JP6988202B2 - 荷電粒子線露光用マスクおよびその製造方法 - Google Patents

荷電粒子線露光用マスクおよびその製造方法 Download PDF

Info

Publication number
JP6988202B2
JP6988202B2 JP2017127749A JP2017127749A JP6988202B2 JP 6988202 B2 JP6988202 B2 JP 6988202B2 JP 2017127749 A JP2017127749 A JP 2017127749A JP 2017127749 A JP2017127749 A JP 2017127749A JP 6988202 B2 JP6988202 B2 JP 6988202B2
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
mask
layer
beam exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017127749A
Other languages
English (en)
Other versions
JP2018159906A (ja
Inventor
司 米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JP2018159906A publication Critical patent/JP2018159906A/ja
Application granted granted Critical
Publication of JP6988202B2 publication Critical patent/JP6988202B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

本開示は、荷電粒子線露光用マスクに係り、特に荷電粒子線を透過しない薄板部に所望の開口部を設けた荷電粒子線露光用マスクとその製造方法に関する。
近年、半導体装置などの集積回路を大量生産するために集積回路のパターンの微細化が進められている。微細パターンの線幅が露光光源の波長よりも小さくなると露光に使用する光が微細パターンによって回折されてしまい、設計通りに露光することができない。したがって、露光光源として、パターンによって回折されない電子線やイオンビームを用いた荷電粒子線露光装置の開発が進められている。ステンシル型の転写マスクは、電子ビームなどを透過する部分を開口部とした露光マスクとして、荷電粒子線露光装置用において用いられる。さらに、ローラーモールド製作装置にも用いられる。同マスクは、一般的には、シリコンおよびシリコン酸化物にドライエッチングを使用して形成される。
さて、上記したとおり、荷電粒子線露光装置用のマスクとしてステンシル型のマスクが用いられるが、そのメンブレン領域(以下、本明細書において「薄板部」とも称する。)は例えば数μmの薄さであるため、メンブレン領域の機械的強度が低い。したがって、製造工程における応力や基板の歪みの影響を受けて、メンブレン領域が変形してしまう問題が発生する。この問題を解消するために、例えば特許文献1では、メンブレン領域内に開口部付近に比べて膜厚が厚い補強部が配置された構造が開示されている。
特開2013−074272号公報
しかしながら、特許文献1のような「補強部」による補強を行ったとしても、依然としてメンブレン領域の形状を安定しないという問題がある。また、「補強部」を設けることによる製造コストの増加や歩留まりの低下などの問題もある。
本開示は、上記実情に鑑み、メンブレン領域の形状を安定して維持することができる荷電粒子線露光装置用マスクを提供することを目的とする。
本開示の一実施形態に係る荷電粒子線露光装置用マスクは、電子線の進行方向に複数の荷電粒子線露光装置用マスクが重ねて配置される露光装置に使用される荷電粒子線露光装置用マスクであって、荷電粒子線を透過する矩形形状の第1透過部及び第2透過部と、第1透過部及び第2透過部の周囲に存在し荷電粒子線を遮断する非透過部と、を有する薄板部と、薄板部を支持する枠状の支持部と、を有し、薄板部は、1μm以上10μm以下の略均一の厚さの第1の層を有し、支持部は、第1の層と、5μm以下の略均一の厚さの第2の層と、400μm以下の略均一の厚さの第3の層とを有する荷電粒子線露光装置用マスク、を提供する。
本開示の一実施形態に係る荷電粒子線露光装置用マスクは、荷電粒子線の進行方向に複数の荷電粒子線露光装置用マスクが重ねて配置される露光装置に使用されるマスクであって荷電粒子線を透過する矩形形状の第1透過部及び第2透過部と、第1透過部及び第2透過部の周囲に存在し荷電粒子線を遮断する非透過部と、を有する薄板部と、薄板部を支持する枠状の支持部と、薄板部と支持部との間に配置されるボックス層と、を有し、薄板部は、1μm以上10μm以下の略均一の厚さのSiであり、支持部は、400μm以下の略均一の厚さのSiであり、ボックス層は1μm以下のSiO2であることを特徴とする
、荷電粒子線露光装置用マスクを提供する。
また、別の態様において、支持部の開口部側に、薄板部を支持し所定の曲率を有する湾曲部を有していてもよい。
また、別の態様において、薄板部の平面視における形状は、略矩形形状であってもよい。
また、別の態様において、第1の層及び第3の層は、シリコン、窒化シリコン、炭化シリコン、ガリウム砒素、ダイヤモンドライクカーボン、サファイア又は金属を主成分とし、第2の層はSiO2を主成分とするものであってもよい。
また、別の態様において、第1透過部は、平面視における矩形形状のアスペクト比が略1〜略40あってもよい。
また、別の態様において、第1透過部と第2透過部とは、平面視において互いに異なるアスペクト比を有してもよい。
また、別の態様において、略矩形形状の角部がラウンド形状であってもよい。
また、別の態様において、ラウンド形状は、曲率半径が1μm以上100μm以下の曲線形状であってもよい。
