WO2019109240A1 - 微透镜的制造方法和微透镜 - Google Patents

微透镜的制造方法和微透镜 Download PDF

Info

Publication number
WO2019109240A1
WO2019109240A1 PCT/CN2017/114581 CN2017114581W WO2019109240A1 WO 2019109240 A1 WO2019109240 A1 WO 2019109240A1 CN 2017114581 W CN2017114581 W CN 2017114581W WO 2019109240 A1 WO2019109240 A1 WO 2019109240A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens
manufacturing
silicon template
cavity structure
silicon
Prior art date
Application number
PCT/CN2017/114581
Other languages
English (en)
French (fr)
Inventor
姚国峰
沈健
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2017/114581 priority Critical patent/WO2019109240A1/zh
Priority to CN201780001976.2A priority patent/CN108139507A/zh
Publication of WO2019109240A1 publication Critical patent/WO2019109240A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method

Definitions

  • Embodiments of the present application relate to the field of microlens manufacturing, and more particularly, to a method of manufacturing a microlens and a microlens.
  • Micro Lens can refer to microlenses having a size between one micrometer and several hundred micrometers.
  • An array of microlenses in a certain order may be referred to as a microlens array.
  • microlenses array
  • microlenses can realize the functions of focusing and collimating the light source, and have important and wide applications in the field of semiconductor optoelectronics.
  • the existing technologies for manufacturing microlenses mainly include photoresist reflow technology, mold imprint technology, reactive ion etching technology and gray mask technology, each of which has its own advantages and disadvantages, for example, photoresist.
  • the reflow technology has a simple process and low cost, but can not achieve precise control of the shape of the microlens.
  • the mold imprint technology can control the shape of the lens, but it is only suitable for processing large-sized lenses, and is not suitable for processing lens arrays and small sizes. Lens. Therefore, there is a need for a new method of fabricating microlenses that combines the requirements of topography control of microlenses, process cost, and compatibility with wafer level processes.
  • the embodiments of the present application provide a method for manufacturing a microlens and a microlens, which can meet the requirements of the morphology control of the microlens, the process cost, and the compatibility of the wafer level process.
  • a method of manufacturing a microlens comprising:
  • the silicon template is removed to obtain a target microlens assembly.
  • the silicon structure is etched by using an isotropic etching process to obtain a cavity structure by using the processability of silicon, and the lens structure is filled into the cavity structure. Controlling the appearance of the lens can be achieved, further connecting the substrate to the upper surface of the filled lens material to achieve the combination of the substrate and the lens material, and removing the silicon template to obtain the microlens or microlens array on the substrate, thereby enabling A combination of process cost, topographical control, and wafer-level process compatibility.
  • the microlens is fabricated by using a silicon wafer as a template, and therefore, it can be used for manufacturing microlenses, microlens arrays, and small-sized lenses, and can only be used for manufacturing large relative to existing mold imprinting techniques.
  • the size of the lens, the method of manufacturing the microlens of the embodiment of the present application can be applied to the manufacture of microlenses in a wafer level process.
  • the method for manufacturing the microlens according to the embodiment of the present application as long as the polymer having good optical properties can be selected in the lens selection, there is no photoresist reflow technique, reactive ion etching technology, and gray mask technology. Limitations of lens selection in technology.
  • the substrate is bonded to the upper surface of the filled lens material by bonding or bonding; or if the lens material is silicon-free material The substrate is bonded to the upper surface of the filled lens material by adhesive means.
  • the first microlens region is a single circular region
  • the cavity structure is a spherical cap type cavity structure
  • the target microlens assembly is a single microlens assembly.
  • the first microlens region is a circular pattern array
  • the cavity structure is a spherical cap cavity array
  • the target microlens assembly is an array of microlens assemblies.
  • the shape of the first lenticular region may also be other shapes, such as an ellipse, a square, or a triangle.
  • the method prior to preparing the hydrophobized film, the method further comprises:
  • the second microlens region may be etched using a Bosch process to form trenches.
  • the second microlens region is annular, and the trench is a ring Shaped groove.
  • the method further includes:
  • a burr is removed from the first surface of the silicon template and the inner surface of the cavity structure.
  • the method further includes:
  • the lens material filled in the silicon template is planarized and cured.
  • the patterning the first surface of the silicon template to obtain the first microlens area includes:
  • a portion of the photoresist on the silicon template is removed using an exposure development process to obtain the first microlens region.
  • a microlens prepared according to the method of manufacturing a microlens according to the first aspect and any one of the possible implementations of the first aspect.
  • FIG. 1 is a schematic flow chart of a method of fabricating a microlens according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the formation of a microlens appearance in accordance with an embodiment of the present application.
  • FIG 3 is a schematic view of a cavity structure formed in accordance with an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the formation of a hydrophobized film in accordance with an embodiment of the present application.
  • FIG. 5 is a schematic illustration of a filled lens material in accordance with an embodiment of the present application.
  • FIG. 6 is a schematic illustration of bonding of a substrate and a lens material in accordance with an embodiment of the present application.
  • FIG. 7 is a schematic illustration of a demolded lens assembly in accordance with an embodiment of the present application.
  • FIG. 8 is a schematic view of forming a cavity structure in accordance with another embodiment of the present application.
  • FIG. 9 is a schematic view of forming a trench structure in accordance with another embodiment of the present application.
  • Figure 10 is a schematic illustration of a filled lens material in accordance with another embodiment of the present application.
  • Figure 11 is a schematic illustration of bonding of a substrate and a lens material in accordance with another embodiment of the present application.
  • Figure 12 is a schematic illustration of a demolded lens assembly in accordance with another embodiment of the present application.
  • FIG. 13 is a schematic diagram of an application scenario of a microlens according to another embodiment of the present application.
  • FIG. 1 is a schematic flow chart of a method 100 of fabricating a microlens according to an embodiment of the present application.
  • FIG. 1 shows the main steps or operations of the manufacturing method of the microlens of the embodiment of the present application, but these steps or operations are merely examples, and other operations of the present application or various operations of FIG. 1 may be performed.
  • the various steps in FIG. 1 may be performed in a different order than that presented in FIG. 1, and it is possible that not all operations in FIG. 1 are to be performed.
  • the method 100 includes the following:
  • the silicon template can be a template made of a single crystal silicon material, that is, the embodiment of the present application uses a silicon wafer as a template to manufacture the microlens, and thus can be used to manufacture microlenses and microlenses. Arrays and small-sized lenses can only be used to manufacture large-sized lenses with respect to existing mold imprinting techniques.
  • the manufacturing method of the microlenses of the embodiments of the present application can be applied to microlens manufacturing in a wafer level process.
  • the first surface of the silicon template may be patterned by photolithography to obtain a desired lens shape, that is, a first microlens area. More specifically, the photoresist may be spin-coated on the first surface of the silicon template, and then the photoresist of the first surface of the silicon template may be exposed and developed using a photomask to obtain the first microlens region.
  • the shape of the first microlens region may be determined according to the shape of the lens required, for example, the first microlens region may be a single circle, in which case, manufacturing
  • the microlens assembly is a single circular microlens assembly, and the size of a single circle can also be determined according to actual needs; or the first microlens area can also be a circular pattern array, in which case the microlens is fabricated.
  • the assembly is an array of microlens assemblies, ie, a plurality of microlens assemblies can be included.
  • the shape of the first microlens area may also be other shapes, such as an ellipse, a square, or a triangle, which is not limited in the embodiment of the present application.
  • the first microlens region is etched by an isotropic etching process to form a cavity structure
  • the shape of the first microlens region determines the shape of the cavity structure.
  • the cavity structure may be a spherical cap cavity, or
  • the first microlens area is a circular pattern array, and the cavity structure may be a spherical cap type cavity array.
  • the isotropic etching process may be an isotropic dry etching process, or may be an isotropic wet etching process, which is not specifically limited in the embodiment of the present application.
