WO2019107435A1 - 電力管理サーバ及び電力管理方法 - Google Patents

電力管理サーバ及び電力管理方法 Download PDF

Info

Publication number
WO2019107435A1
WO2019107435A1 PCT/JP2018/043837 JP2018043837W WO2019107435A1 WO 2019107435 A1 WO2019107435 A1 WO 2019107435A1 JP 2018043837 W JP2018043837 W JP 2018043837W WO 2019107435 A1 WO2019107435 A1 WO 2019107435A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
facility
management server
target value
demand
Prior art date
Application number
PCT/JP2018/043837
Other languages
English (en)
French (fr)
Inventor
和歌 中垣
健太 沖野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US16/767,590 priority Critical patent/US11379937B2/en
Priority to JP2019557281A priority patent/JP6928670B2/ja
Publication of WO2019107435A1 publication Critical patent/WO2019107435A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment

Definitions

  • the present invention relates to a power management server and a power management method.
  • Patent Documents 1 and 2 In recent years, in order to maintain the balance of power supply and demand of the power system, a technique for suppressing the amount of power flow from the power system to the facility is known. In order to maintain the balance between the power supply and demand of the power system, a technique using a storage battery device provided in a facility has also been proposed (for example, Patent Documents 1 and 2).
  • the power management server is, among a plurality of facilities having a distributed power supply, a first facility applying the first process to the distributed power supply and a second facility applying the second process to the distributed power supply.
  • a control unit is provided which selects based on a predetermined standard.
  • the first process is a process of controlling the output power of the distributed power source using a first target value as a target value of purchased power purchased by a facility from a power company.
  • the second process is a process of controlling the output power of the distributed power supply using a second target value larger than the first target value as a target value of the purchased power.
  • the control unit selects candidates for the first facility and the second facility until the secured power amount exceeds a margin threshold obtained by adding the first margin to the contracted power amount.
  • the contracted power amount is a power amount determined to be reduced from baseline power as a whole of the plurality of facilities.
  • the secured power amount is a total of power amounts that can be reduced from baseline power of facilities selected as candidates for the first facility and the second facility.
  • the control unit sets the first margin based on predicted demand power of the plurality of facilities.
  • a power management method includes, among a plurality of facilities having a distributed power supply, a first facility applying the first process to the distributed power supply and a second facility applying the second process to the distributed power supply.
  • the first process is a process of controlling the output power of the distributed power source using a first target value as a target value of purchased power purchased by a facility from a power company.
  • the second process is a process of controlling the output power of the distributed power supply using a second target value larger than the first target value as a target value of the purchased power.
  • the step A includes the step of selecting candidates for the first facility and the second facility until the secured power amount exceeds a margin threshold obtained by adding the first margin to the contracted power amount.
  • the contracted power amount is a power amount determined to be reduced from baseline power as a whole of the plurality of facilities.
  • the secured power amount is a total of power amounts that can be reduced from baseline power of facilities selected as candidates for the first facility and the second facility.
  • a power management server and a power management method capable of appropriately maintaining the balance between the power supply and demand of the power system using a distributed power supply such as a storage battery device.
  • FIG. 1 is a diagram showing a power management system 100 according to the embodiment.
  • Drawing 2 is a figure showing institution 300 concerning an embodiment.
  • FIG. 3 is a diagram showing the power management server 200 according to the embodiment.
  • FIG. 4 is a diagram showing a local control device 360 according to the embodiment.
  • FIG. 5 is a diagram for explaining the first process according to the embodiment.
  • FIG. 6 is a diagram for explaining the first process according to the embodiment.
  • FIG. 7 is a diagram for explaining the second process according to the embodiment.
  • FIG. 8 is a diagram for explaining the second process according to the embodiment.
  • FIG. 9 is a diagram illustrating a power management method according to the embodiment.
  • FIG. 10 is a diagram illustrating a power management method according to the embodiment.
  • FIG. 11 is a diagram for describing the first modification.
  • FIG. 12 is a diagram for describing a second modification.
  • FIG. 13 is a diagram for describing a fourth modification.
  • FIG. 14 is a diagram for
  • a power management server and a power management method are provided that make it possible to appropriately maintain the balance between power supply and demand of the power system using a distributed power supply such as a storage battery device.
  • the power management system 100 includes a power management server 200, a facility 300, and a power company 400.
  • facilities 300A to 300C are illustrated as the facility 300.
  • Each facility 300 is connected to a power system 110.
  • the flow of power from power system 110 to facility 300 will be referred to as tidal current, and the flow of power from facility 300 to power system 110 will be referred to as reverse power flow.
  • the power management server 200, the facility 300 and the power company 400 are connected to the network 120.
  • the network 120 may provide a circuit between the power management server 200 and the facility 300 and a circuit between the power management server 200 and the power company 400.
  • the network 120 is the Internet.
  • the network 120 may provide a dedicated circuit such as a VPN (Virtual Private Network).
  • the power management server 200 is a server managed by a power company such as a power generation company, a power transmission and distribution company or a retail business, or a resource aggregator.
  • a resource aggregator is a power company that provides reverse power flow power to a power generation company, a power transmission and distribution company, a retail company, and the like in a VPP (Virtual Power Plant).
  • the power management server 200 is an example of a reverse power flow purchase entity.
  • the power management server 200 is an example of a power management server.
  • the power management server 200 instructs the local control device 360 provided in the facility 300 to control the distributed power supply (for example, the solar battery device 310, the storage battery device 320 or the fuel cell device 330) provided in the facility 300.
  • the power management server 200 may transmit a flow control message (for example, DR; Demand Response) requesting control of a flow, and may transmit a reverse flow control message requesting control of a reverse flow.
  • the power management server 200 may transmit a power control message for controlling the operating state of the distributed power source.
  • the control degree of the tidal current or the reverse tidal current may be represented by an absolute value (for example, kWkW) or may be represented by a relative value (for example, %%).
  • control degree of tidal current or reverse tidal current may be represented by two or more levels.
  • the control degree of power flow or reverse power flow may be represented by a power rate (RTP; Real Time Pricing) defined by the current balance of power supply and demand, and a power rate (TOU; Time Of Use) determined by the past power supply and demand balance May be represented by
  • RTP Real Time Pricing
  • TOU Time Of Use
  • the facility 300 includes a solar cell device 310, a storage battery device 320, a fuel cell device 330, a load device 340, a local control device 360, and a power meter 380.
  • the solar cell device 310 is a distributed power supply that generates power in response to light such as sunlight.
  • the solar cell apparatus 310 is an example of a specific distributed power supply to which a predetermined purchase price is applied.
  • the solar cell apparatus 310 includes a PCS (Power Conditioning System) and a solar panel.
  • PCS Power Conditioning System
  • the storage battery device 320 is a distributed power supply that charges power and discharges power.
  • Storage battery device 320 is an example of a distributed power supply to which a predetermined purchase price is not applied.
  • storage battery device 320 is configured of a PCS and a storage battery cell.
  • the fuel cell apparatus 330 is a distributed power supply that generates electric power using fuel.
  • the fuel cell apparatus 330 is an example of a distributed power supply to which a predetermined purchase price is not applied, and is a distributed power supply having a rated operation mode for outputting rated power.
  • the fuel cell device 330 is configured of a PCS and a fuel cell.
  • the fuel cell apparatus 330 may be a solid oxide fuel cell (SOFC), a solid polymer fuel cell (PEFC), or phosphoric acid.
  • SOFC solid oxide fuel cell
  • PEFC solid polymer fuel cell
  • phosphoric acid phosphoric acid
  • Type fuel cell PAFC: Phosphoric Acid Fuel Cell
  • MCFC molten carbonate Fuel Cell
  • the solar cell device 310, the storage battery device 320 and the fuel cell device 330 may be power supplies used for VPP.
  • the load device 340 is a device that consumes power.
  • the load device 340 is an air conditioner, a lighting device, an AV (Audio Visual) device, or the like.
  • the local control device 360 is a device (EMS: Energy Management System) that manages the power of the facility 300.
  • the local control device 360 may control the operation state of the solar cell device 310, or may control the operation state of the storage battery device 320 provided in the facility 300, and the operation state of the fuel cell device 330 provided in the facility 300 May be controlled. Details of the local control device 360 will be described later (see FIG. 4).
  • communication between the power management server 200 and the local controller 360 is performed according to a first protocol.
  • communication between the local control device 360 and the distributed power supply is performed according to a second protocol different from the first protocol.
  • a protocol compliant with Open ADR (Automated Demand Response), or a proprietary protocol of its own can be used as the first protocol.
  • the second protocol can use a protocol compliant with ECHONET Lite, Smart Energy Profile (SEP) 2.0, KNX, or a proprietary protocol of its own.
  • the first protocol and the second protocol may be different, for example, they may be proprietary protocols or protocols created according to different rules.
  • the power meter 380 is an example of a first power meter that measures the amount of power flow from the power system 110 to the facility 300 and the amount of reverse power flow from the facility 300 to the power system 110.
  • the power meter 380 is a smart meter belonging to the power company 400.
  • the power meter 380 transmits, to the local control device 360, a message including an information element indicating the measurement result (the amount of power flow or reverse power flow (Wh)) per unit time (for example, 30 minutes). .
  • the power meter 380 may transmit the message autonomously, or may transmit the message in response to the request of the local controller 360.
  • the power company 400 is an entity that provides an infrastructure such as the power grid 110, and is, for example, a power company such as a power generation company or a power transmission and distribution company.
  • the power company 400 may outsource various operations to the entity that manages the power management server 200.
  • the power management server 200 includes a management unit 210, a communication unit 220, and a control unit 230.
  • the power management server 200 is an example of a VTN (Virtual Top Node).
  • the management unit 210 is configured by a non-volatile memory and / or a storage medium such as an HDD, and manages data related to the facility 300 managed by the power management server 200.
  • the facility 300 managed by the power management server 200 may be a facility 300 having a contract with an entity that manages the power management server 200.
  • the data related to the facility 300 may be demand power supplied from the power system 110 to the facility 300, and each facility 300 reduces the demand power according to the demand power reduction request (DR; Demand Response) of the entire power system 110. It may be the amount of power consumed.
  • DR Demand Response
  • the data regarding the facility 300 is the type of the distributed power supply (solar cell device 310, storage battery device 320 or fuel cell device 330) provided in the facility 300, the distributed power supply (solar cell device 310, storage battery device 320 or fuel cell provided in the facility 300)
  • the specifications of the device 330) may be used.
  • the specifications may be the rated power generation (W) of the solar cell device 310, the maximum output power (W) of the storage battery device 320, and the maximum output power (W) of the fuel cell device 330.
  • the data on the facility 300 may be the output power amount instructed to the distributed power supply in the past.
  • the data regarding the facility 300 may be the amount of discharged power instructed to the storage battery device 320.
  • the data on the facility 300 may be the degree of degradation of the distributed power source.
  • data on the facility 300 may be SOH (State Of Health) of the storage battery device 320.
  • the communication unit 220 is configured by a communication module, and communicates with the local control device 360 via the network 120.
  • the communication unit 220 performs communication in accordance with the first protocol as described above. For example, the communication unit 220 transmits the first message to the local control device 360 according to the first protocol.
  • the communication unit 220 receives the first message response from the local control device 360 according to the first protocol.
  • the communication unit 220 receives a message including an information element indicating the demand power supplied from the power system 110 to the facility 300 from the facility 300 (for example, the local control device 360 or the power meter 380).
  • the demand power may be a value measured by the power meter 380 described above.
  • the demand power may be a value obtained by removing the output power of the distributed power supply (the solar battery device 310, the storage battery device 320, and the fuel cell device 330) from the power consumption of the load device 340.
  • the control unit 230 is configured of a memory, a CPU, and the like, and controls each component provided in the power management server 200.
  • the control unit 230 controls the distributed control (the solar battery device 310, the storage battery device 320, or the fuel cell device 330) provided in the facility 300 with respect to the local control device 360 provided in the facility 300 by transmitting a control message.
  • the control message may be a power flow control message, a reverse power flow control message, or a power control message, as described above.
  • the local control device 360 has a first communication unit 361, a second communication unit 362, and a control unit 363.
  • the local control device 360 is an example of a VEN (Virtual End Node).
  • the first communication unit 361 is configured by a communication module, and communicates with the power management server 200 via the network 120.
  • the first communication unit 361 communicates according to the first protocol as described above.
  • the first communication unit 361 receives the first message from the power management server 200 according to the first protocol.
  • the first communication unit 361 transmits a first message response to the power management server 200 according to the first protocol.
  • the second communication unit 362 is configured by a communication module, and communicates with the distributed power supply (the solar battery device 310, the storage battery device 320, or the fuel cell device 330). As described above, the second communication unit 362 communicates according to the second protocol. For example, the second communication unit 362 transmits the second message to the distributed power source according to the second protocol. The second communication unit 362 receives the second message response from the distributed power source according to the second protocol.
  • the control unit 363 is configured of a memory, a CPU, and the like, and controls each component provided in the local control device 360. Specifically, in order to control the power of the facility 300, the control unit 363 instructs the device to set the operating state of the distributed power supply by transmitting the second message and receiving the second message response. The control unit 363 may instruct the distributed power supply to report the distributed power supply information by transmitting the second message and receiving the second message response in order to manage the power of the facility 300.
  • the application scene of the embodiment will be described below.
  • the power management server 200 receives a request for reduction of the demand power of the power system 110 from the power company 400 which is the upper node of the power management server 200.
  • the power management server 200 may reduce the amount of power corresponding to the contracted power amount from the baseline power as the entire facility 300 managed by the power management server 200.
  • the contracted power amount may be a power amount defined between the power management server 200 and the power company 400 in the negative power transaction.
  • the contracted power amount is a power amount determined to be reduced from the baseline power as a whole of the plurality of facilities 300 managed by the power management server 200.
  • Baseline power is the power demand assumed when no reduction request has been made.
  • the baseline power may be an average value of the demand power for a certain period of time prior to the advance notice of the reduction request.
  • the fixed period may be determined according to the substance of the negative watt trade, and may be determined between the power management server 200 and the power company 400.
  • the power management server 200 applies a first process to the storage battery device 320 among the plurality of facilities 300 having the distributed power supply (here, the storage battery device 320), and the storage battery device 320
  • the controller 230 selects the second facility to which the second process is applied based on a predetermined standard.
  • the control unit 230 may select the above-described first facility and second facility for a demand response period in which the power of the power system 110 runs short.
  • the first process is a process of controlling the output power of the storage battery device 320 using a first target value as a target value of purchased power purchased by the facility 300 from the power company.
  • the first target value described above may be zero.
