WO2019109394A1 - 一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统 - Google Patents

一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统 Download PDF

Info

Publication number
WO2019109394A1
WO2019109394A1 PCT/CN2017/117637 CN2017117637W WO2019109394A1 WO 2019109394 A1 WO2019109394 A1 WO 2019109394A1 CN 2017117637 W CN2017117637 W CN 2017117637W WO 2019109394 A1 WO2019109394 A1 WO 2019109394A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation mechanism
wheeled
driving system
magnetic induction
virtual driving
Prior art date
Application number
PCT/CN2017/117637
Other languages
English (en)
French (fr)
Inventor
李竣琪
Original Assignee
李竣琪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李竣琪 filed Critical 李竣琪
Publication of WO2019109394A1 publication Critical patent/WO2019109394A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles

Definitions

  • the invention relates to the field of virtual reality devices, in particular to a mountain-wheeled off-road vehicle virtual driving system with magnetic induction non-contact control.
  • the off-road vehicle is a specially designed car for off-road use.
  • the main features are four-wheel drive, high chassis, good grip tires, high exhaust pipe, large horsepower and large bumper. .
  • these off-road vehicles can travel on poor quality roads or in areas where there is no road at all.
  • the off-road vehicles can not only adapt to various road conditions in the wild, but also give people a rough feeling. The feeling of heroic, so in the city, there are many people who like to drive off-road vehicles.
  • the technical problem to be solved by the present invention is: in order to overcome the above problems, a magnetic four-wheeled off-road vehicle virtual driving system with magnetic induction non-contact control is provided, which has a reasonable structure, simple structure, safety and reliability, purchase and maintenance.
  • the invention has the advantages of low cost, low requirements on the site, simple operation, strong sense of reality, high intelligence, and the like, and effectively solves the problem that the large-scale venue is required for the experience of off-road driving in the prior art.
  • a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system including a frame, a steering simulation mechanism, a pedal simulation mechanism, an environment simulation mechanism, and a hand brake simulation mechanism.
  • the frame includes a base, a rotating support platform, and a helmet;
  • the rotating support platform is disposed above the base, and a plurality of hydraulic cylinders are disposed between the rotating support platform and the base, and two ends of the hydraulic cylinder are respectively hinged with the rotating support platform and the base;
  • the rotating support platform includes a fixed plate provided with an upper open cavity and a movable plate; the rotating support platform is provided with a mounting bracket, and the movable plate and the fixed plate are mutually rotatably connected by a rotating shaft, and the movable plate is provided with Seat and mounting bracket;
  • the steering simulation mechanism is disposed in the mounting bracket, the steering simulation mechanism includes a steering wheel, a first rotating shaft having a hollow structure, a can body and a second rotating shaft; one end of the first rotating shaft is fixedly connected with the steering wheel, first The other end of the rotating shaft is screwed to one end of the second rotating shaft;
  • a first magnet and a second magnet are respectively disposed on both end walls of the inner cavity of the can body, and a third magnet is disposed between the first magnet and the second magnet; and the other end of the second rotating shaft extends into the can
  • the inner cavity and the third magnet are fixedly connected to each other and are slidably connected to the can body; the first rotating shaft and the can body are respectively fixedly connected to the mounting bracket;
  • the pedal simulation mechanism is respectively used for simulating an accelerator pedal and a brake pedal.
  • the pedal simulation mechanism includes a pedal body, a gas pressure rod and a second distance sensor. One end of the pedal body is hinged to the mounting bracket, and the two ends of the gas pressure rod are respectively Hinged to the mounting bracket and the free end of the pedal body;
  • the environmental simulation mechanism is disposed on a mounting bracket, and the environment simulation mechanism includes an air pump, a water tank, an atomizing nozzle disposed in front of the seat, an odor simulation mechanism disposed behind the seat, and an audio device; the air pump, The water tank and the atomizing nozzle are connected in series, and the audio device comprises a speaker and a microphone;
  • the handbrake simulation mechanism includes a casing and a handle brake rod, and the casing is provided with a through groove; one end of the handbrake lever is hinged to the inner cavity of the casing through the second ball joint, and the other end is pierced through the through groove.
  • the base is provided with a controller
  • the steering wheel is provided with a plurality of buttons for controlling the driving position of the automobile.
  • the fixing plate is provided with a circular cavity that is open upward, and a motor is disposed in the inner cavity of the rotating support platform.
  • the bottom of the mounting bracket is provided with a circular rack, and the rack extends into the cavity of the fixing plate and is connected to the motor through the gear.
  • the first magnet is provided with a first distance sensor electrically connected to the controller.
  • a second distance sensor electrically connected to the controller is disposed under the pedal body.
  • the helmet is a virtual reality headset.