  • the etching solution used for wet etching may be HNA, which is a mixture of hydrofluoric acid, nitric acid and acetic acid.
  • the ratio of hydrofluoric acid, nitric acid and acetic acid may be 2:7. :1 or 1:7:2.
  • the gas used for the dry etching may include at least one of the following: xenon difluoride (XeF 2 molecular formula), sulfur hexafluoride (formula SF 6 ), nitrogen trifluoride (molecular formula: NF 3 ), tetrafluoro Carbon (molecular formula CF 4 ), or other fluorine-containing gases may also be included.
  • XeF 2 molecular formula xenon difluoride
  • sulfur hexafluoride formula SF 6
  • nitrogen trifluoride molecular formula: NF 3
  • tetrafluoro Carbon molecular formula CF 4
  • other fluorine-containing gases may also be included.
  • the gas used for the etching may be SF 6
  • the flow rate may be 300 sccm (ie, 300 standard milliliters per minute)
  • the gas pressure may be 100 milliTorr (mT)
  • the power may be 1000 watts, due to the use of The isotropic etching process, the projected size of the etched cavity structure on the first surface of the silicon template may be larger than the size of the first microlens area, usually about the first microlens area 2 to 2.5 times the size.
  • S101 and S102 may be performed multiple times, so that a complicated lens shape can be obtained.
  • S101 and S102 may be performed multiple times on the silicon template to form a cavity structure of different shapes or sizes.
  • the peripheral structure of some lenses such as the support structure of the lens, or the ring wall structure, may be prepared by the manufacturing methods in S101 and S102, which are further described in the following embodiments.
  • the masking technique of the existing grayscale gradient distribution can also obtain a complex lens appearance, but the disadvantage is that if a low-resolution mask is used, the lens appearance is not smooth enough, if a high-resolution mask is used There is a problem that the processing is difficult and the cost is high.
  • the manufacturing method of the microlens of the embodiment of the present application can obtain a complicated microlens appearance by using the methods of performing S101 and S102 multiple times, thereby reducing the process requirements and cost requirements. Has a greater advantage.
  • the photoresist is completed, and the photoresist may be removed.
  • the method 100 may further include:
  • a burr is removed from the first surface of the silicon template and the inner surface of the cavity structure.
  • the silicon template and the burrs of the inner surface of the cavity structure may be removed by thermal oxidation and wet etching.
  • the silicon template can be placed in a high temperature furnace tube, passed through a humid oxygen (eg, O 2 +H 2 O), and oxidized at a high temperature of 1100 ° C for a period of time (eg, 2 hours), The silicon template is then immersed in a hydrofluoric acid aqueous solution for a period of time (eg, 100 seconds) to remove the surface oxide layer.
  • a hydrofluoric acid aqueous solution may have a hydrofluoric acid to water ratio of 1:50.
  • the first surface of the silicon template and the cavity structure may be wet etched using an isotropic etching solution to remove burrs on the surface of the silicon template.
  • the etching solution used may be HNA.
  • the ratio of hydrofluoric acid, nitric acid, acetic acid may be 1:8:1, and the etching time may be 60 seconds.
  • a hydrophobic film is prepared on the first surface of the silicon template and the inner surface of the cavity structure.
  • the surface of the silicon template may be hydrophobized to change the hydrophilicity of the surface of the silicon template.
  • a hydrophobic enhanced film may be deposited on the first surface of the silicon template and the inner surface of the cavity structure by a plasma enhanced vapor deposition process, which may be a polymer of carbon and fluorine, or may be other hydrophobic Compound.
  • the first surface of the silicon template and the inner surface of the cavity structure may be vapor deposited using octafluorocyclobutane (C 4 F 8 ), the flow rate may be 500 sccm, and the gas pressure may be 75mT, the power can be 2000W.
  • C 4 F 8 octafluorocyclobutane
  • the lens material is filled into the first surface of the silicon template and the cavity structure
  • the lens material may be a material that transmits light and has a certain fluidity.
  • the lens material may be a silicon-containing material, for example, polydimethylsiloxane (PDMS), or may be A silicon-containing material such as benzocyclobutene (BCB) or the like.
  • the lens material filled in the silicon template may be planarized and cured, for example, ultraviolet curing or high temperature curing may be employed.
  • the substrate is attached to the upper surface of the filled lens material
  • the substrate may be attached to the upper surface of the filled lens material by bonding or bonding.
  • the substrate may be bonded to the upper surface of the filled lens material by bonding, and of course, the substrate may be bonded to the upper surface of the filled lens material by bonding.
  • the substrate may be bonded to the upper surface of the filled lens material by bonding, for example, bonding the substrate to the upper surface of the filled lens material by an adhesive.
  • the existing reactive ion etching technique is to obtain the appearance of a lens by a photoresist reflow method, and then The reactive ion etching process is used to transfer the appearance of the photoresist onto the substrate.
  • the disadvantage of this technology is that the etching rate ratio of the substrate material and the photoresist must be accurately controlled, and the process is difficult.
  • the lens manufacturing method realizes control of the appearance of the lens by filling the lens material in the first surface of the silicon template and the cavity structure, and further realizes the substrate and the lens material by bonding or bonding the lens material and the substrate. The combination, therefore, reduces the difficulty of the process implementation.
  • S106 is a demolding step. Since a hydrophobic film is prepared on the surface of the silicon template in S103, damage to the microlens appearance in S106 can be avoided.
  • the structural member obtained in S105 may be immersed in ethanol, and then the silicon template is removed by ultrasonic vibration.
  • the silicon template obtained after demolding can be reused after being cleaned, saving process cost and material cost.
  • the demolded silicon template can be cleaned using the following process:
  • the silicon template is subjected to a degumming treatment using an oxygen plasma
  • APM solution (ammonia water + hydrogen peroxide + water, the ratio of 1:1:5) is ultrasonically shaken and then dried to obtain a clean silicon template.
  • the parameters such as the type, ratio, flow rate, air pressure, and power of the gas or liquid used in the various manufacturing processes shown in the embodiments of the present application are merely examples, and should not be construed as limiting the embodiments of the present application.
  • the above parameters can be adjusted according to the actual lens shape, the material of the lens and the like.
  • the cavity structure is obtained by etching the silicon template by using an isotropic etching process by using the processability of silicon, and the lens material can be filled by filling the cavity structure.
  • the control of the lens appearance is realized, and the substrate is further connected to the upper surface of the filled lens material to realize the combination of the substrate and the lens material, and the microlens or microlens array on the substrate can be obtained after removing the silicon template.
  • Table 1 is a comparison of the manufacturing method of the microlens of the embodiment of the present application and several existing microlens manufacturing techniques in terms of lens selection, morphology control, process cost, and compatibility with wafer level processes, from Table 1 It can be seen that the manufacturing method of the microlens of the embodiment of the present application can take into consideration the selection of the lens, the shape control, the process cost, and the compatibility with the wafer level process, etc., compared with the prior art. Claim.
  • Microlens manufacturing technology Lens material Morphology control Process cost Compatibility with wafer level processes
  • Photoresist reflow Photoresist Can not low Yes Reactive ion etching Etchable material Can not low Yes Gray mask technique
  • Photoresist can high Yes Mold imprinting technology polymer can high no Laser direct writing technology
  • Photoresist can high Yes This application polymer can medium Yes
  • FIG. 2 to FIG. 7 are exemplified by manufacturing a microlens array.
  • a single microlens can also be obtained according to the steps shown in FIG. 2 to FIG. 7, as long as the shape of the region obtained during the patterning process is changed.
  • FIG. 8 to FIG. 12 are exemplified by manufacturing a single microlens plus peripheral structure.
  • the microlens array can also be obtained according to the steps shown in FIGS. 8 to 12, or only microlenses or micro can be manufactured.
  • the peripheral structure is not prepared, and only the step of manufacturing the peripheral structure therein may be omitted.
  • FIG. 2 to FIG. 12 only take the microlens as a circle as an example, and should not constitute any limitation on the embodiment of the present application, and other shapes of microlenses can also be manufactured according to the manufacturing steps described in FIGS. 2 to 12, Simply change the shape of the microlens while performing the patterning process.
  • Embodiment 1 the manufacturing steps shown in FIGS. 2 to 7 are referred to as Embodiment 1
  • Embodiment 2 the manufacturing steps shown in FIGS. 8 to 12 are referred to as Embodiment 2.
  • Embodiment 1 and Embodiment 2 will be described below with reference to the drawings.
  • the manufacturing method can include the following:
  • step 1a the photoresist 201 is spin-coated on the first surface of the silicon template 200, and then the photoresist 201 is exposed and developed to obtain a circular pattern array 202, as shown in FIG.