  • zero may be substantially zero, and a first target value of several tens of watts may be set in order to suppress reverse power flow associated with rapid fluctuations in the power consumption of the load device 340.
  • zero may be considered as a concept including several tens of watts.
  • the first processing may be processing that storage battery device 320 performs autonomously.
  • the power management server 200 may set the first target value in the storage battery device 320 and instruct a period for executing the first process.
  • the second process is a process of controlling the output power of storage battery device 320 using a second target value larger than the first target value as a target value of purchased power.
  • the second process may be a feedback process (or a sequential process) of controlling the storage battery device 320 based on the difference between the second target value and the purchased power.
  • an adjustment process is performed to compensate for the shortage or excess error of the reduction power in the N ⁇ Xth unit time by the Nth unit time.
  • N and X are natural numbers, and the relationship of N> X is satisfied.
  • the second process may be a process of remotely controlling the storage battery device 320 by the control unit 230 (power management server 200).
  • Control unit 230 sets the first target value and the second target value based on at least one of reduction power to baseline power at each facility 300, reduction ratio to baseline power at each facility 300, and absolute value of purchased power. You may set a target value.
  • the first target value and the second target value are determined based on the reduced power relative to the baseline power, the difference between the baseline power and the reduced power corresponds to the purchased power. Therefore, even in such a case, the first target value and the second target value mean the target value of the purchased power.
  • the first target value and the second target value are determined based on the reduction ratio to the baseline power, the value obtained by multiplying the baseline power by 1 minus the reduction ratio is equivalent to the purchased power Do. Therefore, even in such a case, the first target value and the second target value mean the target value of the purchased power.
  • the predetermined criteria described above are defined to minimize over-errors and under-errors of the overall reduced power of the power supplied from the power system 110 to the plurality of facilities 300.
  • the predetermined criteria are provided for the absolute amount of demand power of the facility 300, the variation of demand power of the facility 300, the degree of deterioration of the storage battery device 320, the cost of output power of the storage battery device 320, the type of storage battery device 320, A reference based on at least one of the types of equipment (eg, load equipment 340) being
  • the predetermined standard selects the facility 300 having the absolute amount of demand power equal to or less than the predetermined threshold as the first facility, and the absolute amount of the power demand has the predetermined threshold It may be a criterion to select the excess facility 300 as the second facility.
  • the predetermined standard may be a standard by which the facility 300 having a relatively large absolute amount of demand power is preferentially selected as the second facility.
  • the predetermined standard may be a standard in which the facility 300 where the fluctuation amount of the demand power exceeds the predetermined threshold is not selected as the first facility and the second facility.
  • the predetermined standard selects the facility 300 whose fluctuation amount of demand power exceeds the predetermined threshold as the first facility so that the reduction power does not exceed the reduction threshold at least, and the fluctuation of the power demand is the predetermined threshold or less It may be a criterion to select 300 as the second facility.
  • the predetermined standard may be a standard by which a facility 300 having a relatively small amount of fluctuation in demand power is preferentially selected as the second facility.
  • the predetermined standard is the facility 300 in which the degree of deterioration of the storage battery device 320 is higher than a predetermined threshold.
  • the predetermined standard may be a standard for selecting the facility 300 having the degree of deterioration of the storage battery device 320 equal to or less than a predetermined threshold as the second facility.
  • the predetermined standard may be a standard by which the facility 300 having the storage battery device 320 with a relatively low degree of deterioration is preferentially selected as the second facility.
  • facility 300 having storage battery device 320 whose output power cost is higher than a predetermined threshold is the first facility and It may be a standard not selected as the second facility. Furthermore, since the output power of the storage battery device 320 may be suppressed more than the first processing in the second process described above, the facility 300 having the storage battery device 320 whose cost of output power is equal to or less than a predetermined threshold May be selected as the first facility, and the facility 300 having the storage battery device 320 whose output power cost is higher than a predetermined threshold may be selected as the second facility.
  • the predetermined criterion may be a criterion in which the facility 300 having the storage battery device 320 having a relatively high cost of output power is preferentially selected as the second facility.
  • the cost of the output power of storage battery device 320 may be the cost required for storing power in storage battery device 320. That is, the cost of the output power of storage battery device 320 may be considered as the cost of the power stored in storage battery device 320. Therefore, the cost of the output power of storage battery device 320 is based on the electricity rate plan with which facility 300 has a contract for the power supplied from power system 110 in the case where the power of power system 110 is stored in storage battery device 320. In the case where the output power of the solar cell apparatus 310 or the fuel cell apparatus 330 is stored in the storage battery apparatus 320, it may be determined based on the power generation cost of the solar cell apparatus 310 or the fuel cell apparatus 330. . In such a case, the charging efficiency and the discharging efficiency of storage battery device 320 may be considered.
  • the type of the storage battery device 320 is a parameter indicating characteristics such as maximum output power of the storage battery device 320 and load followability of the storage battery device 320.
  • a parameter may be a parameter indicating the responsiveness of the output power of storage battery device 320 to the fluctuation of the power consumption of load device 340.
  • Such a parameter may be a parameter indicating a transmission delay between the power management server 200 and the facility 300 (the storage battery device 320) in sequential processing.
  • the predetermined standard selects the facility 300 having the storage battery device 320 whose maximum output power is larger than the predetermined threshold as the first facility, and the facility 300 having the storage battery device 320 whose maximum output power is smaller than the predetermined threshold is the second facility It may be a criterion to select as.
  • the predetermined standard selects the facility 300 having the storage battery device 320 whose load following property is not better than the predetermined threshold as the first facility, and the facility 300 having the storage battery apparatus 320 whose load following property is better than the predetermined threshold It may be a criterion to select as the second facility.
  • Type of Device for example, Load Device 340
  • the type of device affects the absolute amount of demand power of the facility 300 and the fluctuation amount of demand power of the facility 300. Therefore, the predetermined standard may be determined based on the type of the device based on the same concept as the absolute amount of the demand power of the facility 300 and the fluctuation amount of the demand power of the facility 300.
  • the process of selecting the first facility and the second facility may be performed based on two or more parameters selected from the above (1) to (6). Criteria based on two or more parameters may be combined by weighting.
  • the first process is a process of controlling the output power of the storage battery device 320 using the first target value as the target value of the purchased power purchased by the facility 300 from the power company.
  • the storage battery device 320 does not discharge before the demand response period, and the storage battery device 320 has a remaining charge amount necessary for discharging in the demand response period. Do.
  • the first target value (P TL1 ) is zero, and the output power of the storage battery device 320 follows the demand power (P CONSUMP ) in each facility 300 in the demand response period. Therefore, the target value (NW TARGET ) of reduced power in the negawatt transaction is the same as the baseline power (P BL ) in each facility 300. The actual reduction power in the negative watt trade reaches the target value (NW TARGET ) by the discharge of the storage battery device 320.
  • the second process is a process of controlling the output power of storage battery device 320 using a second target value larger than the first target value as a target value of purchased power, as described above.
  • the storage battery device 320 does not discharge before the demand response period, and the storage battery device 320 has a remaining charge amount necessary for discharging in the demand response period. Do.
  • the second target value (P TL2 ) is a value larger than zero, and in the demand response period, the output power of storage battery device 320 is obtained from the demand power (P CONSUMP ) at each facility 300.
  • the target value (NW TARGET ) of reduced power in the negawatt transaction is the same as the value obtained by subtracting the second target value (P TL ) from the baseline power (P BL ) in each facility 300.
  • the reduced power in the negative watt trade reaches the target value (NW TARGET ) by the discharge of the storage battery device 320.
  • the adjustment process is performed to compensate for the shortage error or the excess error of the reduction power in the N-th unit time by the N-th unit time by adopting the feedback process. According to such feedback processing, it is possible to absorb the shortage and excess of reduced power as the entire demand response period.
  • step S ⁇ b> 10 the power management server 200 receives a message including an information element (demand power information) indicating the demand power of each facility 300.
  • the process of step S10 is performed every unit time (for example, 30 minutes).
  • the power management server 200 can grasp the power demand of each facility 300, and can also grasp the baseline power of each facility 300.
  • step S11 the power management server 200 receives a message including an information element (storage battery information) related to the storage battery device 320 of each facility 300.
  • an information element storage battery information
  • the process of step S10 is performed every unit time.
  • the unit time of step S11 may be different from the unit time of step S10.
  • the storage battery information is information indicating the remaining charge amount of the storage battery device 320 and the like.
  • step S12 the power management server 200 receives a reduction request from the power company 400.
  • the power management server 200 applies the first process to the storage battery device 320 for the demand response period, and the second facility for applying the second process to the storage battery device 320 based on a predetermined standard. select.
  • the plurality of facilities 300 managed by the power management server 200 may include facilities 300 which are not selected as the first facility and the second facility. That is, all the facilities 300 may not participate in the reduction request. An example of the selection method based on the predetermined criteria will be described later (see FIG. 10).
  • step S14 the power management server 200 transmits, to each facility 300, a message including an information element (processing method notification) indicating the first process or the second process.
  • an information element processing method notification
  • step S15 the facility 300 selected as the second facility transmits a message including an information element (error information) indicating an error between the purchased power and the second target value to the power management server 200.
  • error information an information element indicating an error between the purchased power and the second target value
  • the process of step S15 is an operation after the demand response period has started.
  • step S16 the power management server 200 transmits a control command for adjusting the error to the facility 300 selected as the second facility based on the error information received in step S15.
  • steps S15 and S16 are repeated every unit time (feedback process).
  • the unit time of the feedback process may be shorter than the unit time of receiving the required power information or the storage battery information.
  • step S13 a case is exemplified in which the predetermined standard is a standard based on the absolute amount of demand power (hereinafter simply referred to as demand power).
  • the demand power may be demand power at the time of selecting the first facility and the second facility, or may be demand power in the past (for example, baseline power).
  • the power management server 200 excludes, from the facilities 300 managed by the power management server 200, the facility 300 to which the control related to the reduction request can not be applied.
  • the facility 300 for example, as such a facility 300, a facility 300 that does not have a storage battery device 320, a facility 300 that has a storage battery device 320 that does not have sufficient storage capacity, a facility 300 that can not secure a communication path with the power management server 200, etc. It can be mentioned.
  • the power management server 200 selects the facilities 300 as the first facilities in ascending order of demand power until the secured power amount exceeds the contracted power amount.
  • the secured power amount is the sum of power amounts that can be reduced from the baseline power (demand power) for the facility 300 selected as the first facility.
  • the total of the reducible electric energy is the sum of the values excluding the first target value (P TL ). Therefore, when the first target value (P TL ) is zero, the secured power amount is the same as the total of the baseline power (demand power) of the facility 300 selected as the first facility.
  • step S22 the power management server 200 determines whether the first facility can be selected until the secured power amount exceeds the contracted power amount. If the determination result is YES, the power management server 200 performs the process of step S23. If the determination result is NO, the power management server 200 performs the process of step S27.
  • step S23 the power management server 200 selects a predetermined number of facilities 300 as the second facilities from the facilities 300 whose demand power is greater than the predetermined threshold.
  • the power management server 200 may select a predetermined number of facilities 300 as the second facilities in ascending order of demand power among facilities whose demand power is greater than a predetermined threshold.
  • step S24 the power management server 200 replaces the facility 300 selected as the first facility in step S21 with the facility 300 selected as the second facility in step S23. Since such replacement is performed, the facility 300 selected as the first facility in step S21 may be referred to as a candidate of the first facility and the second facility. Such replacement is performed such that the reduced power of the facility 300 selected as the second facility is approximately the same as the reduced power of the facility 300 selected as the first facility.
  • the first facilities to be replaced may be selected in descending order of demand power. Furthermore, if the two do not completely match, replacement may be performed so that the reduced power of the facility 300 selected as the second facility is larger than the reduced power of the facility 300 selected as the first facility. .
  • step S25 the power management server 200 adjusts an error involved in the replacement of the first facility to the second facility.
  • the reduced power of the facility 300 selected as the second facility is larger than the reduced power of the facility 300 selected as the first facility, the facility 300 having the largest demand power among the facilities 300 selected as the first facility The exclusion of is given priority.
  • step S26 the power management server 200 transmits, to the power company 400, a participation response to the reduction request.
  • step S27 the power management server 200 transmits a nonparticipation response to the reduction request to the power company 400.
  • the processing illustrated in FIG. 10 may be performed for the demand response period. Therefore, the process shown in FIG. 10 may be performed not only before the demand response period but also during the demand response period. The process shown in FIG. 10 may be performed in a predetermined cycle.
  • the power management server 200 selects a first facility to which the first process is applied to the storage battery device 320 and a second facility to which the second process is applied to the storage battery device 320 based on a predetermined criterion. According to such a configuration, it is possible to maintain the balance between supply and demand of electric power system 110 while reducing the possibility of the occurrence of a deficiency error and an excess error of reduced power.
  • the power management server 200 selects the facilities 300 as the first facilities (that is, candidates for the first facility and the second facility) in ascending order of demand power until the secured power amount exceeds the contracted power amount.
  • the power management server 200 secures the facility 300 at the first facility (that is, the first facility) until the secured power amount exceeds the margin threshold obtained by adding the first margin to the contracted power amount. 1) It chooses as a candidate of 2 facilities and 2nd facilities.
  • the facilities 300 may be selected as the first facilities in ascending order of the required power.
  • the power management server 200 sets a first margin based on the predicted demand power of the plurality of facilities 300.
  • the first margin can be either positive or negative.
  • the first margin may be represented by the amount of power added to the contracted amount of power, or may be represented by a rate multiplied by the contracted amount of power.
  • a shortage time zone in which the predicted demand power becomes larger than the last demand power in the demand response period as a whole of the plurality of facilities 300
  • a shortage of reduced power may occur. Therefore, a positive value may be set as the first margin. That is, more facilities 300 than the embodiment are selected as the first facilities.
  • the reduction power may possibly be exceeded, so a negative value may be set as the first margin. . That is, the facility 300 less than the embodiment is selected as the first facility.