本開示の一実施形態に係る荷電粒子線露光装置用マスクの製造方法は、荷電粒子線の進行方向に複数の荷電粒子線露光装置用マスクが重ねて配置される露光装置において、前記荷電粒子線を透過する透過部と前記透過部の周囲に存在し前記荷電粒子線を遮断する非透過部とを有する1μm以上10μm以下の略均一の厚さの薄板部と、前記薄板部を支持する枠状の支持部と、を有し、前記薄板部は、1μm以上10μm以下の略均一の厚さの第1の層を有し、前記支持部は、前記第1の層と、5μm以下の略均一の厚さの第2の層と、400μm以下の略均一の厚さの第3の層とを有する荷電粒子線露光装置用マスクを所定の基板から製造する製造方法であって、前記基板の前記第1の層側の面に対し、前記薄板部に対応する領域に前記透過部に対応するパターンを形成し、前記第1の層側の面に、前記パターンを覆う樹脂層を形成し、前記薄板部に対応する領域の前記基板が1μm以上10μm以下の略均一の厚さとなり前記パターンが前記透過部となるように前記第1の層側の面とは反対側の第2の層側の面から前記第3の層をエッチングし、前記樹脂層を除去する、荷電粒子線露光装置用マスクの製造方法である。
また、別の態様において、支持部の開口部側に、薄板部を支持し所定の曲率を有する湾曲部を有していてもよい。
また、別の態様において、薄板部の平面視における形状は、略矩形形状であってもよい。
また、別の態様において、第1の層及び第3の層は、シリコン、窒化シリコン、炭化シリコン、ガリウム砒素、ダイヤモンドライクカーボン、サファイア又は金属を主成分とし、第2の層はSiO2を主成分とするものであってもよい。
また、別の態様において、第1透過部は、平面視における矩形形状のアスペクト比が略1〜略40であってもよい。
また、別の態様において、第1透過部と第2透過部とは、平面視において互いに異なるアスペクト比を有してもよい。
また、別の態様において、略矩形形状の角部がラウンド形状であってもよい。
また、別の態様において、ラウンド形状は、曲率半径が1μm以上100μm以下の曲線形状であってもよい。
本開示の一実施形態に係る荷電粒子線露光装置用マスクの製造方法は、荷電粒子線の進行方向に複数の荷電粒子線露光装置用マスクが重ねて配置される露光装置において、荷電粒子線を透過する透過部と透過部の周囲に存在し荷電粒子線を遮断する非透過部とを有する1μm以上10μm以下の略均一の厚さのSi薄板部と、薄板部を支持する枠体であって400μm以下の略均一の厚さのSiである支持部と、薄板部と支持部との間に配置され1μm以下のSiO2であるボックス層と、を有する電子線露光用マスクをSOI基板から製造する製造方法であって、SOI基板は、第1Si層とSiO2層と第2Si層からなり、第1Si層は第2Si層よりも薄く、SOI基板の第1Si層側の面に、薄板部に対応する領域に透過部に対応するパターンを形成し、第1Si層側の面に、パターンを覆う樹脂層を形成し、薄板部に対応する領域の基板が1μm以上10μm以下の略均一の厚さとなり、パターンが透過部となるように、第1Si層側の面とは反対側の第2Si層側の面から基板をエッチングし、樹脂層を除去する。
また、別の態様において、樹脂層の厚さは5μm以上30μm以下であってもよい。
薄板部のエッチングを行う際に、レーザダイシング用の溝を同時に形成してもよい。
本開示によれば、メンブレン領域の形状を安定して維持することができる荷電粒子線露光装置用マスクを提供することができる。
本開示の実施形態1に係る荷電粒子線露光装置用マスクの概要を示す断面図及び平面図である。 本開示の実施形態1に係る荷電粒子線露光装置用スクの製造方法を示すプロセスフローである。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、基板の表裏面にハードマスクを形成する工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、表面にレジストマスクを形成する工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用の製造方法において、表面のハードマスクをエッチングする工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、表面のシリコン層をエッチングする工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、表面のレジストマスクを除去する工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、表面に樹脂層を形成する工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、裏面にレジストマスクを形成する工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、裏面のハードマスクをエッチングする工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、支持基板をエッチングする工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、裏面のレジストマスクを除去する工程を示す断面図である。 本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法において、ボックス層及び表裏面のハードマスクを除去する工程を示す断面図である。 本開示の変形例に係る荷電粒子線露光装置用マスクの製造方法において、支持基板をエッチングする工程を示す断面図である。 本開示の変形例に係る荷電粒子線露光装置用マスクの製造方法において、裏面のレジストマスクを除去する工程を示す断面図である。 本開示の変形例に係る荷電粒子線露光装置用マスクを示す断面図である。 本開示の実施例に係る電子線露光用マスクの写真である。