  • the step 1a may correspond to the S101 in the method 100 described above.
  • step 1b the circular pattern array 202 is etched by an isotropic etching process to obtain a spherical crown cavity array 203, as shown in FIG.
  • the shape of the cavity in the spherical cavity array 203 may be hemispherical or may be smaller than the hemisphere, and the specific shape is related to the degree of etching.
  • the step 1b may correspond to the S102 in the method 100 described above.
  • steps 1a and 1b may be performed only once or multiple times to obtain a complicated microlens shape.
  • step 1c is performed to remove the photoresist 201 of the first surface of the silicon template 200, and remove the surface of the silicon template and the burrs of the inner surface of the spherical cavity array 203;
  • a hydrophobic film 204 is prepared on the first surface of the silicon template and the inner surface of the spherical cavity array, as shown in FIG.
  • the first surface of the silicon template and the inner surface of the spherical cap cavity array are hydrophobized to change the hydrophilicity of the silicon template to facilitate demolding of the subsequent step 1g.
  • the step 1d may correspond to the S103 in the method 100 described above.
  • reference may be made to the related description in the foregoing embodiment, and details are not described herein again.
  • step 1e is performed to fill the first surface of the silicon template 200 and the spherical crown cavity array with the lens material 205, and planarize and solidify the filled lens material 205, as shown in FIG.
  • the step 1e may correspond to the S104 in the method 100 described above.
  • step 1f is performed to connect the substrate 210 to the upper surface of the filled lens material 205.
  • the step 1f may correspond to S105 in the method 100 described above, and the specific operation process of implementing the bonding connection of the substrate 210 and the lens material 205 is described in detail in conjunction with FIG. 6:
  • the upper surface of the filled lens material 205 and the surface of the substrate 210 are pretreated with a plasma of nitrogen to form a surface dangling bond;
  • the silicon template 200 and the substrate 210 are aligned, and then a certain pressure is applied, so that the two can be pre-bonded by van der Waals force;
  • the pre-bonded silicon template 200 and the substrate 210 are placed in a fire in a high temperature (for example, 150 degrees) nitrogen atmosphere for a period of time (for example, 2 hours), thereby being capable of forming Si-O- Si covalently bonds and bonds to form a bonding body 220, that is, the bonding body 220 includes a silicon template 200, a filled lens material 205 and a substrate 210.
  • a high temperature for example, 150 degrees
  • a period of time for example, 2 hours
  • step 1g is performed to remove the silicon template 200 in the bonding body 220, thereby obtaining a microlens array 230 comprising a substrate 210 and a lens material 205 having a shape, such as Figure 7 shows.
  • the step 1g may correspond to the S106 in the method 100 described above, and the specific implementation process may refer to the related description in the foregoing embodiment.
  • the manufacturing method of the microlens may include the following contents:
  • step 2a the photoresist 301 is spin-coated on the silicon template 300, and then the photoresist 301 is exposed and developed to obtain a circular pattern 302.
  • the step 2a may correspond to the S101 in the method 100 described above, and the step 1a.
  • the specific implementation process reference may be made to the related description in the foregoing embodiment, and details are not described herein again.
  • step 2a Different from step 1a, the exposure and development of step 2a is a single circular pattern. Accordingly, the finally obtained microlens is a single microlens assembly.
  • step 2a can also obtain a circular pattern array, and only need to adjust the exposure and development.
  • the shape of the photomask can be used.
  • step 2b the circular pattern 302 is etched by an isotropic etching process to obtain a spherical crown cavity 303, as shown in FIG.
  • the step 2b may correspond to the S102 in the method 100 and the step 1b in the foregoing method 100.
  • the specific implementation process reference may be made to the related description in the foregoing embodiment, and details are not described herein again.
  • step 2c may be further performed to perform a secondary patterning process on the first surface of the silicon template 300 to obtain an annular region surrounding the circular pattern 302, and then Bosch (Bosch) The process etches the annular region to obtain trenches 304, as shown in FIG.
  • the peripheral structure of the microlens can be manufactured in this embodiment 2, and the shape of the peripheral structure shown in FIG. 9 is merely an example, and the peripheral structure can be used for subsequent mounting of the microlens.
  • step 2c may also be performed to obtain the peripheral structure of the microlens array, that is, the embodiment 1 may also include the step 2c.
  • step 2d is performed to remove the photoresist 301 on the surface of the silicon template 300, and remove the burr on the surface of the silicon template and the inner surface of the cavity 303;
  • step 2e is performed to prepare a hydrophobic film 305 on the first surface of the silicon template 300 and the inner surface of the spherical cavity.
  • the step 2e may correspond to the S103 in the method 100, and the step 1d.
  • the specific implementation process may refer to the related description in the foregoing embodiment, and details are not described herein again.
  • step 2f may be performed to fill the first surface of the silicon template, the spherical crown cavity 303, and the trench 304 with a lens material 306.
  • the trench 304 may form a ring wall structure around the microlens.
  • the ring wall structure can be used for subsequent mounting of the microlens.
  • the filled lens material 306 can be planarized and cured as shown in FIG.
  • the step 2f may correspond to the step S104 in the method 100 and the step 1e.
  • the specific implementation process may refer to the related description in the foregoing embodiment, and details are not described herein again.
  • step 2g is performed to bond the substrate 310 and the upper surface of the filled lens material 306 together by an adhesive 307 to obtain a bonded body 320, as shown in FIG.
  • the step 2g may correspond to the S105 in the method 100 and the step 1f in the foregoing method 100.
  • the specific implementation process reference may be made to the related description in the foregoing embodiment, and details are not described herein again.
  • step 2h is performed to remove the silicon template 300 in the bonding body 320 to obtain a microlens assembly 330, as shown in FIG.
  • the step 2h may correspond to the S106 in the method 100, and the step 1g.
  • the specific implementation process may refer to the related description in the foregoing embodiment, and details are not described herein again.
  • FIG. 13 is a schematic diagram of an application scenario of the microlens assembly 330.
  • the microlens assembly 330 can be assembled under the light shielding sheet 33 by an adhesive (for example, a double-sided tape) 31, wherein The light shielding sheet includes a light transmitting region 32. Since the microlens assembly 330 has a ring wall structure, an air gap 34 is formed between the microlens 330 and the light shielding sheet 33 due to the supporting action of the ring wall structure, and the air gap 34 can be used for light. The propagation of the signal while avoiding distortion of the microlens due to being squeezed.
  • the method for manufacturing the microlens of the embodiment of the present application may also be other alternative or equivalent modifications of the various operations in the above steps.
  • the embodiment of the present application does not limit the operation process or operation mode adopted for each step.
  • the embodiments of the above-described method of manufacturing the microlens may be performed by a robot or a numerically controlled machining method, and the device software or process for executing the manufacturing method of the microlens may be executed by executing a computer program stored in the memory.
  • the code is used to execute the above-described manufacturing method of the microlens.
  • Embodiments of the present application provide a microlens which is a microlens or microlens array prepared according to the manufacturing method of the microlens described above.
  • the microlens can be used to converge and diverge optical radiation in an optical system. For example, it can be applied to realize the focusing and quasi-focusing of lasers in semiconductor lasers. Straight; can also be used between optical fiber and optical integrated circuits to achieve effective coupling of optical devices; or can be applied to imaging devices such as Charge-Coupled Device (CCD), CMOS Image Sensor (CIS), etc. Or; can also be used on optical detection equipment, which can be used for optical measurements, such as optical ranging, biological identification (including face, fingerprint, iris, etc.) and other optical measurements.
  • CCD Charge-Coupled Device
  • CIS CMOS Image Sensor
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • chip packaging method may be performed by a robot or a numerically controlled processing method, and the device software or process for executing the chip packaging method may perform the above by executing computer program code stored in the memory. Chip packaging method.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present application may be integrated in one processing unit
  • each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Micromachines (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种微透镜的制造方法和微透镜,微透镜的制造方法包括:对硅模板(200,300)的第一表面进行图形化处理,得到第一微透镜区域;采用各向同性的刻蚀工艺对第一微透镜区域进行刻蚀处理,形成空腔结构;在硅模板(200,300)的第一表面以及空腔结构的内表面制备一层疏水化薄膜(204,305);向硅模板(200,300)的第一表面以及空腔结构内填充透镜材料(205,306);将基底(210,310)连接到填充的透镜材料(205,306)的上表面;移除硅模板(200,300),得到目标微透镜组件。

