WO2019107808A1 - 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지 - Google Patents

양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2019107808A1
WO2019107808A1 PCT/KR2018/014016 KR2018014016W WO2019107808A1 WO 2019107808 A1 WO2019107808 A1 WO 2019107808A1 KR 2018014016 W KR2018014016 W KR 2018014016W WO 2019107808 A1 WO2019107808 A1 WO 2019107808A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
oxide
additive
nickel
formula
Prior art date
Application number
PCT/KR2018/014016
Other languages
English (en)
French (fr)
Inventor
한정민
박병천
김지혜
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180091425A external-priority patent/KR102388848B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880017875.9A priority Critical patent/CN110447132B/zh
Priority to JP2019554695A priority patent/JP7045553B2/ja
Priority to PL18884808.9T priority patent/PL3595063T3/pl
Priority to US16/605,755 priority patent/US11329287B2/en
Priority to EP18884808.9A priority patent/EP3595063B1/en
Publication of WO2019107808A1 publication Critical patent/WO2019107808A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode additive, a method for producing the same, and a positive electrode and a lithium secondary battery including the same.
  • the lithium secondary battery is a lithium secondary battery in which an electrode active material capable of reversibly intercalating and deintercalating lithium ions is applied to a negative electrode and a positive electrode to realize movement of lithium ions through an electrolyte, .
  • Lithium ions which are released (discharged from the battery) after being inserted into the negative electrode (battery charging) and lyrium ions which can not be recovered (discharged from the battery) after being desorbed (battery charged) from the positive electrode are inevitably generated respectively. Capacity.
  • An embodiment of the present invention provides a positive electrode additive capable of canceling the irreversible capacity imbalance of two electrodes and suppressing generation of gas in the battery while increasing an initial charging capacity of the anode. 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • a member when a member is " on " another member, it includes not only when the member is in contact with the other member, but also when there is another member between the two members.
  • a positive electrode additive do As meaning a mixture or one or more combinations selected from the group, is meant to include at least one selected from the group consisting of the above components.
  • Anodic Additive In one embodiment of the present invention, a positive electrode additive do:
  • M is one of the metal elements forming a bivalent or trivalent ion, and has a composition of -0.2 ⁇ 0.2, 0.5 ⁇ 1.0, -0.2 ⁇ 0.2, 0.6 ⁇ 1.0, 0 < 0.15, 03 ⁇ 4 < 0.15, 0 <
  • the nickel-based oxides ((year, M is the formula 1 was repeated, 0.5 ⁇ (1 ⁇ 1.0) and Lyrium oxide (1 ⁇ 0), a stoichiometric 1:
  • M is the formula 1
  • Lyrium oxide (1 ⁇ 0) Lyrium oxide (1 ⁇ 0)
  • a stoichiometric 1 When the heat treatment after blending at a molar ratio of 1, Reacted at a molar ratio of 1: 1 to form a reovium nickel oxide represented by the following formula (1-1), and the unreacted starting material may not remain.
  • the lithium nickel oxide represented by the above formula (1-1) can be used as a precursor of the battery, for example, a voltage of 2.5 to 4.25 V 1/0 +), irreversible release of lyrium ion and oxygen, can offset the irreversible capacity imbalance of the two electrodes, and increase the anode and initial charge capacity.
  • the nickel-based oxide (f) and the lithium oxide ( 20 ) are mixed at a molar ratio of 1: 1 and then heat-treated, the whole amount of the compounded mixture does not react at a molar ratio of 1: 1, It can inevitably remain.
  • the unreacted raw material was treated as an impurity and removed, and only the material having the theoretical composition (that is, the lithium nickel oxide represented by the above formula 1-1) was recovered as a positive electrode additive Only.
  • nickel oxide (I.e., the lithium nickel oxide represented by the formula 1-1) without removing the unreacted raw material after the reaction of the lithium oxide 20 and the lithium oxide 20 , It was found that it could be even higher.
  • an extra 0 can be provided to the positive electrode depending on the presence of the unreacted raw material, particularly lyrium oxide (Ni 2 O), and the initial charge capacity of the positive electrode It can be even higher.
  • lithium oxide (10) that is, the lithium nickel oxide represented by Formula 1-1
  • the lithium nickel oxide represented by the above formula (1-1) irreversibly releases lyrium ion and oxygen at a voltage at the time of initial charging of the battery, and at the same time, the internal crystal structure is collapsed, and the side reaction with the electrolyte It is possible to generate a gas which hinders battery performance.
  • gas is generated in the battery, there is a problem of reducing the initial capacity, initial charge / discharge efficiency, etc. of the battery. 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • the positive electrode additive of one embodiment includes the nickel-based oxide And the lithium oxide ( 2 0), aluminum oxide ( 2 0 3 ) in a batch, and then heat-treating the mixture.
  • the nickel-based oxide and the lithium oxide 0) a 1: 1.02 to 1: blended in a stoichiometric molar ratio of 0.98, and the aluminum oxide (produced by Shin-2 0 3) may be formulated to be from 100 to 10 000 111 the total amount of the mixture.
  • the positive electrode additive thus obtained may include doping and / or coating with time.
  • M in the above formulas (1) and (1-1) may be included and may be 0.5 1 5 ⁇ Doping), 0 ⁇ 0.1 (coating).
  • the nickel-based oxide And the lyrium oxide (0) are reacted to synthesize a lyrium nickel oxide represented by the formula (1-1), and the aluminum oxide (neo 2 0 3 )
  • the lithium oxide (Li 20) not participating in the reaction can be doped into the crystalline structure of the lithium manganese oxide represented by the formula (1-1), and the aluminum oxide (Al 203) forms Li 5 A10 4 can do.
  • the resulting positive electrode additive may be a core-shell (coating layer) structure.
  • a core comprising a lithium nickel oxide, a nickel oxide (NiO), and a lithium oxide (Li 20) represented by Formula 1-1 may be used.
  • a coating layer comprising U 5 AIO 4 .
  • the lithium nickel oxide represented by 1, the nickel oxide (NiO), and the tritium oxide (Li 20) constitute the core and the U 5 AIO 4 constitutes the coating film can be confirmed by X-Ray Diffraction It can be confirmed from the results.
  • the Li 5 A10 4, the lithium nickel oxide, the nickel oxide (NiO), and the lithium oxide (Li 20) represented by the general formula (1-1) are the positive electrode additives of the structure of the core- XRD (X-Ray) with Fe Ka X ray (X-ray)
  • the aluminum oxide (Al 203) is added to the nickel-based oxide (Ni d NMO x) and the lium oxide (Li 20) , the content of aluminum oxide (AI 2 O 3) More preferably more than 100 ppm but not more than 10000 ppm, specifically more than 100 and less than 8000 ppm, more than 100 ppm and not more than 5000 ppm, for example, more than 100 ppm and not more than 3000 ppm.
  • the main peak intensity of the lithium nickel oxide represented by the chemical cutting 1-1 is 100 (Ref.), It is more than 0 and less than 15, specifically more than 0 and less than 14, more than 0 and less than 13, It may appear as intensity greater than 0 and less than 12.
  • the content of the Li oxide (Li 20) in the total amount of the core (100 wt%) is more than 0 wt% and not more than 15 wt%, more specifically 0 wt% to 14 wt% , For example, more than 0% by weight and 12% by weight or less.
  • XRD X-ray diffraction
  • X-ra X-ray diffraction
  • the main peak appears in the case of the nickel oxide (NiO).
  • the main peak intensity of the lyrium nickel oxide represented by the formula (1-1) is taken as 100 (Ref.), It is more than 0 and not more than 15, specifically not less than 0. 0, not more than 0 and not more than 13, It appears as an intensity greater than 0 but less than 12 .
  • the content of the nickel oxide (NiO) in the total amount (100 wt%) of the core is more than 0 wt% and not more than 15 wt%, more specifically 0 wt% to 14 wt% , For example, more than 0% by weight and 12% by weight or less.
  • the range is from 18 to 21 degrees, from 24 to 27 degrees and from 43 to 46 degrees
  • the main peak may appear in the range.
  • the main peak may be represented by a crystal structure of Orthorhombic having a space group Iramm and may be a lyrium nickel oxide represented by the formula 1-1.
  • the content of the positive electrode additive was determined from the total amount of the positive electrode additive (100% by weight)
  • the content of Li 5 A10 4 the content of the lium oxide (Li 20) , and the content of the nickel oxide (NiO).
  • the Li 5 A10 4 the lyrium nickel oxide, the nickel oxide (NiO), and the lyrium oxide (Li 20) X, y, and z are the lithium nickel oxide represented by Formula 1-1, the nickel oxide (NiO), and the nickel oxide represented by Formula 1-1 ), And the weight ratio of the lithium oxide (Li 20) .
  • the core irreversibly releases tung ions and oxygen at an initial charging voltage of the battery, for example, 2.5 to 4.25 V (vs. Li / Li +), after which the entire composition can be converted to the following formula have. 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • needle 2 + 3 bye 13 ⁇ 13 0 2 + (: is like the conventional cathode active material, the reversible insertion and desorption of ions Lyrium may be possible.
  • the coating layer may still be present on the surface of the core converted to Formula 2 above.
  • the positive electrode additive of one embodiment can be utilized as an additive for compensating the initial irreversible capacity of the negative electrode, and as an active material capable of reversible insertion and desorption of lithium.
  • the core converted to the formula (2) may have a reversible capacity smaller than that of the conventional positive electrode active material, and may have a reversible capacity of 300 to 35%. Therefore, when the initial performance of the battery is improved and long-life characteristics are secured, the cathode active material may be mixed with the cathode active material of one embodiment in a proper mixing ratio depending on the desired battery characteristics.
  • a process for preparing a nickel-based oxide comprising: preparing a nickel-based oxide represented by the following Formula 3; And a heat treatment of a mixture of the nickel-based oxide, the lyrium oxide (1 peak 0), and the aluminum oxide ( 20 3 ). According to such a gradation method, the above-mentioned positive electrode additive can be obtained.
  • the step of preparing the nickel-based oxide represented by the above-mentioned formula (3) is a step of preparing nickel hydroxide ((0) Or a mixture of a nickel hydroxide (No. 011 (011) 2 ) and an M-containing compound.