以下、本開示の実施形態に係る荷電粒子線露光装置用マスク及び荷電粒子線露光装置用マスクの製造方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。なお、本実施形態で参照する図面は、説明をより明確にするためのものである。したがって、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合がある。しかし、それはあくまで一例であって、本開示の解釈を限定するものではない。図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
[定義]
本明細書において、ある部材又は領域が、他の部材又は領域の「上に(又は下に)」あるとする場合、特段の限定がない限り、これは他の部材又は領域の直上(又は直下)にある場合のみでなく、他の部材又は領域の上方(又は下方)にある場合を含む。すなわち、他の部材又は領域の上方(又は下方)において間に別の構成要素が含まれている場合をも含むということである。
本明細書において、第2の層とは反対側から、第3の層の全部又は一部を除去する工程を背面(バック)エッチングとも称する。明細書中、背面エッチングの例として背面(基板の、第1の層が形成された面とは反対側の面)からエッチングする工程を示している。
本明細書において、「略均一」とは、当該膜の膜厚のばらつきが、当該膜厚の厚み(μm)に対して±10%の範囲内、より好ましくは±5%の範囲内であることを意味する。このばらつきは、全ての粒子について計測しなければならないものではなく、統計的なばらつきを意味する。したがって、その範囲内にあるかどうかは統計的に特定されていればよい。
本明細書において、「主成分」とは、当該層における断面をEDXにて元素分析した際、当該層において少なくとも50%が当該成分を有する場合をいう。ただし、SiO2を主成分とするとは、本明細書において「SiO2」自体が、つまりO=Si=Oという形で共有結合をしていることまで検出しなければならないものではない。当該層についてEDXにて元素分析した際、シリコンと酸素とがともに検出され、モル比が略1対2であれば、当該シリコンと酸素とはSiO2となっているとして、判定を行えば足りる。炭化シリコン等の他の共有結合物質についても同様である。
本明細書において、「面」とは、平面に限られるものではなく、曲面を含む。平面、側面及び端面も数学的な意味における平面に限られるものではなく、係る面が曲面であるという場合をも含む。
[実施形態1]
本開示の実施形態1に係る荷電粒子線露光装置用マスクについて、図1を用いて詳細に説明する。図1は、本開示の実施形態1に係る荷電粒子線露光装置用マスクの概要を示す断面図及び平面図である。図1では、基板として単結晶シリコン基板(ただし、「第3の層」に対応する。)上に酸化シリコン層(埋め込み酸化シリコン層;ボックス層ともいう)(ただし、「第2の層」に対応する)が配置され、当該酸化シリコン層上に薄膜の単結晶シリコン層(ただし、「第1の層」に対応する。)が配置されたSOI基板を使用し、SOI基板の単結晶シリコン層にメンブレン領域(薄板部)が設けられた構造について説明する。
しかしながら、本開示の技術思想は、現在主流となっているSOI基板でのみ妥当するというものではない(薄板部は、窒化シリコン、炭化シリコン、ガリウム砒素、ダイヤモンドライクカーボン、サファイア又は金属からなる層であってもよい。)。後述する通り、SOI基板以外の基板を用いた場合にも本開示の思想は妥当する。
[荷電粒子線露光装置用マスクの構成]
さて、本開示の実施形態1に係る荷電粒子線露光装置用マスク10は、集積回路のパターンとしてよく使用される図形を装置のアパーチャの集まりとして登録するCP(Cell Projection)方式の露光装置において使用される。CP方式において、荷電粒子線露光装置用マスク10は、電子線の進行方向に複数の荷電粒子線露光装置用マスクが重ねて配置される。
まず、図1に示すように、荷電粒子線露光装置用マスク10は、荷電粒子線を透過する矩形形状の複数の透過部110と、透過部110の周囲に存在し荷電粒子線を遮断する非透過部120と、を有する薄板部100と、薄板部100を支持する枠状の支持部200と、を有する。ここで、薄板部100は、1μm以上10μm以下の略均一の厚さである。支持部200は、400μm以下の略均一の厚さである。
また、支持部200と薄板部100との境界によって規定される薄板部100の平面視における形状は、略矩形形状であり、略矩形形状の角部はラウンド形状であってもよい。換言すると、薄板部100の平面視における形状は、矩形の4辺となる4つの直線と、近接する辺となる直線を滑らかに接続する4つの曲線によって形成された環形状である。上記のラウンド形状は、曲率半径が1μm以上100μm以下の曲線形状であるとよい。薄板部100の略矩形形状の角部への応力集中を避けるために好ましくは、ラウンド形状の曲率半径は10μm以上50μm以下の曲線形状であるとよい。
ここで、薄板部100は、SOI基板の単結晶シリコン層130を有している。また、支持部200は、SOI基板の単結晶シリコン層130、SiO2ボックス層140、及びシリコン層である支持基板150を有している。透過部110は単結晶シリコン層130の表裏面を貫通するように設けられた開口部に対応し、非透過部120は単結晶シリコン層130に対応する。また、ボックス層140は酸化シリコンを含み、支持基板150は単結晶シリコンを含む。
また、薄板部100は、機械的強度を維持するために一定以上の剛性を有していることが好ましい。例えば、薄板部100は100GPa以上のヤング率を有しているとよい。また、露光の際、薄板部100の非透過部120には多くの電子線が衝突して薄板部100の温度が上昇し、透過部に近い非透過部の寸法変動等を来す虞があるため、薄板部100は一定以上の熱伝導率を有していることが好ましい。例えば、100℃の環境下で100W/mK以上の熱伝導率を有していると良い。
薄板部100に設けられた透過部110は、平面視における矩形形状のアスペクト比(平面アスペクト比)が40程度であってもよい。アスペクト比は、平面視上の開口部の図形の長辺を短辺で除した値をさす。また、開口部が矩形以外の図形である場合、開口部が外接する矩形を定義し、その長辺と短辺からアスペクト比を導くものとする。荷電粒子線露光装置用マスク10は、上記の平面アスペクト比を有することで短辺方向と長辺方向とを有するパターンにおいて、短辺方向に比べて長辺方向の長さが非常に長いパターンであっても、一度でパターニングすることができる。