Description

微透镜的制造方法和微透镜 技术领域
本申请实施例涉及微透镜制造领域,并且更具体地,涉及一种微透镜的制造方法和微透镜。
背景技术
微透镜(Micro Lens)可以指尺寸介于一微米至数百微米之间的微型透镜。微透镜按照一定顺序组成的阵列可以称为微透镜阵列。作为一种常用的光学器件,微透镜(阵列)可实现对光源的聚焦、准直等功能,在半导体光电领域有着重要而广泛的应用。
现有的制造微透镜的技术主要有光刻胶回流技术、模具压印技术、反应离子刻蚀技术和灰度掩模技术等,每种技术都有各自的优势和缺点,例如,光刻胶回流技术的工艺流程简单,成本低廉,但是不能实现微透镜形状的精确控制,模具压印技术可以实现对透镜形状的控制,但是只适用于加工大尺寸的透镜,不适合加工透镜阵列和小尺寸的透镜。因此,需要一种新的微透镜的制造方法,能够兼顾微透镜的形貌控制、工艺成本和与晶圆级工艺的兼容性方面的要求。
发明内容
本申请实施例提供了一种微透镜的制造方法和微透镜,能够兼顾微透镜的形貌控制、工艺成本和晶圆级工艺的兼容性方面的要求。
第一方面,提供了一种微透镜的制造方法,包括:
对硅模板的第一表面进行图形化处理,得到第一微透镜区域;
采用各向同性的刻蚀工艺对所述第一微透镜区域进行刻蚀处理,形成空腔结构;
在所述硅模板的第一表面以及所述空腔结构的内表面制备一层疏水化薄膜;
向所述硅模板的第一表面以及所述空腔结构内填充透镜材料;
将基底连接到填充的透镜材料的上表面;
移除所述硅模板,得到目标微透镜组件。
因此,本申请实施例的微透镜的制造方法,利用硅的可加工性,采用各向同性的刻蚀工艺对硅模板上进行刻蚀处理得到空腔结构,通过向空腔结构内填充透镜材料可以实现对透镜样貌的控制,进一步将基底连接至填充的透镜材料的上表面以实现基底和透镜材料的结合,去除硅模板后即可得到基底上的微透镜或微透镜阵列,因此,能够兼顾工艺成本、形貌控制和晶圆级工艺的兼容性等方面的要求。
在本申请实施例中,以硅晶圆为模板制造微透镜,因此,可以用于制造微透镜、微透镜阵列和小尺寸的透镜,相对于现有的模具压印技术只能用于制造大尺寸的透镜,本申请实施例的微透镜的制造方法能够适用于晶圆级工艺中的微透镜制造。
并且,本申请实施例的微透镜的制造方法,在透镜选材方面,只要具有良好光学性能的聚合物都可以选择,不存在光刻胶回流技术、反应离子刻蚀技术和灰度掩膜技术等技术中透镜选材的局限性。
在一些可能的实现方式中,若所述透镜材料为含硅材料,所述基底通过键合或粘合的方式连接到填充的透镜材料的上表面;或若所述透镜材料为不含硅材料,所述基底通过粘合的方式连接到填充的透镜材料的上表面。
在一些可能的实现方式中,所述第一微透镜区域为单个圆形区域,所述空腔结构为球冠型空腔结构,所述目标微透镜组件为单个微透镜组件。
在一些可能的实现方式中,所述第一微透镜区域为圆形图形阵列,所述空腔结构为球冠型空腔阵列,所述目标微透镜组件为微透镜组件阵列。
可选地,所述第一微透镜区域的形状也可以为其他形状,例如,椭圆形,方形,或三角形等。
在一些可能的实现方式中,在制备所述疏水化薄膜之前,所述方法还包括:
对所述硅模板的第一表面进行图形化处理,得到第二微透镜区域,所述第二微透镜区域围绕所述第一微透镜区域;
对所述第二微透镜区域进行刻蚀处理,在所述硅模板的第一表面形成沟槽。
例如,可以采用Bosch工艺对所述第二微透镜区域进行刻蚀处理,形成沟槽,
在一些可能的实现方式中,所述第二微透镜区域为环形,所述沟槽为环 形沟槽。
在一些可能的实现方式中,在形成所述空腔结构之后,所述方法还包括:
去除所述硅模板的第一表面以及所述空腔结构的内表面的毛刺。
在一些可能的实现方式中,在填充透镜材料之后,所述方法还包括:
对所述硅模板中填充的透镜材料进行平坦化和固化处理。
在一些可能的实现方式中,所述对硅模板的第一表面进行图形化处理,得到第一微透镜区域,包括:
在所述硅模板的第一表面旋涂光刻胶;
采用曝光显影工艺移除所述硅模板上的部分光刻胶,得到所述第一微透镜区域。
第二方面,提供了一种根据第一方面和第一方面的任一种可能的实现方式中的微透镜的制造方法制备的微透镜。
附图说明
图1是根据本申请实施例的微透镜的制造方法的示意性流程图。
图2是根据本申请一实施例的形成微透镜样貌的示意图。
图3是根据本申请一实施例的形成空腔结构的示意图。
图4是根据本申请一实施例的生成疏水化薄膜的示意图。
图5是根据本申请一实施例的填充透镜材料的示意图。
图6是根据本申请一实施例的基底和透镜材料进行键合的示意图。
图7是根据本申请一实施例的脱模得到透镜组件的示意图。
图8是根据本申请另一实施例的形成空腔结构的示意图。
图9是根据本申请另一实施例的形成沟槽结构的示意图。
图10是根据本申请另一实施例的填充透镜材料的示意图。
图11是根据本申请另一实施例的基底和透镜材料进行粘合的示意图。
图12是根据本申请另一实施例的脱模得到透镜组件的示意图。
图13是根据本申请另一实施例的微透镜的应用场景的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。
以下,结合图1至图12,详细说明根据本申请实施例的微透镜的制造方法。
图1是根据本申请实施例的微透镜的制造方法100的示意性流程图。
应理解,图1示出了本申请实施例的微透镜的制造方法的主要的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者图1的各种操作的变形。此外,图1中的各个步骤可以分别按照与图1所呈现的不同的顺序来执行,并且有可能并非要执行图1中的全部操作。
如图1所示,该方法100包括以下内容:
S101,对硅模板的第一表面进行图形化处理,得到第一微透镜区域;
在本申请实施例中,硅模板可以为单晶硅材料制作的模板,也就是说,本申请实施例是以硅晶圆为模板制造微透镜的,因此,可以用于制造微透镜、微透镜阵列和小尺寸的透镜,相对于现有的模具压印技术只能用于制造大尺寸的透镜,本申请实施例的微透镜的制造方法能够适用于晶圆级工艺中的微透镜制造。
具体地,可以利用光刻法对所述硅模板的第一表面进行图形化处理,得到所需的透镜形状,即第一微透镜区域。更具体地说,可以在硅模板的第一表面旋涂光刻胶,然后利用光掩膜对所述硅模板的第一表面的光刻胶进行曝光显影,得到所述第一微透镜区域。