  • the heat treatment of the mixture can be carried out in an inert atmosphere at a temperature range of 500 to 700 ° C for 5 to 20 hours.
  • the nickel-based oxide and the lithium oxide (Ni 2 O) When the mixture of the nickel-based oxide and the lithium oxide (Ni 2 O) is heat-treated, the nickel-based oxide And the tritium oxide (10) are reacted to synthesize a lyrium nickel oxide represented by the formula ( 1-1 ), but the unreacted raw material may remain because the compounded total amount does not react at a molar ratio of 1: 1.
  • the silane of the aluminum oxide may be doped into the crystal structure of the lithium nickel oxide represented by the formula (1-1), and the aluminum oxide (Shore) may be doped with lithium Can be reacted with the oxide (1 20) to form 3 ⁇ 4 4 .
  • the above-mentioned positive electrode additive In another embodiment of the present invention, the above-mentioned positive electrode additive; And a cathode active material. Since the positive electrode additive of the embodiment is applied with the positive electrode additive described above, 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • the amount of the positive electrode additive is 1 to 30% by weight, specifically 1 to 10% by weight, more specifically 3 to 10% by weight.
  • the weight ratio of the positive electrode additive and the positive electrode active material may be 1:99 to 30:70, specifically 2:98 to 25:85, more specifically 5:95 to 10:90.
  • the positive electrode mixture of this embodiment can be generally implemented according to what is known in the art. Or less, typically the industry simply presenting information known in the art, though, that only one example, and is not I limited sum the anode one embodiment, example thereby.
  • the positive electrode active material there is no particular limitation as long as it is a material capable of reversible insertion and desorption of lyrium ion. For example, a metal of cobalt, manganese, nickel, or a combination thereof; and a composite oxide of lithium;
  • a compound represented by any one of the following formulas may be used.
  • I (in the above formula, 0.90 ⁇ 3 ⁇ 4 £ 1.8 and 0 £ ⁇ 0.5); (Where 0.90 ⁇ < 1.8, 0 ⁇ 0.5, and 0 <(;≪0.05); (Where 0 ⁇ 0.5, 0 ⁇ 0 ⁇ 0.05); 1 ⁇ > 3 ⁇ 4-: (additive formula, 0.90 ⁇ & ⁇ 1.8, 0 is ⁇ 13 ⁇ 0.5, 0 ⁇ 0 ⁇ 0.05, and 0 ⁇ (1 ⁇ 2); you - the ⁇ - £ 1 (wherein R 0.90 ⁇ 3 ⁇ 4 ⁇ 1.8, 0 £ ⁇ 0.5, 0 ⁇ 0 ⁇ 0.05 and 0 ⁇ (X ⁇ 2 a); 1 ⁇ ⁇ ⁇ In-book - 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • the coating layer forming step may be carried out by any of coating methods such as spray coating, dipping, and the like without adversely affecting the physical properties of the cathode active material by using these elements in the above compound. This is something that can be understood by people in the field. 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • the positive electrode material mixture of one embodiment may further include a conductive material, a binder, or a mixture thereof.
  • a conductive material As being used to impart conductivity to the conductive electrode material, in the constituted battery, the electronic conductivity without causing chemical changes. Any of the materials can be used.
  • metal powder such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, copper, nickel, Phenylene derivatives, and the like can be used alone or in combination.
  • the binder was well-adhered to each other of the positive electrode active material particles, and also serves to adhere well to the cathode active material on a current collector, and a typical example is polyvinyl alcohol, carboxymethyl cellulose.
  • a secondary battery comprising a positive electrode including the above-described positive electrode mixture, an electrolyte, and a negative electrode.
  • the present invention can be generally implemented in accordance with those known in the art. 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • the positive electrode comprises: a positive electrode collector; And a positive electrode mixture layer disposed on the positive electrode collector and including the positive electrode mixture described above.
  • the positive electrode may be prepared by applying an electrode mixture, which is a mixture of a positive electrode active material, a conductive material, and / or a binder, on a positive electrode collector, followed by drying. If necessary, a filler may be further added to the mixture .
  • an electrode mixture which is a mixture of a positive electrode active material, a conductive material, and / or a binder, on a positive electrode collector, followed by drying. If necessary, a filler may be further added to the mixture .
  • the cathode current collector generally has a thickness of 3 to 500 cm.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used.
  • the current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible. '
  • the conductive material is usually added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing any chemical change in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskey such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, Conductive materials such as polyphenylene derivatives and the like can be used.
  • the graphite-based material having elasticity may be used as a conductive material, and may be used together with the materials.
  • the binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt% based on the total weight of the mixture containing the cathode active material.
  • binders include, 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • Polyvinyl pyrrolidone tetrafluoroethylene, polyethylene, polypropylene, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CM (its), starch, hydroxypropylcellulose, regenerated cellulose, Ethylene-propylene-diene ter Sulfonated styrene, styrene butadiene rubber, fluorine rubber, various copolymers, and the like.
  • the filler is not particularly limited as long as it is a fibrous material which is used selectively as a component for suppressing the expansion of the anode and does not cause chemical change in the battery.
  • the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as fibers and carbon fibers are used.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material examples include a mixture of a carbonaceous anode active material, lithium metal, an alloy of larium metal, 3 ⁇ 4 810 x (0 ⁇ X ⁇ 2), and an alloy (the above is an alkali metal, an alkaline earth metal, , transition metal, rare earth element or a combination thereof, are not), 811, 3 ⁇ 40 2, 8 11 -0 complex, and 11-11 (the II is an alkali metal, alkaline earth metal 3 ⁇ 4 group 13 to a group 16 element, a transition metal , A rare earth element, or a combination thereof, and is not limited to urethane) may be used as the negative electrode active material.
  • the negative electrode collector may generally be made to have a thickness of 3 - 500.
  • Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel Aluminum, cadmium alloy, or the like may be used as the cathode collector.
  • fine unevenness may be formed on the surface to enhance the bonding force of the anode active material, A film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, and the like.
  • the lithium secondary battery of one embodiment may be a lithium ion battery, a lithium ion polymer battery, or a lithium ion battery depending on the type of the electrolyte and / 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • It can be a lithium polymer battery.
  • the lithium secondary battery of the embodiment is a lithium ion battery using a liquid electrolyte
  • the liquid electrolyte may be impregnated into the separator.
  • the separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the membrane is generally 0.01 - 10 _, and the thickness is generally 5 - 300 _.
  • Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used.
  • a solid electrolyte such as a polymer is used as an electrolyte
  • the solid electrolyte may also serve as a separation membrane.
  • the liquid electrolyte may be a non-aqueous electrolyte containing a lithium salt.
  • the lithium salt-containing nonaqueous electrolyte is composed of a nonaqueous electrolyte and lyrium, and examples of the nonaqueous electrolyte include nonaqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like.
  • non-aqueous organic solvent examples include methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylenecarbonate, dimethylcarbonate, diethylcarbonate , a lactone, 1, 2-dimethoxy ethane, tetrahydroxy Franc (6 3 ⁇ 411 ⁇ , 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane , Acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl- 2- imidazolidinone, propylene carbonate
  • Nonionic organic solvents such as tetrahydrofuran derivatives, ethers, methyl pyrophosphate and ethyl propionate may be used.
  • organic solid electrolyte for example, a poly ethylene oxide derivative, an ethylene oxide derivative, a polypropylene oxide derivative, a phosphoric acid ester polymer, 1> 11 , a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, a polymer containing an ionic dissociation group, and the like can be used.
  • the inorganic solid electrolyte for example, 01,
  • the Li tumyeom is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, Lil, LiC10 4, LiBF 4, LiBi 0 Cli 0, LiPF 6, L1CF 3 SO 3, LiCF 3 C0 2, LiAsF 6, LiSbFe, L1AICI 4, CH 3 SO 3 L1, (CF 3 S0 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic bonsanri cerium, lithium tetraphenyl borate, may be already in use include de.
  • the lithium salt-containing non-aqueous electrolyte may be mixed with a lithium salt such as pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, etc.
  • a lithium salt such as pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, etc.
  • a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride or the like may be further added in order to impart nonflammability, and a carbon dioxide gas may be further added to improve high-temperature storage characteristics, FEC (Fluoro-Ethylene Carbonate), PRS (Propene sultone), and the like.
  • LiPF 6 LiC10 4, L1BF4 , LiN (S0 2 CF 3)
  • LiN LiN (S0 2 CF 3)
  • LiPF 6 LiC10 4, L1BF4 , LiN (S0 2 CF 3)
  • LiPF 6 LiC10 4, L1BF4 , LiN (S0 2 CF 3)
  • highly dielectric solvent bound cyclic carbonate and a low viscosity theft of the EC or PC DEC, DMC or EMC linear carbonate To prepare a non-aqueous electrolyte containing a lithium salt.
  • the lithium secondary battery of the embodiment may be implemented as a battery module including a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • specific examples of the device may be, but not limited to, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage system.
  • Fig. 1 shows XRD (X-Ray Diffraction) analysis results of Fe Ka X-ray (X-ra) for each of the positive electrode additives of Examples 1 to Comparative Example 1.
  • FIG. 3 relates to Comparative Example 1.