また、透過部110の矩形形状の長辺及び短辺が単結晶シリコン層130の(111)面又は(110)面と平行になるように、単結晶シリコン層130と透過部110との位置が調整されてもよい。単結晶シリコンは、(111)面又は(110)面に沿って劈開しやすいため、単結晶シリコン層130に透過部110をより正確に精度よく形成することができる。
支持部200は、上記した通り、400μm以下の厚さでなければならない。支持部200の厚さが薄くなると、基板の撓みが大きくなり、その影響で、製造過程におけるハンドリングが困難になるとともに、基板を加工して荷電粒子線露光装置用マスクを形成したときに内部応力によって基板に歪みが生じ、その影響で薄板部100が変形してしまう恐れがある。にもかかわらず、本開示では、「400μm以下の厚さの支持部(第3の層)とする」ことで、シンプルな構造により応力によって歪みにくい薄板部を実現することができるため、メンブレン領域の形状を安定して維持することができるシンプルな構造の荷電粒子線露光装置用マスクを提供することができる。シンプルな構造とは、メンブレン領域を補強するための補強部という追加的構成が不要であることを意味する。
上記のとおり、本開示の実施形態1に係る荷電粒子線露光装置用マスクによると、薄板部100(第1の層)が1μm以上10μm以下の略均一の厚さを有し、支持部200(第3の層)を400μm以下の略均一の厚さにすることによって、一定以上の剛性の薄板部をより簡易的に形成することができるとの優れた作用効果を奏する。
また、薄板部が平面視においてラウンド形状を有することで、薄板部にかかる応力を緩和することができる。また、1の薄板部に複数の矩形形状の透過部が設けられることで、1つの荷電粒子線露光装置用マスクで多様なパターンを露光することができる。したがって、薄板部(メンブレン領域)の形状を安定して維持することができるシンプルな構造の荷電粒子線露光装置用マスクを提供することができる。また、薄板部の平面視における形状が、略矩形形状であることにより、短辺方向と長辺方向とを有するパターンにおいて、短辺方向に比べて長辺方向の長さが非常に長いパターンであっても、一度でパターニングすることができる。第1透過部は、平面視における矩形形状のアスペクト比が略1〜略40であってもよく、かかる構成により短辺方向と長辺方向とを有するパターンにおいて、短辺方向に比べて長辺方向の長さが非常に長いパターンであっても、一度でパターニングすることができる。第1透過部と第2透過部とは、平面視において互いに異なるアスペクト比を有するよう構成することによって、多様な形状のパターンを1つの荷電粒子線露光装置用マスクで実現することができる。略矩形形状の角部がラウンド形状であってもよく、かかる構成によって薄板部にかかる応力を緩和することができ、1つの薄板部に平面アスペクト比が大きい透過部を多数配置することができる。
[荷電粒子線露光装置用マスクの製造方法]
図2乃至図13を用いて、本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法を説明する。図2に荷電粒子線露光装置用マスクのプロセスフローを示し、図3乃至図13に図2の各プロセスフローにおける荷電粒子線露光装置用マスクの断面図を示す。また、以降の説明において、説明の便宜上、図の紙面上方を基板の表面側、図の紙面下方を基板の裏面側という。
まず、荷電粒子線露光装置用マスクを形成するための基板を準備する(ステップS201)。ここでは、基板として、支持基板150(厚さ400μm以下)と、支持基板150上に配置された酸化シリコンを含むボックス層140と、ボックス層140上に配置された厚さが1μm以上10μm以下の単結晶シリコン層と、を有するSOI基板を準備する。ただし、準備する基板はSOI基板に限定されないことは上記した通りである。
基板(将来支持部200となる部分)の厚さは、400μm以下でなければならない。基板が薄くなると、基板の撓みが大きくなり、製造過程におけるハンドリングが困難になるとともに、基板を加工して電子線露光用マスクを形成したときに内部応力によって基板に歪みが生じ、その影響で薄板部100が変形してしまうという恐れがある。しかし、上記したとおり、本件開示では、「400μm以下の厚さの支持部(第3の層)とする」ことで、メンブレン領域の形状を安定して維持することができる荷電粒子線露光装置用マスクを提供することを可能とするものである。なお、このように薄い基板を使用することでバックエッチングを行う工程が短くすることができるとともに、製造工程を短期化し、製造コストを低下させることができるとの効果も奏する。
次に、基板の表裏面にハードマスクを形成する(ステップS202)。ここで、ステップS202における基板の断面構造を図3に示す。図3に示すように、単結晶シリコン層130上に表面ハードマスク300を形成し、支持基板150上に裏面ハードマスク310を形成する。表裏面ハードマスク300、310としては、例えば酸化シリコン、クロムやアルミニウム等の金属材料を使用することができる。もっとも、本工程(S202)は本開示において必須の構成ではない。すなわち、本工程(S202)を飛ばし、図3の裏面ハードマスク310を形成しないで、S203以降の工程を行うことが可能である。その他、ハードマスク310の形成とフッ酸エッチングによるハードマスク除去を繰り返すことによって、シリコン層を均一性良く狙い膜厚に薄膜化することも可能である。
当該ハードマスクとして使用する材質としては、ボックス層140と当該ハードマスクとが同じエッチャントでエッチングできるように選択することができる。以降、当該ハードマスクとしてボックス層140と同じ酸化シリコンを使用したプロセスについて説明する。