应理解,在本申请实施例中,所述第一微透镜区域的形状可以根据所需的透镜的形状确定,例如,所述第一微透镜区域可以为单个圆形,这种情况下,制造的微透镜组件为单个圆形的微透镜组件,单个圆形的尺寸也可以根据实际需求确定;或者,所述第一微透镜区域也可以为圆形图形阵列,这种情况下制造的微透镜组件为微透镜组件阵列,即可以包括多个微透镜组件。当然,所述第一微透镜区域的形状也可以为其他形状,例如,椭圆形,方形,或三角形等,本申请实施例对此不作限定。
在S102中,采用各向同性的刻蚀工艺对所述第一微透镜区域进行刻蚀处理,形成空腔结构;
通常,第一微透镜区域的形状决定了所述空腔结构的形状,例如,若所述第一微透镜区域为单个圆形,所述空腔结构可以为球冠型空腔,或者若所述第一微透镜区域为圆形图形阵列,所述空腔结构可以为球冠型空腔阵列。
这里,各向同性的刻蚀工艺可以为各向同性(isotropic)的干法刻蚀工 艺,或者也可以为各向同性的湿法刻蚀工艺,本申请实施例不作具体限定。湿法刻蚀采用的刻蚀液可以为HNA,这是一种由氢氟酸、硝酸、醋酸组成的混合液,作为示例而非限定,氢氟酸、硝酸、醋酸的比例可以为2:7:1或者1:7:2。干法刻蚀所用气体可以包括以下中的至少一种:二氟化氙(分子式为XeF2),六氟化硫(分子式为SF6),三氟化氮(分子式为NF3),四氟化碳(分子式为CF4),或者也可以包括其他含氟气体。在一个具体的实施例中,刻蚀所用气体可以为SF6,流量可以为300sccm(即每分钟300标准毫升),气压可以为100毫托(mT),功率可以为1000瓦,由于采用的是各向同性的刻蚀工艺,刻蚀后的空腔结构在所述硅模板的第一表面上的投影的尺寸会大于所述第一微透镜区域的尺寸,通常约为第一微透镜区域的尺寸的2~2.5倍。
应理解,在本申请实施例中,可以多次执行S101和S102,从而能够得到复杂的透镜形状,例如,可以在硅模板上多次执行S101和S102,形成不同形状或尺寸的空腔结构,或者也可以采用S101和S102中的制造方法制备一些透镜的周边结构,例如,透镜的支撑结构,或者环墙结构,具体在后面实施例中做进一步介绍。
现有的灰度梯度分布的掩膜技术也可以得到复杂的透镜样貌,但缺点是,如果采用低分辨率的掩膜则得到的透镜样貌不够圆滑,如果采用高分辨率的掩膜则存在加工困难,成本高的问题,而本申请实施例的微透镜的制造方法,采用多次执行S101和S102的方式即可获得复杂的微透镜样貌,降低了工艺要求和成本要求,因此,具有更大的优势。
可选地,在S102之后,即形成空腔结构之后,光刻胶的使命完成,可以去除光刻胶,进一步地,所述方法100还可以包括:
去除所述硅模板的第一表面以及所述空腔结构的内表面的毛刺。
例如,可以采用热氧化和湿法腐蚀处理的方式,去除所述硅模板以及所述空腔结构的内表面的毛刺。在一个可选的实施例中,可以将硅模板置于高温炉管中,通入湿氧(例如,O2+H2O),在1100℃高温下氧化一段时间(例如,2小时),然后再将硅模板浸泡于氢氟酸水溶液中一段时间(例如,100秒)去除表面氧化层,作为示例而非限定,氢氟酸水溶液中氢氟酸与水的配比可以为1:50。
再例如,也可以利用各向同性的刻蚀液对所述硅模板的第一表面和所述空腔结构进行湿法刻蚀以去除硅模板表面的毛刺。在一个可选的实施例中, 采用的刻蚀液可以为HNA,作为示例而非限定,氢氟酸、硝酸、醋酸的比例可以为1:8:1,刻蚀时间可以为60秒。
因此,在本申请实施例中,通过去除硅模板和空腔结构的内表面的毛刺,有利于减少微透镜的表面粗糙,使得透镜样貌更加平滑。
进一步地,在S103中,在所述硅模板的第一表面以及所述空腔结构的内表面制备一层疏水化薄膜。
由于硅是具有亲水性的,为了避免脱模过程中导致微透镜的形貌受损,可以对硅模板的表面做疏水化处理,改变硅模板表面的亲水性。例如,可以利用等离子体增强气相沉积工艺在硅模板的第一表面以及空腔结构的内表面沉积一层疏水化薄膜,该疏水化薄膜可以为碳和氟的聚合物,或者也可以为其他疏水化合物。在一个可选的实施例中,可以采用八氟环丁烷(分子式为C4F8)对硅模板的第一表面以及空腔结构的内表面进行气相沉积,流量可以为500sccm,气压可以为75mT,功率可以为2000W。
之后,在S104中,向所述硅模板的第一表面以及所述空腔结构内填充透镜材料;
这里,该透镜材料可以为透光且具有一定的流动性的材料,具体的,该透镜材料可以为含硅材料,例如,聚二甲基硅氧烷(polydimethylsiloxane,PDMS),或者也可以为不含硅材料,例如,苯并环丁烯(BCB)等。
因此,本申请实施例的微透镜的制造方法,在透镜选材方面,只要具有良好光学性能的聚合物即可,不存在光刻胶回流技术、反应离子刻蚀技术和灰度掩膜技术等技术中透镜选材的局限性。
在S104之后,进一步地,可以对硅模板中填充的透镜材料进行平坦化和固化处理,例如,可以采用紫外线固化或高温固化的方式。
然后,在S105中,将基底连接到填充的透镜材料的上表面;
可选地,在本申请实施例中,可以通过键合或粘合的方式将基底连接到填充的透镜材料的上表面。例如,若所述透镜材料为含硅材料,可以通过键合的方式将基底连接到填充的透镜材料的上表面,当然,也可以通过粘合的方式将基底连接至填充的透镜材料的上表面;或者,若所述透镜材料为不含硅材料,可以通过粘合的方式将基底连接到填充的透镜材料的上表面,例如,通过粘合剂将基底粘合到填充的透镜材料的上表面。
现有的反应离子刻蚀技术,是通过光刻胶回流法获得透镜的样貌,然后 通过反应离子刻蚀工艺使得光刻胶的样貌转移到基底上的,该技术的缺点是必须要精确控制基底材料和光刻胶的刻蚀速率比,工艺难度大,本申请实施例的微透镜的制造方法,通过在硅模板的第一表面和空腔结构内填充透镜材料实现对透镜的样貌的控制,进一步通过将透镜材料和基底键合或粘合的方式实现基底和透镜材料的结合,因此,降低了工艺实现的难度。
之后,在S106中,移除所述硅模板,得到目标微透镜组件。
S106为脱模步骤,由于在S103中,在硅模板的表面制备了一层疏水化薄膜,因此,可以避免S106中对微透镜样貌的损伤。
在一种可选的实现方式中,可以将S105中得到的结构件(即基底+透镜材料+硅模板的组合件)浸泡在乙醇中,然后利用超声振荡的方式去除硅模板。
进一步地,脱模后得到的硅模板经过清洗之后还可以再次使用,节约工艺成本和材料成本。例如,可以采用如下过程对脱模后的硅模板进行清洗:
首先,采用氧气等离子体对所述硅模板进行去胶处理;
然后,再使用SPM溶液(硫酸+双氧水+水的混合溶液,比例可以为5:1:1)浸泡;
最后使用APM溶液(氨水+双氧水+水,比例为1:1:5)进行超声振荡后再甩干即可得到干净的硅模板。
应理解,本申请实施例所示出的各种制造工艺中所使用的气体或液体的类型、配比、流量、气压和功率等参数仅为示例,而不应对本申请实施例构成任何限定,上述参数都可以根据实际的透镜形状,透镜的材料等因素进行调整。