  • the odor simulation mechanism includes a mixing tank with a plurality of through holes, an electric heating device disposed in the inner cavity of the mixing box, and a plurality of essential oil containing volatile oil tanks disposed on the electric heating device;
  • a solenoid valve is arranged at the mouth of the volatile tank, and the gas pipe connected to the gas pump penetrates into the mixing tank and is connected with the solenoid valve.
  • the handle brake lever is a hollow structure, and the inner cavity of the handle brake lever is provided with a slide bar and a tension spring; the hand brake lever is provided with a first through slot, the slide bar is provided with a pressure plate, and the pressure plate is from the first The through groove extends and abuts against the fourth magnet; the two ends of the tension spring respectively abut against the inner cavity of the handbrake lever and the sliding bar, and one end of the sliding bar protrudes from the inner cavity of the handbrake.
  • the first through slot is provided with a push switch for controlling the start and suspension of the virtual driving system.
  • the utility model has the beneficial effects of: a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system, comprising a frame, a steering simulation mechanism, a pedal simulation mechanism, an environment simulation mechanism and a hand brake simulation mechanism, and the whole system equipment is set on the machine Above the rack, the off-road driving operation is simulated by the steering simulation mechanism, the pedal simulation mechanism, the environmental simulation mechanism, and the hand brake simulation mechanism, and the controller collects the manipulation information generated by each mechanism to generate operation instructions for each mechanism to simulate the off-road driving.
  • FIG. 1 is a schematic view showing the overall structure of a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system according to the present invention
  • FIG. 2 is a schematic structural view of an odor simulation mechanism of a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system according to the present invention
  • FIG. 3 is a schematic structural view of a steering simulation mechanism of a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system according to the present invention
  • FIG. 4 is a schematic diagram of a steering wheel structure of a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system according to the present invention
  • FIG. 5 is a schematic structural view of a pedal simulating mechanism of a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system according to the present invention
  • FIG. 6 is a schematic structural view of a hand brake simulation mechanism of a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system according to the present invention
  • FIG. 7 is a partial cross-sectional structural diagram of a hand brake simulation mechanism of a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system according to the present invention.
  • Fig. 8 is a schematic view showing the connection structure between the controller and the devices of the virtual four-wheeled off-road vehicle virtual driving system of the magnetic induction non-contact control according to the present invention.
  • a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system includes a frame 1, a steering simulation mechanism 2, a pedal simulation mechanism 3, an environment simulation mechanism 4, and a hand brake simulation mechanism 5,
  • the frame 1 includes a base 11, a rotating support platform 13 and a helmet 6; as a preferred solution, the helmet 6 is a virtual reality head mounted device, and the base 11 is provided with a controller 16 and a controller 16
  • the simulated off-road driving virtual screen is transmitted through the helmet 6 to the eyes of the experience person.
  • the rotating support platform 13 is disposed above the base 11, and a plurality of hydraulic cylinders 12 are disposed between the rotating support platform 13 and the base 11.
  • the two ends of the hydraulic cylinder 12 are respectively hinged to the rotating support platform 13 and the base 11;
  • the hydraulic cylinder 12 functions as a left, right, front, rear, up, and down motion of the rotating support platform 13 under the control of the controller to simulate the bump, collision, and the like of the off-road vehicle during driving.
  • the rotating support platform 13 includes a fixing plate 131 provided with an upper opening cavity and a movable plate 132.
  • the fixing plate 131 is provided with a circular cavity that is open upward, and the inner cavity of the rotating support platform 13 is disposed.
  • the bottom of the mounting bracket 14 is provided with a circular rack 144.
  • the rack 144 extends into the cavity of the fixing plate 131 and is coupled to the motor 133 via a gear.
  • the rotating support platform 13 is provided with a mounting bracket 14 .
  • the movable plate 132 and the fixed plate 131 are rotatably connected to each other through the rotating shaft 15 , and the movable plate 132 is provided with a seat 17 and a mounting bracket 14 ;
  • the chair not only the left, right, front, rear, up, and down motion simulations brought about by the hydraulic cylinder 12 can be experienced, but also the steering motion can be simulated by the rotation of the rotary support platform 13.
  • the steering simulation mechanism 2 is disposed on the mounting bracket 14, and the steering simulation mechanism 2 includes a steering wheel 21, a first rotating shaft 22 having a hollow structure, a can body 23, and a second rotating shaft 24; one end of the first rotating shaft 22 is The driving shaft 21 is fixedly connected to each other, and the other end of the first rotating shaft 22 is screwed to one end of the second rotating shaft 24;