ステップS203に移る。表面ハードマスク300上に表面レジストマスク320を形成する(ステップS203)。ここで、ステップS203における基板の断面構造を図4に示す。図4に示すように、表面ハードマスク300上に形成された表面レジストマスク320は、荷電粒子線露光装置用マスクの透過部110に対応する箇所に開口部321を有している。なお、基板に開口部321を形成する際、同時にレーザダイシング用の溝を第1の層に設けてもよい。上記の荷電粒子線露光装置用マスクの製造方法によれば、工程を省略できるだけではなく、後続のレーザダイシング工程において、予め溝が彫られていることによって薄板部の汚染、破壊等を低減することができ、歩留まりが向上する。
次に、表面ハードマスク300をエッチングする(ステップS204)。ここで、ステップS204における基板の断面構造を図5に示す。図5に示すように、表面レジストマスク320の開口部321に対応する位置の表面ハードマスク300が除去されて開口部301が形成される。表面ハードマスク300のエッチングはウェットエッチング又はドライエッチングによって行うことができる。ウェットエッチングによって酸化シリコンである表面ハードマスク300をエッチングする場合、エッチャントとしてフッ化水素酸又はフッ化水素酸を含む薬液を使用することができる。
一方、ドライエッチングによって酸化シリコンである表面ハードマスク300をエッチングする場合、トリフルオロメタン(CHF3)ガスや六フッ化エタン(C26)ガスを使用したドライエッチングを行うことができる。上記のドライエッチングは異方性を有するドライエッチングである。したがって、等方性エッチングとは異なり、(マスクの下をエッチングさせないで、)ほぼ設計値通りのサイズのパターンを形成することができる。
次に、単結晶シリコン層130をエッチングする(ステップS205)。ここで、ステップS205における基板の断面構造を図6に示す。図6に示すように、表面レジストマスク320の開口部321及び表面ハードマスク300の開口部301に対応する位置の単結晶シリコン層130をエッチングして、後に荷電粒子線露光装置用マスクの透過部110となるパターン131を形成する。換言すると、基板の表面側に、荷電粒子線露光装置用マスクの薄板部100に対応する領域に透過部110に対応するパターン131が形成されるともいう。
単結晶シリコン層130のエッチングはウェットエッチング又はドライエッチングによって行うことができる。ウェットエッチングによって単結晶シリコン層130をエッチングする場合、KOH水溶液、エチレンジアミン・ピロカテコール(EDP)、又は4メチル水酸化アンモニウム(TMAH)を使用することができる。一方、ドライエッチングによって単結晶シリコン層130をエッチングする場合、4フッ化炭素(CF4)、六フッ化硫黄(SF6)、臭化水素(HBr)を使用したドライエッチングを行うことができる。
次に、表面レジストマスク320を除去する(ステップS206)。ここで、ステップS206における基板の断面構造を図7に示す。レジストの除去は、有機溶媒を用いてもよく、また、酸素プラズマ処理などのアッシングを用いてもよい。ここで、レジストの除去の後はIPA乾燥によって基板を乾燥してもよい。
ここで、図2のプロセスフローでは、単結晶シリコン層130のエッチングは表面レジストマスク320が配置された状態で処理し、単結晶シリコン層130にパターン131が形成されてから表面レジストマスク320を除去するプロセスを例示したが、パターン131が形成される前に表面レジストマスク320を除去し、表面ハードマスク300のみをマスクとして単結晶シリコン層130のエッチング処理を行ってもよい。
次に、基板の表面側にパターン131を覆う樹脂層330を形成する(ステップS207)。ここで、ステップS207における基板の断面構造を図8に示す。図8に示すように、樹脂層330は基板全域に亘って形成されているが、樹脂層330は少なくとも荷電粒子線露光装置用マスクが完成したときの薄板部100に対応する領域に形成されていればよい。樹脂層330としては、多様なレジスト等として用いられる樹脂を使用することができる。
ここで、樹脂層330はパターン131の表面保護する目的、及び後の工程で薄板部100を形成するために支持基板150をエッチングする際の歪みを抑制する目的、又は形成した後の基板の歪みを抑制する目的で形成される。したがって、樹脂層330は一定の剛性を得るのに十分な厚さで形成することが好ましく、具体的には樹脂層330の厚さは5μm以上30μm以下とするとよい。
樹脂層330は、溶媒に溶けた樹脂材料の溶液をスピンコート法などの塗布法で形成し、熱処理を行うことで硬化させる。樹脂層330の厚さは、樹脂材料や添加剤の濃度調整により溶液の粘度を調整し、さらに溶液塗布時の基板の回転速度を調整することで制御することができる。一度の塗布で所望の厚さを得ることができない場合は、樹脂層が所望の厚さになるまで塗布と硬化を複数回繰り返してもよい。
次に、裏面ハードマスク310上に裏面レジストマスク340を形成する(ステップS208)。ここで、ステップS208における基板の断面構造を図9に示す。図9に示すように、裏面ハードマスク310上に形成された裏面レジストマスク340は、荷電粒子線露光装置用マスクの薄板部100に対応する箇所に開口部341を有している。
次に、裏面ハードマスク310をエッチングする(ステップS209)。ここで、ステップS209における基板の断面構造を図10に示す。図10に示すように、裏面レジストマスク340の開口部341に対応する位置の裏面ハードマスク310が除去されて開口部311が形成される。
裏面ハードマスク310のエッチングはウェットエッチング又はドライエッチングによって行うことができる。ここで、ウェットエッチング及びドライエッチングはステップS204の表面ハードマスク300のエッチングと同様の条件で処理することができる。
次に、支持基板150をエッチングする(ステップS210)。ここで、ステップS210における基板の断面構造を図11に示す。図11に示すように、裏面レジストマスク340の開口部341及び裏面ハードマスク310の開口部311に対応する位置の支持基板150を少なくともボックス層140に達するまでエッチングして開口部151を形成する。
