属阳离子,得到钠树脂软化出水;
步骤105,双极膜电渗析:所述钠树脂软化出水进入双极膜电渗析装置205进行电渗析,产出酸和碱以及双极膜出水;其中,所述双极膜出水回流到未进入所述反渗透浓缩分离系统201的原水中;产出的部分酸回流到所述原水中,用于调节所述原水酸碱度,剩余部分酸进行回收;产出的部分碱回流到经反渗透浓缩分离系统201进行浓缩分离得到的淡水中,用于调节所述淡水的酸碱度;部分碱回流到所述化学软化装置203;剩余部分碱进行回收。
本发明一实施例,步骤101中使用的反渗透浓缩分离系统中设置待处理反渗透浓盐水的进入口和处理后反渗透浓盐水的排出口;其中排出口处的浓盐水通过提升泵连接选取的过滤器和所述的纳滤膜处理系统中的纳滤膜机组;过滤器可依据用户需求选择石英过滤器、介质过滤器、保安过滤器的一种或者几种组合;反渗透浓缩分离系统内部液体的PH值介于2-11,所述反渗透浓缩分离系统盐的截留率为98%~99.5%。
本发明一实施例,步骤102中使用的纳滤膜处理系统使用的纳滤膜在压力作用下透过水分子与小分子的物质,截留大分析物质和高价离子,从而将反渗透浓水进一步的浓缩和淡化,得到纳滤出水和纳滤浓水;纳滤膜处理系统内部液体的PH值介于1-14,所述纳滤膜处理系统对一价盐的截留率为30~50%,对高价离子的截留率为98~99%。
本发明一实施例,步骤102中使用的纳滤膜处理系统的进水口与反渗透浓缩分离系统的出口相连;纳滤膜处理系统淡水出水排放到纳滤产水池,之后进入反渗透系统的进水箱或者进水池,纳滤膜处理系统浓水出水口与化学软化系统的进水口相连。
本发明一实施例,步骤102中使用的纳滤膜处理系统产生的浓盐水经过高压泵进入到化学软化进行酸碱中和,得到中性出水。沉降装置中,酸碱中和的作用时间为10~100min;依据纳滤膜处理系统产生的浓盐水的酸碱性向中和池中加入相应量的酸液或者碱液进入化学软化池进行中和反应,化学软化系统产水的pH值为6.5-7.5。
本发明一实施例,将步骤103中化学软化系统产水池中的水送到钠树脂软化装置,除去高价金属阳离子使钠离子交换器出水硬度低于1.5mmol/L得到钠树脂软化出水。钠树脂软化系统使用钠型的强酸性阳离子交换树脂,采取了逆流再生方式,以去除化学软化系统产水中所有的致垢离子,以保障后续双极膜电渗膜组器的使用寿命。
本发明一实施例,步骤104中使用的所述钠树脂软化系统包括:强阳型钠离子交换器、钠树脂再生设备和软化水池;其中,所述钠型树脂软化设备设有连接所述化学软化系统产水池的进水管和连接所述钠树脂软化水池的出水管;所述钠树脂软化水池设有连接所述双极膜电渗析器的出水管;所述钠型树脂再生设备设有连接所述反渗透处理区的反渗透浓缩液回流管的回流口和连接所述蒸发结晶器的再生废水管。
本发明一实施例,步骤104中所述钠树脂软化出水进入双极膜电渗析装置进行电渗析,产出酸和碱以及双极膜出水;其中,所述双极膜出水回流到未进入所述反渗透浓缩分离系统的原水中;所述产出的部分酸回流到所述原水中,用于调节所述原水酸碱度,剩余部分酸进行回收;所述产出的部分碱回流到经反渗透浓缩分离系统进行浓缩分离得到淡水中,用于调节所述淡水的酸碱度;部分碱回流到所述化学软化系统;剩余部分碱进行回收。
本发明一实施例,步骤105双极膜电渗析中使用的双极膜膜堆中的阳极采用钛涂钌电极,阴极采用不锈钢电极;双极膜电渗析采用三隔室组装,每组隔室由一张双极膜、一张均相阴离子交换膜、一张均相阳离子交换膜组成,其中双极膜的阳面与均相阴离子交换膜之间构成酸室,均相阴离子交换膜与均相阳离子交换膜之间构成盐室,均相阳离子交换膜与双极膜的阴面之间构成碱室;双极膜电渗析系统中使用的阴离子交换膜是季铵盐型阴膜的,阳离子交换膜为磺酸型阳膜,双极膜为BPM-1型单片型双极膜。
本发明一实施例,步骤105中使用的双极膜电渗析装置的盐室进水为经反渗透——纳滤——化学软化——钠树脂软化后的浓盐水,酸室与碱室进水为自来水,极液进水为0.5-2mol/L的Na2SO4溶液;电流密度依据浓盐水含盐量选取,为50A/m2-500A/m2,膜表面流速为2-8cm/s;双极膜电渗析装置运行时采用局部进水的方式,使酸室回收的酸液浓度在1%-10%,使碱室回收的碱液浓度在1%-10%;当酸室或者碱室中溶液浓度达到预设值时,则排出,重新进自来水,如此循环;当盐室中废水的浓度,达到预设浓度时,则排出再加入新的处理后的浓盐水废水,循环进行。