  • the power management server 200 acquires predicted demand power of a plurality of facilities 300.
  • the forecasted demand power is a forecasted transition of the power demand in the demand response period.
  • the predicted demand power may be predicted based on the past trend of the power demand. For example, the past power demand is the power demand measured under the same conditions as the demand response period (eg, time zone, day of the week, month).
  • step S31 the power management server 200 determines whether a shortage time zone is included in the demand response period.
  • the determination result is YES
  • the power management server 200 performs the process of step S32.
  • the determination result is NO
  • the power management server 200 performs the process of step S34.
  • step S32 the power management server 200 calculates the difference between the maximum value of the predicted demand power in the demand response period (hereinafter, maximum demand power> the last demand power) and the last demand power for the entire plurality of facilities 300. Do.
  • step S33 the power management server 200 sets a first margin based on the difference calculated in step S32.
  • the first margin is a positive value.
  • the margin threshold is calculated by (contract power amount) ⁇ (1 + first margin).
  • the first margin may be a value obtained by removing the immediately preceding demand power from the maximum demand power itself, or may be a value obtained by multiplying a value obtained by removing the immediately preceding demand power from the maximum demand power.
  • the first margin may be expressed in proportions corresponding to these values.
  • step S34 the power management server 200 calculates the difference between the maximum demand power ( ⁇ immediate demand power) and the immediately preceding demand power in the demand response period, for the entire plurality of facilities 300.
  • step S35 the power management server 200 sets a first margin based on the difference calculated in step S32.
  • the first margin is a negative value.
  • the margin threshold is calculated by (contract power amount) ⁇ (1 + first margin).
  • the first margin may be a value obtained by removing the immediately preceding demand power from the maximum demand power itself, or may be a value obtained by multiplying a value obtained by removing the immediately preceding demand power from the maximum demand power.
  • the first margin may be expressed in proportions corresponding to these values.
  • FIG. 11 exemplifies the case where the first margin is added to the contracted power amount when the shortage period is not included in the demand response period, in such a case, the first margin is added to the contracted power amount. It does not have to be. That is, step S34 and step S35 may be omitted.
  • the power management server 200 secures the margin threshold obtained by adding the first margin to the contracted power amount, and secures the facility 300 to the first facility (that is, the first facility and the second facility) until the power amount exceeds. Select as a candidate for the facility). Therefore, it is possible to further reduce the possibility of the reduction error of the reduction power and the excess error.
  • the adjustment process is a process of compensating for the shortage error or excess error of the reduction power in the N ⁇ Xth unit time by the Nth unit time.
  • the power management server 200 (control unit 230) transmits the purchased power and the second power in the N-3rd unit time in the Nth unit time.
  • the storage battery device 320 is controlled based on the margin difference obtained by adding the second margin to the difference from the target value.
  • the second margin can be either positive or negative.
  • the second margin may be expressed as power added to the difference between the purchased power and the second target value, or may be expressed as a ratio multiplied by the difference between the purchased power and the second target value. .
  • the power management server 200 sets the second margin based on an error (here, -0.3 kW) between the purchased power in the N-3rd unit time and the purchased power in the N-6th unit time. It may be set.
  • the second margin may be set individually for each facility 300 and may be set for each unit time.
  • the second margin may be expressed as power added to the difference between the purchased power and the second target value. That is, assuming that the second target value is 1 kW, the target value of the reduction power is 0.4 kW (1.7 kW-1 kW-0.3 kW).
  • the power management server 200 may set the second margin based on the predicted delay error.
  • the predicted delay error may be predicted based on past delay errors (e.g., average delay error, maximum delay error, minimum delay error, etc.).
  • the past delay error is a delay error measured under the same conditions as the demand response period (for example, time zone, day of the week, month).
  • the second margin may be set individually for each facility 300, or may be set as a single value used in the entire plurality of facilities 300.
  • the second margin may be set as one value used throughout the demand response period.
  • the second margin may be expressed as a ratio by which the difference between the purchased power and the second target value is multiplied.
  • the power management server 200 selects the facilities 300 as the first facilities in ascending order of demand power until the secured power amount exceeds the contracted power amount, and the selected first facilities are selected. Replace part with the second facility.
  • the power management server 200 applies in advance whether to apply the first process (load following process) or the second process (sequential process) to each of the plurality of facilities 300. decide. Subsequently, the power management server 200 selects the facility 300 until the secured power amount exceeds the contracted power amount.
  • the power management server 200 reduces the demand power in the following procedure.
  • the power management server 200 determines to apply the second process (sequential process) to the facility 300 where the last-time demand power is greater than the predetermined threshold, and the first process for the facility 300 where the last-time demand power is less than the predetermined threshold It is decided to apply load following processing).
  • the power management server 200 selects the facilities 300 in descending order of priority until the secured power amount exceeds the contracted power amount. For example, the priority may be higher as the last required power is lower.
  • the secured power amount may be the total of the power amounts that can be reduced from the baseline power (demand power) for the facility 300 selected as the first facility and the second facility.
  • the reducible energy amount is the sum of the value obtained by subtracting the first target value from the baseline power for the first facility and the sum of the value obtained by removing the second target value from the baseline power for the second facility. It may be a value.
  • the first margin is a value that determines the margin threshold by being added to the contracted energy amount.
  • the number of facilities 300 participating in the demand reduction request of power system 110 may change.
  • the facilities 300 participating in the reduction request are the facilities 300 selected as the first facility and the second facility.
  • the power management server 200 stores the number of facilities 300 participating in the reduction request in association with the first margin.
  • the power management server 200 stores the table shown in FIG. 13.
  • Time Stamp is information indicating the time when the reduction request has been executed.
  • Margin is information (here, a ratio) indicating the first margin used in the reduction request.
  • Count is the number of facilities 300 which participated in the reduction request.
  • the records used in the control in which the shortage error and the excess error of the reduction power are equal to or less than the predetermined error may be stored.
  • the power management server 200 uses, as the first margin, the Margin associated with the Count closest to the number of the facilities 300 participating in the current reduction request. For example, when the number of facilities 300 participating in the reduction request is 65, Margin associated with 63 Count, that is, “0.46” used in the reduction request of 2018-07-05 Is used as the first margin.
  • Margin associated with 50 Count that is, “1.00” used in the reduction request of 2018-07-02 Or “0.87” is used as the first margin at the reduction request of 2018-07-03.
  • the Margin associated with the Count that is temporally close to the reduction request that is, 2018-07 "0.87” may be used as the first margin at the reduction request of -03.
  • a small margin among the margins associated with two or more Counts that is, “0.87” may be used as the first margin at a reduction request of 2018-07-03.
  • . For example, when the number of facilities 300 participating in the current reduction request is 100, the Count closest to 100 is 63, but “0.46” associated with 63 is corrected. According to the above equation, 0.17 0.46 ⁇
  • the target value of the purchased power may include the first target value used in the first process, and may include the second target value used in the second process.
  • the facility 300 managed by the power management server 200 is not selected as any of the target facility selected as the first facility or the second facility, and neither the first facility nor the second facility.
  • the non-target facility may include the facility 300 excluded in step S20 described above.
  • Non-target facilities may include facilities 300 that do not participate in the demand for reduction of the power demand of the power system 110.
  • the power management server 200 sets the target value of the purchased power used by the target facility based on the difference between the baseline power of the non-target facility and the power demand of the non-target facility. In other words, the power management server 200 compensates for the difference between the baseline power of the non-target facility and the predicted power demand of the non-target facility by the control of the target facility.
  • the demand power (P CONSUMP ) of the non-target facility is larger than the baseline power (P BL ) of the non-target facility.
  • the power management server 200 reduces the target value used by the target facility so that the power demand (P CONSUMP ) of the target facility is smaller than the baseline power (P BL ) of the target facility. This compensates for the excess of the demand power (P CONSUMP ) of the non-target facilities.
  • the power management server 200 increases the target value used by the target facility so that the power demand (P CONSUMP ) of the target facility is larger than the baseline power (P BL ) of the target facility. This compensates for the lack of demand power (P CONSUMP ) of non-target facilities.
  • the power management server 200 may classify the target facility into a first target facility and a second target facility.
  • the first target facility is a facility that compensates for excess or shortage of demand power of non-target facilities.
  • the second target facility is a facility that does not compensate for the excess or deficiency of the demand power of the non-target facility.
  • the power management server 200 selects a facility 300 whose predicted demand power is predicted to be smaller than baseline power as a first target facility.
  • the power management server 200 selects the facility 300 whose predicted demand power is predicted to be larger than the baseline power as a first target facility. In these cases, the power management server 200 may select the facility 300 in which the difference between the predicted demand power and the baseline power is equal to or less than the threshold as the second facility.
  • the power management server 200 sets the facility 300 where the difference between the predicted demand power and the baseline power is equal to or less than a threshold to the first target facility. It may be selected as In such a case, the power management server 200 may select the facility 300 in which the difference between the predicted demand power and the baseline power is larger than the threshold as the second target facility.
  • the power management server 200 may classify non-target facilities into first non-target facilities and second non-target facilities.
  • the first non-target facility is a facility that needs to be compensated by the target facility for excess or shortage of demand power.
  • the second non-target facilities are facilities that do not need to be compensated by the target facility for excess or shortage of demand power.
  • the power management server 200 selects, as the first non-target facility, the facility 300 in which the difference between the predicted demand power and the baseline power is larger than a threshold.
  • the power management server 200 selects the facility 300 in which the difference between the predicted demand power and the baseline power is equal to or less than the threshold as the second non-target facility. In such a case, when the shortage of the demand power of the first non-target facility is predicted, the demand power of the target facility can be increased, and the reduction power of the target facility can be suppressed.
  • the power management server 200 may preferentially select the facility 300 having a difference between the past demand power and the past baseline power greater than a threshold as a target facility. In other words, the power management server 200 may preferentially select the facility 300 in which the error between the past demand power and the past baseline power is smaller than the predetermined error as the non-target facility.
  • the facility 300 having a large error between the past demand power and the past baseline power is not selected as the non-target facility, it is accompanied by the compensation of the excess or deficiency of the demand power of the non-target facility. An increase in control load can be suppressed.
  • the power management server 200 may select a target facility such that the ratio of non-target facilities to the entire facility 300 is equal to or less than a certain percentage. Alternatively, the power management server 200 may select a target facility such that the ratio of non-target facilities to target facilities is equal to or less than a predetermined ratio. Alternatively, the power management server 200 may select the target facility such that the ratio of the target facility to the non-target facility is equal to or more than a predetermined ratio.
  • the increase in the error between the demand power of the non-target facility and the baseline power of the non-target facility is suppressed, and the control load increases due to the compensation of the excess or deficiency of the demand power of the non-target facility. It can be suppressed.
  • the power management server 200 may determine the number of target facilities so that the sum of the error between the predicted power demand of the non-target facility and the baseline power of the non-target facility is less than or equal to a predetermined error.
  • the increase in the error between the demand power of the non-target facility and the baseline power of the non-target facility is suppressed, and the control load increases due to the compensation of the excess or deficiency of the demand power of the non-target facility. It can be suppressed.
  • a solar cell device 310 and a fuel cell device 330 are provided.
  • the embodiment is not limited to this.
  • the solar cell apparatus 310 and the fuel cell apparatus 330 may not be provided, and the storage battery apparatus 320 may be provided.
  • the storage battery device 320 is illustrated as a distributed power source to which the first process or the second process is applied.
  • the distributed power source to which the first process or the second process is applied may be the fuel cell apparatus 330.
  • the fuel cell apparatus 330 may perform the load following process after correcting the demand power with the target value (the first target value or the second target value).
  • the second process is the process of remotely controlling the storage battery device 320 by the power management server 200
  • the second process may be a process autonomously executed by storage battery device 320 or local control device 360.
  • storage battery device 320 or local control device 360 controls the output of storage battery device 320 using the second target value notified from power management server 200.
  • the power management server 200 may notify the storage battery device 320 or the local control device 360 of the second target value before the start of the demand response period or during the demand response period in response to activation of the demand response.
  • the storage battery device 320 or the local control device 360 may perform feedback processing shown in FIG. 7.
  • each facility 300 absorbs the shortage and excess of reduced power.
  • the embodiment is not limited to this. If one facility 300 can not absorb the shortage and excess of reduced power, a second process may be performed to absorb the shortage and excess of reduced power as a whole of the facility 300 selected as the second facility. .
  • the embodiment exemplifies the case where the process of selecting the first facility and the second facility is performed before the demand response period starts.
  • the process of selecting the first facility and the second facility may be performed for the demand response period. Therefore, during the demand response period, processing may be performed to select the first facility and the second facility. In such a case, processing may be performed to select the first facility and the second facility based on the absolute amount or fluctuation amount of demand power in real time in the demand response period. Furthermore, the shortage amount and the excess amount of reduced power may be calculated in the demand response period, and the process of selecting the first facility and the second facility based on the calculated deficiency amount and the excess amount may be performed.
  • the baseline power and the immediately prior demand power are used properly, but the immediately prior demand power may be replaced with the baseline power, or the baseline power may be replaced with the immediately prior demand power.
  • storage battery device 320 may be a storage battery device fixedly connected to a power line provided in facility 300, and a storage battery device removably connected to a power line provided in facility 300. It may be As a storage battery device detachably connected to a power line provided in facility 300, a storage battery device provided in an electric vehicle can be considered.
  • the local control device 360 provided in the facility 300 may not necessarily be provided in the facility 300.
  • some of the functions of the local control device 360 may be provided by a cloud server provided on the Internet. That is, it may be considered that the local control device 360 includes a cloud server.
  • the first protocol is a protocol compliant with Open ADR 2.0
  • the second protocol is a protocol compliant with ECHONET Lite.
  • the first protocol may be a protocol standardized as a protocol used in communication between the power management server 200 and the local control device 360.
  • the second protocol may be a protocol standardized as a protocol used in the facility 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