  • Fig. 3 shows the results of analyzing the gas pressures of the batteries of Example 1 and Comparative Example 1 in real time.
  • Fig. 4 shows the results of evaluating the initial charge capacity for each of the batteries of Examples 2 and 3 and Comparative Example 3.
  • Fig. 5 shows the results of evaluating the life characteristics of the batteries of Examples 2 and 3 and Comparative Example 3, respectively.
  • the lithium secondary battery to which the positive electrode additive of one embodiment is applied to the positive electrode is characterized in that the initial irreversible capacity of the negative electrode is reduced and the initial capacity and efficiency of the positive electrode are effectively increased and the energy density is lowered during driving, have.
  • the nickel hydroxide precursor was heat-treated for 10 hours in an inert atmosphere of (011) 2 Rule 600 I: to obtain nickel calcined product ⁇ .
  • Example 3 As an example for evaluating the correlation between the anode additive and the cell initial characteristics of Example 1 (Experimental Example 3), a cathode was prepared by applying the cathode additive of Example 1 without using the cathode active material, A lithium secondary battery including a positive electrode was prepared.
  • Example 1 of the positive electrode additive ⁇ o .83 Li 2 Nio .97 Alo .0302 ⁇ -. ⁇ O .07 (NiO) ⁇ ⁇ 0. 07 (Li 2 O) ⁇ ⁇ 0 () 3 Li 5 MO 4 ⁇
  • a conductive material Super-P, Denka black
  • a binder PVdF
  • NMP organic solvent
  • the positive electrode mixture was coated on an aluminum current collector and dried in a vacuum oven of 120 for 30 minutes to prepare a positive electrode.
  • Li-metal is used as a counter electrode and ethylene carbonate (EC): dimethyl carbonate (DMC, Demethyl)
  • Carbonate in a volume ratio of 1: 2 was used to dissolve 2 wt% of VC in the solution.
  • a positive electrode was prepared by applying the positive electrode additive of Example 1 together with the positive electrode active material in the form of actually applying the positive electrode active material of Example 1, and a lithium secondary battery containing the positive electrode thus prepared was prepared.
  • the positive electrode additive of Example 1 ⁇ o .83 ( Li 2 Nio .97 Alo .0302) ⁇ - ⁇ o .07 ( NiO) ⁇ , ⁇ 0.07 ( Li 2 O) ⁇ ⁇ _Li 5 M0 4 ⁇ NCM-based positive electrode active material (LiNiawCo t mMn ⁇ ⁇ ), a conductive material (Super-P, Denka black) and a binder by mixing (PVdF) in an organic solvent (NMP) was prepared zero sum anode on the slurry, the positive electrode material mixture And then dried in a vacuum oven of 120 for 30 minutes to prepare each of the positive electrodes of Examples 3 and 4.
  • the positive electrode additive the positive electrode active material: 5 (Example 4): the conductive material: the weight ratio of the binder are, respectively, 4.25: 80.75: 10: 5 (Example 3) and 8.5: 76.5: 10 Respectively.
  • Nickel hydroxide precursor of the new (03 ⁇ 4 2 to 600 ° (: by heating in an inert atmosphere for 10 hours, nickel calculated product of .
  • Ni 2 0 nickel oxide 0 to lithium oxide (Na 2 0) in a 1: 1.02 mole empty ⁇ of: and formulated to be 0 2 0), 680 X:. Were heat-treated in an inert atmosphere for 18 hours At this time, the temperature rise and cooling rate 51 logo per minute.
  • the positive electrode additive of Comparative Example 1 was applied without using the positive electrode active material to prepare a positive electrode, A lithium secondary battery including a positive electrode was prepared.
  • a positive electrode was prepared in the same manner as in Example 2, except that the positive electrode active material of Example 1 was replaced by the same amount of the positive electrode active material, and a lithium secondary battery containing the positive electrode prepared above was produced Respectively.
  • Experimental Example 1 1) Analysis X-ray diffraction (XRD) analysis was performed on each of the positive electrode additives of Examples 1 to Comparative Example 1 using an Fe Ka X ray (X-ra), and the results are shown in Table 1 and FIG.
  • XRD X-ray diffraction
  • the lithium nickel oxide and the nickel oxide (NiO) are crystalline and can be detected by X-ray diffraction (XRD) by Fe Ka X ray (X-ra).
  • Comparative Example 1 has a determination structure of Orthorhombic with a point group of Immm. From the results of the structural analysis of Table 1, it can be seen that Comparative Example Crystal structure . Thus, it can be seen that Examples 1 to 3 also include compounds represented by LimNi b Ah- b C ⁇ + e .
  • Example 2 Each battery of Example 2 and Comparative Example 2 was charged with 0.1 C for each voltage and ex-situ XRD analysis was carried out. The results are shown in FIG. 2A (Example) and FIG. 2B (Comparative Example) .
  • the Li 2 NiO 2 structure is maintained up to 3.9 V on the basis of the coin half cell 0.1 C in the case of the comparative example 2, and up to 4.1 V in the case of the example 2 Li 2 NiO 2 structure can be confirmed.
  • Experimental Example 3 Evaluation of correlation between anode additives and initial characteristics of battery (evaluation of initial capacity and gas generation amount of battery)
  • Example 2 For each cell of Example 2 and Comparative Example 2, initial charging and discharging proceeded under the following conditions. Also, the amount of gas generated in each cell was measured by an electrochemical mass spectrometer. (Differential electrochemical mass spectrometer (DEMS)) was used to analyze the gas pressure in the middle of each cell in real time. The results are shown in FIG. 3 and Table 2 below.
  • DEMS Different electrochemical mass spectrometer
  • Example 2 had improved initial performance and suppressed gas generation, as compared with Comparative Example 2. This is due to the effect of applying new doping and coating to each of the anode additives of Example 1 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • the initial performance of the battery and the degree of gas generation may vary depending on the content of 0 20 in the anode, the additive, the doping amount, and the coating amount. This is because the initial performance of the battery improves as the content of the first run 0 in the anode additive increases, and this can be seen as an effect of providing the extra zero. As the amount of the tie amount and coating amount in the anode additive increases , The generation of gas in the battery can be suppressed. This is because the crystal structure of the core (in particular, ⁇ 2 + 1 ⁇ 1-1 ⁇ ) is stabilized by doping, and the crystal structure of the core Is the effect of inhibition.
  • Example 1 in order to confirm the effect that the initial performance of the battery is improved and the gas generation is suppressed by the positive electrode additive of one embodiment, the positive electrode active material is not mixed extremely, and each positive electrode additive is the same as the conventional positive electrode active material And a positive electrode and a lithium secondary battery were produced.
  • the initial charging voltage of the battery for example, 2.5 to 4.25
  • Irreversibly releasing the lithium ions and oxygen Irreversibly releasing the lithium ions and oxygen, and thereafter reversible insertion and desorption of the lyrium ion.
  • lithium in Example 1 as the core in the positive electrode additive, and an additive to compensate for the initial irreversible capacity of the negative electrode, lithium in a reversible. And can be utilized as an active material enabling insertion and desorption.
  • the cathode active material may be mixed with the anode additive of one embodiment in an appropriate mixing ratio.
  • Examples 3 and 4 are presented in an actual form in which a cathode active material is mixed with a cathode additive of one embodiment, and the battery characteristics are evaluated.
  • Example 3 the weight ratio of the additive of Example 1 and the positive electrode / active material was 5:95 (Example 3) and 10:90
  • the initial capacity and life characteristics of the battery were evaluated. The results are shown in Figs. 3 and 4 and Table 3 below.
  • the initial charge capacity of Comparative Example 3 is only 230.0 shots, but the initial charge capacity of Examples 3 and 4 is higher than that
  • the positive electrode additive of one embodiment compensates for the initial irreversible capacity of the negative electrode by irreversibly releasing lithium ions and oxygen at the voltage at the time of initial charging of the battery and increases the initial charging capacity of the positive electrode 2019/107808 1 »(: 1 ⁇ 1 ⁇ 2018/014016
  • the difference in the capacity retention rate becomes more severe as the number of cycles of the battery increases. Specifically, only the capacity of 87.0% is maintained as compared with the initial capacity after 100 cycles of the comparative example 3, and 81.4% Of the capacity of Guam. On the other hand, in the case of Examples 3 and 4, it can be confirmed that the capacity of 91.0% or more after 100 cycles of driving is maintained and the capacity of 88.0% or more is maintained even after 200 cycles of driving, compared with the respective initial capacities.
  • the loss of capacity is reduced by the positive electrode additive of one embodiment when the cell cycle proceeds with the initial capacity of the positive electrode increased.
  • the positive electrode additive of one embodiment irreversibly releases lithium ions and oxygen at the initial charging voltage of the battery, and thereafter, is converted into a composition capable of reversible insertion and desorption of lithium ions, It also means that it contributes part of the capacity implementation during the cycle.
  • Example 4 the initial charging capacity and lifetime characteristics of the battery were further improved in Example 4 using a positive electrode material mixture having a higher content of the positive electrode additive in one embodiment.
  • a positive electrode material mixture having a high content of the positive electrode additive in one embodiment can further improve the initial charging capacity of the battery and thereby improve the life of the battery more effectively.
  • Example 4 Even if the positive electrode additive of one embodiment irreversibly releases lyrium ion and oxygen at a voltage at the time of initial charging of the battery and then converts to a composition capable of reversible insertion and desorption of lyrium ion, due to its U content and structural limitations The initial efficiency of Example 4 is lower than that of Example 3. In addition,
  • the positive electrode active material of one embodiment may be mixed with the positive electrode active material at an appropriate mixing ratio according to the desired battery characteristics and used It will be possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극 첨가제, 이의 제조 방법 및 이를 포함하는 양극 및 리튬 이차 전지에 관한 것이다. 구체적으로, 본 발명의 일 구현예에서는, 두 전극의 비가역 용량 불균형을 상쇄시키고, 양극의 초기 충전 용량을 증가시키면서도, 전지 내 가스 발생을 억제할 수 있는, 양극 첨가제를 제공한다.