  • a first magnet 231 and a second magnet 232 are respectively disposed on both end walls of the inner cavity of the can body 23, and a third magnet 241 is disposed between the first magnet 231 and the second magnet 232; the second shaft The other end of the sleeve 24 extends into the inner cavity of the can body 23 and is fixedly connected to the third magnet 241, and is slidably connected to the can body 23; the first rotating shaft 22 and the can body 23 are fixedly connected to the mounting bracket 14 respectively.
  • the polarity of the surface of the third magnet 241 opposite to the first magnet 231 and the second magnet 232 should be the same as the surface polarity of the first magnet 231 and the second magnet 232 with respect to the third magnet 241 to generate mutual rejection of the simulated steering resistance. force. Further, the third magnet 241 is not in direct contact with the first magnet 231 and the second magnet 232, and wear is reduced.
  • the steering wheel 21 is provided with a plurality of buttons 211 for controlling the driving position of the automobile; in an embodiment, the helmet 6 is provided with a camera connected to the display device on the helmet, and the experience person can see the button through the camera. 211 location.
  • the first magnet 231 is provided with a first distance sensor 25 electrically connected to the controller 16, and the first distance sensor 25 senses the up and down movement of the third magnet 241 to obtain the angle and direction of the steering.
  • the controller controls the rotary support platform 13 and the hydraulic cylinder 12 to operate to simulate steering.
  • the pedal simulation mechanism 3 is used for simulating an accelerator pedal and a brake pedal, respectively.
  • the pedal simulation mechanism 3 includes a pedal body 31, a gas pressure rod 32, and a second distance sensor 33.
  • One end of the pedal body 31 is hinged to the mounting bracket 14
  • the two ends of the air pressure lever 32 are respectively hinged with the mounting bracket 14 and the free end of the pedal body 31.
  • a second distance sensor 33 electrically connected to the controller 16 is disposed below the pedal body 31, a second distance sensor 33 electrically connected to the controller 16 is disposed.
  • the second distance sensor 33 detects the movement of the pedal body 31 to the controller to penetrate the distance information on which the pedal is depressed, and simulates the operation effect of the clutch pedal or the accelerator being depressed.
  • the environmental simulation mechanism 4 is disposed on the mounting bracket 14.
  • the environment simulation mechanism 4 includes an air pump 41, a water tank 42, an atomizing nozzle 43 disposed in front of the seat 17, and an odor simulation mechanism 44 disposed behind the seat 17.
  • the audio device 45; the air pump 41, the water tank 42, and the atomizing nozzle 43 are sequentially connected in series to simulate the rain, water mist, and the like of the scene selected by the experiencer;
  • the audio device 45 includes a speaker and a microphone.
  • the scent simulation mechanism 44 includes a mixing tank 441 having a plurality of through holes 442, an electric heating device 443 disposed in the inner cavity of the mixing box 441, and a plurality of essential oil volatile pots 444 disposed on the electric heating device;
  • the essential oil volatilization tank 444 is provided with a solenoid valve 445, and the gas pipe 446 communicating with the air pump 41 penetrates into the mixing tank 441 and is connected to the electromagnetic valve 445. According to the experience scene selected by the experience personnel, the essential oil corresponding to the odor volatilizes the essential oil under the action of the heating device, and the essential oil is blown to the experience person through the air pump to perform odor simulation.
  • the hand brake simulation mechanism 5 includes a housing 51 and a hand brake lever 52.
  • the housing 51 is provided with a through slot; one end of the handle brake lever 52 is hinged to the inner cavity of the housing 51 through the second ball hinge 55, and One end is through the through slot.
  • the handle brake rod 52 is a hollow structure, and the inner cavity of the handle brake rod 52 is provided with a slide rod 53 and a tension spring 54.
  • the handle brake rod 52 is provided with a first through groove 521, and the slide rod 53 is provided with a pressure plate 531.
  • the pressure plate 531 protrudes from the first through groove 521 and abuts against the fourth magnet 511; the two ends of the tension spring 54 respectively abut against the inner cavity of the handbrake rod 52 and the sliding rod 53, and one end of the sliding rod 53 is from the handbrake
  • the inner cavity of the pull rod 52 extends.
  • the resistance between the hand brake 531 and the fourth magnet 511 is the resistance when the hand brake is pulled.
  • the first through slot 521 is provided with a push switch 56 for controlling the start and suspension of the virtual driving system.
  • the invention relates to a magnetic induction non-contact controlled mountain four-wheeled off-road vehicle virtual driving system, comprising a frame, a steering simulation mechanism, a pedal simulation mechanism, an environment simulation mechanism and a hand brake simulation mechanism, and the whole system equipment is arranged on the frame. Then, the off-road driving operation is simulated by the steering simulation mechanism, the pedal simulation mechanism, the environmental simulation mechanism, and the hand brake simulation mechanism, and the controller collects the manipulation information generated by each mechanism to generate operation instructions for each mechanism to simulate the off-road driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Braking Elements And Transmission Devices (AREA)