電力管理サーバは、分散電源を有する複数の施設の中から、前記分散電源に第1処理を適用する第1施設及び前記分散電源に第2処理を適用する第2施設を所定基準に基づいて選択する制御部を備える。前記第1処理は、電力事業者から施設が購入する買電電力の目標値として第1目標値を用いて、前記分散電源の出力電力を制御する処理である。前記第2処理は、前記買電電力の目標値として前記第1目標値よりも大きい第2目標値を用いて、前記分散電源の出力電力を制御する処理である。

Description

電力管理サーバ及び電力管理方法
 本発明は、電力管理サーバ及び電力管理方法に関する。
 近年、電力系統の電力需給バランスを維持するために、電力系統から施設への潮流の量を抑制する技術が知られている。電力系統の電力需給バランスを維持するために、施設に設けられる蓄電池装置を利用する技術も提案されている(例えば、特許文献1,2)。
国際公開第2015/041010号パンフレット 国際公開第2016/084396号パンフレット
 第1の特徴に係る電力管理サーバは、分散電源を有する複数の施設の中から、前記分散電源に第1処理を適用する第1施設及び前記分散電源に第2処理を適用する第2施設を所定基準に基づいて選択する制御部を備える。前記第1処理は、電力事業者から施設が購入する買電電力の目標値として第1目標値を用いて、前記分散電源の出力電力を制御する処理である。前記第2処理は、前記買電電力の目標値として前記第1目標値よりも大きい第2目標値を用いて、前記分散電源の出力電力を制御する処理である。前記制御部は、契約電力量に第1マージンを加味することによって得られるマージン閾値を確保電力量が超えるまで前記第1施設及び前記第2施設の候補を選択する。前記契約電力量は、前記複数の施設の全体としてベースライン電力から削減するように定められた電力量である。前記確保電力量は、前記第1施設及び前記第2施設の候補として選択される施設のベースライン電力から削減可能な電力量の合計である。前記制御部は、前記複数の施設の予測需要電力に基づいて前記第1マージンを設定する。
 第2の特徴に係る電力管理方法は、分散電源を有する複数の施設の中から、前記分散電源に第1処理を適用する第1施設及び前記分散電源に第2処理を適用する第2施設を所定基準に基づいて選択するステップAと、前記複数の施設の予測需要電力に基づいて、契約電力量に加味される第1マージンを設定するステップBとを備える。前記第1処理は、電力事業者から施設が購入する買電電力の目標値として第1目標値を用いて、前記分散電源の出力電力を制御する処理である。前記第2処理は、前記買電電力の目標値として前記第1目標値よりも大きい第2目標値を用いて、前記分散電源の出力電力を制御する処理である。前記ステップAは、前記契約電力量に前記第1マージンを加味することによって得られるマージン閾値を確保電力量が超えるまで前記第1施設及び前記第2施設の候補を選択するステップを含む。前記契約電力量は、前記複数の施設の全体としてベースライン電力から削減するように定められた電力量である。前記確保電力量は、前記第1施設及び前記第2施設の候補として選択される施設のベースライン電力から削減可能な電力量の合計である。
 一態様によれば、蓄電池装置などの分散電源を用いて、電力系統の電力需給バランスを適切に維持することを可能とする電力管理サーバ及び電力管理方法を提供することができる。
図1は、実施形態に係る電源管理システム100を示す図である。 図2は、実施形態に係る施設300を示す図である。 図3は、実施形態に係る電力管理サーバ200を示す図である。 図4は、実施形態に係るローカル制御装置360を示す図である。 図5は、実施形態に係る第1処理を説明するための図である。 図6は、実施形態に係る第1処理を説明するための図である。 図7は、実施形態に係る第2処理を説明するための図である。 図8は、実施形態に係る第2処理を説明するための図である。 図9は、実施形態に係る電力管理方法を示す図である。 図10は、実施形態に係る電力管理方法を示す図である。 図11は、変更例1について説明するための図である。 図12は、変更例2について説明するための図である。 図13は、変更例4について説明するための図である。 図14は、変更例5について説明するための図である。
 以下において、実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係又は比率が異なる部分が含まれている場合があることは勿論である。
 [実施形態の概要]
 近年では、電力系統の需給バランスを維持するために蓄電池装置を用いるケースにおいて、施設の需要電力に追従するように蓄電池装置の放電電力を制御することが考えられる(以下、負荷追従処理)。
 しかしながら、全ての施設について負荷追従処理を一律に適用すると、蓄電池装置の最大放電電力を需要電力が超える施設において、電力系統の電力需給バランスを適切に維持することができない可能性がある。
 実施形態では、上述した課題を解決するために、蓄電池装置などの分散電源を用いて、電力系統の電力需給バランスを適切に維持することを可能とする電力管理サーバ及び電力管理方法を提供する。
 [実施形態]
 (電源管理システム)
 以下において、実施形態に係る電源管理システムについて説明する。
 図1に示すように、電源管理システム100は、電力管理サーバ200と、施設300と、電力会社400とを有する。図1では、施設300として、施設300A~施設300Cが例示されている。
 各施設300は、電力系統110に接続される。以下において、電力系統110から施設300への電力の流れを潮流と称し、施設300から電力系統110への電力の流れを逆潮流と称する。
 電力管理サーバ200、施設300及び電力会社400は、ネットワーク120に接続されている。ネットワーク120は、電力管理サーバ200と施設300との間の回線及び電力管理サーバ200と電力会社400との間の回線を提供すればよい。例えば、ネットワーク120は、インターネットである。ネットワーク120は、VPN(Virtual Private Network)などの専用回線を提供してもよい。
 電力管理サーバ200は、発電事業者、送配電事業者或いは小売事業者、リソースアグリゲータなどの電力事業者によって管理されるサーバである。リソースアグリゲータは、VPP(Virtual Power Plant)において発電事業者、送配電事業者及び小売事業者などに逆潮流の電力を提供する電力事業者である。実施形態において、電力管理サーバ200は、逆潮流の電力の買取エンティティの一例である。電力管理サーバ200は、電源管理サーバの一例である。
 電力管理サーバ200は、施設300に設けられるローカル制御装置360に対して、施設300に設けられる分散電源(例えば、太陽電池装置310、蓄電池装置320又は燃料電池装置330)に対する制御を指示する制御メッセージを送信する。例えば、電力管理サーバ200は、潮流の制御を要求する潮流制御メッセージ(例えば、DR;Demand Response)を送信してもよく、逆潮流の制御を要求する逆潮流制御メッセージを送信してもよい。さらに、電力管理サーバ200は、分散電源の動作状態を制御する電源制御メッセージを送信してもよい。潮流又は逆潮流の制御度合いは、絶対値(例えば、○○kW)で表されてもよく、相対値(例えば、○○%)で表されてもよい。或いは、潮流又は逆潮流の制御度合いは、2以上のレベルで表されてもよい。潮流又は逆潮流の制御度合いは、現在の電力需給バランスによって定められる電力料金(RTP;Real Time Pricing)によって表されてもよく、過去の電力需給バランスによって定められる電力料金(TOU;Time Of Use)によって表されてもよい。
 施設300は、図2に示すように、太陽電池装置310、蓄電池装置320、燃料電池装置330と、負荷機器340、ローカル制御装置360及び電力計380を有する。
 太陽電池装置310は、太陽光などの光に応じて発電を行う分散電源である。太陽電池装置310は、所定買取価格が適用される特定分散電源の一例である。例えば、太陽電池装置310は、PCS(Power Conditioning System)及び太陽光パネルによって構成される。
 蓄電池装置320は、電力の充電及び電力の放電を行う分散電源である。蓄電池装置320は、所定買取価格が適用されない分散電源の一例である。例えば、蓄電池装置320は、PCS及び蓄電池セルによって構成される。
 燃料電池装置330は、燃料を用いて発電を行う分散電源である。燃料電池装置330は、所定買取価格が適用されない分散電源の一例であり、定格電力を出力する定格運転モードを有する分散電源である。例えば、燃料電池装置330は、PCS及び燃料電池セルによって構成される。
 例えば、燃料電池装置330は、固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)であってもよく、固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)であってもよく、リン酸型燃料電池(PAFC:Phosphoric Acid Fuel Cell)であってもよく、溶融炭酸塩型燃料電池(MCFC:Molten Carbonate Fuel Cell)であってもよい。
 実施形態において、太陽電池装置310、蓄電池装置320及び燃料電池装置330は、VPPに用いられる電源であってもよい。
 負荷機器340は、電力を消費する機器である。例えば、負荷機器340は、空調機器、照明機器、AV(Audio Visual)機器などである。
 ローカル制御装置360は、施設300の電力を管理する装置(EMS;Energy Management System)である。ローカル制御装置360は、太陽電池装置310の動作状態を制御してもよく、施設300に設けられる蓄電池装置320の動作状態を制御してもよく、施設300に設けられる燃料電池装置330の動作状態を制御してもよい。ローカル制御装置360の詳細については後述する(図4を参照)。
 実施形態において、電力管理サーバ200とローカル制御装置360との間の通信は、第1プロトコルに従って行われる。一方で、ローカル制御装置360と分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)との間の通信は、第1プロトコルとは異なる第2プロトコルに従って行われる。例えば、第1プロトコルとしては、Open ADR(Automated Demand Response)に準拠するプロトコル、或いは、独自の専用プロトコルを用いることができる。例えば、第2プロトコルは、ECHONET Liteに準拠するプロトコル、SEP(Smart Energy Profile)2.0、KNX、或いは、独自の専用プロトコルを用いることができる。なお、第1プロトコルと第2プロトコルは異なっていればよく、例えば、両方が独自の専用プロトコルであっても異なる規則で作られたプロトコルであればよい。
 電力計380は、電力系統110から施設300への潮流の量及び施設300から電力系統110への逆潮流の量を計測する第1電力計の一例である。例えば、電力計380は、電力会社400に帰属するスマートメータである。
 ここで、電力計380は、単位時間(例えば、30分)毎に、単位時間における計測結果(潮流又は逆潮流の量(Wh))を示す情報要素を含むメッセージをローカル制御装置360に送信する。電力計380は、自律的にメッセージを送信してもよく、ローカル制御装置360の要求に応じてメッセージを送信してもよい。
 電力会社400は、電力系統110などのインフラストラクチャーを提供するエンティティであり、例えば、発電事業者又は送配電事業者などの電力事業者である。電力会社400は、電力管理サーバ200を管理するエンティティに対して、各種の業務を委託してもよい。
 (電力管理サーバ)
 以下において、実施形態に係る電力管理サーバについて説明する。図3に示すように、電力管理サーバ200は、管理部210と、通信部220と、制御部230とを有する。電力管理サーバ200は、VTN(Virtual Top Node)の一例である。
 管理部210は、不揮発性メモリ又は/及びHDDなどの記憶媒体によって構成されており、電力管理サーバ200によって管理される施設300に関するデータを管理する。電力管理サーバ200によって管理される施設300は、電力管理サーバ200を管理するエンティティと契約を有する施設300であってもよい。例えば、施設300に関するデータは、電力系統110から施設300に供給される需要電力であってもよく、電力系統110全体の需要電力の削減要請(DR;Demand Response)に応じて各施設300で削減された電力量であってもよい。施設300に関するデータは、施設300に設けられる分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)の種別、施設300に設けられる分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)のスペックなどであってもよい。スペックは、太陽電池装置310の定格発電電力(W)、蓄電池装置320の最大出力電力(W)、燃料電池装置330の最大出力電力(W)であってもよい。さらに、施設300に関するデータは、過去において分散電源に指示した出力電力量であってもよい。例えば、分散電源が蓄電池装置320である場合において、施設300に関するデータは、蓄電池装置320に指示した放電電力量であってもよい。施設300に関するデータは、分散電源の劣化度であってもよい。例えば、分散電源が蓄電池装置320である場合において、施設300に関するデータは、蓄電池装置320のSOH(State Of Health)であってもよい。
 通信部220は、通信モジュールによって構成されており、ネットワーク120を介してローカル制御装置360と通信を行う。通信部220は、上述したように、第1プロトコルに従って通信を行う。例えば、通信部220は、第1プロトコルに従って第1メッセージをローカル制御装置360に送信する。通信部220は、第1プロトコルに従って第1メッセージ応答をローカル制御装置360から受信する。
 実施形態において、通信部220は、電力系統110から施設300に供給される需要電力を示す情報要素を含むメッセージを施設300(例えば、ローカル制御装置360又は電力計380)から受信する。需要電力は、上述した電力計380によって測定された値でもよい。需要電力は、負荷機器340の消費電力から分散電源(太陽電池装置310、蓄電池装置320、燃料電池装置330)の出力電力を除いた値でもよい。
 制御部230は、メモリ及びCPUなどによって構成されており、電力管理サーバ200に設けられる各構成を制御する。例えば、制御部230は、制御メッセージの送信によって、施設300に設けられるローカル制御装置360に対して、施設300に設けられる分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)に対する制御を指示する。制御メッセージは、上述したように、潮流制御メッセージであってもよく、逆潮流制御メッセージであってもよく、電源制御メッセージであってもよい。