因此,本申请实施例的微透镜的制造方法,利用硅的可加工性,采用各向同性的刻蚀工艺对硅模板上进行刻蚀处理得到空腔结构,通过向空腔结构填充透镜材料可以实现对透镜样貌的控制,进一步将基底连接至填充的透镜材料的上表面以实现基底和透镜材料的结合,去除硅模板后即可得到基底上的微透镜或微透镜阵列。
表1是本申请实施例的微透镜的制造方法和现有的几种微透镜制造技术在透镜选材、形貌控制、工艺成本和与晶圆级工艺的兼容性等方面的比较,从表1可以看出,本申请实施例的微透镜的制造方法,相对于现有技术,能够兼顾透镜的选材、形貌控制、工艺成本和与晶圆级工艺的兼容性等方面的 要求。
表1
微透镜制造技术 透镜材料 形貌控制 工艺成本 与晶圆级工艺的兼容性
光刻胶回流技术 光刻胶 不能
反应离子刻蚀技术 可刻蚀材料 不能
灰度掩模技术 光刻胶
模具压印技术 聚合物
激光直写技术 光刻胶
本申请 聚合物 中等
以下,结合图2至图12所示的制造步骤,详细说明根据本申请实施例的微透镜的制造方法。
应理解,图2至图7是以制造微透镜阵列作为示例的,当然,也可以根据图2至图7所示的步骤得到单个微透镜,只要改变图形化处理时得到的区域的形状即可,同样地,图8至图12是以制造单个微透镜加周边结构作为示例的,当然,也可以根据图8至图12所示的步骤得到微透镜阵列,或者也可以只制造微透镜或微透镜阵列,不制备周边结构,只需省略其中制造周边结构的步骤即可。
还应理解,图2至图12仅以微透镜为圆形作为示例,而不应对本申请实施例构成任何限定,根据图2至图12所述的制造步骤也可以制造其他形状的微透镜,只需在进行图形化处理时,改变微透镜的形状即可。
这里,将图2至图7所示的制造步骤记为实施例1,将图8至图12所示的制造步骤记为实施例2。下面结合附图对实施例1和实施例2进行介绍。
首先结合图2至图7介绍实施例1所示的微透镜的制造方法。该制造方法可以包括如下内容:
首先,执行步骤1a,在硅模板200的第一表面上旋涂光刻胶201,然后对光刻胶201进行曝光显影得到圆形图形阵列202,如图2所示。
该步骤1a可以对应于上文所述的方法100中的S101,具体执行过程可以参考前述实施例中的相关描述,为了简洁,这里不再赘述。
应理解,图2所示的圆形图形阵列202的数量和排布仅为示例,在实际应用中,可以根据实际需求进行调整。
其次,执行步骤1b,采用各向同性的刻蚀工艺对所述圆形图形阵列202进行刻蚀处理得到球冠状空腔阵列203,如图3所示。
这里,球冠状空腔阵列203中的空腔的形状可以为半球,或者也可以比半球小,具体的形状跟刻蚀的程度有关。
其中,该步骤1b可以对应于上文所述的方法100中的S102,具体执行过程可以参考前述实施例中的相关描述,这里不再赘述。
应理解,上述步骤1a和步骤1b可以只执行一次,也可以执行多次,以获得复杂的微透镜形状。
之后,执行步骤1c,去除硅模板200的第一表面的光刻胶201,并去除硅模板的表面以及球冠状空腔阵列203的内表面的毛刺;
进一步地,执行步骤1d,在硅模板的第一表面和球冠状空腔阵列的内表面制备一层疏水化薄膜204,如图4所示。
即对硅模板的第一表面和球冠型空腔阵列的内表面进行疏水化处理,改变硅模板的亲水性,以便于后续步骤1g的脱模。该步骤1d可以对应于上文所述的方法100中的S103,具体执行过程可以参考前述实施例中的相关描述,这里不再赘述。
然后,执行步骤1e,向硅模板200的第一表面和球冠状空腔阵列内填充透镜材料205,并对填充的透镜材料205进行平坦化和固化处理,如图5所示。
其中,该步骤1e可以对应于上文所述的方法100中的S104,具体执行过程可以参考前述实施例中的相关描述,这里不再赘述。
之后,执行步骤1f,将基底210连接至填充的透镜材料205的上表面。
其中,该步骤1f可以对应于上文所述的方法100中的S105,结合图6详细介绍实现基底210和透镜材料205的键合连接的具体操作过程:
首先,使用氮的等离子体对填充的透镜材料205的上表面和基底210的表面进行预处理,以形成表面悬挂键;
其次,将硅模板200和基底210进行对准,然后施加一定的压力,使得二者可以通过范德华力实现预键合;
然后,将预键合的硅模板200和基底210放入炉火中在高温(例如,150度)氮气氛围中,进行一段时间(例如,2小时)的热处理,从而能够通过形成Si-O-Si共价键而键合形成一个键合体220,即键合体220包括硅模板 200、填充的透镜材料205和基底210。
得到键合体220之后,进一步地,再执行步骤1g,移除键合体220中的硅模板200,即得到微透镜阵列230,该微透镜阵列230包括基底210和具有一定形状的透镜材料205,如图7所示。
其中,该步骤1g可以对应于上文所述的方法100中的S106,具体执行过程可以参考前述实施例中的相关描述。
以下,结合图8至图12介绍实施例2所示的微透镜的制造方法。该微透镜的制造方法可以包括如下内容:
首先执行步骤2a,在硅模板300上旋涂光刻胶301,然后对光刻胶301进行曝光显影得到圆形图形302。
该步骤2a可以对应于上文所述的方法100中的S101,以及步骤1a,具体执行过程可以参考前述实施例中的相关描述,这里不再赘述。
与步骤1a不同的是,步骤2a曝光显影得到的是单个圆形图形,相应地,最后得到的微透镜为单个微透镜组件,当然,步骤2a也可以得到圆形图形阵列,只需调整曝光显影时的光掩模的形状即可。
其次,执行步骤2b,采用各向同性的刻蚀工艺对所述圆形图形302进行刻蚀处理得到球冠状空腔303,如图8所示。
其中,该步骤2b可以对应于上文所述的方法100中的S102,以及步骤1b,具体执行过程可以参考前述实施例中的相关描述,这里不再赘述。
可选地,在该实施例2,还可以执行步骤2c,对硅模板300的第一表面进行二次图形化处理,得到环形区域,该环形区域围绕圆形图形302,然后可以采用博世(Bosch)工艺对环形区域进行刻蚀处理,得到沟槽304,如图9所示。
即在该实施例2中可以制造微透镜的周边结构,图9所示的周边结构的形状仅为示例,该周边结构可以用于微透镜后续的贴装。
当然,在实施例1中,得到球冠状空腔阵列203之后,也可以执行步骤2c,得到微透镜阵列的周边结构,即实施例1也可以包括步骤2c。
之后,执行步骤2d,去除硅模板300表面的光刻胶301,并去除硅模板表面以及空腔303内表面的毛刺;
进一步地,执行步骤2e,在硅模板300的第一表面和球冠状空腔的内表面制备一层疏水化薄膜305。