Abstract

一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,包括机架(1)、转向模拟机构(2)、踏板模拟机构(3)、环境模拟机构(4)以及手刹模拟机构(5),其特征是:机架(1)包括底座(11)、旋转支撑平台(13)以及头盔(6);旋转支撑平台(13)与底座(11)之间设置若干液压缸(12);旋转支撑平台(13)上设置有座椅(17)以及安装支架(14);转向模拟机构(2)设置在安装支架(14)内,环境模拟机构(4)设置在安装支架(14)上。该系统结构合理,具有结构简单、安全可靠、购买和维护成本低、对场地要求低、操作简单、真实感强、智能化程度高等优点,有效解决了现有技术中体验越野驾驶需要大型场地的问题。

Description

一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统 技术领域
本发明涉及虚拟现实设备领域,尤其是涉及一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统。
背景技术
越野车是一种为越野而特别设计的汽车,主要特点是四轮驱动,较高的底盘、较好抓地性的轮胎、较高的排气管、较大的马力和粗大结实的保险杠。越野车作为军用汽车大家族中的成员,这些汽车能在质量很差的路面或者根本没有路的地区和战场上行驶,越野车不但可以在野外适应各种路面状况,而且给人一种粗狂豪迈的感觉,因而在城市里,也有很多的人喜欢开越野车。
然而在城市中道路平坦,无法体验越野的乐趣,所以一旦想要体验越野驾驶,就需要到特定的场地或者驱车到野外,特定的场地范围有限,而将车开到野外又有一定的危险性;另一方面,由于越野车本身单价较高、耗油量大,购买和维护成本较高,越野驾驶有一定的技术、生理以及心理要求要求,并且具有一定危险性,并不是所有想体验越野驾驶的人员都能如愿以偿。所以有必要发明一种安全可靠、购买和维护成本低、对场地要求低、操作简单的越野车虚拟驾驶系统。
发明内容
本发明要解决的技术问题是:为了克服上述中存在的问题,提供了一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其结构合理,具有结构简单、安全可靠、购买和维护成本低、对场地要求低、操作简单、真实感强、智能化程度高等优点,有效解决现有技术中体验越野驾驶需要大型场地的问题。
本发明解决其技术问题所采用的技术方案是:一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,包括机架、转向模拟机构、踏板模拟机构、环境模拟机构以及手刹模拟机构,所述的机架包括底座、旋转支撑平台以及头盔;
所述的旋转支撑平台是设置在底座上方,并在旋转支撑平台与底座之间设置若干液压缸,液压缸的两端是分别与旋转支撑平台、底座相互铰接;
所述的旋转支撑平台包括设置有上开口空腔的固定板以及活动板;所述的旋转支撑平台上设置有安装支架,活动板与固定板是通过转轴相互旋转连接,且活动板上设置有座椅以及安装支架;
所述的转向模拟机构是设置在安装支架内,转向模拟机构包括方向盘、具有中空结构的第一转轴、罐体以及第二转轴;所述第一转轴的一端是与方向盘相互固定连接,第一转轴的另一端是与第二转轴的一端相互螺纹连接;
所述罐体内腔的两端壁面上分别设置有第一磁铁、第二磁铁,并在第一磁铁、第二磁铁之间设置有第三磁铁;所述第二转轴的另一端是伸入罐体内腔与第三磁铁相互固定连接,并与罐体相互滑动连接;所述的第一转轴、罐体是分别与安装支架相互固定连接;
所述的踏板模拟机构是分别用于模拟油门踏板、刹车踏板,踏板模拟机构包括踏板本体、气压杆以及第二距离感应器,踏板本体的一端是与安装支架相互铰接,气压杆的两端分别与安装支架、踏板本体的自由端相互铰接;
所述的环境模拟机构是设置在安装支架上,环境模拟机构包括气泵、水罐、设置在座椅前方的雾化喷头、设置在座椅后方的气味模拟机构以及音频装置;所述的气泵、水罐、雾化喷头是依次串联,所述的音频装置包括扬声器和麦克风;
所述的手刹模拟机构包括外壳以及手刹拉杆,所述的外壳上设置有通槽; 所述的手刹拉杆的一端是通过第二球铰与外壳内腔相互铰接,另一端是穿出通槽。
进一步地,所述的底座上设置有控制器,所述的方向盘上设置有用于控制汽车行驶档位的若干按键。
进一步地,所述的固定板上设置有向上开口的圆形空腔,旋转支撑平台的内腔中设置有电机。
进一步地,所述的安装支架底部设置有圆形齿条,齿条是伸入固定板的空腔内并与电机通过齿轮相互传动连接。
进一步地,所述的第一磁铁上设置有与控制器相互电连接的第一距离感应器。
进一步地,所述的踏板本体下方设置有与控制器相互电连接的第二距离感应器。
进一步地,所述的头盔是采用虚拟现实头戴式设备。
进一步地,所述的气味模拟机构包括一个带有若干通孔的混合箱体、设置在混合箱体内腔的电加热装置以及设置在电加热装置上的若干装有精油挥发罐;所述的精油挥发罐罐口设置有电磁阀,与气泵相互联通的输气管穿入混合箱体并与电磁阀相互连接。
进一步地,所述的手刹拉杆是中空结构,手刹拉杆的内腔设置有滑杆以及张紧弹簧;所述的手刹拉杆上设置有第一通槽,滑杆上设置有压板,压板从第一通槽伸出并与第四磁铁相互抵接的;张紧弹簧两端分别与手刹拉杆内腔、滑杆相互抵接,且滑杆一端从手刹拉杆内腔伸出。