 (ローカル制御装置)
 以下において、実施形態に係るローカル制御装置について説明する。図4に示すように、ローカル制御装置360は、第1通信部361と、第2通信部362と、制御部363とを有する。ローカル制御装置360は、VEN(Virtual End Node)の一例である。
 第1通信部361は、通信モジュールによって構成されており、ネットワーク120を介して電力管理サーバ200と通信を行う。第1通信部361は、上述したように、第1プロトコルに従って通信を行う。例えば、第1通信部361は、第1プロトコルに従って第1メッセージを電力管理サーバ200から受信する。第1通信部361は、第1プロトコルに従って第1メッセージ応答を電力管理サーバ200に送信する。
 第2通信部362は、通信モジュールによって構成されており、分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)と通信を行う。第2通信部362は、上述したように、第2プロトコルに従って通信を行う。例えば、第2通信部362は、第2プロトコルに従って第2メッセージを分散電源に送信する。第2通信部362は、第2プロトコルに従って第2メッセージ応答を分散電源から受信する。
 制御部363は、メモリ及びCPUなどによって構成されており、ローカル制御装置360に設けられる各構成を制御する。具体的には、制御部363は、施設300の電力を制御するために、第2メッセージの送信及び第2メッセージ応答の受信によって、分散電源の動作状態の設定を機器に指示する。制御部363は、施設300の電力を管理するために、第2メッセージの送信及び第2メッセージ応答の受信によって分散電源の情報の報告を分散電源に指示してもよい。
 (適用シーン)
 以下において、実施形態の適用シーンについて説明する。電力管理サーバ200の上位ノードである電力会社400から電力系統110の需要電力の削減要請を電力管理サーバ200が受信するケースについて説明する。このようなケースにおいて、電力管理サーバ200は、電力管理サーバ200によって管理される施設300の全体として、契約電力量に相当する電力量をベースライン電力から削減すればよい。
 契約電力量は、ネガワット取引において、電力管理サーバ200と電力会社400との間で定められた電力量であればよい。契約電力量は、電力管理サーバ200によって管理される複数の施設300の全体としてベースライン電力から削減するように定められた電力量である。ベースライン電力は、削減要請が行われなかった場合に想定される需要電力である。ベースライン電力は、削減要請の発動予告よりも前の一定期間の需要電力の平均値であってもよい。一定期間は、ネガワット取引の実体に応じて定められてもよく、電力管理サーバ200と電力会社400との間で定められてもよい。
 このような背景下において、電力管理サーバ200は、分散電源(ここでは、蓄電池装置320)を有する複数の施設300の中から、蓄電池装置320に第1処理を適用する第1施設及び蓄電池装置320に第2処理を適用する第2施設を所定基準に基づいて選択する制御部230を有する。制御部230は、電力系統110の電力が不足するデマンドレスポンス期間を対象として、上述した第1施設及び第2施設を選択してもよい。
 第1処理は、電力事業者から施設300が購入する買電電力の目標値として第1目標値を用いて、蓄電池装置320の出力電力を制御する処理である。上述した第1目標値はゼロであってもよい。ここで、ゼロは、実質的にゼロであればよく、負荷機器340の消費電力の急激な変動に伴う逆潮流を抑制すべく、数十Wの第1目標値が設定されてもよい。言い換えると、ゼロは、数十Wを含む概念と考えてもよい。このようなケースにおいて、蓄電池装置320の出力電力は負荷機器340の消費電力に追従するため、第1処理は、負荷追従処理と称してもよい。第1処理は、蓄電池装置320が自律的に実行する処理であってもよい。このようなケースにおいて、電力管理サーバ200は、第1目標値を蓄電池装置320に設定するとともに、第1処理を実行する期間を指示すればよい。
 第2処理は、買電電力の目標値として第1目標値よりも大きい第2目標値を用いて、蓄電池装置320の出力電力を制御する処理である。第2処理は、第2目標値と買電電力との差異に基づいて蓄電池装置320を制御するフィードバック処理(或いは、逐次処理)であってもよい。フィードバック処理では、N-X番目の単位時間における削減電力の不足誤差又は超過誤差をN番目の単位時間で補う調整処理が行われる。N及びXは自然数であり、N>Xの関係が満たされる。このようなケースにおいて、第2処理は、制御部230(電力管理サーバ200)によって蓄電池装置320を遠隔で制御する処理であってもよい。
 制御部230は、各施設300におけるベースライン電力に対する削減電力、各施設300におけるベースライン電力に対する削減割合及び買電電力の絶対値の少なくともいずれか1つに基づいて、第1目標値及び第2目標値を設定してもよい。ベースライン電力に対する削減電力に基づいて第1目標値及び第2目標値が定められる場合には、ベースライン電力と削減電力との差分が買電電力に相当する。従って、このようなケースであっても、第1目標値及び第2目標値は買電電力の目標値を意味する。同様に、ベースライン電力に対する削減割合に基づいて第1目標値及び第2目標値が定められる場合には、1から削減割合を除いた値をベースライン電力に乗算した値が買電電力に相当する。従って、このようなケースであっても、第1目標値及び第2目標値は買電電力の目標値を意味する。
 さらに、上述した所定基準は、電力系統110から複数の施設300に供給される電力の全体の削減電力の超過誤差及び不足誤差を最小化するように定められる。例えば、所定基準は、施設300の需要電力の絶対量、施設300の需要電力の変動量、蓄電池装置320の劣化度、蓄電池装置320の出力電力のコスト、蓄電池装置320の種類、施設300に設けられる機器(例えば、負荷機器340)の種類の少なくともいずれか1つに基づいた基準である。
 (1)施設300の需要電力の絶対量
 施設300の需要電力の絶対量が大きい場合には、蓄電池装置320の最大出力電力を施設300の需要電力が超える状態(すなわち、ネガワット取引における削減電力が不足する状態)が生じる可能性が高い。従って、削減電力の不足状態を優先的に抑制するために、所定基準は、需要電力の絶対量が所定閾値以下である施設300を第1施設として選択し、電力需要の絶対量が所定閾値を超える施設300を第2施設として選択する基準であってもよい。所定基準は、需要電力の絶対量が相対的に大きい施設300が第2施設として優先的に選択される基準であってもよい。
 (2)施設300の需要電力の変動量
 施設300の需要電力の変動量が大きい場合には、蓄電池装置320の最大出力電力を施設300の需要電力が超える状態(すなわち、ネガワット取引において削減電力が不足する状態)、及び、買電電力が目標値を下回る状態(すなわち、ネガワット取引において削減電力が超過する状態)のいずれが生じる可能性も高い。従って、所定基準は、需要電力の変動量が所定閾値を超える施設300が第1施設及び第2施設として選択されない基準であってもよい。さらに、少なくとも削減電力の超過状態が生じないように、所定基準は、需要電力の変動量が所定閾値を超える施設300を第1施設として選択し、電力需要の変動量が所定閾値以下である施設300を第2施設として選択する基準であってもよい。所定基準は、需要電力の変動量が相対的に小さい施設300が第2施設として優先的に選択される基準であってもよい。
 (3)蓄電池装置320の劣化度
 蓄電池装置320の劣化度を平準化するために、所定基準は、蓄電池装置320の劣化度が所定閾値よりも高い施設300が第1施設及び第2施設として選択されない基準であってもよい。さらに、上述した第2処理が第1処理よりも蓄電池装置320に負担をかける可能性がある場合には、所定基準は、蓄電池装置320の劣化度が所定閾値よりも高い施設300を第1施設として選択し、蓄電池装置320の劣化度が所定閾値以下である施設300を第2施設として選択する基準であってもよい。所定基準は、劣化度が相対的に小さい蓄電池装置320を有する施設300が第2施設として優先的に選択される基準であってもよい。
 (4)蓄電池装置320の出力電力のコスト
 コストが低い蓄電池装置320の出力電力を有効に利用するために、出力電力のコストが所定閾値よりも高い蓄電池装置320を有する施設300が第1施設及び第2施設として選択されない基準であってもよい。さらに、上述した第2処理が第1処理よりも蓄電池装置320の出力電力が抑制される可能性があるため、所定基準は、出力電力のコストが所定閾値以下である蓄電池装置320を有する施設300を第1施設として選択し、出力電力のコストが所定閾値よりも高い蓄電池装置320を有する施設300を第2施設として選択する基準であってもよい。所定基準は、出力電力のコストが相対的に高い蓄電池装置320を有する施設300が第2施設として優先的に選択される基準であってもよい。
 ここで、蓄電池装置320の出力電力のコストは、蓄電池装置320に電力を蓄積するのに要したコストであってもよい。すなわち、蓄電池装置320の出力電力のコストは、蓄電池装置320に蓄積された電力のコストと考えてもよい。従って、蓄電池装置320の出力電力のコストは、電力系統110の電力が蓄電池装置320に蓄積されるケースでは、電力系統110から供給される電力について施設300が契約を結んでいる電気料金プランに基づいて定められてもよく、太陽電池装置310又は燃料電池装置330の出力電力が蓄電池装置320に蓄積されるケースでは、太陽電池装置310又は燃料電池装置330の発電コストに基づいて定められてもよい。このようなケースにおいて、蓄電池装置320の充電効率及び放電効率が考慮されてもよい。
 (5)蓄電池装置320の種類
 例えば、蓄電池装置320の種類は、蓄電池装置320の最大出力電力及び蓄電池装置320の負荷追従性などの特性を示すパラメータである。例えば、このようなパラメータは、負荷機器340の消費電力の変動に対する蓄電池装置320の出力電力の応答性を示すパラメータであってもよい。このようなパラメータは、逐次処理における電力管理サーバ200と施設300(蓄電池装置320)との間の伝送遅延を示すパラメータであってもよい。
 例えば、所定基準は、最大出力電力が所定閾値よりも大きい蓄電池装置320を有する施設300を第1施設として選択し、最大出力電力が所定閾値よりも小さい蓄電池装置320を有する施設300を第2施設として選択する基準であってもよい。或いは、所定基準は、負荷追従性が所定閾値よりも良好でない蓄電池装置320を有する施設300を第1施設として選択し、負荷追従性が所定閾値よりも良好である蓄電池装置320を有する施設300を第2施設として選択する基準であってもよい。
 (6)施設300に設けられる機器(例えば、負荷機器340)の種類
 機器の種類は、施設300の需要電力の絶対量及び施設300の需要電力の変動量に影響を与える。従って、施設300の需要電力の絶対量及び施設300の需要電力の変動量と同様の考え方で、機器の種類に基づいて所定基準が定められてもよい。
 ここで、第1施設及び第2施設を選択する処理は、上述した(1)~(6)の中から選択された2以上パラメータに基づいて行われてもよい。2以上のパラメータに基づいた基準が重み付けによって組み合わされてもよい。
 (第1処理)
 以下において、実施形態に係る第1処理について説明する。第1処理は、上述したように、電力事業者から施設300が購入する買電電力の目標値として第1目標値を用いて、蓄電池装置320の出力電力を制御する処理である。ここでは、説明簡略化のために、デマンドレスポンス期間よりも前において蓄電池装置320が放電を行っておらず、デマンドレスポンス期間で放電を行うために必要な蓄電残量を蓄電池装置320が有するものとする。
 例えば、図5に示すように、第1目標値(PTL1)はゼロであり、デマンドレスポンス期間において、蓄電池装置320の出力電力は、各施設300における需要電力(PCONSUMP)に追従する。従って、ネガワット取引における削減電力の目標値(NWTARGET)は、各施設300におけるベースライン電力(PBL)と同じである。ネガワット取引における実際の削減電力は、蓄電池装置320の放電によって目標値(NWTARGET)に達する。
 しかしながら、図6に示すように、需要電力(PCONSUMP)が蓄電池装置320の最大出力電力(Pmax)を超える場合には、ネガワット取引における削減電力の不足が生じる。すなわち、買電電力の目標値として第2目標値よりも小さい第1目標値を用いる第1処理では、削減電力の不足が生じる可能性が第2処理よりも高い。
 (第2処理)
 以下において、実施形態に係る第2処理について説明する。第2処理は、上述したように、買電電力の目標値として第1目標値よりも大きい第2目標値を用いて、蓄電池装置320の出力電力を制御する処理である。ここでは、説明簡略化のために、デマンドレスポンス期間よりも前において蓄電池装置320が放電を行っておらず、デマンドレスポンス期間で放電を行うために必要な蓄電残量を蓄電池装置320が有するものとする。
 例えば、図7に示すように、第2目標値(PTL2)はゼロよりも大きい値であり、デマンドレスポンス期間において、蓄電池装置320の出力電力は、各施設300における需要電力(PCONSUMP)から第2目標値(PTL)を除いた値に追従する。従って、ネガワット取引における削減電力の目標値(NWTARGET)は、各施設300におけるベースライン電力(PBL)から第2目標値(PTL)を除いた値と同じである。ネガワット取引における削減電力は、蓄電池装置320の放電によって目標値(NWTARGET)に達する。
 しかしながら、図8に示すように、需要電力(PCONSUMP)が蓄電池装置320の最大出力電力(Pmax)を超える場合には、ネガワット取引における削減電力の不足が生じる可能性があり、需要電力(PCONSUMP)が第2目標値(PTL)を下回る場合には、ネガワット取引における削減電力の超過が生じる可能性もある。すなわち、買電電力の目標値として第1目標値よりも大きい第2目標値を用いる第2処理では、削減電力の不足が生じる可能性が第2処理よりも低いものの、削減電力の超過が生じる可能性が生じる。
 従って、第2処理では、フィードバック処理を採用することによって、N-X番目の単位時間における削減電力の不足誤差又は超過誤差をN番目の単位時間で補う調整処理が行われることが好ましい。このようなフィードバック処理によれば、デマンドレスポンス期間の全体としては、削減電力の不足及び超過を吸収することができる。
 (電力管理方法)
 以下において、実施形態に係る電力管理方法について説明する。