本发明提供的反渗透浓水近零排放的方法,通过反渗透浓缩分离系统使低浓度进水浓缩到1.5%以上,然后进入纳滤膜处理系统,拦截高价的离子并达到进一步的浓缩目的,接着纳滤出水回流到进入反渗透浓缩分离系统的原水中,纳滤浓水进入钠树脂软化装置进行离子交换,然后交换后的出水进入双极膜电渗析装置生产酸碱。通过各个装置相互配合将反渗透浓水最终用于生产酸和碱,达到反渗透浓水近零排放的目的。
本发明提供的方法具体应用到实际生产中,例如:进水为海水,浓度为3.5%,经过预处理后,得到成分含量为3%的原水,原水经过反渗透浓缩分离系统浓缩后,淡水排出,浓水含量变成7%;反渗透浓水进入纳滤膜处理系统,有机物及钙镁等高价离子被拦截,氯离子和钠离子等单价离子通过钠树脂软化装置进入双极膜电渗析装置中生产酸碱,得到浓度为7%的酸与浓度为7%的碱,出水为淡盐水,回流到进入反渗透浓缩分离系统的原水中继续利用。
再例如:进水为苦咸水,含盐量为0.4%,经过预处理后得到各成分含量为0.35%的原水,在经过反渗透浓缩分离系统201浓缩后,淡水排出,浓水含量变成6%;反渗透浓水进入纳滤膜处理系统202,有机物及钙镁等高价离子被拦截,氯离子和钠离子通过纳滤膜处理系统进入双极膜电渗析装置中生产酸碱,得到浓度为6%的酸与浓度为6%的碱,出水为淡盐水,回流到进入反渗透浓缩分离系统的原水中继续利用。
最终得到的一部分碱进入化学软化装置203与纳滤膜处理系统202拦截下来(那就是纳滤浓水中)的高价离子进行化学软化;一部分碱回流到经过反渗透浓缩分离系统处理得到淡水调节水的PH值,剩余大部分碱进行回收;一部分酸回流到未进入反渗透浓缩分离系统的原水调节调PH值,剩余大部分酸进行回收。
根据如下图表对本发明提供的反渗透浓水近零排放的方法的可行性进行分析:
Figure BDA0001368169820000071
Figure BDA0001368169820000081
由表1中数据可知从经济方面看采用双极膜电渗析装置、反渗透浓缩分离系统、纳滤膜处理系统与离子交换装置结合,投入成本适中但产值利益实现了最大化。
从环保方面和可操作性方面考虑采用双极膜电渗析装置、反渗透浓缩分离系统、纳滤膜处理系统与离子交换装置结合的工艺方法用浓水来生产酸碱,可以实现极高的盐利用率,达到反渗透浓水近零排放的目的,并且工艺简单。
由此可见本发明提供的反渗透浓水近零排放的方法的具有可行性。
从上面所述可以看出,本发明提供的反渗透浓水近零排放的方法,通过反渗透浓缩分离系统使低浓度进水浓缩,然后进入纳滤膜处理系统,拦截高价的离子并达到进一步的浓缩目的,接着纳滤出水回流到未进入反渗透浓缩分离系统的原水中,纳滤浓水进入钠树脂软化装置进行离子交换,交换后的出水进入双极膜电渗析装置产酸碱。通过各个装置相互配合将反渗透浓水最终用于生产酸和碱,达到反渗透浓水近零排放的目的。本发明提供的反渗透浓水零排放的方法简单易行,可见工艺简单,可操作性强;需要的装置较常见,因此成本较低;可见本方法以较低的能耗和投资实现了最大化的浓水回收利用,并产出副产酸、碱与多价离子沉降物,实现了资源化。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。
本发明的实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种反渗透浓水近零排放的方法,其特征在于,包括如下步骤:
反渗透浓缩分离:经过预处理的原水进入反渗透浓缩分离系统进行浓缩分离,得到淡水和反渗透浓水;
纳滤分离:所述反渗透浓水进入纳滤膜处理系统,所述纳滤膜处理系统拦截高价离子,得到纳滤出水和纳滤浓水,其中,所述纳滤出水回流到未进入所述反渗透浓缩分离系统的原水中;
化学软化:所述纳滤浓水进入到化学软化系统进行酸碱中和,得到中和出水;
钠树脂软化:所述中和出水进入钠树脂软化装置进行钠离子交换,除去高价金属阳离子,得到钠树脂软化出水;
双极膜电渗析:所述钠树脂软化出水进入双极膜电渗析装置进行电渗析,产出酸和碱以及双极膜出水;其中,所述双极膜出水回流到未进入所述反渗透浓缩分离系统的原水中;产出的部分酸回流到所述原水中,用于调节所述原水酸碱度,剩余部分酸进行回收;产出的部分碱回流到经反渗透浓缩分离系统进行浓缩分离得到的淡水中,用于调节所述淡水的酸碱度;部分碱回流到所述化学软化系统;剩余部分碱进行回收,其中:
将化学软化系统产水池中的水送到钠树脂软化装置,除去高价金属阳离子使钠离子交换器出水硬度低于1.5mmol/L得到钠树脂软化出水;钠树脂软化系统使用钠型的强酸性阳离子交换树脂,采取了逆流再生方式,以去除化学软化系统产水中所有的致垢离子,以保障后续双极膜电渗膜组器的使用寿命。