进一步地,所述的第一通槽上设置有用于控制所述虚拟驾驶系统开始以及暂停运作的按压式开关。
本发明的有益效果是:一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,包括机架、转向模拟机构、踏板模拟机构、环境模拟机构以及手刹模 拟机构,整套系统设备设置于机架之上,再通过转向模拟机构、踏板模拟机构、环境模拟机构以及手刹模拟机构模拟越野驾驶操作,并由控制器收集各机构传入的操控信息生成操作指令对各机构进行操作,模拟越野驾驶时越野车的运行状态,由于这一系列过程在机架上完成,所以对场地的要求不高;其结构合理,具有结构简单、安全可靠、购买和维护成本低、对场地要求低、操作简单、真实感强、智能化程度高等优点,有效解决现有技术中体验越野驾驶需要大型场地的问题。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明所述一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统的整体结构示意图;
图2是本发明所述一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统的气味模拟机构结构示意图;
图3是本发明所述一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统的转向模拟机构结构示意图;
图4是本发明所述一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统的方向盘结构示意图;
图5是本发明所述一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统的踏板模拟机构结构示意图;
图6是本发明所述一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统的手刹模拟机构结构示意图;
图7是本发明所述一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统的手刹模拟机构部分剖面结构示意图;
图8是本发明所述一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系 统的控制器与各设备连接结构示意图。
附图中标记分述如下:1、机架,11、底座,12、液压缸,13、旋转支撑平台,131、固定板,132、活动板,133、电机,14、安装支架,144、齿条,15、转轴,16、控制器,17、座椅,2、转向模拟机构,21、方向盘,211、按键,22、第一转轴,23、罐体,231、第一磁铁,232、第二磁铁,24、第二转轴,241、第三磁铁,25、第一距离感应器,3、踏板模拟机构,31、踏板本体,32、气压杆,33、第二距离感应器,4、环境模拟机构,41、气泵,42、水罐,43、雾化喷头,44、气味模拟机构,441、混合箱体,442、通孔,443、电加热装置,444、精油挥发罐,445、电磁阀,446、输气管,45、音频装置,5、手刹模拟机构,51、外壳,511、第四磁铁,52、手刹拉杆,521、第一通槽,53、滑杆,531、压板,54、张紧弹簧,55、第二球铰,56、按压式开关,6、头盔。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1至8所示的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,包括机架1、转向模拟机构2、踏板模拟机构3、环境模拟机构4以及手刹模拟机构5,所述的机架1包括底座11、旋转支撑平台13以及头盔6;作为一种优选的方案头盔6是采用虚拟现实头戴式设备,所述的底座11上设置有控制器16,控制器16将模拟的越野驾驶虚拟画面通过头盔6传送到体验人员眼中。
所述的旋转支撑平台13是设置在底座11上方,并在旋转支撑平台13与底座11之间设置若干液压缸12,液压缸12的两端是分别与旋转支撑平台13、底座11相互铰接;液压缸12只要作用是在控制器的控制下,对旋转支撑平台13进行左、右、前、后、上、下动作,模拟越野车在行驶过程中的颠簸、冲撞等状况。
所述的旋转支撑平台13包括设置有上开口空腔的固定板131以及活动板132;所述的固定板131上设置有向上开口的圆形空腔,旋转支撑平台13的内腔中设置有电机133。所述的安装支架14底部设置有圆形齿条144,齿条144是伸入固定板131的空腔内并与电机133通过齿轮相互传动连接。所述的旋转支撑平台13上设置有安装支架14,活动板132与固定板131是通过转轴15相互旋转连接,且活动板132上设置有座椅17以及安装支架14;即体验人员坐在座椅上时不但可以体验到液压缸12所带来的左、右、前、后、上、下的动作模拟以外,还能通过旋转支撑平台13的转动模拟转向动作。
所述的转向模拟机构2是设置在安装支架14上,转向模拟机构2包括方向盘21、具有中空结构的第一转轴22、罐体23以及第二转轴24;所述第一转轴22的一端是与方向盘21相互固定连接,第一转轴22的另一端是与第二转轴24的一端相互螺纹连接;