其中,该步骤2e可以对应于上文所述的方法100中的S103,以及步骤1d,具体执行过程可以参考前述实施例中的相关描述,这里不再赘述。
然后,可以执行步骤2f,向硅模板的第一表面、球冠状空腔303以及沟槽304内填充透镜材料306,该沟槽304内填充透镜材料后可以在微透镜的周围形成环墙结构,该环墙结构可以用于微透镜后续的贴装,进一步地,可以对填充的透镜材料306进行平坦化和固化处理,如图10所示。
其中,该步骤2f可以对应于上文所述的方法100中的S104,以及步骤1e,具体执行过程可以参考前述实施例中的相关描述,这里不再赘述。
其后,执行步骤2g,将基底310与填充的透镜材料306的上表面通过粘合剂307粘合在一起,得到粘合体320,如图11所示。
其中,该步骤2g可以对应于上文所述的方法100中的S105,以及步骤1f,具体执行过程可以参考前述实施例中的相关描述,这里不再赘述。
得到粘合体320之后,进一步地,再执行步骤2h,移除粘合体320中的硅模板300,得到微透镜组件330,如图12所示。
其中,该步骤2h可以对应于上文所述的方法100中的S106,以及步骤1g,具体执行过程可以参考前述实施例中的相关描述,这里不再赘述。
图13是该微透镜组件330的一种应用场景的示意图,如图13所示,该微透镜组件330可以通过粘合剂(例如,双面胶)31装配到遮光片33的下方,其中,该遮光片包括透光区域32,由于微透镜组件330具有环墙结构,由于环墙结构的支撑作用,在微透镜330和遮光片33之间形成空气间隙34,该空气间隙34可以用于光信号的传播,同时避免微透镜因受到挤压而变形。
应理解,本申请实施例的微透镜的制造方法还可以为上述步骤中的各种操作的其他替换或等价变形形式,本申请实施例对于每个步骤采用的操作工艺或操作方式不作限定。
还应理解,上述列举的微透镜的制造方法的各实施例,可以通过机器人或者数控加工方式来执行,用于执行微透镜的制造方法的设备软件或工艺可以通过执行保存在存储器中的计算机程序代码来执行上述微透镜的制造方法。
本申请实施例提供了一种微透镜,该微透镜为根据上文所述的微透镜的制造方法制备的微透镜或微透镜阵列。该微透镜在光学系统中可以用于会聚、发散光辐射。例如,可以应用在半导体激光器中实现激光器的聚焦和准 直;还可用于光纤、光学集成回路之间,实现光器件的有效耦合;或者可以应用到如电荷耦合元件(Charge-Coupled Device,CCD),CMOS图像传感器(CMOS Image Sensor,CIS)等成像设备中;或者也可以用在光学探测设备上,该光学探测设备可以用于进行光学测量,例如光学测距,生物识别(包括人脸,指纹,虹膜等)等光学测量。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,上述列举的芯片封装方法的各实施例,可以通过机器人或者数控加工方式来执行,用于执行芯片封装方法的设备软件或工艺可以通过执行保存在存储器中的计算机程序代码来执行上述芯片封装方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元 中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种微透镜的制造方法,其特征在于,包括:
    对硅模板的第一表面进行图形化处理,得到第一微透镜区域;
    采用各向同性的刻蚀工艺对所述第一微透镜区域进行刻蚀处理,形成空腔结构;
    在所述硅模板的第一表面以及所述空腔结构的内表面制备一层疏水化薄膜;
    向所述硅模板的第一表面以及所述空腔结构内填充透镜材料;
    将基底连接到填充的透镜材料的上表面;
    移除所述硅模板,得到目标微透镜组件。
  2. 根据权利要求1所述的制造方法,其特征在于,若所述透镜材料为含硅材料,所述基底通过键合或粘合的方式连接到填充的透镜材料的上表面;或若所述透镜材料为不含硅材料,所述基底通过粘合的方式连接到填充的透镜材料的上表面。
  3. 根据权利要求1或2所述的制造方法,其特征在于,所述第一微透镜区域为单个圆形区域,所述空腔结构为球冠型空腔结构,所述目标微透镜组件为单个微透镜组件。
  4. 根据权利要求1或2所述的制造方法,其特征在于,所述第一微透镜区域为圆形图形阵列,所述空腔结构为球冠型空腔阵列,所述目标微透镜组件为微透镜组件阵列。
  5. 根据权利要求1至4中任一项所述的制造方法,其特征在于,在制备所述疏水化薄膜之前,所述方法还包括:
    对所述硅模板的第一表面进行图形化处理,得到第二微透镜区域,所述第二微透镜区域围绕所述第一微透镜区域;
    对所述第二微透镜区域进行刻蚀处理,在所述硅模板的第一表面形成沟槽。
  6. 根据权利要求5所述的制造方法,其特征在于,所述第二微透镜区域为环形,所述沟槽为环形沟槽。
  7. 根据权利要求1至6中任一项所述的制造方法,其特征在于,在形成所述空腔结构之后,所述方法还包括:
    去除所述硅模板的第一表面以及所述空腔结构的内表面的毛刺。
  8. 根据权利要求1至7中任一项所述的制造方法,其特征在于,在填充所述透镜材料之后,所述方法还包括:
    对所述硅模板中填充的所述透镜材料进行平坦化和固化处理。
  9. 根据权利要求1至8中任一项所述的制造方法,其特征在于,所述对硅模板的第一表面进行图形化处理,得到第一微透镜区域,包括:
    在所述硅模板的第一表面旋涂光刻胶;
    采用曝光显影工艺移除所述硅模板上的部分光刻胶,得到所述第一微透镜区域。
  10. 一种微透镜,其特征在于,包括:
    所述微透镜是根据权利要求1至9中任一项所述的微透镜的制造方法制造的。
PCT/CN2017/114581 2017-12-05 2017-12-05 微透镜的制造方法和微透镜 WO2019109240A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/114581 WO2019109240A1 (zh) 2017-12-05 2017-12-05 微透镜的制造方法和微透镜
CN201780001976.2A CN108139507A (zh) 2017-12-05 2017-12-05 微透镜的制造方法和微透镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/114581 WO2019109240A1 (zh) 2017-12-05 2017-12-05 微透镜的制造方法和微透镜