Description

2019/107808 1»(:1^1{2018/014016
【발명의 명칭】
양극첨가제,이의 제조방법-,이를포함하는양극및 리튬이차전지 【기술분야】
관련출원(들)과의 상호인용
본출원은 2017년 11월 30일자한국특허 출원제 10-2017-0163112호및 2018년 8월 6일자한국특허 출원제 10-2018-0091425호에에 기초한
우선권의 이익을주장하며,해당한국특허 출원들의 문헌에 개시된모든 내용은본명세서의 일부로서 포함된다.
본발명은양극첨가제,이의 제조방법 및 이를포함하는양극및리튬 이차전지 에 관한것이다.
【배경기술】
리튬 이차전지는, 리륨 이온의 가역적인 삽입 및 탈리가가능한 전극 활물질을음극및 양극에 각각적용하고,전해질을매개로리튬이온의 이동을 구현하며, 각 전극에서의 산화 및 환원 반응에 의하여 전기적 에너지를 생성한다.
Figure imgf000003_0001
음극에 삽입(전지 충전)된 후탈리(전지 방전)되는 리튬 이온 및 양극으로부터 탈리(전지 충전)된 후 다시 회수(전지 방전)되지 못하는 리륨 이온이 각각 필연적으로발생한다.이는,두전극의 비가역 용량과연계된다.
두 전극의 비가역 용량 차이가 클수록, 양극의 초기 효율이 감소하며, 전지의 구동중에너지 밀도가점차감소하여,전지 수명이 감소할수있다. 【발명의 상세한설명】
【기술적 과제】
본 발명의 일 구현예에서는, 두 전극의 비가역 용량 불균형을 상쇄시키고, 양극의 초기 충전 용량을 증가시키면서도, 전지 내 가스 발생을 억제할수있는,양극첨가제를제공한다. 2019/107808 1»(:1^1{2018/014016
【기술적 해결방법】
본발명의 구현예들의 이점 및 특징,그리고그것들을달성하는방법은, 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은이하에서 개시되는실시예들에、한정되는것이 아니라서로다른다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며,본 발명은 청구항의 범주에 의해정의될뿐이다.
이하 본 발명에서 사용되는 기술용어 및 과학용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로이해하고있는의미를가진다.또한,종래와동일한기술적 구성 및 작용에 대한반복되는설명은생략하기로한다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 소자를사이에 두고 “전기적으로연결”되어 있는경우도포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재사이에 또다른부재가존재하는경우도포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할때,이는특별히 반대되는기재가없는한다른구성 요소를제외하는것이 아니라다른구성 요소를더 포함할수있는것을의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 “약” , “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가제시될 때 그수치에서 또는그수치에 근접한의미로사용되고,본원의 이해를돕기 위해 정확하거나 절대적인 수치가언급된 개시 내용을 비양심적인 침해자가부당하게 이용하는 것을방지하기 위해사용된다.
본원 명세서 전체에서 사용되는 정도의 용어 (하는) 단계” 또는 “〜의 단계”는 “를위한단계”를의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 2019/107808 1»(:1^1{2018/014016
군에서 선택되는하나이상의 혼합또는조합을의미하는것으로서,상기 구성 요소들로이루어진군에서 선택되는하나이상을포함하는것을의미한다. 본원 명세서 전체에서, “쇼및/또는 ’의 기재는, 또는 3,또는쇼 및 3"를의미한다. 양극첨가제 본 발명의 일 구현예에서는, 전체 조성이 하기 화학식 1로 표시되는 양극첨가제를제공한다:
[화학식 1]
+ 내02 )}山(새0)} «니20)} _{'山5 04
상기 화학식 1에서, M은 2가양이온또는 3가양이온을 형성하는금속 원소 중 1 아상이고, -0.2<必0.2이고, 0.5< <1.0 이고, -0.2£쑈0.2이며, 0.6<<1.0이고, 0< £0.15이고, 0¾<0.15이고, 0£\¥£0.1이고, + +2+\¥=1이다.
단, 1.0인경우 0< £0.1이며, \¥=0인경우 0.5 £1?<1.0이다.이는곧,상기 화학식 1에서 M 도핑이 포함되지 않는 경우여=1.0) M을 포함하는 화합물(¾ 04)의 존재가 필수적이며(0 £0.1)이며, 그와 반대로, 상기 화학식 1에서 M을 포함하는 화합물(Li5M04)이 포함되지 않는 경우(\¥=0)상기 화학식 1에서 도핑이 필수적(0.5 <1.0)임을의미한다.물론,상기 화학식 1에서 도핑 및 M을 포함하는 화합물(1 5^104)이 존재하여, 0.5< <1.0 및 0<\¥£0.1가 동시에 성립될수있다. 화학식 1의 도출근거
이론 상, 니켈계 산화물((해 , M은 상기 화학식 1과 동일, 0.5<(1<1.0) 및 리륨 산화물(1足0)을 화학양론적 1:1의 몰비로 배합한 뒤 열처리할 때, 배합된 전량이 1:1의 몰비로 반응하여 하기 화학식 1-1로 표시되는 리툼 니켈 산화물을 형성할 수 있고, 미반응 원료는 잔존하지 않을 수있다.
[화학식 1-1] 02+ ^^!^02+
(단,상기 화학식 1-1에서, 13,(:,및 은화학식 1과동일) 2019/107808 1»(:1^1{2018/014016
상기 화학식 1-1로표시되는리튬니켈산화물은, 전지의 조기 중전시 전압, 예를 들어 2.5 내지 4.25 V
Figure imgf000006_0001
1 /0+)에서 리륨 이온 및 산소를 비가역적으로방출하면서,두전극의 비가역 용량불균형을상쇄시키고,양극와 초기 충전용량을증가시킬수있다. 다만, 실제 공정에서는, 니켈계 산화물( 여) 및 리튬 산화물( 20)을 1 :1의 몰비로 배합한 뒤 열처리하더라도, 배합된 전량이 1 :1의 몰비로 반응하지 못하고, 미반응 원료가 필연적으로 잔존할 수 있다. 이와 관련하여, 지금까지 알려진 연구에서는, 미반응 원료를 단순히 불순물로 취급하여 이를 제거하고, 이론 조성을 가지는 물질(즉, 상기 화학식 1-1로 표시되는리튬니켈산화물)만을회수하여 양극첨가제로삼았을뿐이다.
1) 그럼에도 불구하고, 본 연구에서는, 지금까지 알려진 연구와 달리, 니켈계 산화물
Figure imgf000006_0002
및 리튬 산화물( 20)의 반응 후 미반응 원료를 제거하지 않고,이론조성을가지는물질(즉,상기 화학식 1-1로표시되는리튬 니켈 산화물)와 함께 회수하였을 때, 오히려 양극의 초가 충전 용량을 더욱 높일수있음을알게 되었다.
구체적으로, 상기 화학식 1-1로 표시되는 리튬 니켈 산화물과 더불어, 미반응 원료, 특히 리륨 산화물(니20)의 존재에 따라, 가외의 0을 양극에 제공할수있고,양극의 초기 충전용량을더욱높일수있는것이다.
2) 이와 더불어, 본 연구에서는, 니켈계 산화물
Figure imgf000006_0003
및 리튬 산화물(1 0)의 반응 생성물, 즉 상기 화학식 1-1로 표시되는 리튬 니켈 산화물이 구조적으로불안정하고,반응성이 높은문제가있음을인식하였다. 구체적으로, 상기 화학식 1-1로 표시되는 리튬 니켈 산화물은, 전지의 초기 충전 시 전압에서, 리륨 이온 및 산소를 비가역적으로 방출함과 동시에 내부 결정 구조가 붕괴되고, 그 표면에서는 전해액과의 부반응이 진행됨에 따라, 전지 성능을저해하는가스를발생시킬 수 있는것이다. 전지 내 가스가 발생될 경우, 전지의 초기 용량, 초기 충방전 효율 등을 감소시키는 문제가 있다. 2019/107808 1»(:1^1{2018/014016
이에,본 연구에서는,상기 화학식 1-1로 표시되는리튬 니켈산화물의 결정 구조 내 특정 금속( )을 도핑하거나, 이의 표면에 특정 금속( 1)의 화합물을 코팅하거나, 이들 모두를 적용함으로써, 가스 발생을 억제하기로 하였다. 이에 따른 양극 첨가제의 전체 조성은 전술한화학식 1로 표시될 수 있다.
이하, 본 연구로부터 도출된 일 구현예의 양극 첨가제를, 상세히 설명한다. 신의 도핑 및/코팅
일 구현예의 양극 첨가제는, 상기 니켈계 산화물
Figure imgf000007_0001
및 상기 리튬 산화물( 20)에 더하여, 알루미늄 산화물( 203)을 일괄하여 혼합한 뒤 열처리함으로써 제조될 수 있다.구체적으로,상기 원료 배합시,상기 니켈계 산화물 및 상기 리튬 산화물(1山0)을 1:1.02 내지 1:0.98의 화학양론적 몰비로 배합하고, 상기 알루미늄 산화물(신203)은 혼합물 총량 중 100 내지 10000 111이 되도록배합할수있다.
이에 따라수득되는양극첨가제는,시의 도핑 및/또는코팅을포함할수 있다.이 경우,상기 화학식 1 및 1-1의 M은 을포함할수있고, 0.5£15<1.0일 수있고(도핑), 0< £0.1일수있다(코팅).
단, 앞서 언급한 바와 같이, =1.0인 경우 0< £0.1이며, =0인 경우 0.5£ <1.0이다. 이는 곧, 상기 화학식 1에서 M 도핑이 포함되지 않는 경우여=1.0) M을 포함하는 화합물(05\104)의 존재가 필수적이며(0<\¥<0.1)이며, 그와 반대로, 상기 화학식 1에서
Figure imgf000007_0002
포함하는 화합물(Li5M04)이 포함되지 않는경우( =0)상기 화학식 1에서 M도핑이 필수적(0.5 <1)<1.0)임을의미한다. 물론,상기 화학식
Figure imgf000007_0003
및 M을포함하는화합물(니5 04)이 존재하여, 0.5£¾><1.0 및 0< £0.1가 동시에 성립될 수 있고, 예컨대 0.7£1)<1.0 및
0<£0.05이 동시에 성립될수 있고, 9<1)<1.0및 0< £0.04이 동시에 성립될수 있다.
보다 구체적으로, 상기 열처리 과정에 있어서, 상기 니켈계 산화물
Figure imgf000007_0004
및 상기 리륨 산화물( 0)이 반응하여 상기 화학식 1-1로 표시되는 리륨 니켈 산화물로 합성되고, 상기 알루미늄 산화물(신203)의 시은 상기 화학식 1-1로표시되는 리툼니켈산화물의 결정 구조내부에 도핑될 수 있고, 또한 상기 알루미늄 산화물 (A1203)은 상기 반응에 참여하지 않은 리튬 산화물 (Li20)과반응하여 Li5A104을형성할수있다.
이에 따라 수득되는 양극 첨가제는, 코어-쉘 (코팅층)의 구조가 될 수 있다. 예컨대, 상기 화학식 1-1로 표시되는 리륨 니켈 산화물, 니켈 산화물 (NiO), 및 리튬 산화물 (Li20)를 포함하는 코어; 및 U5AIO4을 포함하는 코팅층;을포함할수있다. 정성 및정량분석
상기 코어-쉘 (코팅층)의 구조의 양극 첨가제에 있어서, 상기 화학식 1-
1로 표시되는 리튬 니켈 산화물, 상기 니켈 산화물 (NiO), 및 상기 리툼 산화물 (Li20)이 코어를 구성하고, 상기 U5AIO4가 코팅증을 구성하는 것은, XRD(X-Ray Diffraction)분석 결과로부터 확인될수있다. 상기 코어-쉘 (코팅층)의 구조의 양극 첨가제에 있어서, 상기 Li5A104, 상기 화학식 .1-1로 표시되는 리튬 니켈 산화물, 상기 니켈 산화물 (NiO), 및 상기 리튬산화물 (Li20)은각각결정질로, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray
Diffraction)로검출될수있다.
다시 말해, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffiaction)를 이용하여, 상가양극첨가제를정성 분석 및 정량분석하면,상기 Li5A104,상기 화학식 1- 1로 표시되는 리튬 니켈 산화물, 상기 니켈 산화물 (NiO), 및 상기 리륨 산화물 (Li20)의 각존재 여부는물론,각존재량이 확인될수있다. 구체적으로, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)측정 시, 20가 33내지 36 ° 인범위, 42내지 45 。 인범위 중적어도하나이상의 범위에서 메인피크 (main peak)가나타나는것은,상기 Li5A104에의한것으로볼수있다. 이는, 상기 화학식 1-1로 표시되는 리툼 니켈 산화물 (예를 들어, Li2Ni02)의 메인피크강도 (intensity)를 100(Ref.)으로보았을때, 0초과 10이하, 구체적으로 0초과 8이하,예를들어 0초과 5이하의 강도 (intensity)로나타날 수 있다. 이로부터,상기 양극첨가제 총량 (100중량%)중, Li5A104의 함량이 0 중량% 초과 10 중량% 이하, 구체적으로 0 중량% 초과 10 중량% 이하, 0 중량%초과 8중량%이하,예를들어 0중량%초과 5중량%이하임을알수 있다.