所述罐体23内腔的两端壁面上分别设置有第一磁铁231、第二磁铁232,并在第一磁铁231、第二磁铁232之间设置有第三磁铁241;所述第二转轴24的另一端是伸入罐体23内腔与第三磁铁241相互固定连接,并与罐体23相互滑动连接;所述的第一转轴22、罐体23是分别与安装支架14相互固定连接;第三磁铁241与第一磁铁231、第二磁铁232相对面的极性应与第一磁铁231、第二磁铁232相对第三磁铁241的面极性相同,以产生模拟转向阻力的相互排斥力。此外第三磁铁241与第一磁铁231、第二磁铁232并不直接接触,减少了磨损。
所述的方向盘21上设置有用于控制汽车行驶档位的若干按键211;在一种实施例中,头盔6上应设置有与头盔上的显示装置连通的摄像头,体验人员可以通过摄像头看清按键211的位置。
所述的第一磁铁231上设置有与控制器16相互电连接的第一距离感应器25,通过第一距离感应器25感应第三磁铁241的上下运动得出转向的角度、方向,并由控制器控制旋转支撑平台13和液压缸12动作模拟转向。
所述的踏板模拟机构3是分别用于模拟油门踏板、刹车踏板,踏板模拟机构3包括踏板本体31、气压杆32以及第二距离感应器33,踏板本体31的一端是与安装支架14相互铰接,气压杆32的两端分别与安装支架14、踏板本体31的自由端相互铰接;所述的踏板本体31下方设置有与控制器16相互电连接的第二距离感应器33。通过第二距离感应器33检测踏板本体31的运动向控制器穿入踏板被踩下的距离信息,模拟离合踏板或者油门被踩下的操作效果。
所述的环境模拟机构4是设置在安装支架14上,环境模拟机构4包括气泵41、水罐42、设置在座椅17前方的雾化喷头43、设置在座椅17后方的气味模拟机构44以及音频装置45;所述的气泵41、水罐42、雾化喷头43是依次串联,模拟体验人员所选场景的下雨、水雾等情况;所述的音频装置45包括扬声器和麦克风。
所述的气味模拟机构44包括一个带有若干通孔442的混合箱体441、设置在混合箱体441内腔的电加热装置443以及设置在电加热装置上的若干装有精油挥发罐444;所述的精油挥发罐444罐口设置有电磁阀445,与气泵41相互联通的输气管446穿入混合箱体441并与电磁阀445相互连接。根据体验人员选择的体验场景,对应气味的精油在加热装置的作用下使精油挥发,通过气泵将精油吹向体验人员,进行气味模拟。
所述的手刹模拟机构5包括外壳51以及手刹拉杆52,所述的外壳51上设置有通槽;所述的手刹拉杆52的一端是通过第二球铰55与外壳51内腔相互铰接,另一端是穿出通槽。
所述的手刹拉杆52是中空结构,手刹拉杆52的内腔设置有滑杆53以及张紧弹簧54;所述的手刹拉杆52上设置有第一通槽521,滑杆53上设置有压板531,压板531从第一通槽521伸出并与第四磁铁511相互抵接的;张紧弹簧54两端分别与手刹拉杆52内腔、滑杆53相互抵接,且滑杆53一端从手刹拉杆52内腔伸出。通过压板531与第四磁铁511之间的阻力手刹在拉动时的阻力。
所述的第一通槽521上设置有用于控制所述虚拟驾驶系统开始以及暂停运作的按压式开关56。
本发明所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,包括机架、转向模拟机构、踏板模拟机构、环境模拟机构以及手刹模拟机构,整套系统设备设置于机架之上,再通过转向模拟机构、踏板模拟机构、环境模拟机构以及手刹模拟机构模拟越野驾驶操作,并由控制器收集各机构传入的操控信息生成操作指令对各机构进行操作,模拟越野驾驶时越野车的运行状态,由于这一系列过程在机架上完成,所以对场地的要求不高;其结构合理,具有结构简单、安全可靠、购买和维护成本低、对场地要求低、操作简单、真实感强、智能化程度高等优点,有效解决现有技术中体验越野驾驶需要大型场地的问题。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,包括机架(1)、转向模拟机构(2)、踏板模拟机构(3)、环境模拟机构(4)以及手刹模拟机构(5),其特征是:所述的机架(1)包括底座(11)、旋转支撑平台(13)以及头盔(6);
    所述的旋转支撑平台(13)是设置在底座(11)上方,并在旋转支撑平台(13)与底座(11)之间设置若干液压缸(12),液压缸(12)的两端是分别与旋转支撑平台(13)、底座(11)相互铰接;
    所述的旋转支撑平台(13)包括设置有上开口空腔的固定板(131)以及活动板(132);所述的旋转支撑平台(13)上设置有安装支架(14),活动板(132)与固定板(131)是通过转轴(15)相互旋转连接,且活动板(132)上设置有座椅(17)以及安装支架(14);
    所述的转向模拟机构(2)是设置在安装支架(14)内,转向模拟机构(2)包括方向盘(21)、具有中空结构的第一转轴(22)、罐体(23)以及第二转轴(24);所述第一转轴(22)的一端是与方向盘(21)相互固定连接,第一转轴(22)的另一端是与第二转轴(24)的一端相互螺纹连接;