支持基板150のエッチングはウェットエッチング又はドライエッチングによって行うことができる。ここで、ウェットエッチング及びドライエッチングはステップS205の単結晶シリコン層130のエッチングと同様の条件で処理することができる。
次に、樹脂層330及び裏面レジストマスク340を除去する(ステップS211)。ここで、ステップS211における基板の断面構造を図12に示す。樹脂層330及び裏面レジストマスク340の除去は、有機溶媒を用いてもよく、また、酸素プラズマ処理などのアッシングを用いてもよい。樹脂層330及び裏面レジストマスク340の除去は同一工程で行ってもよく、それぞれ別の工程で行ってもよい。
上記有機溶媒としては、例えばレジストリムーバを使用することができる。レジストリムーバを用いて樹脂層330及び裏面レジストマスク340を除去した後に、露出された表面ハードマスク300、裏面ハードマスク310、及び開口部151の内部で露出したボックス層140の表面に残留した有機物を除去するためにSPM洗浄を行ってもよい。SPM洗浄は、硫酸過酸化水素水洗浄ともいい、H22:H2SO4=3:1で混合した薬液を70℃〜80℃に加熱して使用するもので、強力な酸化作用を利用して有機物の除去に効果がある洗浄方法である。SPM洗浄の後はIPA乾燥によって基板を乾燥してもよい。
次に、表面ハードマスク300、裏面ハードマスク310、及び開口部151の内部で露出したボックス層140を除去する(ステップS212)。ここで、ステップS212における基板の断面構造を図13に示す。ここで、表面ハードマスク300、裏面ハードマスク310、及び開口部151の内部で露出したボックス層140の除去は全てを同一工程で行ってもよく、表面ハードマスク300と、裏面ハードマスク310及び開口部151の内部で露出したボックス層140と、をそれぞれ別の工程で行ってもよい。
上記の工程はウェットエッチング又はドライエッチングによって行うことができる。ここで、ウェットエッチング及びドライエッチングはステップS204の表面ハードマスク300のエッチングと同様の条件で処理することができる。
ステップS212の工程によって、厚さが1μm以上10μm以下の単結晶シリコン層130が残り、薄板部100が形成される。ステップS210の支持基板150のエッチング及びステップS212のボックス層140のエッチングの2つステップを併せて基板を裏面側からエッチングするということもできる。つまり、ステップS210及びステップS212は、薄板部100に対応する領域の基板が1μm以上10μm以下の略均一の厚さとなり、単結晶シリコン層130に形成されたパターン131が透過部110となるように、裏面側から基板をエッチングする、ということができる。
次に、図13に示す状態の基板を洗浄する(ステップS213)。ステップS213における洗浄は、純水洗浄、SPM洗浄、APM洗浄、及びフッ酸洗浄を行うことができる。また、洗浄後はIPA乾燥によって基板を乾燥してもよい。ここで、APM洗浄は、アンモニア過酸化水素水洗浄ともいい、アンモニア(NH4OH):H22:H2O=1:2:5で混合した薬液を70℃〜80℃に加熱して使用するもので、有機物の除去及び不溶性のパーティクルの除去に効果がある洗浄方法である。
そして、最後に完成した基板(荷電粒子線露光装置用マスク)の検査を行う(ステップS214)。基板の検査は、光学顕微鏡を使用することができ、基板に照射した検査光のうち基板によって反射された光を検出する反射モードや、基板を透過した検査光を検出する透過モードによって行うことができる。また、その他の方法として、電子顕微鏡(SEM:Scanning Electron Microscope)を使用して、光学顕微鏡より高倍率の画像で基板を検査してもよい。
[変形例]
本変形例は、上記実施形態にて説明した図10までの手順は同一であるが、上記図11を用いて説明した箇所が異なる。すなわち、図11で支持基板150を少なくともボックス層140に達するまでエッチングして開口部151を形成している箇所(図2のS201)に関し、エッチャントとして六フッ化硫黄(SF6)を使用し、シリコンを一部残すことでメンブレン領域を補強することができる、との変形である。図14を用いて説明する。図14に示すように、支持基板150をエッチングする際にエッチャントとしてSF6を使用するため、等方性エッチングとなり、支持基盤150の一部に湾曲部250を形成することができる。ここで、本開示において湾曲部とは、支持基盤150のうち、ボックス層140と接する部分の開口部151側に位置し、所定の曲率を有する部分を言う。
続いて樹脂層330及び裏面レジストマスク340の除去を行うが、これは有機溶媒を用いてもよく、また、酸素プラズマ処理などのアッシングを用いてもよい(図15)。そして表面ハードマスク300、裏面ハードマスク310、及び開口部151の内部で露出したボックス層140を除去し、洗浄することで、荷電粒子線露光装置用マスクを得る(図16)。
そしてかかる湾曲部250が厚みLを有する(Lは、図14〜図16において、両矢印により示した長さであり、支持層の厚みが400μm程度である場合にはLは300μm程度である。)ために、図16にて示す、完成した荷電粒子線露光装置用マスクにおいて、メンブレン領域の補強としての役割を果たすことができる。なお、本変形は、上記した実施形態で記載した他の事項と組み合わせることができることは言うまでもない。
以上のように、本開示の実施形態1に係る荷電粒子線露光装置用マスクの製造方法によると、支持基板150の膜厚を400μm以下としたから、バックエッチング工程が単純化され、外力によって基板が歪むことを抑制することができ、その結果、薄板部100の形状が変形してしまうことを抑制できる。つまり、製造工程において、薄板部の変形を抑制することができる。これを以てメンブレン領域の形状を安定して維持することができる電子線露光用マスクの製造方法を提供することが可能となった。