이는, 니켈계 산화물 ((NidNMOx) 및 상기 리륨 산화물 (Li20)에 더하여, 알루미늄 산화물 (A1203)을 배합함에 있어서, 배합된 원료 총량 중 알루미늄 산화물 (AI2O3)의 함량을 100 ppm초과 10000 ppm 이하, 구체적으로 100초과 8000 ppm이하, 100 ppm초과 5000 ppm이하,예를들어 100 ppm초과 3000 ppm 이하로 제어함으로써 달성 가능한 범위이다. 이 범위에서, 상기 화학식 1-1로 표시되는 리륨 니켈 산화물의 구조 붕괴가 억제되고, 가스 발생 또한 억제될 수있다. 또한, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)측정 시, 20가 30 내지 35 ° 인 범위, 35 내지 40 ° 인 범위, 55 내지 6( 인 범위 중 적어도 하나 이상의 범위에서 메인 피크 (main peak)가 나타나는 것은, 상기 리륨 산화물 (Li20)에 의한것으로볼수있다.
이는, 상기 화학삭 1-1로 표시되는 리튬 니켈 산화물의 메인 피크 강도 (intensity)를 100(Ref.)으로 보았을 때, 0초과 15 이하,구체적으로 0초과 14이하, 0초과 13 이하,예를들어 0초과 12이하의 강도 (intensity)로나타날 수 있다. 이로부터,상기 코어 총량 (100중량%)중,리륨산화물 (Li20)의 함량이 0 중량% 초과 15 중량% 이하, 구체적으로 0 중량% 초과 14 중량% 이하, 0 중량%초과 13 중량% 이하, 예를들어 0중량%초과 12중량% 이하임을 알 수있다. 또한, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)측정 시, 20가 35 내지 40° 인 범위, 40 내지 45° 인 범위 및 50 내지 55° 인 범위 중 적어도 하나 이상와 범위에서 메인 피크 (main peak)가 나타나는 것은, 상기 니켈 산화물 (NiO)에 의한것으로볼수있다.
이는, 상기 화학식 1-1로 표시되는 리륨 니켈 산화물의 메인 피크 강도 (intensity)를 100(Ref.)으로 보았을 때, 0초과 15 이하,구체적으로 .0초과 14이하, 0조과 13 이하,예를들어 0초과 12이하의 강도 (intensity)로나타날 수 있다. 이로부터, 상기 코어 총량 (100 중량%) 중, 상기 니켈 산화물 (NiO)의 함량이 0 중량% 초과 15 중량% 이하, 구체적으로 0 중량% 초과 14 중량% 이하, 0 중량% 초과 13 중량% 이하, 예를 들어 0 중량% 초과 12 중량% 이하임을알수있다. 마지막으로, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)측정 시,래가 18내지 21° 인 범위, 24내지 27° 인범위 및 43내지 46° 인범위 중적어도 하나 이상의 범위에서 메인 피크 (main peak)가 나타날 수 있다. 이러한 메인 피크는, 공간군 (point .group)이 Iramm인 사방정계 (Orthorhombic)의 결정 구조에 의해 나타날 수 있고, 상기 화학식 1-1로 표시되는 리륨 니켈 산화물에 의한 것일수있다.
' 이의 함량은, 상기 양극 첨가제 총량 (100 중량%)으로부터, 상기
Li5A104의 함량, 상기 리륨 산화물 (Li20)위 함량, 및 상기 니켈 산화물 (NiO)의 함량을모두제함으로써 구할수있다.
이러한정량분석 및 정성 분석 결과를종합적으로고려하면,상기 양극 첨가제에는상기 Li5A104,상기 화학식 1-1로표시되는 리륨니켈산화물,상기 니켈산화물 (NiO),및상기 리륨산화물 (Li20)이 포함되며,그전체조성이 상기 화학식 1과같음을알수있다:구체적으로,상기 화학식 1에서, x, y, z는각각, 상기 화학식 1-1로 표시되는 리튬 니켈 산화물, 상기 니켈 산화물 (NiO), 및 상기 리튬산화물 (Li20)의 중량비와관계된다.
예를들어,상기 화학식 1에서, 0.7£x£1.0이고, 0<y<0.15이고, 0<z£0.15일 수 있고; 0.72<x<1.0이고, 0<y<0.14이고, 0<z£0.14일 수 있고; 0.74<x<1.0이고, 0<y<0.13이고, 0<z<0.13일수있고; 0.74<x<1.0이고, 0<y£0.13이고, 0<z£0.13일수 있고; 0.76<x<1.0이고, 0<y<0.12이고, 0<z£0.12일수있다.이 범위에서 각성분에 의한시너지 효과가나타날수 있지만, 이는 예시일 뿐 이에 의해 본 발명이 제한되는것은아니다. 한편,상기 코어는,전지의 초기 충전시 전압,예를들어 2.5내지 4.25 V (vs. Li/Li+)에서 리툼 이온및 산소를비가역적으로방출하고,그 이후 전체 조성이 하기 화학식 2로전환될수있다. 2019/107808 1»(:1^1{2018/014016
[화학식 2] (01+邦 내02+:)} _{><■))} {놔1山0)}
(상기 화학식 2에서,賊 a, I?, 0, X,小및 2는각각화학식 1과동일할수 있다.)
상기 화학식 2로 전환된 코어에 있어서,니2+313^1302+(:는통상의 양극 활물질과 마찬가지로, 리륨 이온의 가역적인 삽입 및 탈리가 가능한 것일 수 있다. 물론, 상기 화학식 2로 전환된 코어의 표면에는, 여전히 상기 코팅층이 존재할수있다.
이에,일구현예의 양극첨가제는,음극의 초기 비가역 용량을보상하는 첨가제이자, 리튬의 가역적인 삽입 및 탈리를 가능하게 하는활물질로 활용될 수 있다. 다만,상기 화학식 2로 전환된 코어는, Li함량 및 그구조적 한계로 인하여, 통상의 양극 활물질에 비하여 작은 가역 용량을 가질 수 있고, 구체적으로 300 내지 35요 의 가역 용량을 가질 수 있다. 이에, 전지의 초기 성능을 향상시킴과 동시에, 장기 수명 특성을 확보하고자 할 경우, 목적하는 전지 특성에 따라, 일 구현예의 양극 첨가제와 함께 양극 활물질을 적절한배합비로혼합하여사용할수있다. 양극첨가제의 제조방법
본 발명의 다른 일 구현예에서는, 하기 화학식 3으로 표시되는 니켈계 산화물을준비하는단계; 및 상기 니켈계 산화물,리륨산화물(1山0), 알루미늄 산화물( 203)의 혼합물을 열처리하는 단계;를 포함하는, 양극 첨가제의 제조 방법을 제공한다. 이러한계조 방법에 따라, 전술한 양극 첨가제가수득될 수 있다.
[화학식 3]( 여
상기 화학식 3에서, 은 2가양이온또는 3가양이온을 형성하는금속 원소이고, 0.5<(1<1.0이고, 1.8<표<2.2이다. 일 구현예의 제조 방법에서, 상기 화학식 3으로 표시되는 니켈계 산화물을 준비하는 단계;는, 니켈 수산화물( (0묘切 단독; 또는, 니켈 수산화물(1번(011)2)및 M포함화합물의 혼합물;을열처리하는단계일수있다. 상기 니켈수산화물( (011切단독;또는,니켈수산화물(해(011切 및 2019/107808 1»(:1^1{2018/014016
포함화합물의 혼합물;의 열처리는, 500내지 700 公의 온도 범위에서 5 내지 20시간동안불활성 분위기에서 수행될수있다.
이 단계에서, 상기 니켈 수산화물(^(011)2)을 단독으로 열처리할 경우, 상기 화학식 3에서 (1=0인 니켈 산화물( (¾)이 형성될 수 있다. 이와 달리, 상기 니켈 수산화물( (0비2) 및 M 포함 화합물의 혼합물을 열처리할 경우, 상기 화학식 (1=0이 아닌, 이 도핑된 니켈계 산화물([ 1^1_(1]0)[)이 형성될 수 있다. 일 구현예의 제조 방법에서, 상기 니켈계 산화물, 리튬 산화물( 20), 알루미늄산화물(시203)의 혼합물을열처리하는단계;는,상기 니켈계산화물및 상기 리륨 산화물은 1:1 (±0.02) 몰비로 혼합하고, 배합된 원료 총량 중 알루미늄산화물(시203)의 함량을
Figure imgf000012_0001
이하로제어하고, 400 내지 800
Figure imgf000012_0002
온도 범위에서 10 내지 20 시간 동안 불활성 분위기에서 열처리하는것일수있다.
상기 니켈계 산화물 및 리튬 산화물(니20)의 혼합물을 열처리할 때, 상기 니켈계 산화물
Figure imgf000012_0003
및 상기 리툼 산화물(1 0)이 반응하여 상기 화학식 1-1로 표시되는 리륨 니켈 산화물로 합성되고, 다만 배합된 전량이 1:1의 몰비로반응하지 못하여 미반응원료가잔존할수있다.
또한,상기 알루미늄산화물(시203)의 신은상기 화학식 1-1로표시되는 리륨 니켈 산화물의 결정 구조 내부에 도핑될 수 있고, 또한 상기 알루미늄 산화물(쇼 어)은 상기 반응에 참여하지 않은 리튬 산화물(1 20)과 반응하여 ¾ 04을형성할수있다.
이에 따른수득물의 전체 조성과그효과에 대한설명은, 전술한 바와 같다. 양극합제
본 발명의 또 다른 일 구현예에서는, 전술한 양극 첨가제; 및 양극 활물질;을포함하는양극합제를제공한다. 상기 일구현예의 양극합제는,전술한양극첨가제를적용한것이므로, 2019/107808 1»(:1^1{2018/014016
이를 적용하지 않는 경우에 비하여 음극의 초기 비가역 용량을 감소시키고, 이에 따라 양극의 초기 효율 감소 및 전지 내 가스 발생을 각각 억제할 수 있다. 상기 일 구현예의 양극 합제의 총량(100 중량%)에 있어서, 상기 양극 첨가제는 1 내지 30중량%,구체적으로 1 내지 10중량%,보다구체적으로 3 내지 10 중량%로 적용할 수 있다. 또한, 상기 양극 첨가제 및 상기 양극 활물질의 중량비는, 1:99 내지 30:70, 구체적으로 2:98 내지 25:85, 보다 구체적으로 5:95내지 10:90으로할수 있다.상기 양극 첨가제가상기 범위로 배합될 때, 전지의 초기 충방전에서(즉, 151사이클에서)상기 양극 첨가제로싸 음극의 초기 비가역 용량을충분히 감소시킨뒤,이후충방전(즉, 2™*사이클후) 상기 양극 활물질에 의해 리륨 이온의 가역적인 삽입 및 탈리가 안정적으로 이루어질수있다. 이 외, 상기 일 구현예의 양극 합제는, 일반적으로 당 업계에 알려진 사항에 따라 구현할 수 있다. 이하, 일반적으로 당 업계에 알려진 사항을 간단히 제시하지만, 이는 예시일 뿐이며, 이에 의해 상기 일 구현예의 양극 합제가제한되지 않는다. 상기 양극 활물질의 경우, 리륨 이온의 가역적인 삽입 및 탈리가 가능한 물질이라면, 특별히 제한되지 않는다. 예를 들어, 코발트, 망간, 니켈 또는 이들의 조합의 금속;및 리튬;의 복합산화물중 1종이상을포함하는 것일 수 있다.
보다 구체적인 예를 들어, 상기 양극 활물질로, 하기 화학식 중 어느 하나로표현되는화합물을사용할수 있다. 내 : (상기 식에서, 0.90 < ¾ £ 1.8및 0 £ < 0.5이다); 品七 여 - (상기 식에서, 0.90 < & < 1.8, 0 < < 0.5,및 0 < (; < 0.05이다); 氏 必과 -必。(상기 식에서, 0 < < 0.5, 0 < 0 < 0.05이다); 1山>¾ - : (상가식에서, 0.90 < & < 1.8, 0 < 13 < 0.5, 0 < 0 < 0.05및 0 < (1 < 2이다);니 - 이此^ - £1(상기 식에서, 0.90 < ¾ < 1.8, 0 £ < 0.5, 0 < 0 < 0.05 및 0 < (X < 2이다); 1ᅩ볘내-本 여- 2019/107808 1»(:1^1{2018/014016
<!¾(상기 식에서, 0.90 < ¾ < 1.8, 0 < ¾> < 0.5, 0 < 0 < 0.05및 0 < & <
2이다); 내- 氏: (상기 식에서, 0.90 < 3 < 1.8, 0 < ¾> £ 0.5, 0 < 0 <
Figure imgf000014_0003
시, 00,
Figure imgf000014_0002
811, 06, 03,
Figure imgf000014_0001
혼합물을사용할수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 2019/107808 1»(:1^1{2018/014016