    所述罐体(23)内腔的两端壁面上分别设置有第一磁铁(231)、第二磁铁(232),并在第一磁铁(231)、第二磁铁(232)之间设置有第三磁铁(241);所述第二转轴(24)的另一端是伸入罐体(23)内腔与第三磁铁(241)相互固定连接,并与罐体(23)相互滑动连接;所述的第一转轴(22)、罐体(23)是分别与安装支架(14)相互固定连接;
    所述的踏板模拟机构(3)是分别用于模拟油门踏板、刹车踏板,踏板模拟机构(3)包括踏板本体(31)、气压杆(32)以及第二距离感应器(33),踏板本体(31)的一端是与安装支架(14)相互铰接,气压杆(32)的两端分别与安装支架(14)、踏板本体(31)的自由端相互铰接;
    所述的环境模拟机构(4)是设置在安装支架(14)上,环境模拟机构(4)包括气泵(41)、水罐(42)、设置在座椅(17)前方的雾化喷头(43)、设置在 座椅(17)后方的气味模拟机构(44)以及音频装置(45);所述的气泵(41)、水罐(42)、雾化喷头(43)是依次串联,所述的音频装置(45)包括扬声器和麦克风;
    所述的手刹模拟机构(5)包括外壳(51)以及手刹拉杆(52),所述的外壳(51)上设置有通槽;所述的手刹拉杆(52)的一端是通过第二球铰(55)与外壳(51)内腔相互铰接,另一端是穿出通槽。
  2. 根据权利要求1所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其特征是:所述的底座(11)上设置有控制器(16),所述的方向盘(21)上设置有用于控制汽车行驶档位的若干按键(211)。
  3. 根据权利要求1所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其特征是:所述的固定板(131)上设置有向上开口的圆形空腔,旋转支撑平台(13)的内腔中设置有电机(133)。
  4. 根据权利要求1所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其特征是:所述的安装支架(14)底部设置有圆形齿条(144),齿条(144)是伸入固定板(131)的空腔内并与电机(133)通过齿轮相互传动连接。
  5. 根据权利要求4所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其特征是:所述的第一磁铁(231)上设置有与控制器(16)相互电连接的第一距离感应器(25)。
  6. 根据权利要求2所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其特征是:所述的踏板本体(31)下方设置有与控制器(16)相互电连接的第二距离感应器(33)。
  7. 根据权利要求7所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其特征是:所述的头盔(6)是采用虚拟现实头戴式设备。
  8. 根据权利要求1所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其特征是:所述的气味模拟机构(44)包括一个带有若干通孔(442) 的混合箱体(441)、设置在混合箱体(441)内腔的电加热装置(443)以及设置在电加热装置上的若干装有精油挥发罐(444);所述的精油挥发罐(444)罐口设置有电磁阀(445),与气泵(41)相互联通的输气管(446)穿入混合箱体(441)并与电磁阀(445)相互连接。
  9. 根据权利要求1所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其特征是:所述的手刹拉杆(52)是中空结构,手刹拉杆(52)的内腔设置有滑杆(53)以及张紧弹簧(54);所述的手刹拉杆(52)上设置有第一通槽(521),滑杆(53)上设置有压板(531),压板(531)从第一通槽(521)伸出并与第四磁铁(511)相互抵接的;张紧弹簧(54)两端分别与手刹拉杆(52)内腔、滑杆(53)相互抵接,且滑杆(53)一端从手刹拉杆(52)内腔伸出。
  10. 根据权利要求1所述的一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统,其特征是:所述的第一通槽(521)上设置有用于控制所述虚拟驾驶系统开始以及暂停运作的按压式开关(56)。
PCT/CN2017/117637 2017-12-05 2017-12-21 一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统 WO2019109394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711270205.1A CN107767728B (zh) 2017-12-05 2017-12-05 一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统
CN201711270205.1 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019109394A1 true WO2019109394A1 (zh) 2019-06-13