2.根据权利要求1所述的一种反渗透浓水近零排放的方法,其特征在于,反渗透浓缩分离系统中设置待处理反渗透浓盐水的进入口和处理后反渗透浓盐水的排出口;其中排出口处的浓盐水通过提升泵连接选取的过滤器和所述的纳滤膜处理系统中的纳滤膜机组;过滤器可依据用户需求选择石英过滤器、介质过滤器、保安过滤器的一种或者几种组合;反渗透浓缩分离系统内部液体的PH值介于2-11,所述反渗透浓缩分离系统盐的截留率为98%~99.5%。
3.根据权利要求1所述的一种反渗透浓水近零排放的方法,其特征在于,纳滤膜处理系统使用的纳滤膜在压力作用下透过水分子与小分子的物质,截留大分析物质和高价离子,从而将反渗透浓水进一步的浓缩和淡化,得到纳滤出水和纳滤浓水;纳滤膜处理系统内部液体的PH值介于1-14,所述纳滤膜处理系统对一价盐的截留率为30~50%,对高价离子的截留率为98~99%。
4.根据权利要求1所述的一种反渗透浓水近零排放的方法,其特征在于,纳滤膜处理系统的进水口与反渗透浓缩分离系统的出口相连;纳滤膜处理系统淡水出水排放到纳滤产水池,之后进入反渗透系统的进水箱或者进水池,纳滤膜处理系统浓水出水口与化学软化系统的进水口相连。
5.根据权利要求1所述的一种反渗透浓水近零排放的方法,纳滤膜处理系统产生的浓盐水经过高压泵进入到化学软化进行酸碱中和,得到中性出水;沉降装置中,酸碱中和的作用时间为10~100min;依据纳滤膜处理系统产生的浓盐水的酸碱性向中和池中加入相应量的酸液或者碱液进入化学软化池进行中和反应,化学软化系统产水的pH值为6.5-7.5。
6.根据权利要求1所述的一种反渗透浓水近零排放的方法:其特征在于,所述钠树脂软化系统包括:强阳型钠离子交换器、钠树脂再生设备和软化水池;其中,所述钠型树脂软化设备设有连接所述化学软化系统产水池的进水管和连接所述钠树脂软化水池的出水管;所述钠树脂软化水池设有连接所述双极膜电渗析器的出水管;所述钠型树脂再生设备设有连接所述反渗透处理区的反渗透浓缩液回流管的回流口和连接蒸发结晶器的再生废水管。
7.根据权利要求1所述的一种反渗透浓水近零排放的方法:其特征在于,所述钠树脂软化出水进入双极膜电渗析装置进行电渗析,产出酸和碱以及双极膜出水;其中,所述双极膜出水回流到未进入所述反渗透浓缩分离系统的原水中;所述产出的部分酸回流到所述原水中,用于调节所述原水酸碱度,剩余部分酸进行回收;所述产出的部分碱回流到经反渗透浓缩分离系统进行浓缩分离得到淡水中,用于调节所述淡水的酸碱度;部分碱回流到所述化学软化系统;剩余部分碱进行回收。
8.根据权利要求1所述的一种反渗透浓水近零排放的方法:其特征在于,双极膜电渗析中使用的双极膜膜堆中的阳极采用钛涂钌电极,阴极采用不锈钢电极;双极膜电渗析采用三隔室组装,每组隔室由一张双极膜、一张均相阴离子交换膜、一张均相阳离子交换膜组成,其中双极膜的阳面与均相阴离子交换膜之间构成酸室,均相阴离子交换膜与均相阳离子交换膜之间构成盐室,均相阳离子交换膜与双极膜的阴面之间构成碱室;双极膜电渗析系统中使用的阴离子交换膜是季铵盐型阴膜的,阳离子交换膜为磺酸型阳膜,双极膜为BPM-1型单片型双极膜。
9.根据权利要求1所述的一种反渗透浓水近零排放的方法:其特征在于,双极膜电渗析装置的盐室进水为经反渗透–纳滤–化学软化-钠树脂软化后的浓盐水,酸室与碱室进水为自来水,极液进水为0.5-2mol/L的Na2SO4溶液;电流密度依据浓盐水含盐量选取,为50-500A/m2,膜表面流速为2-8cm/s;双极膜电渗析装置运行时采用局部进水的方式,使酸室回收的酸液浓度在1%-10%,使碱室回收的碱液浓度在1%-10%;当酸室或者碱室中溶液浓度达到预设值时,则排出,重新进自来水,如此循环;当盐室中废水的浓度,达到预设浓度时,则排出再加入新的处理后的浓盐水废水,循环进行。
CN201710651539.7A 2017-08-02 2017-08-02 一种反渗透浓水近零排放的方法 Active CN107381886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710651539.7A CN107381886B (zh) 2017-08-02 2017-08-02 一种反渗透浓水近零排放的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710651539.7A CN107381886B (zh) 2017-08-02 2017-08-02 一种反渗透浓水近零排放的方法