자세한설명은생략하기로한다. 상기 일 구현예의 양극합제는,도전재, 바인더,또는 이들의 혼합물;을 더 포함할수 있다. 상기 도전재는 전극에 도전성을부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성. 재료이면어떠한것도사용가능하며,그예로천연흑연,인조흑연,카본블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유,구리,니켈, 알루미늄,은등의 금속분말, 금속섬유등을사용할수 있고,또한폴리페닐렌 유도체 등의 도전성 재료를 1종또는 1종이상을혼합하여사용할수있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, .히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라아드,에틸렌옥사이드를포함하는폴리머,폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티텐-부타디엔 러버, 아크릴레이티드 스티렌- 부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은아니다. 리툼이차전지
본 발명의 또 다른 일 구현예에서는, 전술한 양극 합제를 포함하는 양극;전해질;및음극;을포함하는리륨이차전지를제공한다.
이는, 전술한 양극 첨가제를 양극 활물질과 함께 양극에 적용한 리튬 이차 전지이므로, 음극의 초기 비가역 용량이 감소하고, 양극의 초기 효율이 증가하며,구동중에너지 밀도저하가억제되어 수명 특성이 우수하게 나타날 수있다. 상기 일 구현예의 리튬 이차전지에 있어서, 전술한 양극 첨가제 및 양극 합제 이외에 대해서는, 일반적으로 당 업계에 알려진 사항에 따라 구현할 수 있다. 2019/107808 1»(:1^1{2018/014016
이하, 일반적으로 당 업계에 알려진 사항을 간단히 제시하지만, 이는 예시일뿐이며,이에 의해상기 일구현예의 양극합제가제한되지 않는다. 상기 양극은, 양극 집전체; 및 상기 양극 집전체 상에 위치하고, 전술한 양극합제를포함하는양극합제층;을포함할수있다.
구체적으로,상기 양극은양극집전체상에 양극활물질,도전재 및/또는 바인더의 혼합물인 전극합제를도포한후 건조하여 제조될 수 있고, 필요에 따라서는,상기 혼합물에 충진제를더 첨가할수있다.
상기 양극 집전체는 일반적으로 3 ~ 500 _의 두께로 만들 수 있다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스스틸의 표면에 카본,니켈,티탄,은등으로표면처리한것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체,부직포체등다양한형태가가능하다. '
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50중량%로 첨가된다. 이러한도전재는당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말등의 금속분말;산화아연,티탄산칼륨등의 도전성 위스키 ;산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될수있다.
한편,상기 탄성을갖는흑연계 물질이 도전재로사용될 수 있고,상기 물질들과함께사용될수도있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 2019/107808 1»(:1^1{2018/014016
폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CM(그), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르
Figure imgf000017_0001
술폰화 £ 0 , 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체등을들수있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계중합체;유리섬유,탄소섬유등의 섬유상물질이사용된다. 상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며,상기 음극활물질층은음극활물질을포함할수있다.
상기 음극 활물질로는, 탄소계 음극 활물질, 리튬 금속, 리륨 금속의 합금, ¾ 810x(0 < X < 2),와 복합체,와 합금(상기 는알칼리 금속,알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, 은 아님), 811, ¾02, 811-0 복합체, 및 11-11(상기 II은 알칼리 금속, 알칼리 토금속 ¾ 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, ¾은 아님)을 포함하는 군에서 선택되는 적어도 1종 이상의 음극 활물질을 사용할수있다.
상기 음극집전체는일반적으로 3 - 500 _의 두께로만들어질수있다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스스틸,알루미늄,니켈,티탄,소성 탄소,구리나스테인레스스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될수 있다.또한,양극집전체와마찬가지로,표면에 미세한요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트,다공질체,발포체,부직포체등다양한형태로사용될수있다. 상기 일 구현예의 리륨 이차 전지는, 전해질의 종류 및/또는 세퍼레이터의 종류에 따라, 리튬 이온 전지, 리튬 이온 폴리머 전지, 또는 2019/107808 1»(:1^1{2018/014016
리튬폴리머 전지일수있다.
상기 일 구현예의 리튬 이차 전지가 액체 전해질을 적용한 리튬 이온 전지일 때, 상기 액체 전해질을 분리막에 함침시켜 적용할 수 있다. 상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 - 10 _이고,두께는 일반적으로 5 - 300 _이다. 이러한분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을겸할수도있다.
상기 액체 전해질은 리튬염 함유 비수 전해질일 수 있다. 상기 리륨염 함유비수전해질은,비수전해질과리륨으로이루어져 있고,비수전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로한정되는것은아니다.
상기 비수계 유기용매로는, 예를 들어, 메틸- 2 -피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, : 1,2 -디메톡시 에탄, 테트라히드록시 프랑(6¾11功, 2 -메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3- 디옥소런,포름아미드,디메틸포름아미드,디옥소런,아세토니트릴,니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3 -디메틸- 2 -이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산에틸등의 비양자성 유기용매가사용될수있다.
상기 유기 고체 전해질로는, 예를들;!,꼴리에틸렌 유도체,늘리에틸렌 옥사이드유도체,폴리프로필렌옥사이드유도체, 인산에스테르폴리머,폴리 에지테이션
Figure imgf000018_0001
1> 11句, 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화비닐리덴,이온성 해리기를포함하는중합제등이사용될수있다. 상기 무기 고체 전해질로는,예를들어,
Figure imgf000018_0002
01,
Figure imgf000018_0003
08104, 0와04-01-00¾니2와33, 4와04, 1山와04-1신-1그0¾ 1山 )4-023 -와¾등의 0의 질화물,할로겐화물,황산염 등이사용될수있다. 상기 리툼염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, Lil, LiC104, LiBF4, LiBi0Cli0, LiPF6, L1CF3SO3, LiCF3C02, LiAsF6, LiSbFe, L1AICI4, CH3SO3L1, (CF3S02)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산리륨, 4페닐붕산리튬,이미드등이 사용될수있다.
또한, 상기 리륨염 함유 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임 (glyrne), 핵사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘,에틸렌글리콜디알킬에테르,암모늄염,피롤, 2 -메톡시 에탄올, 삼염화알루미늄등이 첨가될수도있다.경우에 따라서는,불연성을부여하기 위하여,사염화탄소,삼불화에틸렌등의 할로겐함유용매를더 포함시킬수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬수있다.
하나의 구체적인 예에서, LiPF6, LiC104, L1BF4, LiN(S02CF3)2등의 리튬염을, 고유전성 용매인 EC또는 PC의 환형 카보네이트와 저점도용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유비수계 전해질을제조할수있다.
상기 일 구현예의 리륨 이차 전지는, 이를 단위 전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는디바이스로구현될수있다.
이 때, 상기 디바이스의 구체적인 예로는, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템일 수 있으나,이에 한정되는것은아니다.
【도면의 간단한설명】
도 1은,실시예 1내지 비교예 1의 각양극첨가제에 대한, Fe Ka X선 (X- ra)에 의한 XRD(X-Ray Diffraction)분석 결과이다.
도 2는,실시예 1 및 비교예 1 의 각 양극 첨가제에 대한, XRD(X-Ray Diffraction)으로 ex-situ XRD 분석 결과이다. 구체적으로, 도 2a는 실시예 1에 2019/107808 1»(:1^1{2018/014016
관한것이고,도 ¾는비교예 1에 관한것이다.
도 3은, 실시예 1 및 비교예 1 의 각 전지의 충전 시 나오는 가스 압력을실시간으로분석한결과이다.
도 4는,실시예 2, 3,및 비교예 3의 각전지에 대해,초기 충전용량을 평가한결과이다.
도 5는, 실시예 2, 3, 및 비교예 3 의 각 전지에 대해, 수명 특성을 평가한결과이다.
【발명의 효과】
상기 일 구현예의 양극 첨가제를 양극에 적용한 리륨 이차 전지는, 음극의 초기 비가역 용량이 감소하고,양극의 초기 용량및 효율이 효과적으로 증가하며,구동중에너지 밀도저하가억제되어 수명 특성이 우수하게 나타날 수있다. 【발명의 실시를위한형태】
이하 발명의 구체적인 실시예를 통해 발명의 , 작용, 효과를 보다 구체적으로설명하기로 한다. 다만, 이는발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가어떠한의미로든한정되는것은아니다. 실시예 1
니켈수산화물전구체인해(011)2룰 600 I:의 불활성 분위기에서 10시간 동안열처리하여,니켈계산화물새◦을수득하였다.
상기 니켈계 산화물 0를 리튬 산화물( 20)과 1:1.02 의 몰비( 0:020)이 되도록 배합하고, 알루미늄 산화물(시203)을 원료 총량 중 2000 되도록 배합하여, 680 I:의 불활성 분위기에서 18 시간 동안 열처리하였다.이때,승온및 냉각속도는분당 5 로고정하였다.
상기 열처리 종료후,ᄂ( 2 必11七02)}_{)< 0)} {2(¾0)},ᄂ1 04}, = 0.83,戶 0.07, å= 0.07, ' =0.03, 1?=0.97를최종적으로수득하고,이를실시예 1의 양극첨가제로하였다.
상기 화학식은,후술되는실험예 1로부터 계산된것이다. 실시예 2
실시예 1의 양극 첨가제 및 전지 초기 특성의 상관 관계 평가 (실험예 3)를 위한 일 실시예로, 양극 활물질을 사용하지 않고, 실시예 1의 양극 첨가제를 적용하여 양극을 제조하고,상기 제조된 양극을포함하는 리륨 이차 전지를제조하였다.