 図9に示すように、ステップS10において、電力管理サーバ200は、各施設300の需要電力を示す情報要素(需要電力情報)を含むメッセージを受信する。例えば、ステップS10の処理は、単位時間(例えば、30分)毎に行われる。このような構成によれば、電力管理サーバ200は、各施設300の需要電力を把握することができ、各施設300のベースライン電力を把握することも可能である。
 ステップS11において、電力管理サーバ200は、各施設300の蓄電池装置320に関する情報要素(蓄電池情報)を含むメッセージを受信する。例えば、ステップS10の処理は、単位時間毎に行われる。ステップS11の単位時間は、ステップS10の単位時間と異なっていてもよい。例えば、蓄電池情報は、蓄電池装置320の蓄電残量などを示す情報である。
 ステップS12において、電力管理サーバ200は、電力会社400から削減要請を受信する。
 ステップS13において、電力管理サーバ200は、デマンドレスポンス期間を対象として、蓄電池装置320に第1処理を適用する第1施設及び蓄電池装置320に第2処理を適用する第2施設を所定基準に基づいて選択する。ここで、電力管理サーバ200によって管理される複数の施設300は、第1施設及び第2施設として選択されない施設300を含んでもよい。すなわち、全ての施設300が削減要請に参加しなくてもよい。所定基準に基づいた選択方法の一例については後述する(図10を参照)。
 ステップS14において、電力管理サーバ200は、第1処理又は第2処理を示す情報要素(処理方法通知)を含むメッセージを各施設300に送信する。
 ステップS15において、第2施設として選択された施設300は、買電電力と第2目標値との誤差を示す情報要素(誤差情報)を含むメッセージを電力管理サーバ200に送信する。ここで、ステップS15の処理は、デマンドレスポンス期間が開始した後の動作である。
 ステップS16において、電力管理サーバ200は、ステップS15で受信する誤差情報に基づいて、誤差を調整するための制御コマンドを第2施設として選択された施設300に送信する。
 図9に示すケースにおいて、ステップS15及びステップS16は単位時間毎に繰り返される(フィードバック処理)。フィードバック処理の単位時間は、需要電力情報又は蓄電池情報を受信する単位時間よりも短くてもよい。
 続いて、上述したステップS13の一例について説明する。ここでは、所定基準が需要電力の絶対量(以下、単に需要電力)に基づいた基準であるケースを例示する。需要電力は、第1施設及び第2施設を選択するタイミングの需要電力であってもよく、過去における需要電力(例えば、ベースライン電力)であってもよい。
 図10に示すように、ステップS20において、電力管理サーバ200は、電力管理サーバ200によって管理される施設300の中から、削減要請に関する制御を適用することができない施設300を除外する。例えば、このような施設300としては、蓄電池装置320を有していない施設300、蓄電残量が十分ではない蓄電池装置320を有する施設300、電力管理サーバ200と通信路を確保できない施設300などが挙げられる。
 ステップS21において、電力管理サーバ200は、確保電力量が契約電力量を超えるまで、需要電力が小さい順に施設300を第1施設として選択する。確保電力量は、第1施設として選択される施設300について、ベースライン電力(需要電力)から削減可能な電力量の合計である。ここでは、削減可能な電力量の合計は、第1目標値(PTL)を除いた値の合計である。従って、第1目標値(PTL)がゼロである場合には、確保電力量は、第1施設として選択される施設300のベースライン電力(需要電力)の合計と同じである。
 ステップS22において、電力管理サーバ200は、確保電力量が契約電力量を超えるまで第1施設を選択できたか否かを判定する。電力管理サーバ200は、判定結果がYESである場合には、ステップS23の処理を行う。電力管理サーバ200は、判定結果がNOである場合には、ステップS27の処理を行う。
 ステップS23において、電力管理サーバ200は、需要電力が所定閾値よりも大きい施設300の中から所定数の施設300を第2施設として選択する。このようなケースにおいて、電力管理サーバ200は、需要電力が所定閾値よりも大きい施設の中から、需要電力が小さい順に所定数の施設300を第2施設として選択してもよい。
 ステップS24において、電力管理サーバ200は、ステップS21で第1施設として選択された施設300を、ステップS23で第2施設として選択された施設300と置き換える。このような置き換えが行われることから、ステップS21で第1施設として選択された施設300は、第1施設及び第2施設の候補と称してもよい。このような置き換えは、第2施設として選択された施設300の削減電力が第1施設として選択された施設300の削減電力と同程度となるように行われる。置き換え対象の第1施設は、需要電力が大きい順に選択されてもよい。さらに、両者が完全に一致しない場合には、第2施設として選択された施設300の削減電力が第1施設として選択された施設300の削減電力よりも大きくなるように置き換えが行われてもよい。
 ステップS25において、電力管理サーバ200は、第1施設から第2施設への置き換えに伴う誤差を調整する。第2施設として選択された施設300の削減電力が第1施設として選択された施設300の削減電力よりも大きい場合に、第1施設として選択された施設300の中から、需要電力が大きい施設300の除外が優先される。
 ステップS26において、電力管理サーバ200は、削減要請に対する参加応答を電力会社400に送信する。
 ステップS27において、電力管理サーバ200は、削減要請に対する不参加応答を電力会社400に送信する。
 図10に示す処理は、デマンドレスポンス期間を対象として行われればよい。従って、デマンドレスポンス期間の前だけではなく、デマンドレスポンス期間中において図10に示す処理が行われてもよい。図10に示す処理は所定周期で行われてもよい。
 (作用及び効果)
 実施形態では、電力管理サーバ200は、蓄電池装置320に第1処理を適用する第1施設及び蓄電池装置320に第2処理を適用する第2施設を所定基準に基づいて選択する。このような構成によれば、削減電力の不足誤差及び超過誤差が生じる可能性を低減しながら、電力系統110の需給バランスを維持することができる。
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。
 実施形態では、電力管理サーバ200は、確保電力量が契約電力量を超えるまで、需要電力が小さい順に施設300を第1施設(すなわち、第1施設及び第2施設の候補)として選択する。これに対して、変更例1では、電力管理サーバ200は、契約電力量に第1マージンを加味することによって得られるマージン閾値を確保電力量が超えるまで、施設300を第1施設(すなわち、第1施設及び第2施設の候補)として選択する。実施形態と同様に、需要電力が小さい順に施設300が第1施設として選択されてもよい。
 ここで、電力管理サーバ200(制御部230)は、複数の施設300の予測需要電力に基づいて第1マージンを設定する。第1マージンは、正の値及び負の値のいずれかを取り得る。第1マージンは、契約電力量に加算される電力量で表されてもよく、契約電力量に乗算される割合で表されてもよい。
 例えば、複数の施設300の全体としてデマンドレスポンス期間において予測需要電力が直前需要電力よりも大きくなる時間帯(以下、不足時間帯)が含まれる場合には、削減電力の不足が生じる可能性があるため、第1マージンとして正の値が設定されてもよい。すなわち、実施形態よりも多くの施設300が第1施設として選択される。一方で、複数の施設300の全体としてデマンドレスポンス期間において不足時間帯が含まれない場合には、削減電力の超過が生じる可能性があるため、第1マージンとして負の値が設定されてもよい。すなわち、実施形態よりも少ない施設300が第1施設として選択される。
 (電力管理方法)
 以下において、変更例1に係る電力管理方法について説明する。ここでは、第1マージンの決定方法について説明する。
 図11に示すように、ステップS30において、電力管理サーバ200は、複数の施設300の予測需要電力を取得する。予測需要電力は、デマンドレスポンス期間における電力需要の予測推移である。予測需要電力は、過去の電力需要の推移に基づいて予測されてもよい。例えば、過去の電力需要は、デマンドレスポンス期間と同じ条件(例えば、時間帯、曜日、月)で測定された電力需要である。
 ステップS31において、電力管理サーバ200は、デマンドレスポンス期間において不足時間帯が含まれるか否かを判定する。電力管理サーバ200は、判定結果がYESである場合に、ステップS32の処理を行う。電力管理サーバ200は、判定結果がNOである場合に、ステップS34の処理を行う。
 ステップS32において、電力管理サーバ200は、複数の施設300の全体を対象として、デマンドレスポンス期間における予測需要電力の最大値(以下、最大需要電力>直前需要電力)と直前需要電力との差分を算出する。
 ステップS33において、電力管理サーバ200は、ステップS32で算出された差分に基づいて第1マージンを設定する。ここでは、第1マージンは正の値である。例えば、第1マージンが契約電力量に乗算される割合で表される場合には、第1マージンは、差分/契約電力量で表される。従って、マージン閾値は、契約電力量×(1+第1マージン)によって算出される。これによって、実施形態よりも多くの施設300が第1施設として選択される。
 ここで、第1マージンは、最大需要電力から直前需要電力を除いた値そのものであってもよく、最大需要電力から直前需要電力を除いた値に係数を乗算した値であってもよい。第1マージンは、これらの値と対応する割合で表されてもよい。
 ステップS34において、電力管理サーバ200は、複数の施設300の全体を対象として、デマンドレスポンス期間における最大需要電力(<直前需要電力)と直前需要電力との差分を算出する。
 ステップS35において、電力管理サーバ200は、ステップS32で算出された差分に基づいて第1マージンを設定する。ここでは、第1マージンは負の値である。例えば、第1マージンが契約電力量に乗算される割合で表される場合には、第1マージンは、差分/契約電力量で表される。従って、マージン閾値は、契約電力量×(1+第1マージン)によって算出される。これによって、実施形態よりも少ない施設300が第1施設として選択される。
 ここで、第1マージンは、最大需要電力から直前需要電力を除いた値そのものであってもよく、最大需要電力から直前需要電力を除いた値に係数を乗算した値であってもよい。第1マージンは、これらの値と対応する割合で表されてもよい。
 図11では、デマンドレスポンス期間において不足時間帯が含まれない場合に、契約電力量に第1マージンを加味するケースを例示したが、このようなケースにおいて、契約電力量に第1マージンを加味されなくてもよい。すなわち、ステップS34及びステップS35は省略されてもよい。
 (作用及び効果)
 変更例1では、電力管理サーバ200は、契約電力量に第1マージンを加味することによって得られるマージン閾値を確保電力量が超えるまで、施設300を第1施設(すなわち、第1施設及び第2施設の候補)として選択する。従って、削減電力の不足誤差及び超過誤差が生じる可能性をさらに低減することができる。
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例2においては、実施形態で触れた第2処理のフィードバック処理における調整処理の詳細について説明する。上述したように、調整処理は、N-X番目の単位時間における削減電力の不足誤差又は超過誤差をN番目の単位時間で補う処理である。
 図12に示すように、施設300から電力管理サーバ200に送信される買電電力(フィードバック買電電力)は、X(ここでは、3単位時間)の遅延時間を伴う。従って、N-3番目の単位時間で参照されるフィードバック買電電力(1.4kW)は、N-6番目の単位時間における施設300の買電電力(1.4kW)である。従って、N-3番目の単位時間においては、遅延時間に伴う誤差(-0.3kW=1.4kW-1.7kW)が生じている。
 変更例2において、このような遅延時間に伴う誤差を考慮して、電力管理サーバ200(制御部230)は、N番目の単位時間において、N-3番目の単位時間における買電電力と第2目標値との差異に第2マージンを加味することによって得られるマージン差異に基づいて蓄電池装置320を制御する。第2マージンは、正の値及び負の値のいずれかを取り得る。第2マージンは、買電電力と第2目標値との差異に加算される電力で表されてもよく、買電電力と第2目標値との差異に乗算される割合で表されてもよい。
 例えば、電力管理サーバ200は、N-3番目の単位時間における買電電力とN-6番目の単位時間における買電電力との誤差(ここでは、-0.3kW)に基づいて第2マージンを設定してもよい。このようなケースにおいては、第2マージンは、施設300毎に個別に設定され、かつ、単位時間毎に設定されてもよい。第2マージンは、買電電力と第2目標値との差異に加算される電力で表されてもよい。すなわち、仮に第2目標値が1kWであるケースを想定すると、削減電力の目標値は0.4kW(1.7kW-1kW-0.3kW)である。
 或いは、電力管理サーバ200は、予測遅延誤差に基づいて第2マージンを設定してもよい。予測遅延誤差は、過去の遅延誤差(例えば、遅延誤差の平均値、遅延誤差の最大値、遅延誤差の最小値など)に基づいて予測されてもよい。例えば、過去の遅延誤差は、デマンドレスポンス期間と同じ条件(例えば、時間帯、曜日、月)で測定された遅延誤差である。このようなケースにおいては、第2マージンは、施設300毎に個別に設定されてもよく、複数の施設300の全体で供用される1つの値として設定されてもよい。第2マージンは、デマンドレスポンス期間の全体で供用される1つの値として設定されてもよい。第2マージンは、買電電力と第2目標値との差異に乗算される割合で表されてもよい。
 [変更例3]
 以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について主として説明する。
 実施形態では、図10に示すように、電力管理サーバ200は、確保電力量が契約電力量を超えるまで、需要電力が小さい順に施設300を第1施設として選択し、選択された第1施設の一部を第2施設に置き換える。これに対して、変更例3では、電力管理サーバ200は、複数の施設300のそれぞれについて、第1処理(負荷追従処理)を適用するか、第2処理(逐次処理)を適用するかを予め決定する。続いて、電力管理サーバ200は、確保電力量が契約電力量を超えるまで施設300を選択する。
 例えば、デマンドレスポンスが発動されるケースにおいて、電力管理サーバ200は、以下の手順で需要電力を削減する。