上記開示に基づいて実際に製造したマスクの写真が図16である。本実施例では、第1の層として5μmのSi、第2の層として1μmのSiO2、第3の層として400μmのSiであるSOI基板を使用し、上記した製造方法(樹脂層の厚み6μm)によってマスクを製造したところ、1mm×10mmというメンブレンサイズのマスク(アスペクト比10)、1mm×20mmというメンブレンサイズのマスク(アスペクト比20)φ16mm(半径8mm)というメンブレンサイズの略円形状のマスク、12mm角というメンブレンサイズのマスクをそれぞれ製造することに成功した。結果として、薄板部100の形状が変形することを抑制できることを実際に確認した(図17)。さらに上記変形例に係る開示に基づいて実際に第1の層として2μmのSi、第2の層として1μmのSiO2、第3の層として400μmのSiであるSOI基板を使用し、上記した製造方法(樹脂層の厚み6μm、L=300μm)によってマスクを製造することに成功した。
なお、本開示は上記の実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。上記ではメンブレンの形状は矩形として説明したが、たとえば、アスペクト比10〜40の平行四辺形であってもよい。
10:荷電粒子線露光装置用マスク
100:薄板部
110:透過部
120:非透過部
130:単結晶シリコン層
131:パターン
140:ボックス層
150:支持基板
151、301、311、321、341:開口部
200:支持部
300:表面ハードマスク
310:裏面ハードマスク
320:表面レジストマスク
330:樹脂層
340:裏面レジストマスク

Claims (16)

  1. 荷電粒子線の進行方向に複数の荷電粒子線露光装置用マスクが重ねて配置される露光装置に使用される荷電粒子線露光装置用マスクであって、
    前記荷電粒子線を透過する透過部と、前記透過部の周囲に存在し前記荷電粒子線を遮断する非透過部と、を有する薄板部と、
    前記薄板部を支持する枠状の支持部と、を有し、
    前記薄板部は、1μm以上10μm以下の略均一の厚さの第1の層を有し、
    前記支持部は、前記第1の層と、5μm以下の略均一の厚さの第2の層と、400μm以下の略均一の厚さの第3の層とを有し、
    平面視において、前記薄板部の長辺の長さは10mm以上であり、
    断面視において、前記支持部は、前記支持部の開口部側が湾曲した湾曲部を有する荷電粒子線露光装置用マスク。
  2. 前記薄板部の平面視における形状は、略矩形形状である、
    請求項1に記載の荷電粒子線露光装置用マスク。
  3. 前記第1の層及び第3の層は、シリコン、窒化シリコン、炭化シリコン、ガリウム砒素、ダイヤモンドライクカーボン、サファイア又は金属を主成分とし、
    第2の層はSiOを主成分とする、
    請求項1に記載の荷電粒子線露光装置用マスク。
  4. 前記透過部は、平面視における前記矩形形状のアスペクト比が略40である、
    請求項に記載の荷電粒子線露光装置用マスク。
  5. 前記透過部は第1透過部と第2透過部を含み、
    前記第1透過部と前記第2透過部とは、平面視において互いに異なるアスペクト比を有する、
    請求項1〜のいずれか1項に記載の荷電粒子線露光装置用マスク。
  6. 前記略矩形形状の角部がラウンド形状である、
    請求項に記載の荷電粒子線露光装置用マスク。
  7. 前記ラウンド形状は、曲率半径が1μm以上100μm以下の曲線形状である、
    請求項に記載の荷電粒子線露光装置用マスク。
  8. 荷電粒子線の進行方向に複数の荷電粒子線露光装置用マスクが重ねて配置される露光装置において、前記荷電粒子線を透過する透過部と前記透過部の周囲に存在し前記荷電粒子線を遮断する非透過部とを有する1μm以上10μm以下の略均一の厚さの薄板部と、前記薄板部を支持する枠状の支持部と、を有し、前記薄板部は、1μm以上10μm以下の略均一の厚さの第1の層を有し、前記支持部は、前記第1の層と、5μm以下の略均一の厚さの第2の層と、400μm以下の略均一の厚さの第3の層とを有し、平面視において、前記薄板部の長辺の長さは10mm以上であり、断面視において、前記支持部は、前記支持部の開口部側が湾曲した湾曲部を有する荷電粒子線露光装置用マスクを所定の基板から製造する製造方法であって、
    前記基板の前記第1の層側の面に対し、前記薄板部に対応する領域に前記透過部に対応するパターンを形成し、
    前記第1の層側の面に、前記パターンを覆う樹脂層を形成し、
    前記薄板部に対応する領域の前記基板が1μm以上10μm以下の略均一の厚さとなり、平面視において前記薄板部の長辺の長さが10mm以上となり、断面視において前記支持部の前記開口部側が湾曲して、前記パターンが前記透過部となるように前記第1の層側の面とは反対側の第2の層側の面から前記第3の層をエッチングし、
    前記樹脂層を除去する、
    荷電粒子線露光装置用マスクの製造方法。
  9. 前記第3の層をエッチングにおいて、SFをエッチャントとする
    請求項に記載の荷電粒子線露光装置用マスクの製造方法。
  10. 前記薄板部の平面視における形状は、略矩形形状である、
    請求項に記載の荷電粒子線露光装置用マスクの製造方法。
  11. 前記第1の層及び第3の層は、シリコン、窒化シリコン、炭化シリコン、ガリウム砒素、ダイヤモンドライクカーボン、サファイア又は金属を主成分とし、
    第2の層はSiOを主成分とする、
    請求項に記載の荷電粒子線露光装置用マスクの製造方法。
  12. 前記透過部は、平面視における矩形形状であり、アスペクト比が略40であることを特徴とする、
    請求項10に記載の荷電粒子線露光装置用マスクの製造方法。
  13. 前記透過部は、第1透過部と第2透過部とを有し、
    前記第1透過部と前記第2透過部とは、平面視において互いに異なるアスペクト比を有することを特徴とする、
    請求項8〜12のいずれか1項に記載の荷電粒子線露光装置用マスクの製造方法。