구체적으로, 실시예 1의 양극 첨가제인 {o.83(Li2Nio.97Alo.0302)} - {o.07(NiO)} {0.07(Li2O)} {0.()3Li5MO4},도전재 (Super-P,덴카블랙)및바인더 (PVdF)를 85: 10: 5 (양극 첨가제: 도전재: 바인더)의 중량비로 유기용매 (NMP) 내에서 혼합하여, 슬러리 상의 양극합제로 제조한후,상기 양극합제를 알루미늄 집전체 상에 도포하여 120 의 진공오븐에서 30분건조하여 양극을제조하였다.
상대 전극으로는 리륨 금속 (Li-metal)을 사용하고, 전해액으로는 에틸렌 카보네이트 (EC, Ethylene Carbonate): 디메틸 카보네이트 (DMC, Demethyl
Carbonate)의 부피비가 1 : 2인 혼합 용매에 VC 2 중량%를 용액에 용해시킨 것을사용하였다.
상기 각 구성 요소를 사용하고, 통상적인 제조방법에 따라 2032 반쪽 전지 (half coin cell)를제작하였다. 실시예 3및 4
실시예 1의 양극참가제를실제로적용하는형태로ᄂ양극활물질과함께 실시예 1의 양극 첨가제를 적용하여 양극을 제조하고, 상기 제조된 양극을 포함하는리튬이차전지를제조하였다.
구체적으로, 실시예 1의 양극 첨가제인 {o.83(Li2Nio.97Alo.0302)} - {o.07(NiO)} ,{0.07(Li2O)} {_Li5M04}, NCM계 양극 활물질 (LiNiawCotmMn·^), 도전재 (Super-P, 덴카블랙) 및 바인더 (PVdF)를유기용매 (NMP)내에서 혼합하여 슬러리 상의 양극합제로제조한후,상기 양극합제를 알루미늄 집전체 상에 도포하여 120 의 진공오븐에서 30분 건조하여,실시예 3 및 4의 각 양극을 제조하였다.
단, 실시예 3 및 4에서, 양극 첨가제: 양극 활물질: 도전재: 바인더의 중량비는각각, 4.25: 80.75: 10: 5 (실시예 3) 및 8.5: 76.5: 10: 5 (실시예 4)로 하였다.
실시예 2의 양극대신실시예 3및 4의 각양극을사용하여,실시예 2와 동일한방법으로각각의 2032반쪽전지(half coin cell)를제작하였다. 비교예 1
니켈수산화물전구체인새(0¾2를 600 °(:의 불활성 분위기에서 10시간 동안열처리하여,니켈계산화물
Figure imgf000022_0001
수득하였다.
상기 니켈계 산화물 0를 리튬 산화물(나20)과 1 : 1.02 의 몰비어必:020)이 되도록 배합하고, 680 X:의 불활성 분위기에서 18 시간동안 열처리하였다.이때,승온및 냉각속도는분당 51:로고정하였다.
상기 열처리 종료후,{ 내 에切어的)} {2(½0)} _ᄂ0 04},표= 0.87, 0.07,
Figure imgf000022_0002
0.07, =0, 1»=0룰최종적으로수득하고,이를비교예 1의 양극 첨가제로하였다.
상기 화학식은,후술되는실험예 1로부터 계산된 것이다.
.비교예 2
비교예 1의 양극 첨가제 및 전지 초기 특성의 상관 관계 평가(실험예 3)를 위한 일 비교예로, 양극 활물질을 사용하지 않고, 비교예 1의 양극 첨가제를 적용하여 양극을 제조하고,상기 제조된 양극을포함하는 리륨 이차 전지를제조하였다.
여기서,비교예 2의 양극및 리튬이차전지의 제조방법은,실시예 1의 양극 첨가제 대신 비교예 1의 양극 첨가제를 적용하는 점을제외하고,실시예 2와동일하게 하였다. 비교예 3
그 어떤 양극 참가제도 사용하지 않고, 실시예 1의 양극 첨가제 대신 그와 동량의 양극 활물질을 사용하여, 실시예 2와 동일한 방법으로 양극을 제조하고,상기 제조된양극을포함하는리튬이차전지를제조하였다. 실험예 1: 1«)분석 실시예 1내지 비교예 1의 각양극첨가제에 대하여, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)분석을실시하고,그결과를하기 표 1 및 도 1에 기록하였다.
구체적으로,리튬니켈산화물및상기 니켈산화물 (NiO)은결정질로, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)로검출될수있다.
특히,정량분석은, XRD(X-Ray Diffiaction)측정 후강도 (intensity)계산을 통해 얻었다.
[표 1]
Figure imgf000023_0001
비교예 1은 공간군 (point group)이 Immm인 사방정계 (Orthorhombic)의 결 정 구조를가지는것임을이미 알고있다.그런데,상기 표 1의 구조분석 결과 로부터,비교예 ;[과,실시예 이 동일한결정 구조를가짐을알수있다.따라 서,실시예 1내지 3역시, LimNibAh-bC^+e로표시되는화합물을포함함을알수 있다.
한편,상기 표 1의 분석 결과로부터,비교예 1은 Li5A104가검출되지 않 음을확인할수있다.그러나,실시예 1은,각각 Li5A104가검출된 것을확인할 수있다.
여기서,표면 Li부산물이 많이 존재하는리륨니켈산화물의 경우특히 LiOH부산물이 많이 존재한다.알루미늄산화물 (A1203)도핑 시 실시예 1의 각 양극첨가제의 표면부에서 LiOH와반응하여 표면에 Li5A104인코팅층을형성하 고,이를제외한나머지 성분들은코팅층하부의 코어에 위치함을알수있다. 실험예 2: ex-situ XRD분석
실시예 2및 비교예 2의 각전지에 대하여,각전압(Voltage)별 0.1C충 전하여 ex-situ XRD분석을 실시하아, 그에 따른 결과를 도 2a(실시예) 및 도 2b(비교예)에 기록하였다.
도 2a(실시예)및도 2b(비교예)를참고하면,비교예 2의 경우코인하프 셀 0.1C충전 기준 3.9V까지 Li2Ni02구조를 유지하는 반면,실시예 2의 경우 4.1V까지 Li2Ni02구조를유지함을확인할수있다. 실험예 3:양극첨가제및전지 초기특성의상관관계평가(전지의초 기용량및가스발생량평가)
실시예 2및 비교예 2의 각 전지에 대해,다음과 같은조건으로초기 충방전을 진행하였다 . 또한, 각 전지의 가스 발생량을 전기화학 질량 분석기. (Differential electrochemical mass spectrometer, DEMS)를사용하여,각전지의 중전 시 나오는가스압력을실시간으로분석하고,그결과는도 3 및 하기 표 2에 기록하였다.
Charge: 0.1 C, CC/CV, 4.25 V, 0.005C cut-off
Discharge: 0.1C , CC, 2.5 V, cut-off [표 2]
Figure imgf000024_0001
도 3및상기 표 2에 따르면,비교예 2에 비하여,실시예 2의 전지에서, 초기 성능이 향상되며 가스 발생이 억제되는효과가 있는 것으로 확인되었다. 이는, 실시예 1의 각 양극 첨가제에 신도핑과코팅을 적용함에 따른 효과로 2019/107808 1»(:1^1{2018/014016
볼수있다.
한편,실시예 2에 있어서도,양극 .첨가제 내 020의 함량, 도핑량및 코팅량에 따라전지의 초기 성능과가스발생 정도가달라질 수 있을 것이다. 이는,양극첨가제 내 1走0의 함량이 증가할수록,전지의 초기 성능이 향상되는 데,이는 의해 가외의 0가제공됨에 따른효과로볼수 있다.또한,양 극 첨가제 내 시도핑량및 코팅량이 증가할수록, 전지의 가스 발생이 억제될 수있을것이며,이는시도핑에 의하여 코어(특히,{ 2새必11-1凡)})의 결정 구 조가안정화되고,시의 코팅에 의하여 어와전해질의 직접 접촉이 억제된 것 에 따른효과로볼수있다. 실시예 1 에서는, 일 구현예의 양극첨가제에 의해 전지의 초기 성능이 향상되며 가스 발생이 억제되는효과를 확인하기 위하여,극단적으로 양극 활 물질은배합하지 않되,각양극첨가제를통상의 양극활물질과동일한배합량 으로하여 양극합제를제조하고,양극과리튬이차전지를제조하였다. 앞서 설명한바와같이, 일 구현예의 양극 첨가제에 있어서 코어는. 전 지의 초기 충전시 전압,예를들어 2.5내지 4.25
Figure imgf000025_0001
)에서외튬이온및 산소를 비가역적으로 방출하고,그 이후 리륨 이온의 가역적인 삽입 및 탈 리가가능한조성으로 전환될 수 있다. 따라서, 실시예 1 과 같이, 상기 양극 첨가제에 있어서 코어는,음극의 초기 비가역 용량을보상하는 첨가제이자,리 튬의 가역적인.삽입 및 탈리를가능하게하는활물질로활용될수있다.
다만, U함량및 그구조적 한계로인하여,통상의 양극활물질에 비하 여 작은가역 용량을가질 수 있기에,전지의 초기 성능을향상시킴과동시에, 장기 수명 특성을확보하고자할경우,목적하는전지 특성에 따라, 일 구현예 의 양극첨가제와함께 양극활물질을적절한배합비로혼합하여 사용할수있 을것이다. 이하, 일 구현예의 양극 첨가제와함께 양극활물질을혼합하여 사용하 는실제 형태로실시예 3 및 4를제시하며,그에 따른전지 특성을평가하기로 한다. 실험예 4:양극첨가제의실제적용형태평가(전지의초기용량및수 명특성 평
구체적으로, 양극 활물질만 양극에 적용한 경우(비교예 3)와 대비하여, 실시예 1의 첨가제 및 양극 .활물질의 중량비를각각 5: 95(실시예 3)및 10:90( 실시예 4)로하여 양극에 적용한경우,전지의 초기 용량및수명 특성에 대해 평가하고,그결과를도 3,도 4및 하기 표 3에 나타내었다.
[표 3]비교예,실시예 1,2에 대한 Initial중전용량 / Retention비교
Figure imgf000026_0002
도 3,도 4및 상기 표 1에 따르면,실제로 일 구현예의 양극 첨가제와 함께 양극 활물질을 혼합하여 사용하는 경우(실시예 3 및 4), 양극 활물질만 양극에 적용한 경우(비교예 3)와 대비하여, 전지의 초기 충전 용량 및 수명 특성이 모두개선되는것으로확인된다.
구체적으로,도 3및 상기 표 1에 따르면,비교예 3의 초기 충전용량은 230.0 쇼 운에 불과하지만,실시예 3및 4의 초기 충전용량은그보다
Figure imgf000026_0001
이상증가한것을확인할수 있다.이로써,일구현예의 양극첨가제는,전지의 초기 충전 시 전압에서 리튬 이온 및 산소를 비가역적으로 방출함으로써 음극의 초기 비가역 용량을 보상하며, 양극의 초기 충전 용량을증가시키는 2019/107808 1»(:1^1{2018/014016
이점이 있음을확인할수있다.
또한,도 4및 상기 표 1에 따르면, 전지의 사이클진행 횟수가동일할 때, 비교예 3의 용량 유지율에 대비하여, 실시예 3 및 4의 용량 유지율이 현저하게높은것을확인할수있다.
이러한용량유지율의 차이는, 전지의 사이클 진행 횟수가증가할수록 더욱 극심해지는데, 특히, 비교예 3의 100 사이클 구동 후 초기 용량에 대비하여 87.0 %의 용량만유지되며, 200사이클구동후에는 81.4%의 용량만 유지괌을 확인할 수 았다. 그에 반면, 실시예 3 및 4의 경우, 각각의 초기 용량에 대비하여, 100 사이클 구동 후 91.0 % 이상의 용량이 유지되며, 200 사이클구동후에도 88.0 %이상의 용량이 유지됨을확인할수있다.
이는, 일 구현예의 양극 첨가제에 의해, 양극의 초기 용량이 증가한 상태에서 전지 사이클이 진행될 경우, 손실되는 용량이 감소함을 의미한다. 또한,앞서 언급한바와같이,전지의 초기 충전시 전압에서 일구현예의 양극 첨가제가리튬이온및산소를비가역적으로방출한뒤,리륨이온의 가역적인 .삽입 및 탈리가 가능한 조성으로 전환되어, 전지 사이클 진행 중에도 용량 구현에 일부기여함을의미하기도한다.
한편,실시예 3 및 4중, 전지의 초기 충전 용량 및 수명 특성이 더욱 개신된 것은, 일 구현예의 양극 첨가제 함량이 더 높은 양극 합제를 사용한, 실시예 4이다. 이는, 일 구현예의 양극 첨가제 함량이 높은 양극 합제를 사용할수록, 전지의 초기 충전 용량을 보다 향상시키고, 그에 따라 전지의 수명을보다효과적으로개선할수있음을의미한다.
다만,일 구현예의 양극 첨가제가전지의 초기 충전 시 전압에서리륨 이온 및 산소를 비가역적으로 방출한 뒤, 리륨 이온의 가역적인 삽입 및 탈리가 가능한조성으로 전환되더라도, 그 U 함량 및 구조적 한계로 인하여 낮은 가역 (방전) 용량을 발현하기 때문에,· 실시예 4의 초기 효율은 실시예 3보다낮아지는것이다.
따라서,앞서 언급한바와같이,전지의 초기 성능을향상시킴과동시에, 장기 수명 특성을 확보하고자 할 경우, 목적하는 전지 특성에 따라, 일 구현예의 양극첨가제와함께 양극활물질을적절한배합비로혼합하여 사용할 수있을것이다.