 第1に、電力管理サーバ200は、直前需要電力が所定閾値よりも大きい施設300に第2処理(逐次処理)を適用すると決定し、直前需要電力が所定閾値以下の施設300に第1処理(負荷追従処理)を適用すると決定する。
 第2に、電力管理サーバ200は、確保電力量が契約電力量を超えるまで、優先度が高い順に施設300を選択する。例えば、優先度は、直前需要電力が低いほど高くてもよい。
 変更例3においては、確保電力量は、第1施設及び第2施設として選択される施設300について、ベースライン電力(需要電力)から削減可能な電力量の合計であってもよい。削減可能電力量は、第1施設についてベースライン電力から第1目標値を除いた値の合計と、第2施設についてベースライン電力から第2目標値を除いた値の合計とをたし合せた値であってもよい。
 [変更例4]
 以下において、実施形態の変更例4について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例4では、上述した第1マージンの決定方法について説明する。第1マージンは、契約電力量に加味されることによってマージン閾値を定める値である。
 具体的には、変更例4では、電力系統110の需要電力の削減要請に参加する施設300の数は変動し得るケースを想定する。削減要請に参加する施設300は、第1施設及び第2施設として選択される施設300である。このようなケースを想定して、電力管理サーバ200は、削減要請に参加する施設300の数と第1マージンとを対応付けて記憶する。
 例えば、図13に示すように、電力管理サーバ200は、図13に示すテーブルを記憶する。Time Stampは、削減要請が実行された時刻を示す情報である。Marginは、削減要請で用いられた第1マージンを示す情報(ここでは、比率)である。Countは、削減要請に参加した施設300の数である。ここで、図13に示すテーブルにおいては、削減電力の不足誤差及び超過誤差が所定誤差以下である制御で用いられたレコードのみが格納されてもよい。
 このようなケースにおいて、電力管理サーバ200は、今回の削減要請に参加する施設300の数に最も近いCountと対応付けられたMarginを第1マージンとして用いる。例えば、今回の削減要請に参加する施設300の数が65である場合には、63のCountと対応付けられたMargin、すなわち、2018-07-05の削減要請で用いられた“0.46”が第1マージンとして用いられる。
 また、今回の削減要請に参加する施設300の数が52である場合には、50のCountと対応付けられたMargin、すなわち、2018-07-02の削減要請で用いられた“1.00”又は2018-07-03の削減要請で“0.87”が第1マージンとして用いられる。このように、今回の削減要請に参加する施設300の数に最も近いCountが2以上である場合には、今回の削減要請に時間的に近いCountと対応付けられたMargin、すなわち、2018-07-03の削減要請で“0.87”が第1マージンとして用いられてもよい。或いは、2以上のCountと対応付けられたMarginの中で小さいMargin、すなわち、2018-07-03の削減要請で“0.87”が第1マージンとして用いられてもよい。或いは、2以上のCountと対応付けられたMarginの平均値、すなわち、約0.94=(1.00+0.87)/2が第1マージンとして用いられてもよい。
 さらに、電力管理サーバ200は、今回の削減要請に参加する施設300の数(以下、対象数)と今回の削減要請に参加する施設300に最も近いCount(以下、参照数)との差異が所定数よりも大きい場合には、最も近いCountと対応付けられたMarginを補正してもよい。Marginは、対象数と参照数との比率に基づいてMarginが小さくなるように補正される。Marginは、Margin=Margin×|1-(参照数/対象数)|の式に従って補正されてもよい。例えば、今回の削減要請に参加する施設300の数が100である場合には、100に最も近いCountは63であるが、63と対応付けられた“0.46”が補正される。上述した式に従えば、0.17=0.46×|1-(63/100)|が第1マージンとして用いられる。
 [変更例5]
 以下において、実施形態の変更例5について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例5では、買電電力の目標値の設定方法について説明する。買電電力の目標値は、第1処理で用いる第1目標値を含んでもよく、第2処理で用いる第2目標値を含んでもよい。
 具体的には、変更例5では、電力管理サーバ200によって管理される施設300は、第1施設又は第2施設として選択される対象施設と、第1施設及び第2施設のいずれにも選択されない非対象施設とを含むケースを想定する。非対象施設は、上述したステップS20で除外される施設300を含んでもよい。非対象施設は、電力系統110の需要電力の削減要請に参加しない施設300を含んでもよい。このようなケースを想定して、電力管理サーバ200は、非対象施設のベースライン電力と非対象施設の電力需要との差異に基づいて、対象施設が用いる買電電力の目標値を設定する。言い換えると、電力管理サーバ200は、非対象施設のベースライン電力と非対象施設の予測電力需要との差異を対象施設の制御によって補う。
 例えば、図14に示すように、時間帯Xにおいて非対象施設の需要電力(PCONSUMP)が非対象施設のベースライン電力(PBL)よりも大きい。このような場合に、電力管理サーバ200は、対象施設の需要電力(PCONSUMP)が対象施設のベースライン電力(PBL)よりも小さくなるように、対象施設が用いる目標値を小さくする。これによって、非対象施設の需要電力(PCONSUMP)の超過が補償される。
 一方で、時間帯Yにおいて非対象施設の需要電力(PCONSUMP)が非対象施設のベースライン電力(PBL)を下回る。このような場合に、電力管理サーバ200は、対象施設の需要電力(PCONSUMP)が対象施設のベースライン電力(PBL)よりも大きくなるように、対象施設が用いる目標値を大きくする。これによって、非対象施設の需要電力(PCONSUMP)の不足が補償される。
 [変更例6]
 以下において、実施形態の変更例6について説明する。以下においては、実施形態に対する相違点について主として説明する。変更例6では、対象施設及び非対象施設の選択方法について説明する。
 第1に、電力管理サーバ200は、対象施設を第1対象施設及び第2対象施設に分類してもよい。第1対象施設は、非対象施設の需要電力の超過又は不足を補償する施設である。第2対象施設は、非対象施設の需要電力の超過又は不足を補償しない施設である。
 例えば、非対象施設の需要電力の超過が予測される場合に、電力管理サーバ200は、予測需要電力がベースライン電力よりも小さいと予測される施設300を第1対象施設として選択する。非対象施設の需要電力の不足が予測される場合に、電力管理サーバ200は、予測需要電力がベースライン電力よりも大きいと予測される施設300を第1対象施設として選択する。これらのケースにおいて、電力管理サーバ200は、予測需要電力とベースライン電力との差異が閾値以下である施設300を第2施設として選択してもよい。
 例えば、非対象施設の需要電力の超過及び不足が生じないと予測される場合に、電力管理サーバ200は、予測需要電力とベースライン電力との差異が閾値以下である施設300を第1対象施設として選択してもよい。このようなケースにおいて、電力管理サーバ200は、予測需要電力とベースライン電力との差異が閾値よりも大きい施設300を第2対象施設として選択してもよい。
 上述したように、対象施設を第1対象施設及び第2対象施設に分類することによって、非対象施設の需要電力の超過又は不足の補償で制御する第1対象施設の数を抑制することができ、補償に伴う制御を簡略化することができる。
 第2に、電力管理サーバ200は、非対象施設を第1非対象施設及び第2非対象施設に分類してもよい。第1非対象施設は、需要電力の超過又は不足を対象施設によって補償する必要がある施設である。第2非対象施設は、需要電力の超過又は不足を対象施設によって補償する必要がない施設である。
 例えば、電力管理サーバ200は、予測需要電力とベースライン電力との差異が閾値よりも大きい施設300を第1非対象施設として選択する。一方で、電力管理サーバ200は、予測需要電力とベースライン電力との差異が閾値以下である施設300を第2非対象施設として選択する。このようなケースにおいて、第1非対象施設の需要電力の不足が予測される場合に、対象施設の需要電力を大きくすることが可能であり、対象施設の削減電力を抑制することができる。
 上述したように、非対象施設を第1非対象施設及び第2非対象施設に分類することによって、需要電力の超過又は不足の補償すべき施設の数を抑制することができ、補償に伴う対象施設の負担を軽減することができる。さらに、第1非対象施設の需要電力の超過又は不足の補償を利用して、対象施設の削減電力を抑制する余地が生まれる。
 第3に、電力管理サーバ200は、過去需要電力と過去ベースライン電力との差異が閾値よりも大きい施設300を対象施設として優先的に選択してもよい。言い換えると、電力管理サーバ200は、過去需要電力と過去ベースライン電力との誤差が所定誤差よりも小さい施設300を非対象施設として優先的に選択してもよい。
 このような構成によれば、過去需要電力と過去ベースライン電力との誤差が大きい施設300が非対象施設として選択されることがないため、非対象施設の需要電力の超過又は不足の補償に伴う制御負荷の増大を抑制することができる。
 第4に、電力管理サーバ200は、施設300の全体に対する非対象施設の割合が一定割合以下となるように対象施設を選択してもよい。或いは、電力管理サーバ200は、対象施設に対する非対象施設の割合が一定割合以下となるように対象施設を選択してもよい。或いは、電力管理サーバ200は、非対象施設に対する対象施設の割合が一定割合以上となるように対象施設を選択してもよい。
 このような構成によれば、非対象施設の需要電力と非対象施設のベースライン電力との誤差の増大が抑制され、非対象施設の需要電力の超過又は不足の補償に伴う制御負荷の増大を抑制することができる。
 第5に、電力管理サーバ200は、非対象施設の予測電力需要と非対象施設のベースライン電力との誤差の合計が所定誤差以下となるように、対象施設の数を決定してもよい。
 このような構成によれば、非対象施設の需要電力と非対象施設のベースライン電力との誤差の増大が抑制され、非対象施設の需要電力の超過又は不足の補償に伴う制御負荷の増大を抑制することができる。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 実施形態では、太陽電池装置310及び燃料電池装置330が設けられている。しかしながら、実施形態はこれに限定されるものではない。分散電源として、太陽電池装置310及び燃料電池装置330が設けられておらず、蓄電池装置320が設けられていてもよい。
 実施形態では、第1処理又は第2処理を適用する分散電源として蓄電池装置320を例示した。しかしながら、実施形態はこれに限定されるものではない。第1処理又は第2処理を適用する分散電源は燃料電池装置330であってもよい。このようなケースにおいて、燃料電池装置330は、目標値(第1目標値又は第2目標値)によって需要電力を補正した上で負荷追従処理を行ってもよい。
 実施形態では、第2処理が電力管理サーバ200によって蓄電池装置320を遠隔で制御する処理であるケースを例示した。しかしながら、実施形態はこれに限定されるものではない。第2処理は、蓄電池装置320又はローカル制御装置360が自律的に実行する処理であってもよい。このようなケースにおいて、蓄電池装置320又はローカル制御装置360は、電力管理サーバ200から通知された第2目標値を用いて蓄電池装置320の出力を制御する。電力管理サーバ200は、デマンドレスポンスの発動に応じて、デマンドレスポンス期間の開始前に又はデマンドレスポンス期間中に第2目標値を蓄電池装置320又はローカル制御装置360に通知してもよい。蓄電池装置320又はローカル制御装置360は、図7に示すフィードバック処理を行ってもよい。
 実施形態では、第2処理のフィードバック処理において、各施設300で削減電力の不足及び超過を吸収するケースを例示した。しかしながら、実施形態はこれに限定されるものではない。1つの施設300で削減電力の不足及び超過を吸収できない場合には、第2施設として選択された施設300の全体として削減電力の不足及び超過を吸収するように第2処理が行われてもよい。
 実施形態では、デマンドレスポンス期間を開始する前に、第1施設及び第2施設を選択する処理が行われるケースを例示した。しかしながら、実施形態はこれに限定されるものではない。第1施設及び第2施設を選択する処理は、デマンドレスポンス期間を対象として行われればよい。従って、デマンドレスポンス期間中において、第1施設及び第2施設を選択する処理が行われてもよい。このようなケースにおいて、デマンドレスポンス期間におけるリアルタイムの需要電力の絶対量又は変動量に基づいて第1施設及び第2施設を選択する処理が行われてもよい。さらに、デマンドレスポンス期間において削減電力の不足量及び超過量が計算され、計算された不足量及び超過量に基づいて第1施設及び第2施設を選択する処理が行われてもよい。
 実施形態では、ベースライン電力及び直前需要電力を使い分けているが、直前需要電力をベースライン電力で読み替えてもよく、ベースライン電力を直前需要電力で読み替えてもよい。
 実施形態では特に触れていないが、蓄電池装置320は、施設300に設けられる電力線に固定的に接続される蓄電池装置であってもよく、施設300に設けられる電力線に着脱可能に接続される蓄電池装置であってもよい。施設300に設けられる電力線に着脱可能に接続される蓄電池装置としては、電動車両に設けられる蓄電池装置が考えられる。
 実施形態では特に触れていないが、施設300に設けられるローカル制御装置360は、必ずしも施設300内に設けられていなくてもよい。例えば、ローカル制御装置360の機能の一部は、インターネット上に設けられるクラウドサーバによって提供されてもよい。すなわち、ローカル制御装置360がクラウドサーバを含むと考えてもよい。
 実施形態では、第1プロトコルがOpen ADR2.0に準拠するプロトコルであり、第2プロトコルがECHONET Liteに準拠するプロトコルであるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。第1プロトコルは、電力管理サーバ200とローカル制御装置360との間の通信で用いるプロトコルとして規格化されたプロトコルであればよい。第2プロトコルは、施設300で用いるプロトコルとして規格化されたプロトコルであればよい。
 なお、日本国特許出願第2017-228874号(2017年11月29日出願)及び日本国特許出願第2018-077153号(2018年4月12日出願)の全内容が、参照により本願明細書に組み込まれている。