  14. 前記略矩形形状の角部がラウンド形状である、
    請求項10に記載の荷電粒子線露光装置用マスクの製造方法。
  15. 前記ラウンド形状は、曲率半径が1μm以上100μm以下の曲線形状であることを特徴とする、
    請求項14に記載の荷電粒子線露光装置用マスクの製造方法。
  16. 前記パターンを形成する際に、レーザダイシング用の溝を同時に形成することを特徴とする、
    請求項に記載の荷電粒子線露光装置用マスクの製造方法。
JP2017127749A 2017-03-23 2017-06-29 荷電粒子線露光用マスクおよびその製造方法 Active JP6988202B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057046 2017-03-23
JP2017057046 2017-03-23

Publications (2)

Publication Number Publication Date
JP2018159906A JP2018159906A (ja) 2018-10-11
JP6988202B2 true JP6988202B2 (ja) 2022-01-05

Family

ID=63796646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127749A Active JP6988202B2 (ja) 2017-03-23 2017-06-29 荷電粒子線露光用マスクおよびその製造方法

Country Status (1)

Country Link
JP (1) JP6988202B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3875356B2 (ja) * 1997-06-09 2007-01-31 Hoya株式会社 転写マスク用基板及び該基板を用いた転写マスクの製造方法
JP2000124117A (ja) * 1998-10-14 2000-04-28 Nikon Corp メンブレンマスク及びその製造方法
EP1489644A1 (en) * 2002-03-26 2004-12-22 Toppan Printing Co., Ltd. Circuit pattern dividing method, stencil mask manufacturing method, stencil mask, and exposure method
JP2004311800A (ja) * 2003-04-09 2004-11-04 Dainippon Printing Co Ltd 荷電粒子線露光用マスクブランクスおよびマスクの製造方法
JP6488595B2 (ja) * 2014-09-03 2019-03-27 大日本印刷株式会社 電子線露光用マスク及び電子線露光用マスクの製造方法

Also Published As

Publication number Publication date
JP2018159906A (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
KR20160086024A (ko) 펠리클 및 이의 제조 방법
US5234781A (en) Mask for lithographic patterning and a method of manufacturing the same
JP6488595B2 (ja) 電子線露光用マスク及び電子線露光用マスクの製造方法
JP6988202B2 (ja) 荷電粒子線露光用マスクおよびその製造方法
JP7201044B2 (ja) 荷電粒子線露光用マスクおよびその製造方法
JP6680374B2 (ja) 電子線露光用マスク
US20230014644A1 (en) Vertically tapered spot size converter and method for fabricating the same
JP2010278371A (ja) シリコン異方性エッチング方法及びシリコン異方性エッチング液
JP7238623B2 (ja) 荷電粒子線露光用マスク,荷電粒子線露光用マスクの製造方法
KR100435974B1 (ko) 마스크 부재의 제조방법
JP2019074546A (ja) 荷電粒子線露光用マスク及びその製造方法
CN114200796B (zh) 对准标记及其形成方法
RU2808137C1 (ru) Наноэлектромеханический резонатор и способ его изготовления
JP4389440B2 (ja) 転写マスク及びその作製方法
JP6911397B2 (ja) 荷電粒子線露光用マスクおよびその製造方法
US11194245B2 (en) Method of manufacturing phase-shifting photomask
US20220413378A1 (en) Methods for removing catalyst particles from nanotube films
KR100976651B1 (ko) 반도체 소자의 패턴 형성방법
CN103293848B (zh) 光刻胶的处理方法以及半导体器件的制备方法
US9588417B2 (en) Photomask pellicle
CN109429157B (zh) 麦克风及其制造方法
JP2002075836A (ja) 転写マスクの製造方法及びそれにより得られた転写マスク
US6355384B1 (en) Mask, its method of formation, and a semiconductor device made thereby
WO2020158188A1 (ja) キャビティsoi基板
CN116825595A (zh) 一种适用于负载一维纳米材料的透射电镜微栅及制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150