Publications (1)

Publication Number Publication Date
WO2019109240A1 true WO2019109240A1 (zh) 2019-06-13

Family

ID=62400979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114581 WO2019109240A1 (zh) 2017-12-05 2017-12-05 微透镜的制造方法和微透镜

Country Status (2)

Country Link
CN (1) CN108139507A (zh)
WO (1) WO2019109240A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019109240A1 (zh) * 2017-12-05 2019-06-13 深圳市汇顶科技股份有限公司 微透镜的制造方法和微透镜
CN110716248B (zh) * 2018-07-12 2021-03-09 安徽省东超科技有限公司 一种多列多排等效负折射率平板透镜的加工工艺
CN109143424B (zh) * 2018-08-22 2020-05-22 中国建筑材料科学研究总院有限公司 一种微透镜阵列及其制备方法
CN109348127A (zh) * 2018-11-12 2019-02-15 德淮半导体有限公司 图像传感器的制造方法、图像传感器以及成像装置
EP3783372B1 (en) * 2019-06-24 2022-12-07 Shenzhen Goodix Technology Co., Ltd. Glitch signal detection circuit, security chip, and electronic device
CN110462415B (zh) 2019-06-24 2021-12-28 深圳市汇顶科技股份有限公司 毛刺信号检测电路、安全芯片和电子设备
CN110890391A (zh) * 2019-10-18 2020-03-17 华天慧创科技(西安)有限公司 一种晶圆级透镜单元及其制造方法
CN111353480A (zh) * 2020-04-26 2020-06-30 欧菲微电子技术有限公司 微透镜组件、制备方法、光学指纹模组及电子装置
CN113707677A (zh) * 2020-05-22 2021-11-26 格科微电子(上海)有限公司 光学指纹器件的制造方法
CN113031131B (zh) * 2021-05-26 2021-08-17 欧梯恩智能科技(苏州)有限公司 微型凹透镜的制备方法及微型凹透镜
TWI829458B (zh) * 2022-12-08 2024-01-11 友達光電股份有限公司 微透鏡結構、其製造方法及顯示裝置
CN117019578B (zh) * 2023-10-10 2024-01-09 芯体素(杭州)科技发展有限公司 微透镜基板及其制备方法、涂胶装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010037673A (ko) * 1999-10-19 2001-05-15 구자홍 마이크로-렌즈 제조방법
CN1538237A (zh) * 2003-04-15 2004-10-20 ������������ʽ���� 具有凹入部分的基底、显微透镜基底、传输屏和背面投影
JP2010014857A (ja) * 2008-07-02 2010-01-21 Toppan Printing Co Ltd マイクロレンズモールド製造方法、マイクロレンズモールド、マイクロレンズ
CN103399368A (zh) * 2013-08-15 2013-11-20 东南大学 一种微透镜、微透镜阵列结构及其制作工艺
CN106663600A (zh) * 2014-07-08 2017-05-10 综研化学株式会社 分步重复用压印用模具及其制造方法
CN108139507A (zh) * 2017-12-05 2018-06-08 深圳市汇顶科技股份有限公司 微透镜的制造方法和微透镜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246599A (ja) * 2000-03-01 2001-09-11 Seiko Epson Corp マイクロレンズ成形型及びマイクロレンズ基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010037673A (ko) * 1999-10-19 2001-05-15 구자홍 마이크로-렌즈 제조방법
CN1538237A (zh) * 2003-04-15 2004-10-20 ������������ʽ���� 具有凹入部分的基底、显微透镜基底、传输屏和背面投影
JP2010014857A (ja) * 2008-07-02 2010-01-21 Toppan Printing Co Ltd マイクロレンズモールド製造方法、マイクロレンズモールド、マイクロレンズ
CN103399368A (zh) * 2013-08-15 2013-11-20 东南大学 一种微透镜、微透镜阵列结构及其制作工艺
CN106663600A (zh) * 2014-07-08 2017-05-10 综研化学株式会社 分步重复用压印用模具及其制造方法
CN108139507A (zh) * 2017-12-05 2018-06-08 深圳市汇顶科技股份有限公司 微透镜的制造方法和微透镜

Also Published As

Publication number Publication date
CN108139507A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2019109240A1 (zh) 微透镜的制造方法和微透镜
US7368779B2 (en) Hemi-spherical structure and method for fabricating the same
KR102074046B1 (ko) 렌즈부착 기판, 적층 렌즈 구조체, 카메라 모듈 및 제조 장치 및 방법
KR100895367B1 (ko) 마이크로 렌즈용 형의 제조 방법
CN107735246B (zh) 透镜基板的制造方法
US20070194472A1 (en) Process of fabricating microlens mold
JP4620939B2 (ja) 複合素子の製造方法
CN101823690A (zh) Su-8纳米流体系统的制作方法
JP3813215B2 (ja) 光学部品およびその製造方法
US20080020576A1 (en) Method of forming polysilicon pattern
CN102749680A (zh) 光栅耦合器制造方法以及半导体器件装置方法
Huang et al. Fabrication of large-area three-dimensional microstructures on flexible substrates by microtransfer printing methods
CN108074806B (zh) 在基体的表面形成凸起结构的方法
JP4568076B2 (ja) マイクロレンズの製造方法
US7838174B2 (en) Method of fabricating grayscale mask using smart cut® wafer bonding process
JP6988202B2 (ja) 荷電粒子線露光用マスクおよびその製造方法
Cannistra et al. Microtransfer molding of SU-8 micro-optics
JP2002319684A (ja) 半導体装置の製造方法
CN110143567B (zh) 一种悬空的黑介质薄膜及其制备方法以及应用
JPH03297167A (ja) マイクロレンズ
Calleja-Arriaga Silicon Micro-Lenses Based on Multi-step Lithography: New possibilities for Integrated Optics and Surface Sciences
JP4296779B2 (ja) 光学素子の製造方法
CN118083906A (zh) 一种mems器件及其制备方法和电子装置
JP2006337956A (ja) マイクロレンズアレイの製造方法
JP4707347B2 (ja) 樹脂材料を含む組成物、樹脂材料を含む組成物の特性の調整方法、三次元構造体の製造方法、及び三次元構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934233

Country of ref document: EP

Kind code of ref document: A1