Claims

2019/107808 1»(:1^1{2018/014016 【청구의 범위】 【청구항 1] 전체조성이 하기 화학식 1로표시되는양극첨가제:
[화학식 1]
니 此的七 02+。)}ᄂ(섀0)} {2(020)} {'此51 04}
상기 화학식 1에서,
M은 2가양이온또는 3가양이온을형성하는금속원소중 1이상이고, -0.2쑈<0.2이고, 0.5<1? £ 1.0이고, -0.2<(:<0.2이며,
0.6<<1.0이고, 0<<0.15이고, 0< £0.15이고, 0<\¥<0.1이고, + + + 괴이며, 단, =1.0인경우 0< £0.1이며, =0인경우 0.5<1)<1.0이다.
【청구항 2】
제 1항에 있어서,
상기 M은,
시을포함하는것인,
양극첨가제.
【청구항 3】
제 2항에 있어서,
상기 양극첨가제는,
하기 화학식 1-1로 표시되는 리툼 니켈 산화물, 니켈 산화물어10), 및 리툼산화물(1山0)를포함하는코어;및
1 104을포함하는코팅층;을포함하는것인,
양극첨가제:
[화학식 1-1]
1 2+3、¾)]ᆻ11_1,()2+。
상기 화학식 1-1에서,
포함하고,
¾!?,및 0는상기 화학식 1과동일하다.
【청구항 4】
제 1항또는제 3항에 있어서,
y=z인것인,
양극첨가제.
【청구항 5]
제 3항에 있어서,
Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)측정 시, 20가 33내지 36 인 범위, 42 내지 45 인 범위 중 적어도 하나 이상의 범위에서, 상기
Li5A104에 의한피크가검출되는것인,
양극첨가제.
【청구항 6]
제 3항에 있어서,
상기 양극첨가제 총량 (100중량%)중,상기 Li5A104의 함량은 0중량% 초과 15중량%이하인것인,
양극첨가제.
【청구항 7】
제 3항에 있어서,
Fe Kot X선 (X-r a )에 의한 XRD(X-Ray Diffraction)측정 시,
20가 30내지 35 인 범위, 35 내지 40 인 범위, 55 내지 60 인 범위 중 적어도하나이상의 범위에서,상기 리툼산화물 (Li20)에 의한피크가 검출되는것인,
양극첨가제.
【청구항 8】
저 13항에 있어서,
상기 양극 첨가제 총량 (100 중량%) 중, 상기 리륨 산화물 (Li20)의 함량은 0중량%초과 15중량%이하인것인,
양극첨가제.
【청구항 9】
제 3항에 있어서,
Fe Kct X선 (X-ra)에 의한 XRD(X-Ray Diffraction)측정 시,
20가 35 내지 40° 인 범위, 40 내지 45° 인 범위 및 50 내지 55° 인 범위 중 적어도 하나 이상의 범위에서,상기 니켈산화물 (NiO)에 의한피크가 검출되는것인,
양극 _첨가제.
【청구항 10】
제 3항에 있어서,
상기 양극첨가제총량 (100중량%)중,상기 니켈산화물 ( 0)의 함량은 0중량%초과 15중량%이하인 것인,
양극첨가제.
【청구항 11】
하기 화학식 3으로표시되는니켈계산화물을준비하는단계;및 상기 니켈계 산화물, 리튬 산화물 (Li20), 알루미늄 산화물 (A1203)의 혼합물을열처리하는단계;를포함하는,
양극첨가제의 제조방법:
[화학식 3]
(NidM,.d)02
상기 화학식 3에서,
M은 2가양이온또는 3가양이온을형성하는금속원소이고,
0.5<d< 1.0이다.
【청구항 12】
제 11항에 있어서, 2019/107808 1»(:1^1{2018/014016
상기 니켈계 산화물, 리륨 산화물(1走0), 알루미늄 산화물 1203)의 혼합물을열처리하는단계;는,
불활성 분위기에서 수행되는것인,
양극첨가제의 제조방법.
【청구항 13]
제 11항에 있어서,
상기 니켈계 산화물, 리륨 산화물( 20), 알루미늄 산화물(쇼1203)의 혼합물을열처리하는단계;는,
400내지 800 X:에서 수행되는것인,
양극첨가제의 제조방법.
【청구항 14】
제 1항의 양극첨가제;및
양극활물질;을포함하는양극합제.
【청구항 15】
제 14항에 있어서,
상기 양극첨가제는,
상기 합제총량(100중량%)중, 1내지 30중량%로포함되는것인, 양극합제.
【청구항 16】
제 14항에 있어서,
상기 양극활물질은,
코발트, 망간, 니켈 또는 이들의 조합의 금속; 및 리륨;의 복합산화물 중 1종이상을포함하는것인,
양극합제. 【청구항 17】 2019/107808 1»(:1^1{2018/014016
제 14항에 있어서,
도전재,바인더,또는이들의 혼합물;을더 포함하는것인,
양극합제. 【청구항 18】
제 14항의 양극합제를포함하는양극;
전해질;및
음극;을포함하는리튬이차전지. 【청구항 19】
제 18항에 있어서,
상기 음극은,
탄소계음극활물질,리륨금속,리튬금속의 합금, , 810x(0 < X < 2),와- 복합체, ¾성 합금(상기 는 알칼라금속, 알칼리 토금속, 13족 내지 16족 원소,전이금속,희토류원소또는이들의 조합이며,
Figure imgf000032_0001
복합체, 및
Figure imgf000032_0002
(상기 묘은 알칼리 금속, 알칼리 토금속, 13족내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, ¾은 아님)을 포함하는 군에서 선택되는적어도 !종이상의 음극활물질을포함하는,
리륨이차전지.
PCT/KR2018/014016 2017-11-30 2018-11-15 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지 WO2019107808A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880017875.9A CN110447132B (zh) 2017-11-30 2018-11-15 正极添加剂、其制备方法以及包含其的正极和锂二次电池
JP2019554695A JP7045553B2 (ja) 2017-11-30 2018-11-15 正極添加剤、その製造方法、これを含む正極およびリチウム二次電池
PL18884808.9T PL3595063T3 (pl) 2017-11-30 2018-11-15 Dodatek do katody, sposób jego wytwarzania i zawierające go katoda i akumulator litowy
US16/605,755 US11329287B2 (en) 2017-11-30 2018-11-15 Cathode additive, preparation method thereof, and cathode and lithium secondary battery comprising the same
EP18884808.9A EP3595063B1 (en) 2017-11-30 2018-11-15 Cathode additive, method for manufacturing same, and cathode and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170163112 2017-11-30
KR10-2017-0163112 2017-11-30
KR10-2018-0091425 2018-08-06
KR1020180091425A KR102388848B1 (ko) 2017-11-30 2018-08-06 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2019107808A1 true WO2019107808A1 (ko) 2019-06-06

Family

ID=66664064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014016 WO2019107808A1 (ko) 2017-11-30 2018-11-15 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지

Country Status (1)

Country Link
WO (1) WO2019107808A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031892A2 (en) * 2003-09-26 2005-04-07 Lg Chem, Ltd. Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery
KR20060008568A (ko) * 2004-07-21 2006-01-27 제일모직주식회사 비수계 전해질 2차 전지 양극 활물질용 리튬-니켈 복합산화물, 그 제조방법 및 그를 포함하는 양극 활물질
KR101064729B1 (ko) * 2008-09-30 2011-09-14 주식회사 에코프로 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR101397022B1 (ko) * 2010-07-02 2014-05-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031892A2 (en) * 2003-09-26 2005-04-07 Lg Chem, Ltd. Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery
KR20060008568A (ko) * 2004-07-21 2006-01-27 제일모직주식회사 비수계 전해질 2차 전지 양극 활물질용 리튬-니켈 복합산화물, 그 제조방법 및 그를 포함하는 양극 활물질
KR101064729B1 (ko) * 2008-09-30 2011-09-14 주식회사 에코프로 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR101397022B1 (ko) * 2010-07-02 2014-05-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차 전지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, MIN GYU ET AL.: "Air Stable A1203-coated Li2NiO2 Cathode Additive as a Surplus Current Consumer in a Li-ion Cell", JOURNAL OF MATERIALS CHEMISTRY, vol. 18, no. 48, 2008, pages 5880 - 5887, XP055077327, DOI: doi:10.1039/b814161d *
See also references of EP3595063A4 *

Similar Documents

Publication Publication Date Title
JP7045553B2 (ja) 正極添加剤、その製造方法、これを含む正極およびリチウム二次電池
KR101589993B1 (ko) 신규한 이차전지
KR20190078392A (ko) 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
US9666897B2 (en) Electrolyte for lithium secondary batteries and lithium secondary battery including the same
KR20190064424A (ko) 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR101584251B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
JP7047219B2 (ja) 正極添加剤、その製造方法、これを含む正極およびリチウム二次電池
KR20190064423A (ko) 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR101570977B1 (ko) 리튬 이차전지
US9853328B2 (en) Electrolyte for lithium secondary batteries and lithium secondary battery including the same
JP2015232923A (ja) 非水電解質二次電池
KR20150015070A (ko) 젖음성이 향상된 리튬 이차전지
KR20190063408A (ko) 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20170025874A (ko) 리튬 이차전지 및 그의 구동방법
KR20190062254A (ko) 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR101240174B1 (ko) 양극 활물질 및 이를 이용한 리튬 이차전지
US11404689B2 (en) Positive electrode and lithium secondary battery including the same
KR101852762B1 (ko) 다공성 실리콘을 포함하는 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR20170025873A (ko) 리튬 이차전지 및 그의 구동방법
US9660266B2 (en) Lithium secondary battery
WO2019103574A2 (ko) 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20130002750A (ko) 고전압용 이차전지
WO2019103576A2 (ko) 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2019107808A1 (ko) 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20140071549A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554695

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018884808

Country of ref document: EP

Effective date: 20191007

NENP Non-entry into the national phase

Ref country code: DE