Publications (2)

Publication Number Publication Date
CN107381886A CN107381886A (zh) 2017-11-24
CN107381886B true CN107381886B (zh) 2021-01-15

Family

ID=60344610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710651539.7A Active CN107381886B (zh) 2017-08-02 2017-08-02 一种反渗透浓水近零排放的方法

Country Status (1)

Country Link
CN (1) CN107381886B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107915364A (zh) * 2017-12-15 2018-04-17 四川迪菲特环保设备有限公司 一种采用物理法且近零排放的制水方法及装置
CN108383336A (zh) * 2018-05-09 2018-08-10 湖北迪曼特科技有限公司 一种铝型材阳极氧化废水处理系统
CN108793522B (zh) * 2018-07-14 2021-03-09 浙江大维高新技术股份有限公司 一种脱硫废水浓缩减量工艺
FR3086842B1 (fr) * 2018-10-09 2020-12-18 Synutra France Int Procede de traitement d'effluents de demineralisation de lactoserum
CN109160645B (zh) * 2018-11-13 2021-06-18 华北理工大学 一种污水有机物及重金属离子降解装置及其污水降解方法
CN109851104A (zh) * 2019-02-21 2019-06-07 北京伟创力科技股份有限公司 一种油气田高含盐废水处理方法及设备
CN109850930B (zh) * 2019-02-27 2021-11-12 新疆智诚同欣环保科技有限公司 一种生产电极箔时废硝酸及废硝酸铝的回收装置及回收方法
CN110038440B (zh) * 2019-05-30 2021-07-27 河北工业大学 一种用于海水脱钙的双极膜电渗析装置及方法
CN110482763A (zh) * 2019-09-11 2019-11-22 北京中科瑞升资源环境技术有限公司 含盐废水的资源化耦合集成系统和资源化方法
CN111377567A (zh) * 2019-10-28 2020-07-07 国电福州发电有限公司 一种利用电渗析资源化利用浓盐水的系统及其方法
CN111268834A (zh) * 2020-03-19 2020-06-12 大唐环境产业集团股份有限公司 一种可资源回收的脱硫废水处理系统及方法
CN111362480A (zh) * 2020-04-03 2020-07-03 中煤能源研究院有限责任公司 一种处理反渗透浓盐水的方法
CN114749026A (zh) * 2021-01-08 2022-07-15 国家能源投资集团有限责任公司 一种水处理膜的离线清洗系统和离线清洗方法
CN113415927A (zh) * 2021-05-28 2021-09-21 清创人和生态工程技术有限公司 一种合成氨有机废水一价盐资源化与零排放工艺
CN113461204A (zh) * 2021-06-30 2021-10-01 国核电力规划设计研究院有限公司 一种热网补充水处理装置和方法
CN115555054A (zh) * 2022-10-18 2023-01-03 西安西热水务环保有限公司 一种工业盐电再生离子交换树脂的系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990016264A (ko) * 1997-08-13 1999-03-05 이구택 분리막 시스템에서 농축수 냉각 및 스케일 제거방법