Family

ID=61277604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117637 WO2019109394A1 (zh) 2017-12-05 2017-12-21 一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统

Country Status (2)

Country Link
CN (1) CN107767728B (zh)
WO (1) WO2019109394A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389460B (zh) * 2018-03-26 2020-09-08 谢文丽 一种用于体验载人飞行器逃生的牵引伞型弹射座椅模拟器
CN109003503B (zh) * 2018-07-12 2020-08-04 武汉昱然智能科技有限公司 一种基于家用汽车vr虚拟驾驶体验装置
CN109035959B (zh) * 2018-09-12 2020-11-13 重庆电子工程职业学院 一种汽车自动驾驶模拟实训装置
CN113570935A (zh) * 2021-07-16 2021-10-29 上海炫伍科技股份有限公司 一种驾驶模拟器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201170931Y (zh) * 2007-12-03 2008-12-24 周德俊 室内越野车模拟驾驶系统
US20150024347A1 (en) * 2013-07-18 2015-01-22 Daegu Gyeongbuk Institute Of Science And Technology Driving simulator apparatus and method of driver rehabilitation training using the same
CN204680247U (zh) * 2015-06-01 2015-09-30 温州大学瓯江学院 汽车辅导驾驶教学设备
CN106448330A (zh) * 2016-11-10 2017-02-22 赵兵 用于虚拟驾驶的机电系统及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10031336B2 (en) * 2016-01-26 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Image display device
CN106802650B (zh) * 2017-03-28 2018-09-25 吉林大学 电动客车集成控制硬件在环测试平台及测试方法
CN208689775U (zh) * 2017-12-05 2019-04-02 李竣琪 一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201170931Y (zh) * 2007-12-03 2008-12-24 周德俊 室内越野车模拟驾驶系统
US20150024347A1 (en) * 2013-07-18 2015-01-22 Daegu Gyeongbuk Institute Of Science And Technology Driving simulator apparatus and method of driver rehabilitation training using the same
CN204680247U (zh) * 2015-06-01 2015-09-30 温州大学瓯江学院 汽车辅导驾驶教学设备
CN106448330A (zh) * 2016-11-10 2017-02-22 赵兵 用于虚拟驾驶的机电系统及其控制方法

Also Published As

Publication number Publication date
CN107767728A (zh) 2018-03-06
CN107767728B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
WO2019109394A1 (zh) 一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统
US20070118261A1 (en) Vehicle for simulating impaired driving
CN106023714A (zh) 模拟驾驶考试系统
CN206133992U (zh) 汽车模拟驾驶系统
CN202736334U (zh) 汽车驾驶模拟器
CN107862935A (zh) 一种智能汽车模拟驾驶装置
CN1873734B (zh) 自行车模拟系统
CN111161586A (zh) 救援车仿真模拟训练装置及操作方法
CN203324718U (zh) 一种用于车辆驾驶模拟器的信号采集与传输控制板
JP4461058B2 (ja) 自転車シミュレーション装置
CN113129681A (zh) 一种虚拟驾驶系统及车辆
CN202939834U (zh) 两自由度动感汽车驾驶安全培训装置
CN114377380A (zh) 模拟现实的赛车驾驶操控系统及其实现方法
CN207909369U (zh) 一种基于vr的危险预测教育系统
CN205388845U (zh) 校园智能学生驾驶模拟训练机
CN205736965U (zh) 一种机动车辆的摇杆式直动控制装置
CN203552502U (zh) 一种三维模拟仿真驾驶装置
CN208689775U (zh) 一种磁感应非接触式控制的山地四轮越野车虚拟驾驶系统
CN204720014U (zh) 汽车驾驶训练模拟机
CN210574618U (zh) 一种汽车模拟体验仓
CN105957439A (zh) 一种模拟汽车气压制动系统的实验装置
CN201906454U (zh) 模拟驾驶游戏机
CN203325251U (zh) 一种汽车驾驶模拟器
CN203025986U (zh) 一种室内汽车模拟驾驶装置
CN205959453U (zh) 一种手动挡车辆起步训练机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17934287

Country of ref document: EP

Kind code of ref document: A1