Claims (11)

  1.  分散電源を有する複数の施設の中から、前記分散電源に第1処理を適用する第1施設及び前記分散電源に第2処理を適用する第2施設を所定基準に基づいて選択する制御部を備え、
     前記第1処理は、電力事業者から施設が購入する買電電力の目標値として第1目標値を用いて、前記分散電源の出力電力を制御する処理であり、
     前記第2処理は、前記買電電力の目標値として前記第1目標値よりも大きい第2目標値を用いて、前記分散電源の出力電力を制御する処理であり、
     前記制御部は、契約電力量に第1マージンを加味することによって得られるマージン閾値を確保電力量が超えるまで前記第1施設及び前記第2施設の候補を選択し、
     前記契約電力量は、前記複数の施設の全体としてベースライン電力から削減するように定められた電力量であり、
     前記確保電力量は、前記第1施設及び前記第2施設の候補として選択される施設のベースライン電力から削減可能な電力量の合計であり、
     前記制御部は、前記複数の施設の予測需要電力に基づいて前記第1マージンを設定する、電力管理サーバ。
  2.  前記制御部は、電力系統の電力が不足するデマンドレスポンス期間を対象として、前記第1施設及び第2施設を選択する、請求項1に記載の電力管理サーバ。
  3.  前記第1目標値は、ゼロである、請求項1又は請求項2に記載の電力管理サーバ。
  4.  前記第1処理は、前記分散電源が自律的に実行する処理を含み、
     前記第2処理は、前記第2目標値と買電電力との差異に基づいて前記分散電源を制御するフィードバック処理を含む、請求項1乃至請求項3のいずれかに記載の電力管理サーバ。
  5.  前記第2処理は、前記制御部によって前記分散電源を遠隔で制御する処理を含む、請求項4に記載の電力管理サーバ。
  6.  前記制御部は、ベースライン電力に対する削減電力、前記ベースライン電力に対する削減割合及び前記買電電力の絶対値の少なくともいずれか1つに基づいて、前記第1目標値及び前記第2目標値を設定し、
     前記ベースライン電力は、前記電力事業者から施設に供給される電力に基づいて定められる、請求項4に記載の電力管理サーバ。
  7.  前記所定基準は、前記電力事業者から前記複数の施設に供給される電力の全体の削減電力の超過誤差及び不足誤差を最小化するように定められる、請求項1乃至請求項6のいずれかに記載の電力管理サーバ。
  8.  前記所定基準は、施設の需要電力の絶対量、施設の需要電力の変動量、前記分散電源の劣化度、前記分散電源の出力電力のコスト、前記分散電源の種類、施設に設けられる機器の種類の少なくともいずれか1つに基づいた基準である、請求項7に記載の電力管理サーバ。
  9.  前記第2処理は、N(Nは自然数)番目の単位時間において、N-X(XはNよりも小さい自然数)番目の単位時間における買電電力と前記第2目標値との差異に第2マージンを加味することによって得られるマージン差異に基づいて前記分散電源を制御するフィードバック処理を含む、請求項1乃至請求項8のいずれかに記載の電力管理サーバ。
  10.  前記制御部は、N-2X番目の単位時間の買電電力とN-X番目の単位時間の買電電力との誤差に基づいて前記第2マージンを設定し、或いは、予測遅延誤差に基づいて前記第2マージンを設定する、請求項9に記載の電力管理サーバ。
  11.  分散電源を有する複数の施設の中から、前記分散電源に第1処理を適用する第1施設及び前記分散電源に第2処理を適用する第2施設を所定基準に基づいて選択するステップAと、
     前記複数の施設の予測需要電力に基づいて、契約電力量に加味される第1マージンを設定するステップBとを備え、
     前記第1処理は、電力事業者から施設が購入する買電電力の目標値として第1目標値を用いて、前記分散電源の出力電力を制御する処理であり、
     前記第2処理は、前記買電電力の目標値として前記第1目標値よりも大きい第2目標値を用いて、前記分散電源の出力電力を制御する処理であり、
     前記ステップAは、前記契約電力量に前記第1マージンを加味することによって得られるマージン閾値を確保電力量が超えるまで前記第1施設及び前記第2施設の候補を選択するステップを含み、
     前記契約電力量は、前記複数の施設の全体としてベースライン電力から削減するように定められた電力量であり、
     前記確保電力量は、前記第1施設及び前記第2施設の候補として選択される施設のベースライン電力から削減可能な電力量の合計である、電力管理方法。
PCT/JP2018/043837 2017-11-29 2018-11-28 電力管理サーバ及び電力管理方法 WO2019107435A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/767,590 US11379937B2 (en) 2017-11-29 2018-11-28 Power management server and power management method
JP2019557281A JP6928670B2 (ja) 2017-11-29 2018-11-28 電力管理サーバ及び電力管理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017228874 2017-11-29
JP2017-228874 2017-11-29
JP2018077153 2018-04-12
JP2018-077153 2018-04-12

Publications (1)

Publication Number Publication Date
WO2019107435A1 true WO2019107435A1 (ja) 2019-06-06

Family

ID=66664037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043837 WO2019107435A1 (ja) 2017-11-29 2018-11-28 電力管理サーバ及び電力管理方法

Country Status (3)

Country Link
US (1) US11379937B2 (ja)
JP (1) JP6928670B2 (ja)
WO (1) WO2019107435A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024708A1 (ja) 2020-07-29 2022-02-03 京セラ株式会社 電力管理サーバ及び電力管理方法
WO2023233978A1 (ja) * 2022-05-30 2023-12-07 京セラ株式会社 電力管理装置、電力管理方法及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832846A4 (en) * 2018-07-27 2022-04-06 Kyocera Corporation DISTRIBUTED POWER SUPPLY SYSTEM, CONTROL DEVICE AND METHOD FOR CONTROLLING DISTRIBUTED POWER SUPPLY
CN113610357A (zh) * 2021-07-16 2021-11-05 远景智能国际私人投资有限公司 虚拟电厂的交易流程管理方法、装置、设备及介质
CN115714454B (zh) * 2022-10-20 2024-10-01 国网宁夏电力有限公司银川供电公司 配电网线路裕度的管控方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042474A1 (ja) * 2011-09-21 2013-03-28 日本電気株式会社 電池制御システム、電池制御装置、電池制御方法、および記録媒体
JP2017022807A (ja) * 2015-07-07 2017-01-26 パナソニックIpマネジメント株式会社 受電電力制御方法、受電電力制御装置および電気機器
WO2017195651A1 (ja) * 2016-05-09 2017-11-16 三菱電機株式会社 電力需給を調整するシステム、電力需給を調整するための電気事業者設備、電力需給を調整するための需要家設備および電力需給を調整する方法
JP2018093719A (ja) * 2016-12-02 2018-06-14 積水化学工業株式会社 電力管理装置、電力管理方法及びプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8996183B2 (en) * 2007-08-28 2015-03-31 Consert Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
JP6145670B2 (ja) * 2012-08-31 2017-06-14 パナソニックIpマネジメント株式会社 電力潮流制御システム、管理装置、プログラム
US20160125339A1 (en) * 2013-06-26 2016-05-05 Mitsubishi Electric Corporation Demand-supply planning device, demand-supply planning method, demand-supply planning program, and recording medium
WO2015041010A1 (ja) 2013-09-17 2015-03-26 日本電気株式会社 電力需給調整装置、電力システム、および電力需給調整方法
WO2016084396A1 (ja) 2014-11-27 2016-06-02 京セラ株式会社 電力制御装置、電力制御方法及び電力制御システム
US10381832B2 (en) * 2015-06-08 2019-08-13 Kyocera Corporation Power conversion apparatus, power management apparatus, and power management method
JP6706957B2 (ja) * 2016-04-06 2020-06-10 三菱電機株式会社 エネルギー需給計画策定装置及びエネルギー需給計画策定プログラム
WO2018021349A1 (ja) * 2016-07-27 2018-02-01 京セラ株式会社 発電ユニット及びその制御方法
JP6936097B2 (ja) * 2017-09-28 2021-09-15 積水化学工業株式会社 電力管理装置および電力管理方法
JP6936096B2 (ja) * 2017-09-28 2021-09-15 積水化学工業株式会社 電力管理装置および電力管理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042474A1 (ja) * 2011-09-21 2013-03-28 日本電気株式会社 電池制御システム、電池制御装置、電池制御方法、および記録媒体
JP2017022807A (ja) * 2015-07-07 2017-01-26 パナソニックIpマネジメント株式会社 受電電力制御方法、受電電力制御装置および電気機器
WO2017195651A1 (ja) * 2016-05-09 2017-11-16 三菱電機株式会社 電力需給を調整するシステム、電力需給を調整するための電気事業者設備、電力需給を調整するための需要家設備および電力需給を調整する方法
JP2018093719A (ja) * 2016-12-02 2018-06-14 積水化学工業株式会社 電力管理装置、電力管理方法及びプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024708A1 (ja) 2020-07-29 2022-02-03 京セラ株式会社 電力管理サーバ及び電力管理方法
JP7466651B2 (ja) 2020-07-29 2024-04-12 京セラ株式会社 電力管理サーバ及び電力管理方法
WO2023233978A1 (ja) * 2022-05-30 2023-12-07 京セラ株式会社 電力管理装置、電力管理方法及びプログラム
JP7423868B1 (ja) 2022-05-30 2024-01-29 京セラ株式会社 電力管理装置、電力管理方法及びプログラム
JP7498350B2 (ja) 2022-05-30 2024-06-11 京セラ株式会社 電力管理装置、電力管理方法及びプログラム

Also Published As

Publication number Publication date
JP6928670B2 (ja) 2021-09-01
US20200387982A1 (en) 2020-12-10
US11379937B2 (en) 2022-07-05
JPWO2019107435A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2019107435A1 (ja) 電力管理サーバ及び電力管理方法
JP7072588B2 (ja) 電力管理サーバ及び電力管理方法
JP7466651B2 (ja) 電力管理サーバ及び電力管理方法
WO2020017428A1 (ja) 電力管理サーバ、エネルギー蓄積装置及び電力管理方法
JP7014903B2 (ja) 機器管理サーバ、機器管理システム及び機器管理方法
WO2018139603A1 (ja) 電源制御方法、電源制御装置及び電源制御システム
JP6975125B2 (ja) 電力管理サーバ及び電力管理方法
JP2019030123A (ja) 電源管理方法、電源管理サーバ及び電源管理装置
JP2023005861A (ja) 電力管理装置、電力管理システム及び電力管理方法
WO2020158592A1 (ja) 電力供給方法及び電力管理装置
JP7237851B2 (ja) 電力管理サーバ及び電力管理方法
JP7480075B2 (ja) 蓄電装置管理システム及び蓄電装置管理方法
JP7480246B2 (ja) 電力管理装置及び電力管理方法
JP7037583B2 (ja) 電力管理システム、電力管理サーバ及び電力管理方法
JP2022087790A (ja) 電力管理サーバ及び電力管理方法
JP7354394B2 (ja) 電力管理装置及び電力管理方法
JP2022169292A (ja) 電力管理装置、電力管理システム及び電力管理方法
JP2023177798A (ja) 管理装置及び管理方法
JP2023003860A (ja) 電力管理装置及び電力管理方法
JP2020124040A (ja) サーバ装置及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883121

Country of ref document: EP

Kind code of ref document: A1