KR20110008348A (ko) * 2009-07-20 2011-01-27 황필기 막 분리 및 증발법을 이용한 해수 및 이의 농축수 중에 함유된 리튬이온을 고농축시키는 방법 및 이를 위한 장치
CN104445788A (zh) * 2014-12-24 2015-03-25 新疆德蓝股份有限公司 高含盐废水处理回用零排放集成工艺
CN106517603A (zh) * 2015-09-15 2017-03-22 神华集团有限责任公司 一种处理煤化工浓盐水的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990016264A (ko) * 1997-08-13 1999-03-05 이구택 분리막 시스템에서 농축수 냉각 및 스케일 제거방법
KR20110008348A (ko) * 2009-07-20 2011-01-27 황필기 막 분리 및 증발법을 이용한 해수 및 이의 농축수 중에 함유된 리튬이온을 고농축시키는 방법 및 이를 위한 장치
CN104445788A (zh) * 2014-12-24 2015-03-25 新疆德蓝股份有限公司 高含盐废水处理回用零排放集成工艺
CN106517603A (zh) * 2015-09-15 2017-03-22 神华集团有限责任公司 一种处理煤化工浓盐水的方法

Also Published As

Publication number Publication date
CN107381886A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN107381886B (zh) 一种反渗透浓水近零排放的方法
CN104370405B (zh) 一种高硬度高盐分废水零排放的处理方法
AU2013356476B2 (en) Water treatment process
CN101928088B (zh) 一种石化企业反渗透浓水的处理方法
CN104276702B (zh) 一种油气田废水脱盐处理方法
CN101928087B (zh) 一种高盐废水的处理方法
CN105540967A (zh) 一种有机废水减量化、资源化处理方法及处理系统
CN105084587A (zh) 一种高含盐废水的处理方法及设备
CN104445755A (zh) 一种用于氯化铵废水资源化处理的方法
Wenten et al. Integrated processes for desalination and salt production: A mini-review
CN107098530A (zh) 一种氯碱废水正渗透处理系统及处理工艺
US20130126353A1 (en) Electrodialysis with ion exchange and bi-polar electrodialysis
CN105236661A (zh) 零废水排放的制备超纯水的系统和方法
CN105084630A (zh) 一种炼油催化剂废水零排放处理方法
CN104496078A (zh) 一种高盐废水的处理工艺
CN105198141A (zh) 一种高温高盐废水的零排放方法
CN104591456A (zh) 一种高盐氨氮废水的处理方法
CN106746046B (zh) 基于电驱离子膜实现脱硫废液零排放的工艺装置及方法
US20160052812A1 (en) Reject recovery reverse osmosis (r2ro)
US20120080376A1 (en) Use of desalination brine for ion exchange regeneration
RU2383498C1 (ru) Способ получения обессоленной воды и воды высокой чистоты для ядерных энергетических установок научных центров
CN105439346A (zh) 一种高含盐废水自沉淀预处理方法
CN107601729B (zh) 用于钢铁行业浓盐废水零排放处理工艺及系统
CN103224307B (zh) 基于连续式电吸附工艺的海水淡化装置
CN106673144B (zh) 一种具有低脱盐率和高有机物截留率的电纳滤装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant