WO2019106874A1 - Insulating substrate and heat dissipation device - Google Patents

Insulating substrate and heat dissipation device Download PDF

Info

Publication number
WO2019106874A1
WO2019106874A1 PCT/JP2018/026025 JP2018026025W WO2019106874A1 WO 2019106874 A1 WO2019106874 A1 WO 2019106874A1 JP 2018026025 W JP2018026025 W JP 2018026025W WO 2019106874 A1 WO2019106874 A1 WO 2019106874A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
aluminum
wiring layer
heat dissipation
insulating substrate
Prior art date
Application number
PCT/JP2018/026025
Other languages
French (fr)
Japanese (ja)
Inventor
南 和彦
平野 智哉
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201880076057.6A priority Critical patent/CN111386601A/en
Publication of WO2019106874A1 publication Critical patent/WO2019106874A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to an insulating substrate and a heat dissipation device on which a heat generating element such as an electronic element is mounted.
  • a heat generating element The mounting surface side of the insulating substrate on which the is mounted is defined as the upper side of the insulating substrate and the heat dissipation device, and the opposite side is defined as the lower side of the insulating substrate and the heat dissipation device.
  • pure aluminum having a purity of 99% or more is referred to as "pure aluminum".
  • pure aluminum includes high purity aluminum (4N purity) and ultra high purity aluminum (5N purity or more), unless otherwise specified.
  • the purity 4N means 99.99%, and the purity 5N or more means 99.999% or more.
  • insulating substrates used in power devices are generally required to have high reliability against thermal stress in a thermal cycle test (eg, power cycle test).
  • This insulating substrate is provided with a wiring layer having a mounting surface on which a semiconductor chip is mounted as a heat generating element, for example.
  • An insulating layer (ceramic layer) is generally bonded to the surface of the wiring layer opposite to the mounting surface.
  • This wiring layer is required to have high thermal conductivity (high thermal conductivity). Therefore, conventional wiring layers are generally formed of pure aluminum.
  • Patent 5150905 discloses an aluminum-carbon particle composite as a material having high thermal conductivity. Therefore, in order to obtain a wiring layer having high thermal conductivity, JP-A-2017-7172 (Patent Document 2) discloses using this composite material as a material of the wiring layer.
  • the insulating substrate is required to have high thermal conductivity and reliability higher than the reliability against the thermal stress required for the conventional insulating substrate.
  • the present invention has been made in view of the above-described technical background, and an object thereof is to provide an insulating substrate and a heat dissipation device having high thermal conductivity and high reliability against thermal stress.
  • the present invention provides the following means.
  • a wiring layer having a mounting surface for a heat-generating element formed of an upper surface, and an insulating layer disposed below the wiring layer in a stacked manner with respect to the wiring layer,
  • the upper portion of the wiring layer has an aluminum-carbon particle composite layer
  • An insulating substrate wherein a portion of the wiring layer below the composite material layer has a pure aluminum layer with a purity of 99% or more.
  • a heat dissipation device comprising the insulating substrate according to any one of the above 1 to 3 and a heat dissipation member.
  • the present invention has the following effects.
  • the insulating substrate has high thermal conductivity.
  • the linear expansion coefficient of the upper portion of the wiring layer approaches the linear expansion coefficient of the heat-generating element or the solder layer.
  • the durability and reliability of the solder layer can be improved and stress on the heat-generating element can be relaxed.
  • the portion below the composite layer in the wiring layer has a pure aluminum layer with a purity of 99% or more, the thermal stress generated between the wiring layer and the insulating layer during the thermal cycle load is a pure aluminum layer. Be relieved. Therefore, the insulating substrate has high reliability against thermal stress.
  • the upper portion of the wiring layer has the above-described composite material layer, it is possible to suppress the occurrence of wrinkles on the mounting surface due to the thermal stress between the pure aluminum layer of the wiring layer and the insulating layer.
  • FIG. 1 is a cross-sectional view of a heat dissipation device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a state in the middle of laminating a plurality of preform foils and a pure aluminum layer.
  • FIG. 3 is a cross-sectional view of a state in the middle of sintering a laminate of a plurality of preform foils and a pure aluminum layer.
  • FIG. 4 is a cross-sectional view of a state in which a wiring layer, an insulating layer, and a first buffer layer are joined and integrated by brazing.
  • FIG. 1 is a cross-sectional view of a heat dissipation device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a state in the middle of laminating a plurality of preform foils and a pure aluminum layer.
  • FIG. 3 is a cross-sectional view of a state in the
  • FIG. 5 is a cross-sectional view of the insulating substrate according to the first embodiment of the present invention, in which the wiring layer, the insulating layer, and the first buffer layer are integrally joined.
  • FIG. 6 is a cross-sectional view of a heat dissipation device according to a second embodiment of the present invention.
  • 1 to 5 are diagrams for explaining the first embodiment of the present invention.
  • the heat dissipation device 10A As shown in FIG. 1, the heat dissipation device 10A according to the first embodiment is used for heat dissipation of power devices (eg, IGBTs, MOSFETs) etc., and in the order from top to bottom, the wiring layer 1, the insulating layer 4, a first buffer layer 5, a second buffer layer 7A, and a heat dissipation member (including a cooling member) 8 are provided in a stacked manner. Then, the heat dissipation device 10A is formed by joining and integrating them in a layered manner by a predetermined joining means.
  • the insulating substrate 6 according to the first embodiment of the present invention includes the wiring layer 1, the insulating layer 4, and the first buffer layer 5.
  • Wiring layer 1 has mounting surface 1a formed of the upper surface thereof.
  • a semiconductor chip (indicated by a two-dot chain line) 21 is joined on the mounting surface 1 a as a heat-generating element via a solder layer (indicated by a two-dot chain line).
  • the insulating layer 4 has electrical insulation and is usually made of a ceramic plate such as an aluminum nitride plate (AlN).
  • the first buffer layer 5 and the second buffer layer 7A relieve stress such as thermal stress generated in the insulating substrate 6 and the heat dissipation device 10A.
  • the first buffer layer 5 is made of a metal plate, for example, a pure aluminum plate.
  • the second buffer layer 7A is made of a metal plate, and more specifically, is made of an aluminum punching metal plate having a plurality of through holes 7Aa.
  • the heat dissipating member 8 is liquid-cooled and includes a case 8 a and a corrugated inner fin 8 b disposed in the case 8 a. Inside the case 8a, there are formed a plurality of flow paths 8c divided by the inner fins 8b, through which a cooling fluid (not shown) as a cooling fluid flows.
  • the heat dissipating member 8 is made of metal, and more specifically, made of aluminum. More specifically, the case 8a of the heat dissipating member 8 is made of an aluminum brazing sheet provided with a brazing material layer (not shown) on at least the inner surface of the outer and inner surfaces, and the inner fins 8b of the heat dissipating member 8 are made of an aluminum plate. Or an aluminum brazing sheet provided with a brazing material layer (not shown) on at least one side of both sides. The wave top and the wave bottom of the inner fin 8b are brazed to the inner surface of the case 8a.
  • the heat generated in the semiconductor chip 21 is sequentially conducted to the wiring layer 1, the insulating layer 4, the first buffer layer 5, the second buffer layer 7A, and the heat dissipation member 8 to flow through the flow path 8c. Dissipated. As a result, the temperature of the semiconductor chip 21 decreases.
  • the configuration of the wiring layer 1 will be described in detail below.
  • the upper portion of the wiring layer 1 has an aluminum-carbon particle composite layer 2.
  • a portion of the wiring layer 1 below the composite material layer 2 has a pure aluminum layer (indicated by dot hatching) 3 having a purity of 99% (unit: mass%) or more.
  • the wiring layer 1 is composed of the composite material layer 2 and the pure aluminum layer 3. That is, the upper portion of the wiring layer 1 is made of the composite material layer 2, and the mounting surface 1 a is made of the upper surface of the composite material layer 2. The entire portion of the wiring layer 1 below the composite material layer 2 is made of a pure aluminum layer 3.
  • the composite material layer 2 and the pure aluminum layer 3 are joined by a predetermined joining means. More specifically, both layers 2 and 3 are sintered joined, that is, both layers 2 and 3 are joined (sintered together) by sintering. ).
  • symbol "X" in FIG. 1 is a joint surface (sintering joint surface if it explains in full detail) (it shows with a dashed-two dotted line) of the composite material layer 2 and the pure aluminum layer 3.
  • the pure aluminum layer 3 of the wiring layer 1 and the insulating layer 4 disposed below the wiring layer 1 are brazed and joined in a laminated manner.
  • the thermal conductivity (thermal conductivity) of the wiring layer 1 can be increased.
  • the coefficient of linear expansion of the solder layer 22 can be approached, whereby the durability and reliability of the solder layer 22 can be improved and stress on the semiconductor chip 21 can be relaxed.
  • a portion under the composite material layer 2 in the wiring layer 1 is made of the pure aluminum layer 3 so that when a thermal cycle load is applied to the heat dissipation device 10A (the insulating substrate 6) (example: thermal cycle test)
  • the thermal stress generated between the layer 1 and the insulating layer 4 can be relaxed by the pure aluminum layer 3.
  • the thickness of the wiring layer 1 is not limited, the lower limit of the thickness of the wiring layer 1 is preferably 200 ⁇ m, and the upper limit of the thickness of the wiring layer 1 is preferably 3 mm, and particularly the wiring layer The upper limit of the thickness of 1 is preferably 2 mm.
  • the ratio of the thickness of the composite material layer 2 to the thickness of the pure aluminum layer 3 is not limited, but is preferably 1:10 to 10: 1, particularly 1: 5 to 5: 1. Good to be.
  • the thickness of the composite material layer 2 is not limited, it is desirable to be as thick as possible. The reason is that the thermal conductivity of the wiring layer 1 can be surely improved, the linear expansion coefficient of the wiring layer 1 can be surely made close to the linear expansion coefficient of the semiconductor chip 21 and the solder layer 22, and moreover This is because generation of wrinkles in the mounting surface 1 a due to thermal stress between the aluminum layer 3 and the insulating layer 4 can be suppressed. Therefore, the thickness of the composite material layer 2 is preferably 100 ⁇ m or more. In particular, the thickness of the composite material layer 2 is preferably 200 ⁇ m or more. In this case, the occurrence of wrinkles on the mounting surface 1a can be reliably suppressed. The upper limit of the thickness of the composite material layer 2 is not limited and is usually 1 mm.
  • the thickness of the pure aluminum layer 3 is not limited. However, when the pure aluminum layer 3 is too thick, the pure aluminum layer 3 becomes a thermal resistance, and when the pure aluminum layer 3 is too thin, the effect of alleviating the thermal stress described above decreases. From this point of view, the thickness of the pure aluminum layer 3 is desirably in the range of 100 ⁇ m to 1.5 mm. When the thickness of the pure aluminum layer 3 is 100 ⁇ m or more, the above-described effect of the thermal stress can be reliably exhibited. By setting the thickness of the pure aluminum layer 3 to 1.5 mm or less, the decrease in the thermal conductivity of the wiring layer 1 due to the pure aluminum layer 3 can be reliably suppressed, and the wiring layer 1 has high thermal conductivity. It can be maintained reliably. The upper limit of the thickness of the particularly desirable pure aluminum layer 3 is 1 mm.
  • the purity of aluminum of the pure aluminum layer 3 is 99% or more as described above.
  • aluminum A1100, A1050, A1N30, etc. are suitably used.
  • the purity of aluminum is desirably 99.9% or more, and particularly 99.99% or more.
  • high purity aluminum, ultra high purity aluminum or the like is used.
  • the upper limit of the purity of aluminum is not limited and is, for example, 99.999%.
  • the composite material of the composite material layer 2 is an aluminum-carbon particle composite material as described above, and specifically includes an aluminum matrix 11 and a large number of carbon particles 12 dispersed in the aluminum matrix 11.
  • the material of the aluminum of the aluminum matrix 11 is not limited, and may be, for example, a pure aluminum-based aluminum alloy having a purity of 99%, such as A1100, A1050, A1N30.
  • the purity of the aluminum of the aluminum matrix 11 is desirably 99.9% or more, and preferably 99.99% or more.
  • the type of carbon particle 12 is not limited. In particular, it is desirable to use, as the carbon particles 12, one or two or more kinds selected from the group consisting of carbon fibers, carbon nanotubes, natural graphite particles and graphene. The reason is that such carbon particles have high thermal conductivity and are easily complexed with aluminum.
  • pitch-based carbon fibers As carbon fibers, pitch-based carbon fibers, PAN-based carbon fibers and the like are suitably used.
  • carbon nanotubes single-walled carbon nanotubes, multi-walled carbon nanotubes, vapor grown carbon fibers (including VGCF (registered trademark)), and the like are suitably used.
  • VGCF vapor grown carbon fibers
  • scale-like graphite particles in particular, high thermal conductive scale-like graphite particles
  • high thermal conductive scale-like graphite particles are preferably used.
  • graphene single-layer graphene, multilayer graphene, or the like is preferably used.
  • the size of the carbon particles 12 is not limited, and the average length of the carbon particles 12 in the longest axis direction is usually in the range of 1 ⁇ m to 1 mm.
  • the linear expansion coefficient of the composite material layer 2 is preferably smaller than that of the pure aluminum layer 3, specifically 18 ppm / K or less, and particularly preferably 15 ppm / K or less. Furthermore, the linear expansion coefficient of the composite layer 2 is desirably 2 ppm / K or more. In this case, the generation of thermal stress between the composite material layer 2 and the solder layer 22 due to the linear expansion coefficient of the composite material layer 2 being too smaller than the linear expansion coefficient of the solder layer 22 can be reliably suppressed.
  • the manufacturing method of the composite material layer 2 is not limited.
  • a manufacturing method thereof as described in JP-A-2015-25158 and the like, a laminate (preform body) in a state in which a plurality of preform foils in which a large number of carbon particles are attached is laminated on an aluminum foil is A method of producing a composite material layer by heating and sintering in a plate shape while pressing in the laminating direction of the reform foil (this manufacturing method is referred to as “preform foil lamination sintering method” for convenience of explanation), and aluminum powder A method of producing a composite material layer by heating and sintering a mixture with carbon powder as carbon particles in a plate shape while pressing in one direction (this method is referred to as “powder sintering method” for convenience of explanation) is mentioned Be
  • the composite layer 2 is manufactured by the former method (preform foil lamination sintering method), and further, the composite layer 2 and the pure aluminum layer 3 are sintered simultaneously with the manufacture of the composite layer 2. It is joined. This method is described below.
  • a plurality of preform foils 14 in which a large number of carbon particles 12 are attached on an aluminum foil 13 are prepared.
  • the carbon particles 12 are attached to the lower surface of the aluminum foil 13 by a binder resin (not shown).
  • the thickness of the aluminum foil 13 is usually in the range of 5 to 100 ⁇ m.
  • a plurality of preform foils 14 are laminated to form a laminate body 17a, and a pure aluminum layer 3 made of a pure aluminum plate having a purity of 99% or more is formed on the laminate body 17a below the laminate body 17a.
  • the lamination is performed to form a lamination 17 including the lamination body 17 a and the pure aluminum layer 3.
  • the laminate 17 is heated and sintered in a predetermined sintering atmosphere while pressing the laminate 17 in the lamination direction of the preform foil 14 (that is, the thickness direction of the laminate 17) to produce the composite material layer 2 at the same time
  • the composite layer 2 and the pure aluminum layer 3 are sintered and bonded.
  • the sintering atmosphere is preferably a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere includes an inert gas atmosphere (eg, nitrogen gas atmosphere, argon gas atmosphere), a vacuum atmosphere, and the like.
  • a vacuum hot-press sintering apparatus 30 which comprises a receiving mold 31, a pressing punch 32, a cylindrical peripheral mold 33, a heater (not shown) and the like. Then, the stacked body 17 is disposed in the circumferential mold 3, and the stacked body 17 is received by the receiving mold 31 from the lower side thereof.
  • the laminate 17 is heated by the heater in a vacuum atmosphere while being pressed by the pressing punch 32 in the stacking direction of the preform foil 14 (the pressing direction P thereof), thereby stacking the stack 17
  • the body 17a is sintered to obtain the composite layer 2, and at the same time the composite layer 2 and the pure aluminum layer 3 are sintered and joined. Thereby, the above-mentioned wiring layer 1 is obtained.
  • the material of the aluminum foil 13 becomes the aluminum matrix 11 and penetrates between the carbon particles 12, 12 by being pressurized and heated as described above.
  • the air gap between 12 and 12 disappears.
  • the carbon particles 12 are dispersed in the aluminum matrix 11.
  • the binder resin contained in the laminate 17 is eliminated by sublimation, decomposition, and the like on the way of heating the laminate 17 so that the temperature of the laminate 17 rises from approximately room temperature to the sintering temperature, and is removed from the laminate 17 Ru.
  • the desirable sintering conditions in the case of sintering by the vacuum hot press sintering method are as follows.
  • the sintering temperature is 450 to 640 ° C.
  • the sintering time ie, the holding time of the sintering temperature
  • the pressure applied to the laminate is 1 to 40 MPa
  • the degree of vacuum is 10 -4 to 10 Pa.
  • the wiring layer 1, the insulating layer 4 and the first buffer layer 5 are stacked.
  • brazing material foils 18 are interposed between the wiring layer 1 and the insulating layer 4 and between the insulating layer 4 and the first buffer layer 5, respectively.
  • these layers 1, 4, and 5 are integrally joined in a laminated state by brazing.
  • the insulating substrate 6 shown in FIG. 5 is obtained.
  • the insulating substrate 6, the second buffer layer 7A, and the heat dissipation member 8 are stacked. And these are joined and integrated in lamination form by brazing. Thereby, the heat dissipation device 10A shown in FIG. 1 is obtained.
  • FIG. 6 is a view for explaining a heat dissipation device 10B according to a second embodiment of the present invention.
  • subjected to the element of the heat radiating device 10A of the said 1st Embodiment is attached
  • the second buffer layer 7B is not made of an aluminum punching metal plate, but is made of a double-sided aluminum brazing sheet provided with a brazing material layer (not shown) on each side. is there. Then, the second buffer layer 7B is joined to the first buffer layer 5 in one brazing material layer of the brazing sheet, and the second buffer layer 7B is joined to the heat dissipation member 8 in the other brazing material layer of the brazing sheet. There is.
  • the other configuration is the same as that of the heat dissipation device 10A of the first embodiment.
  • the heat radiating member 8 is liquid cooled in the above embodiment, the heat radiating member may be, for example, air cooled (eg, heat sink) in the present invention.
  • the composite material layer 2 and the pure aluminum layer 3 in the wiring layer 1 are sintered and joined, but in the present invention, the layers 2 and 3 may be brazed, for example.
  • the present application relates to priority claim of Japanese Patent Application No. 2017-227442 filed on November 28, 2017, and the disclosure content thereof constitutes a part of the present application as it is. .
  • the present invention is not limited to the various preferred embodiments described herein, but is equivalent based on this disclosure and may be appreciated by those skilled in the art.
  • the present invention also includes any and all embodiments that have various elements, modifications, deletions, combinations (eg, combinations of features across various embodiments), improvements and / or changes.
  • the limitations of the claims should be interpreted broadly based on the terms used in the claims, and should not be limited to the embodiments described in the specification or process of the present application, and such The examples should be construed as non-exclusive.
  • the term "preferentially" is non-exclusive and means "preferably, but not limited to.”
  • Example 1 In Example 1, the heat dissipation device 10B shown in FIG. 6 was prepared.
  • the plan view shape of the wiring layer 1 of the heat dissipation device 10B was a square of 28 mm long ⁇ 28 mm wide, and the thickness of the wiring layer 1 was 600 ⁇ m.
  • the upper portion of the wiring layer 1 including the mounting surface 1a is made of an aluminum-carbon particle composite layer 2 with a thickness of 400 ⁇ m.
  • the material of the aluminum of the aluminum matrix 11 of the composite material layer 2 was pure aluminum having a purity of 99.99%.
  • the entire portion of the wiring layer 1 below the composite material layer 2 is made of a pure aluminum layer having a thickness of 200 ⁇ m and a purity of 99.99%.
  • the insulating layer 4 was made of an aluminum nitride (AlN) plate, and its shape in plan view was a square of 30 mm long ⁇ 30 mm wide, and its thickness was 640 ⁇ m.
  • AlN aluminum nitride
  • the first buffer layer 5 was made of a pure aluminum plate having a purity of 99.99%, and its shape in a plan view was 28 mm long ⁇ 28 mm wide, and its thickness was 600 ⁇ m.
  • the second buffer layer 7B was a double-sided aluminum brazing sheet, and its shape in a plan view was 29 mm long ⁇ 29 mm wide, and its thickness was 600 ⁇ m.
  • the heat dissipation member 8 was made of aluminum and had a thickness of 10 mm.
  • a thermal cycle test was conducted 500 cycles at a test temperature range of ⁇ 40 ° C. to 200 ° C. for the heat dissipation device 10B. And when the state of the mounting surface 1a of the wiring layer 1 was observed, no wrinkles were generated on the mounting surface 1a.
  • Example 2 In the heat dissipation device 10B prepared in the second embodiment, the upper portion of the wiring layer 1 including the mounting surface 1a is made of the aluminum-carbon particle composite material layer 2 having a thickness of 200 ⁇ m, and is lower than the composite material layer 2 in the wiring layer 1 The whole of the part consists of a pure aluminum layer 3 with a thickness of 400 ⁇ m and a purity of 99.99%.
  • the other configuration is the same as the heat dissipation device 10B of the first embodiment.
  • a thermal cycle test was conducted on the heat dissipation device 10B under the same test conditions as in Example 1. And when the state of the mounting surface 1a of the wiring layer 1 was observed, almost no wrinkles were generated on the mounting surface 1a.
  • Example 3 In the heat dissipation device 10B prepared in the third embodiment, the upper portion including the mounting surface 1a in the wiring layer 1 is made of the aluminum-carbon particle composite material layer 2 having a thickness of 100 ⁇ m, and is lower than the composite material layer 2 in the wiring layer 1 The whole of the part consists of a pure aluminum layer 3 with a thickness of 500 ⁇ m and a purity of 99.99%.
  • the other configuration is the same as the heat dissipation device 10B of the first embodiment.
  • the entire wiring layer is made of a pure aluminum layer having a thickness of 600 ⁇ m and a purity of 99.99%.
  • the other configuration is the same as the heat dissipation device 10B of the first embodiment.
  • the present invention is applicable to an insulating substrate and a heat dissipation device on which a heat generating element such as an electronic element (for example, a semiconductor chip) is mounted.
  • Wiring layer 1a Mounting surface 2: Aluminum-carbon particle composite material layer 3: Pure aluminum layer 4: Insulating layer 5: First buffer layer 6: Insulating substrate 7A, 7B: Second buffer layer 8: Heat dissipation member 10A, 10B: Heat dissipation device 21: Semiconductor chip (heat generating element)

Abstract

An insulating substrate (6) comprises: a wiring layer (1) having a mounting surface (1a) on which a heat-generating element (21) is mounted; and an insulating layer (4) that is disposed below the wiring layer (1) so as to be layered under the wiring layer (1). The mounting surface (1a) is the top surface of the wiring layer (1). The upper portion of the wiring layer (1) has an aluminum-carbon particle composite layer (2). The section of the wiring layer (1) below the composite layer (2) is a pure aluminum layer (3) having a purity of 99% or greater.

Description

絶縁基板及び放熱装置Insulating substrate and heat dissipation device
 本発明は、電子素子等の発熱性素子が搭載される絶縁基板及び放熱装置に関する。 The present invention relates to an insulating substrate and a heat dissipation device on which a heat generating element such as an electronic element is mounted.
 なお、本発明に係る絶縁基板及び放熱装置の上下方向は限定されるものではないが、本明細書及び特許請求の範囲では、絶縁基板及び放熱装置の構成を理解し易くするため、発熱性素子が搭載される絶縁基板の搭載面側を絶縁基板及び放熱装置の上側、並びに、その反対側を絶縁基板及び放熱装置の下側とそれぞれ定義する。 Although the vertical direction of the insulating substrate and the heat dissipation device according to the present invention is not limited, in the present specification and claims, in order to facilitate understanding of the configurations of the insulating substrate and the heat dissipation device, a heat generating element The mounting surface side of the insulating substrate on which the is mounted is defined as the upper side of the insulating substrate and the heat dissipation device, and the opposite side is defined as the lower side of the insulating substrate and the heat dissipation device.
 また本明細書及び特許請求の範囲では、純度99%以上のアルミニウムを「純アルミニウム」という。したがって、「純アルミニウム」の語は、特に明示する場合を除いて、高純度アルミニウム(純度4N)及び超高純度アルミニウム(純度5N以上)を含む。なお、純度4Nとは純度が99.99%、純度5N以上とは純度が99.999%以上の意味である。 In the present specification and claims, aluminum having a purity of 99% or more is referred to as "pure aluminum". Thus, the term "pure aluminum" includes high purity aluminum (4N purity) and ultra high purity aluminum (5N purity or more), unless otherwise specified. The purity 4N means 99.99%, and the purity 5N or more means 99.999% or more.
 例えばパワーデバイスに用いられる絶縁基板には一般に冷熱サイクル試験(例:パワーサイクル試験)による熱応力に対して高い信頼性が要求される。 For example, insulating substrates used in power devices are generally required to have high reliability against thermal stress in a thermal cycle test (eg, power cycle test).
 この絶縁基板は、発熱性素子として例えば半導体チップが搭載される搭載面を有する配線層を備えている。配線層における搭載面とは反対面には一般に絶縁層(セラミック層)が接合される。 This insulating substrate is provided with a wiring layer having a mounting surface on which a semiconductor chip is mounted as a heat generating element, for example. An insulating layer (ceramic layer) is generally bonded to the surface of the wiring layer opposite to the mounting surface.
 この配線層には高い熱伝導性(高い熱伝導率)が要求される。そのため、従来の配線層は一般に純アルミニウムで形成されていた。 This wiring layer is required to have high thermal conductivity (high thermal conductivity). Therefore, conventional wiring layers are generally formed of pure aluminum.
 特許第5150905号(特許文献1)は、高い熱伝導性を有する材料として、アルミニウム-炭素粒子複合材を開示している。そこで、高い熱伝導性を有する配線層を得るため、特開2017-7172号公報(特許文献2)は配線層の材料としてこの複合材を用いることを開示している。 Patent 5150905 (patent document 1) discloses an aluminum-carbon particle composite as a material having high thermal conductivity. Therefore, in order to obtain a wiring layer having high thermal conductivity, JP-A-2017-7172 (Patent Document 2) discloses using this composite material as a material of the wiring layer.
特許第5150905号Patent No. 5150905 特開2017-7172号公報JP, 2017-7172, A
 近年、炭化ケイ素(SiC)等を用いた高温で動作可能な半導体チップが開発されている。このような半導体チップが配線層の搭載面に搭載される場合、絶縁基板には高い熱伝導性と更に従来の絶縁基板に要求される熱応力に対する信頼性よりも高い信頼性とが要求される。 In recent years, semiconductor chips operable at high temperature using silicon carbide (SiC) or the like have been developed. When such a semiconductor chip is mounted on the mounting surface of the wiring layer, the insulating substrate is required to have high thermal conductivity and reliability higher than the reliability against the thermal stress required for the conventional insulating substrate. .
 本発明は、上述した技術背景に鑑みてなされたもので、その目的は、高い熱伝導性と熱応力に対する高い信頼性とを有する絶縁基板及び放熱装置を提供することにある。 The present invention has been made in view of the above-described technical background, and an object thereof is to provide an insulating substrate and a heat dissipation device having high thermal conductivity and high reliability against thermal stress.
 本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかにされるであろう。 Other objects and advantages of the present invention will be apparent from the following preferred embodiments.
 本発明は以下の手段を提供する。 The present invention provides the following means.
 [1] 上表面からなる発熱性素子用搭載面を有する配線層と、前記配線層の下側に前記配線層に対して積層状に配置された絶縁層と、を備え、
 前記配線層の上部がアルミニウム-炭素粒子複合材層を有し、
 前記配線層における前記複合材層よりも下側の部分が純度99%以上の純アルミニウム層を有している絶縁基板。
[1] A wiring layer having a mounting surface for a heat-generating element formed of an upper surface, and an insulating layer disposed below the wiring layer in a stacked manner with respect to the wiring layer,
The upper portion of the wiring layer has an aluminum-carbon particle composite layer,
An insulating substrate, wherein a portion of the wiring layer below the composite material layer has a pure aluminum layer with a purity of 99% or more.
 [2] 前記純アルミニウム層のアルミニウムの純度が99.99%以上である前項1記載の絶縁基板。 [2] The insulating substrate as recited in the aforementioned Item 1, wherein the purity of aluminum of the pure aluminum layer is 99.99% or more.
 [3] 前記複合材層の厚さが100μm以上である前項1又は2記載の絶縁基板。 [3] The insulating substrate as recited in the aforementioned Item 1 or 2, wherein the thickness of the composite material layer is 100 μm or more.
 [4] 前項1~3のいずれかに記載の絶縁基板と放熱部材を具備する放熱装置。 [4] A heat dissipation device comprising the insulating substrate according to any one of the above 1 to 3 and a heat dissipation member.
 本発明は以下の効果を奏する。 The present invention has the following effects.
 前項1では、配線層の上部がアルミニウム-炭素粒子複合材層を有しているので、配線層の熱伝導性が高い。したがって、絶縁基板は高い熱伝導性を有している。 In the preceding paragraph 1, since the upper portion of the wiring layer has the aluminum-carbon particle composite material layer, the thermal conductivity of the wiring layer is high. Therefore, the insulating substrate has high thermal conductivity.
 また、配線層の上部が上述の複合材層を有することにより、配線層の上部の線膨張係数が発熱性素子やはんだ層の線膨張係数に近づく。これにより、はんだ層の耐久性及び信頼性を向上させるとともに発熱性素子への応力を緩和することができる。さらに、配線層における複合材層よりも下側の部分が純度99%以上の純アルミニウム層を有することにより、冷熱サイクル負荷時に配線層と絶縁層との間に発生する熱応力が純アルミニウム層で緩和される。したがって、絶縁基板は、熱応力に対して高い信頼性を有している。 In addition, when the upper portion of the wiring layer has the above-described composite material layer, the linear expansion coefficient of the upper portion of the wiring layer approaches the linear expansion coefficient of the heat-generating element or the solder layer. As a result, the durability and reliability of the solder layer can be improved and stress on the heat-generating element can be relaxed. Furthermore, since the portion below the composite layer in the wiring layer has a pure aluminum layer with a purity of 99% or more, the thermal stress generated between the wiring layer and the insulating layer during the thermal cycle load is a pure aluminum layer. Be relieved. Therefore, the insulating substrate has high reliability against thermal stress.
 さらに、配線層の上部が上述の複合材層を有することにより、配線層の純アルミニウム層と絶縁層との間の熱応力に起因する搭載面のしわの発生を抑制することができる。 Furthermore, when the upper portion of the wiring layer has the above-described composite material layer, it is possible to suppress the occurrence of wrinkles on the mounting surface due to the thermal stress between the pure aluminum layer of the wiring layer and the insulating layer.
 前項2では、純アルミニウム層のアルミニウムの純度が99.99%以上であることにより、絶縁基板について熱応力に対する信頼性をより一層高めることができる。 In the preceding paragraph 2, when the purity of aluminum of the pure aluminum layer is 99.99% or more, the reliability against thermal stress can be further enhanced for the insulating substrate.
 前項3では、複合材層が100μm以上であることにより、搭載面のしわの発生を確実に抑制することができる。 In the preceding paragraph 3, when the composite material layer is 100 μm or more, the occurrence of wrinkles on the mounting surface can be reliably suppressed.
 前項4では、前項1~3のいずれかの効果を奏する放熱装置を提供できる。 In the preceding paragraph 4, it is possible to provide a heat dissipation device having the effect of any one of the preceding paragraphs 1 to 3.
図1は、本発明の第1実施形態に係る放熱装置の断面図である。FIG. 1 is a cross-sectional view of a heat dissipation device according to a first embodiment of the present invention. 図2は、複数のプリフォーム箔と純アルミニウム層とを積層する途中の状態の断面図である。FIG. 2 is a cross-sectional view of a state in the middle of laminating a plurality of preform foils and a pure aluminum layer. 図3は、複数のプリフォーム箔と純アルミニウム層との積層体を焼結する途中の状態の断面図である。FIG. 3 is a cross-sectional view of a state in the middle of sintering a laminate of a plurality of preform foils and a pure aluminum layer. 図4は、配線層と絶縁層と第1緩衝層をろう付けにより接合一体化する途中の状態の断面図である。FIG. 4 is a cross-sectional view of a state in which a wiring layer, an insulating layer, and a first buffer layer are joined and integrated by brazing. 図5は、配線層と絶縁層と第1緩衝層が接合一体化されて形成された、本発明の第1実施形態に係る絶縁基板の断面図である。FIG. 5 is a cross-sectional view of the insulating substrate according to the first embodiment of the present invention, in which the wiring layer, the insulating layer, and the first buffer layer are integrally joined. 図6は、本発明の第2実施形態に係る放熱装置の断面図である。FIG. 6 is a cross-sectional view of a heat dissipation device according to a second embodiment of the present invention.
 次に、本発明の幾つかの実施形態について図面を参照して以下に説明する。 Next, several embodiments of the present invention will be described below with reference to the drawings.
 図1~5は、本発明の第1実施形態を説明する図である。 1 to 5 are diagrams for explaining the first embodiment of the present invention.
 図1に示すように、本第1実施形態に係る放熱装置10Aは、パワーデバイス(例:IGBT、MOSFET)等の放熱に用いられるものであり、上から下へ順に、配線層1、絶縁層4、第1緩衝層5、第2緩衝層7A及び放熱部材(冷却部材を含む)8を積層状に備えている。そして、これらが所定の接合手段で積層状に接合一体化されることにより放熱装置10Aが形成されている。本発明の第1実施形態に係る絶縁基板6は、配線層1と絶縁層4と第1緩衝層5で構成されている。 As shown in FIG. 1, the heat dissipation device 10A according to the first embodiment is used for heat dissipation of power devices (eg, IGBTs, MOSFETs) etc., and in the order from top to bottom, the wiring layer 1, the insulating layer 4, a first buffer layer 5, a second buffer layer 7A, and a heat dissipation member (including a cooling member) 8 are provided in a stacked manner. Then, the heat dissipation device 10A is formed by joining and integrating them in a layered manner by a predetermined joining means. The insulating substrate 6 according to the first embodiment of the present invention includes the wiring layer 1, the insulating layer 4, and the first buffer layer 5.
 配線層1は、その上表面からなる搭載面1aを有している。この搭載面1a上には発熱性素子として例えば半導体チップ(二点鎖線で示す)21がはんだ層(二点鎖線で示す)22を介して接合される。 Wiring layer 1 has mounting surface 1a formed of the upper surface thereof. For example, a semiconductor chip (indicated by a two-dot chain line) 21 is joined on the mounting surface 1 a as a heat-generating element via a solder layer (indicated by a two-dot chain line).
 絶縁層4は電気絶縁性を有しており、通常、窒化アルミニウム板(AlN)等のセラミック板からなる。 The insulating layer 4 has electrical insulation and is usually made of a ceramic plate such as an aluminum nitride plate (AlN).
 第1緩衝層5及び第2緩衝層7Aは、絶縁基板6や放熱装置10Aに発生する熱応力等の応力を緩和するものである。第1緩衝層5は、金属板からなり、例えば純アルミニウム板からなる。第2緩衝層7Aは、金属板からなり、詳述すると複数の貫通孔7Aaを有するアルミニウムパンチングメタル板からなる。 The first buffer layer 5 and the second buffer layer 7A relieve stress such as thermal stress generated in the insulating substrate 6 and the heat dissipation device 10A. The first buffer layer 5 is made of a metal plate, for example, a pure aluminum plate. The second buffer layer 7A is made of a metal plate, and more specifically, is made of an aluminum punching metal plate having a plurality of through holes 7Aa.
 放熱部材8は液冷式のものであり、ケース8aとケース8a内に配置されたコルゲート状インナーフィン8bとを備えている。ケース8aの内部には、インナーフィン8bで仕切られた、冷却流体としての冷却液(図示せず)が流れる複数の流路8cが形成されている。 The heat dissipating member 8 is liquid-cooled and includes a case 8 a and a corrugated inner fin 8 b disposed in the case 8 a. Inside the case 8a, there are formed a plurality of flow paths 8c divided by the inner fins 8b, through which a cooling fluid (not shown) as a cooling fluid flows.
 放熱部材8は金属製であり詳述するとアルミニウム製である。更に詳述すると、放熱部材8のケース8aは、外面及び内面のうち少なくとも内面にろう材層(図示せず)が設けられたアルミニウムブレージングシートからなり、放熱部材8のインナーフィン8bはアルミニウム板からなるか又は両面のうち少なくとも片面にろう材層(図示せず)が設けられたアルミニウムブレージングシートからなる。インナーフィン8bの波頂部及び波底部はケース8aの内面にろう付け接合されている。 The heat dissipating member 8 is made of metal, and more specifically, made of aluminum. More specifically, the case 8a of the heat dissipating member 8 is made of an aluminum brazing sheet provided with a brazing material layer (not shown) on at least the inner surface of the outer and inner surfaces, and the inner fins 8b of the heat dissipating member 8 are made of an aluminum plate. Or an aluminum brazing sheet provided with a brazing material layer (not shown) on at least one side of both sides. The wave top and the wave bottom of the inner fin 8b are brazed to the inner surface of the case 8a.
 この放熱装置10Aでは、半導体チップ21に発生した熱は、配線層1、絶縁層4、第1緩衝層5、第2緩衝層7A及び放熱部材8へ順次伝導して流路8cを流れる冷却液へ放散される。その結果、半導体チップ21の温度が低下する。 In the heat dissipation device 10A, the heat generated in the semiconductor chip 21 is sequentially conducted to the wiring layer 1, the insulating layer 4, the first buffer layer 5, the second buffer layer 7A, and the heat dissipation member 8 to flow through the flow path 8c. Dissipated. As a result, the temperature of the semiconductor chip 21 decreases.
 配線層1の構成について以下に詳述する。 The configuration of the wiring layer 1 will be described in detail below.
 配線層1の上部はアルミニウム-炭素粒子複合材層2を有している。配線層1における複合材層2よりも下側の部分は純度99%(単位:質量%)以上の純アルミニウム層(ドットハッチングで示す)3を有している。 The upper portion of the wiring layer 1 has an aluminum-carbon particle composite layer 2. A portion of the wiring layer 1 below the composite material layer 2 has a pure aluminum layer (indicated by dot hatching) 3 having a purity of 99% (unit: mass%) or more.
 詳述すると、配線層1は複合材層2と純アルミニウム層3で構成されている。すなわち、配線層1の上部は複合材層2からなり、搭載面1aは複合材層2の上表面からなる。配線層1における複合材層2よりも下側の部分の全体は純アルミニウム層3からなる。 More specifically, the wiring layer 1 is composed of the composite material layer 2 and the pure aluminum layer 3. That is, the upper portion of the wiring layer 1 is made of the composite material layer 2, and the mounting surface 1 a is made of the upper surface of the composite material layer 2. The entire portion of the wiring layer 1 below the composite material layer 2 is made of a pure aluminum layer 3.
 複合材層2と純アルミニウム層3は所定の接合手段で接合されており、詳述すると両層2、3は焼結接合されており、即ち両層2、3は互いに焼結により接合(固着)されている。図1中の符号「X」は、複合材層2と純アルミニウム層3との接合面(詳述すると焼結接合面)(二点鎖線で示す)である。 The composite material layer 2 and the pure aluminum layer 3 are joined by a predetermined joining means. More specifically, both layers 2 and 3 are sintered joined, that is, both layers 2 and 3 are joined (sintered together) by sintering. ). The code | symbol "X" in FIG. 1 is a joint surface (sintering joint surface if it explains in full detail) (it shows with a dashed-two dotted line) of the composite material layer 2 and the pure aluminum layer 3.
 また、配線層1の純アルミニウム層3と配線層1の下側に配置された絶縁層4とは積層状にろう付け接合されている。 Further, the pure aluminum layer 3 of the wiring layer 1 and the insulating layer 4 disposed below the wiring layer 1 are brazed and joined in a laminated manner.
 このように、配線層1の上部が複合材層2からなることにより、配線層1の熱伝導性(熱伝導率)を高めることができるし、配線層1の線膨張係数を半導体チップ21やはんだ層22の線膨張係数に近づけることができ、これにより、はんだ層22の耐久性及び信頼性を向上させるとともに半導体チップ21への応力を緩和することができる。 As described above, when the upper portion of the wiring layer 1 is made of the composite material layer 2, the thermal conductivity (thermal conductivity) of the wiring layer 1 can be increased. The coefficient of linear expansion of the solder layer 22 can be approached, whereby the durability and reliability of the solder layer 22 can be improved and stress on the semiconductor chip 21 can be relaxed.
 配線層1における複合材層2よりも下側の部分が純アルミニウム層3からなることにより、放熱装置10A(絶縁基板6)に冷熱サイクル負荷が加わった時(例:冷熱サイクル試験時)に配線層1と絶縁層4との間に発生する熱応力を純アルミニウム層3で緩和することができる。 A portion under the composite material layer 2 in the wiring layer 1 is made of the pure aluminum layer 3 so that when a thermal cycle load is applied to the heat dissipation device 10A (the insulating substrate 6) (example: thermal cycle test) The thermal stress generated between the layer 1 and the insulating layer 4 can be relaxed by the pure aluminum layer 3.
 配線層1の厚さは限定されるものではないが、配線層1の厚さの下限は200μmであることが望ましく、配線層1の厚さの上限は3mmであることが望ましく、特に配線層1の厚さの上限は2mmであることが良い。 Although the thickness of the wiring layer 1 is not limited, the lower limit of the thickness of the wiring layer 1 is preferably 200 μm, and the upper limit of the thickness of the wiring layer 1 is preferably 3 mm, and particularly the wiring layer The upper limit of the thickness of 1 is preferably 2 mm.
 配線層1において、複合材層2の厚さと純アルミニウム層3の厚さの比率は限定されるものではないが1:10~10:1であることが望ましく、特に1:5~5:1であることが良い。 In the wiring layer 1, the ratio of the thickness of the composite material layer 2 to the thickness of the pure aluminum layer 3 is not limited, but is preferably 1:10 to 10: 1, particularly 1: 5 to 5: 1. Good to be.
 複合材層2の厚さは限定されるものではないが、なるべく厚い方が望ましい。その理由は、配線層1の熱伝導性を確実に高めることができるし、配線層1の線膨張係数を半導体チップ21やはんだ層22の線膨張係数に確実に近づけることができ、しかも、純アルミニウム層3と絶縁層4との間の熱応力に起因する搭載面1aのしわの発生を抑制することができるからである。そのため、複合材層2の厚さは100μm以上であることが望ましい。特に複合材層2の厚さは200μm以上であることが良い。この場合、搭載面1aのしわの発生を確実に抑制することができる。複合材層2の厚さの上限は限定されるものではなく、通常1mmである。 Although the thickness of the composite material layer 2 is not limited, it is desirable to be as thick as possible. The reason is that the thermal conductivity of the wiring layer 1 can be surely improved, the linear expansion coefficient of the wiring layer 1 can be surely made close to the linear expansion coefficient of the semiconductor chip 21 and the solder layer 22, and moreover This is because generation of wrinkles in the mounting surface 1 a due to thermal stress between the aluminum layer 3 and the insulating layer 4 can be suppressed. Therefore, the thickness of the composite material layer 2 is preferably 100 μm or more. In particular, the thickness of the composite material layer 2 is preferably 200 μm or more. In this case, the occurrence of wrinkles on the mounting surface 1a can be reliably suppressed. The upper limit of the thickness of the composite material layer 2 is not limited and is usually 1 mm.
 純アルミニウム層3の厚さは限定されるものではない。しかるに、純アルミニウム層3が厚すぎると純アルミニウム層3が熱抵抗になり、一方、純アルミニウム層3が薄すぎると上述した熱応力の緩和の効果が少なくなる。この観点から、純アルミニウム層3の厚さは100μm~1.5mmの範囲であることが望ましい。純アルミニウム層3の厚さが100μm以上であることにより、上述した熱応力の緩和の効果を確実に発揮できる。純アルミニウム層3の厚さが1.5mm以下であることにより、純アルミニウム層3による配線層1の熱伝導性の低下を確実に抑制することができて、配線層1を高い熱伝導性に確実に維持することができる。特に望ましい純アルミニウム層3の厚さの上限は1mmである。 The thickness of the pure aluminum layer 3 is not limited. However, when the pure aluminum layer 3 is too thick, the pure aluminum layer 3 becomes a thermal resistance, and when the pure aluminum layer 3 is too thin, the effect of alleviating the thermal stress described above decreases. From this point of view, the thickness of the pure aluminum layer 3 is desirably in the range of 100 μm to 1.5 mm. When the thickness of the pure aluminum layer 3 is 100 μm or more, the above-described effect of the thermal stress can be reliably exhibited. By setting the thickness of the pure aluminum layer 3 to 1.5 mm or less, the decrease in the thermal conductivity of the wiring layer 1 due to the pure aluminum layer 3 can be reliably suppressed, and the wiring layer 1 has high thermal conductivity. It can be maintained reliably. The upper limit of the thickness of the particularly desirable pure aluminum layer 3 is 1 mm.
 純アルミニウム層3のアルミニウムの純度は上述したように99%以上である。そのようなアルミニウムとしてA1100、A1050、A1N30などが好適に用いられる。絶縁基板6及び放熱装置10Aについて熱応力に対する信頼性を更に高めるためには、アルミニウムの純度は99.9%以上であることが望ましく、特に99.99%以上であることが良い。そのようなアルミニウムとして高純度アルミニウム、超高純度アルミニウムなどが用いられる。アルミニウムの純度の上限は限定されるものではなく例えば99.999%である。 The purity of aluminum of the pure aluminum layer 3 is 99% or more as described above. As such aluminum, A1100, A1050, A1N30, etc. are suitably used. In order to further improve the reliability against thermal stress in the insulating substrate 6 and the heat dissipation device 10A, the purity of aluminum is desirably 99.9% or more, and particularly 99.99% or more. As such aluminum, high purity aluminum, ultra high purity aluminum or the like is used. The upper limit of the purity of aluminum is not limited and is, for example, 99.999%.
 複合材層2の複合材は、上述したようにアルミニウム-炭素粒子複合材であり、詳述すると、アルミニウムマトリックス11とアルミニウムマトリックス11中に分散した多数の炭素粒子12とを含むものである。アルミニウムマトリックス11のアルミニウムの材質は限定されるものではなく、例えばA1100、A1050、A1N30などの純度99%の純アルミニウム系のアルミニウム合金であっても良い。絶縁基板6及び放熱装置10Aについて熱応力に対する信頼性を高めるためには、アルミニウムマトリックス11のアルミニウムの純度は99.9%以上であることが望ましく、特に99.99%以上であることが良い。 The composite material of the composite material layer 2 is an aluminum-carbon particle composite material as described above, and specifically includes an aluminum matrix 11 and a large number of carbon particles 12 dispersed in the aluminum matrix 11. The material of the aluminum of the aluminum matrix 11 is not limited, and may be, for example, a pure aluminum-based aluminum alloy having a purity of 99%, such as A1100, A1050, A1N30. In order to enhance the reliability against the thermal stress of the insulating substrate 6 and the heat dissipation device 10A, the purity of the aluminum of the aluminum matrix 11 is desirably 99.9% or more, and preferably 99.99% or more.
 炭素粒子12の種類は限定されるものではない。特に、炭素粒子12として、炭素繊維、カーボンナノチューブ、天然黒鉛粒子及びグラフェンからなる群より選択される一種又は二種以上のものを用いることが望ましい。その理由は、このような炭素粒子は高い熱伝導性を有し且つアルミニウムとの複合化が容易だからである。 The type of carbon particle 12 is not limited. In particular, it is desirable to use, as the carbon particles 12, one or two or more kinds selected from the group consisting of carbon fibers, carbon nanotubes, natural graphite particles and graphene. The reason is that such carbon particles have high thermal conductivity and are easily complexed with aluminum.
 炭素繊維としては、ピッチ系炭素繊維、PAN系炭素繊維などが好適に用いられる。 As carbon fibers, pitch-based carbon fibers, PAN-based carbon fibers and the like are suitably used.
 カーボンナノチューブとしては、単層カーボンナノチューブ、多層カーボンナノチューブ、気相成長炭素繊維(VGCF(登録商標)を含む)などが好適に用いられる。 As carbon nanotubes, single-walled carbon nanotubes, multi-walled carbon nanotubes, vapor grown carbon fibers (including VGCF (registered trademark)), and the like are suitably used.
 天然黒鉛粒子としては、鱗片状黒鉛粒子(特に、高熱伝導性鱗片状黒鉛粒子)などが好適に用いられる。 As natural graphite particles, scale-like graphite particles (in particular, high thermal conductive scale-like graphite particles) are preferably used.
 グラフェンとしては、単層グラフェン、多層グラフェンなどが好適に用いられる。 As graphene, single-layer graphene, multilayer graphene, or the like is preferably used.
 炭素粒子12の大きさは限定されるものではなく、通常、炭素粒子12の最長軸方向の平均長さは1μm~1mmの範囲である。 The size of the carbon particles 12 is not limited, and the average length of the carbon particles 12 in the longest axis direction is usually in the range of 1 μm to 1 mm.
 複合材層2の線膨張係数は純アルミニウム層3の線膨張係数よりも小さく、具体的には18ppm/K以下であることが望ましく、特に15ppm/K以下であることが良い。さらに、複合材層2の線膨張係数は2ppm/K以上であることが望ましい。この場合、複合材層2の線膨張係数がはんだ層22の線膨張係数よりも小さすぎることによる複合材層2とはんだ層22との間の熱応力の発生を確実に抑制することができる。 The linear expansion coefficient of the composite material layer 2 is preferably smaller than that of the pure aluminum layer 3, specifically 18 ppm / K or less, and particularly preferably 15 ppm / K or less. Furthermore, the linear expansion coefficient of the composite layer 2 is desirably 2 ppm / K or more. In this case, the generation of thermal stress between the composite material layer 2 and the solder layer 22 due to the linear expansion coefficient of the composite material layer 2 being too smaller than the linear expansion coefficient of the solder layer 22 can be reliably suppressed.
 複合材層2の製造方法は限定されるものでない。その製造方法として、特開2015-25158号公報などに記載のように、アルミニウム箔上に多数の炭素粒子が付着したプリフォーム箔が複数積層された状態の積層体(プリフォーム体)を、プリフォーム箔の積層方向に加圧しながら板状に加熱焼結することにより、複合材層を製造する方法(この製法を説明の便宜上「プリフォーム箔積層焼結法」という)、及び、アルミニウム粉末と炭素粒子としての炭素粉末との混合物を一方向に加圧しながら板状に加熱焼結することにより、複合材層を製造する方法(この製法を説明の便宜上「粉末焼結法」という)が挙げられる。 The manufacturing method of the composite material layer 2 is not limited. As a manufacturing method thereof, as described in JP-A-2015-25158 and the like, a laminate (preform body) in a state in which a plurality of preform foils in which a large number of carbon particles are attached is laminated on an aluminum foil is A method of producing a composite material layer by heating and sintering in a plate shape while pressing in the laminating direction of the reform foil (this manufacturing method is referred to as “preform foil lamination sintering method” for convenience of explanation), and aluminum powder A method of producing a composite material layer by heating and sintering a mixture with carbon powder as carbon particles in a plate shape while pressing in one direction (this method is referred to as “powder sintering method” for convenience of explanation) is mentioned Be
 本実施形態では、複合材層2は前者の方法(プリフォーム箔積層焼結法)で製造されており、さらに、複合材層2と純アルミニウム層3は複合材層2の製造と同時に焼結接合されている。この方法について以下に説明する。 In the present embodiment, the composite layer 2 is manufactured by the former method (preform foil lamination sintering method), and further, the composite layer 2 and the pure aluminum layer 3 are sintered simultaneously with the manufacture of the composite layer 2. It is joined. This method is described below.
 図2に示すように、アルミニウム箔13上に多数の炭素粒子12が付着した複数のプリフォーム箔14を準備する。本実施形態では、炭素粒子12はアルミニウム箔13の下表面にバインダー樹脂(図示せず)により付着している。アルミニウム箔13の厚さは通常5~100μmの範囲である。そして、複数のプリフォーム箔14を積層して積層体本体17aを形成するとともに、この積層体本体17aの下側に純度99%以上の純アルミニウム板からなる純アルミニウム層3を積層体本体17aに対して積層することで、積層体本体17aと純アルミニウム層3とからなる積層体17を形成する。 As shown in FIG. 2, a plurality of preform foils 14 in which a large number of carbon particles 12 are attached on an aluminum foil 13 are prepared. In the present embodiment, the carbon particles 12 are attached to the lower surface of the aluminum foil 13 by a binder resin (not shown). The thickness of the aluminum foil 13 is usually in the range of 5 to 100 μm. Then, a plurality of preform foils 14 are laminated to form a laminate body 17a, and a pure aluminum layer 3 made of a pure aluminum plate having a purity of 99% or more is formed on the laminate body 17a below the laminate body 17a. The lamination is performed to form a lamination 17 including the lamination body 17 a and the pure aluminum layer 3.
 次いで、積層体17をプリフォーム箔14の積層方向(即ち積層体17の厚さ方向)に加圧しながら所定の焼結雰囲気中にて加熱焼結することにより、複合材層2を製造すると同時に複合材層2と純アルミニウム層3を焼結接合する。 Then, the laminate 17 is heated and sintered in a predetermined sintering atmosphere while pressing the laminate 17 in the lamination direction of the preform foil 14 (that is, the thickness direction of the laminate 17) to produce the composite material layer 2 at the same time The composite layer 2 and the pure aluminum layer 3 are sintered and bonded.
 焼結雰囲気は非酸化雰囲気であることが望ましい。非酸化雰囲気は、不活性ガス雰囲気(例:窒素ガス雰囲気、アルゴンガス雰囲気)、真空雰囲気などを含む。 The sintering atmosphere is preferably a non-oxidizing atmosphere. The non-oxidizing atmosphere includes an inert gas atmosphere (eg, nitrogen gas atmosphere, argon gas atmosphere), a vacuum atmosphere, and the like.
 このような積層体17の焼結は、真空ホットプレス焼結法、放電プラズマ焼結法などにより行われることが望ましい。積層体17を真空ホットプレス焼結法により焼結する場合の具体例を以下に説明する。 It is desirable that such sintering of the laminate 17 be performed by a vacuum hot press sintering method, a discharge plasma sintering method, or the like. The specific example in the case of sintering the laminated body 17 by the vacuum hot press sintering method is demonstrated below.
 図3に示すように、受け型31、押圧パンチ32、筒状の周型33、ヒーター(図示せず)などを具備する真空ホットプレス焼結装置30を準備する。そして、周型3内に積層体17を配置するとともに、積層体17をその下側から受け型31で受ける。 As shown in FIG. 3, a vacuum hot-press sintering apparatus 30 is prepared which comprises a receiving mold 31, a pressing punch 32, a cylindrical peripheral mold 33, a heater (not shown) and the like. Then, the stacked body 17 is disposed in the circumferential mold 3, and the stacked body 17 is received by the receiving mold 31 from the lower side thereof.
 次いで、積層体17をプリフォーム箔14の積層方向に押圧パンチ32で加圧(その加圧方向P)しながら真空雰囲気中にて積層体17をヒーターにより加熱することにより、積層体17の積層体本体17aを焼結して複合材層2を得ると同時に複合材層2と純アルミニウム層3とを焼結接合する。これにより、上述の配線層1が得られる。 Next, the laminate 17 is heated by the heater in a vacuum atmosphere while being pressed by the pressing punch 32 in the stacking direction of the preform foil 14 (the pressing direction P thereof), thereby stacking the stack 17 The body 17a is sintered to obtain the composite layer 2, and at the same time the composite layer 2 and the pure aluminum layer 3 are sintered and joined. Thereby, the above-mentioned wiring layer 1 is obtained.
 配線層1の複合材層2では、積層体17が上述のように加圧加熱されることにより、アルミニウム箔13の材料がアルミニウムマトリックス11になるとともに炭素粒子12、12間に浸透して炭素粒子12、12間の空隙が消滅する。その結果、複合材層2では炭素粒子12がアルミニウムマトリックス11中に分散した状態になる。 In the composite material layer 2 of the wiring layer 1, the material of the aluminum foil 13 becomes the aluminum matrix 11 and penetrates between the carbon particles 12, 12 by being pressurized and heated as described above. The air gap between 12 and 12 disappears. As a result, in the composite material layer 2, the carbon particles 12 are dispersed in the aluminum matrix 11.
 積層体17中に含まれるバインダー樹脂は、積層体17の温度が略室温から焼結温度まで上昇するように積層体17を加熱する途中で昇華、分解などにより消失して積層体17から除去される。 The binder resin contained in the laminate 17 is eliminated by sublimation, decomposition, and the like on the way of heating the laminate 17 so that the temperature of the laminate 17 rises from approximately room temperature to the sintering temperature, and is removed from the laminate 17 Ru.
 真空ホットプレス焼結法で焼結を行う場合における望ましい焼結条件は次のとおりである。 The desirable sintering conditions in the case of sintering by the vacuum hot press sintering method are as follows.
 焼結温度は450~640℃、焼結時間(即ち焼結温度の保持時間)は10~300min、積層体への加圧力は1~40MPa、真空度は10-4~10Paである。 The sintering temperature is 450 to 640 ° C., the sintering time (ie, the holding time of the sintering temperature) is 10 to 300 minutes, the pressure applied to the laminate is 1 to 40 MPa, and the degree of vacuum is 10 -4 to 10 Pa.
 次に、放熱装置10Aの製造方法について以下に説明する。 Next, a method of manufacturing the heat dissipation device 10A will be described below.
 図4に示すように、配線層1と絶縁層4と第1緩衝層5を積層する。この際に、配線層1と絶縁層4との間、及び、絶縁層4と第1緩衝層5との間にそれぞれろう材箔18を介在させる。次いで、これらの層1、4、5をろう付けにより積層状に接合一体化する。これにより、図5に示した絶縁基板6が得られる。 As shown in FIG. 4, the wiring layer 1, the insulating layer 4 and the first buffer layer 5 are stacked. At this time, brazing material foils 18 are interposed between the wiring layer 1 and the insulating layer 4 and between the insulating layer 4 and the first buffer layer 5, respectively. Then, these layers 1, 4, and 5 are integrally joined in a laminated state by brazing. Thereby, the insulating substrate 6 shown in FIG. 5 is obtained.
 次いで、絶縁基板6と第2緩衝層7Aと放熱部材8を積層する。そして、これらをろう付けにより積層状に接合一体化する。これにより、図1に示した放熱装置10Aが得られる。 Next, the insulating substrate 6, the second buffer layer 7A, and the heat dissipation member 8 are stacked. And these are joined and integrated in lamination form by brazing. Thereby, the heat dissipation device 10A shown in FIG. 1 is obtained.
 図6は、本発明の第2実施形態に係る放熱装置10Bを説明する図である。なお、この図では、上記第1実施形態の放熱装置10Aの要素と同じ作用を奏する要素に、上記第1実施形態の放熱装置10Aの要素に付された符号と同じ符号が付されている。 FIG. 6 is a view for explaining a heat dissipation device 10B according to a second embodiment of the present invention. In addition, in this figure, the same code | symbol as the code | symbol attached | subjected to the element of the heat radiating device 10A of the said 1st Embodiment is attached | subjected to the element which plays the same effect as the element of the heat radiating device 10A of the said 1st embodiment.
 本第2実施形態の放熱装置10Bでは、第2緩衝層7Bはアルミニウムパンチングメタル板からなるものではなく、両面にそれぞれろう材層(図示せず)が設けられた両面アルミニウムブレージングシートからなるものである。そして、第2緩衝層7Bがブレージングシートの一方のろう材層で第1緩衝層5と接合されるとともに、第2緩衝層7Bがブレージングシートの他方のろう材層で放熱部材8と接合されている。その他の構成は上記第1実施形態の放熱装置10Aと同じである。 In the heat dissipation device 10B of the second embodiment, the second buffer layer 7B is not made of an aluminum punching metal plate, but is made of a double-sided aluminum brazing sheet provided with a brazing material layer (not shown) on each side. is there. Then, the second buffer layer 7B is joined to the first buffer layer 5 in one brazing material layer of the brazing sheet, and the second buffer layer 7B is joined to the heat dissipation member 8 in the other brazing material layer of the brazing sheet. There is. The other configuration is the same as that of the heat dissipation device 10A of the first embodiment.
 以上で本発明の幾つかの実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で様々に変更可能である。 Although some embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.
 例えば、上記実施形態では放熱部材8は液冷式のものであるが、本発明では放熱部材はその他に例えば空冷式のもの(例:ヒートシンク)であっても良い。 For example, although the heat radiating member 8 is liquid cooled in the above embodiment, the heat radiating member may be, for example, air cooled (eg, heat sink) in the present invention.
 また、上記実施形態では配線層1における複合材層2と純アルミニウム層3は焼結接合されているが、本発明では両層2、3はその他に例えばろう付け接合されていても良い。 Further, in the above embodiment, the composite material layer 2 and the pure aluminum layer 3 in the wiring layer 1 are sintered and joined, but in the present invention, the layers 2 and 3 may be brazed, for example.
 本願は、2017年11月28日付で出願された日本国特許出願の特願2017-227442号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 The present application relates to priority claim of Japanese Patent Application No. 2017-227442 filed on November 28, 2017, and the disclosure content thereof constitutes a part of the present application as it is. .
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and phrases used herein are for the purpose of description, not for limitation, but any equivalent of the features shown and described herein. It should also be recognized that it is not excluded and that various modifications within the claimed scope of the present invention are also permitted.
 本発明は、多くの異なった形態で具現化され得るものであるが、この開示は本発明の原理の実施例を提供するものと見なされるべきであって、それら実施例は、本発明をここに記載しかつ/または図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、多くの図示実施形態がここに記載されている。 Although the present invention can be embodied in many different forms, this disclosure is to be considered as providing examples of the principles of the present invention, which examples are intended to illustrate the present invention. With the understanding that it is not intended to be limited to the preferred embodiments described and / or illustrated herein, a number of illustrated embodiments are described herein.
 本発明の図示実施形態を幾つかここに記載したが、本発明は、ここに記載した各種の好ましい実施形態に限定されるものではなく、この開示に基づいていわゆる当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を有するありとあらゆる実施形態をも包含するものである。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施例に限定されるべきではなく、そのような実施例は非排他的であると解釈されるべきである。例えば、この開示において、「preferably」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。 Although several illustrated embodiments of the present invention are described herein, the present invention is not limited to the various preferred embodiments described herein, but is equivalent based on this disclosure and may be appreciated by those skilled in the art. The present invention also includes any and all embodiments that have various elements, modifications, deletions, combinations (eg, combinations of features across various embodiments), improvements and / or changes. The limitations of the claims should be interpreted broadly based on the terms used in the claims, and should not be limited to the embodiments described in the specification or process of the present application, and such The examples should be construed as non-exclusive. For example, in the present disclosure, the term "preferentially" is non-exclusive and means "preferably, but not limited to."
 次に、本発明の具体的な実施例及び比較例を以下に示す。ただし、本発明は下記実施例に限定されるものではない。 Next, specific examples of the present invention and comparative examples are shown below. However, the present invention is not limited to the following examples.
 <実施例1>
 本実施例1では、図6に示した放熱装置10Bを準備した。
Example 1
In Example 1, the heat dissipation device 10B shown in FIG. 6 was prepared.
 放熱装置10Bの配線層1の平面視形状は縦28mm×横28mmの方形状であり、配線層1の厚さは600μmであった。 The plan view shape of the wiring layer 1 of the heat dissipation device 10B was a square of 28 mm long × 28 mm wide, and the thickness of the wiring layer 1 was 600 μm.
 配線層1における搭載面1aを含む上部は厚さ400μmのアルミニウム-炭素粒子複合材層2からなる。複合材層2のアルミニウムマトリックス11のアルミニウムの材質は純度99.99%の純アルミニウムであった。配線層1における複合材層2よりも下側の部分の全体は厚さ200μmで純度99.99%の純アルミニウム層からなる。 The upper portion of the wiring layer 1 including the mounting surface 1a is made of an aluminum-carbon particle composite layer 2 with a thickness of 400 μm. The material of the aluminum of the aluminum matrix 11 of the composite material layer 2 was pure aluminum having a purity of 99.99%. The entire portion of the wiring layer 1 below the composite material layer 2 is made of a pure aluminum layer having a thickness of 200 μm and a purity of 99.99%.
 絶縁層4は窒化アルミニウム(AlN)板からなり、その平面視形状は縦30mm×横30mmの方形状であり、その厚さは640μmであった。 The insulating layer 4 was made of an aluminum nitride (AlN) plate, and its shape in plan view was a square of 30 mm long × 30 mm wide, and its thickness was 640 μm.
 第1緩衝層5は純度99.99%の純アルミニウム板からなり、その平面視形状は縦28mm×横28mmの方形状であり、その厚さは600μmであった。 The first buffer layer 5 was made of a pure aluminum plate having a purity of 99.99%, and its shape in a plan view was 28 mm long × 28 mm wide, and its thickness was 600 μm.
 第2緩衝層7Bは両面アルミニウムブレージングシートからなり、その平面視形状は縦29mm×横29mmの方形状であり、その厚さは600μmであった。 The second buffer layer 7B was a double-sided aluminum brazing sheet, and its shape in a plan view was 29 mm long × 29 mm wide, and its thickness was 600 μm.
 放熱部材8はアルミニウム製であり、その厚さは10mmであった。 The heat dissipation member 8 was made of aluminum and had a thickness of 10 mm.
 放熱装置10Bについて冷熱サイクル試験を-40℃~200℃の試験温度範囲で500サイクル行った。そして、配線層1の搭載面1aの状態を観察したところ、搭載面1aにしわは発生していなかった。 A thermal cycle test was conducted 500 cycles at a test temperature range of −40 ° C. to 200 ° C. for the heat dissipation device 10B. And when the state of the mounting surface 1a of the wiring layer 1 was observed, no wrinkles were generated on the mounting surface 1a.
 <実施例2>
 本実施例2で準備した放熱装置10Bでは、配線層1における搭載面1aを含む上部は厚さ200μmのアルミニウム-炭素粒子複合材層2からなり、配線層1における複合材層2よりも下側の部分の全体は厚さ400μmで純度99.99%の純アルミニウム層3からなる。その他の構成は実施例1の放熱装置10Bと同じである。
Example 2
In the heat dissipation device 10B prepared in the second embodiment, the upper portion of the wiring layer 1 including the mounting surface 1a is made of the aluminum-carbon particle composite material layer 2 having a thickness of 200 μm, and is lower than the composite material layer 2 in the wiring layer 1 The whole of the part consists of a pure aluminum layer 3 with a thickness of 400 μm and a purity of 99.99%. The other configuration is the same as the heat dissipation device 10B of the first embodiment.
 放熱装置10Bについて冷熱サイクル試験を実施例1と同じ試験条件で行った。そして、配線層1の搭載面1aの状態を観察したところ、搭載面1aにしわは殆ど発生していなかった。 A thermal cycle test was conducted on the heat dissipation device 10B under the same test conditions as in Example 1. And when the state of the mounting surface 1a of the wiring layer 1 was observed, almost no wrinkles were generated on the mounting surface 1a.
 <実施例3>
 本実施例3で準備した放熱装置10Bでは、配線層1における搭載面1aを含む上部は厚さ100μmのアルミニウム-炭素粒子複合材層2からなり、配線層1における複合材層2よりも下側の部分の全体は厚さ500μmで純度99.99%の純アルミニウム層3からなる。その他の構成は実施例1の放熱装置10Bと同じである。
Example 3
In the heat dissipation device 10B prepared in the third embodiment, the upper portion including the mounting surface 1a in the wiring layer 1 is made of the aluminum-carbon particle composite material layer 2 having a thickness of 100 μm, and is lower than the composite material layer 2 in the wiring layer 1 The whole of the part consists of a pure aluminum layer 3 with a thickness of 500 μm and a purity of 99.99%. The other configuration is the same as the heat dissipation device 10B of the first embodiment.
 放熱装置10Bについて冷熱サイクル試験を実施例1と同じ試験条件で行った。そして、配線層1の搭載面1aの状態を観察したところ、搭載面1aにしわが僅かに発生していた。 A thermal cycle test was conducted on the heat dissipation device 10B under the same test conditions as in Example 1. And when the state of the mounting surface 1a of the wiring layer 1 was observed, the wrinkles had slightly generate | occur | produced on the mounting surface 1a.
 <比較例>
 本比較例で準備した放熱装置では、配線層の全体が厚さ600μmで純度99.99%の純アルミニウム層からなる。その他の構成は実施例1の放熱装置10Bと同じである。
Comparative Example
In the heat dissipation device prepared in this comparative example, the entire wiring layer is made of a pure aluminum layer having a thickness of 600 μm and a purity of 99.99%. The other configuration is the same as the heat dissipation device 10B of the first embodiment.
 放熱装置について冷熱サイクル試験を実施例1と同じ試験条件で行った。そして、配線層の搭載面の状態を観察したところ、搭載面にしわが少し発生していた。 A thermal cycle test was conducted on the heat dissipation device under the same test conditions as in Example 1. Then, when the state of the mounting surface of the wiring layer was observed, a slight wrinkle was generated on the mounting surface.
 本発明は、電子素子(例:半導体チップ)等の発熱性素子が搭載される絶縁基板及び放熱装置に利用可能である。 The present invention is applicable to an insulating substrate and a heat dissipation device on which a heat generating element such as an electronic element (for example, a semiconductor chip) is mounted.
1:配線層
1a:搭載面
2:アルミニウム-炭素粒子複合材層
3:純アルミニウム層
4:絶縁層
5:第1緩衝層
6:絶縁基板
7A、7B:第2緩衝層
8:放熱部材
10A、10B:放熱装置
21:半導体チップ(発熱性素子)
1: Wiring layer 1a: Mounting surface 2: Aluminum-carbon particle composite material layer 3: Pure aluminum layer 4: Insulating layer 5: First buffer layer 6: Insulating substrate 7A, 7B: Second buffer layer 8: Heat dissipation member 10A, 10B: Heat dissipation device 21: Semiconductor chip (heat generating element)

Claims (4)

  1.  上表面からなる発熱性素子用搭載面を有する配線層と、前記配線層の下側に前記配線層に対して積層状に配置された絶縁層と、を備え、
     前記配線層の上部がアルミニウム-炭素粒子複合材層を有し、
     前記配線層における前記複合材層よりも下側の部分が純度99%以上の純アルミニウム層を有している絶縁基板。
    A wiring layer having a mounting surface for a heat generating element formed of an upper surface, and an insulating layer disposed below the wiring layer in a stacked manner with respect to the wiring layer;
    The upper portion of the wiring layer has an aluminum-carbon particle composite layer,
    An insulating substrate, wherein a portion of the wiring layer below the composite material layer has a pure aluminum layer with a purity of 99% or more.
  2.  前記純アルミニウム層のアルミニウムの純度が99.99%以上である請求項1記載の絶縁基板。 The insulating substrate according to claim 1, wherein the purity of aluminum of the pure aluminum layer is 99.99% or more.
  3.  前記複合材層の厚さが100μm以上である請求項1又は2記載の絶縁基板。 The insulating substrate according to claim 1, wherein a thickness of the composite material layer is 100 μm or more.
  4.  請求項1~3のいずれかに記載の絶縁基板と放熱部材を具備する放熱装置。 A heat dissipation device comprising the insulating substrate according to any one of claims 1 to 3 and a heat dissipation member.
PCT/JP2018/026025 2017-11-28 2018-07-10 Insulating substrate and heat dissipation device WO2019106874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880076057.6A CN111386601A (en) 2017-11-28 2018-07-10 Insulating substrate and heat dissipation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017227442A JP2019096841A (en) 2017-11-28 2017-11-28 Insulating substrate and heat dissipation device
JP2017-227442 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019106874A1 true WO2019106874A1 (en) 2019-06-06

Family

ID=66663850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026025 WO2019106874A1 (en) 2017-11-28 2018-07-10 Insulating substrate and heat dissipation device

Country Status (3)

Country Link
JP (1) JP2019096841A (en)
CN (1) CN111386601A (en)
WO (1) WO2019106874A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025074B1 (en) * 2021-06-30 2022-02-24 株式会社半導体熱研究所 Joining member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222669A (en) * 2010-04-07 2011-11-04 Mitsubishi Materials Corp Substrate for power module and power module
JP5150905B2 (en) * 2004-11-09 2013-02-27 島根県 Method for producing metal-based carbon fiber composite material
JP2015025158A (en) * 2013-07-25 2015-02-05 昭和電工株式会社 Composite material of metal and carbon fiber and production method thereof
JP2016222962A (en) * 2015-05-28 2016-12-28 昭和電工株式会社 Composite body of aluminium and carbon particle, and method for manufacturing the same
JP2017007172A (en) * 2015-06-19 2017-01-12 昭和電工株式会社 Composite of aluminum and carbon particle and method for producing the same
JP2017041592A (en) * 2015-08-21 2017-02-23 昭和電工株式会社 Composite of aluminum and carbon particle and insulating substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150905A (en) * 1991-11-30 1993-06-18 Nec Corp Magnetic disk device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150905B2 (en) * 2004-11-09 2013-02-27 島根県 Method for producing metal-based carbon fiber composite material
JP2011222669A (en) * 2010-04-07 2011-11-04 Mitsubishi Materials Corp Substrate for power module and power module
JP2015025158A (en) * 2013-07-25 2015-02-05 昭和電工株式会社 Composite material of metal and carbon fiber and production method thereof
JP2016222962A (en) * 2015-05-28 2016-12-28 昭和電工株式会社 Composite body of aluminium and carbon particle, and method for manufacturing the same
JP2017007172A (en) * 2015-06-19 2017-01-12 昭和電工株式会社 Composite of aluminum and carbon particle and method for producing the same
JP2017041592A (en) * 2015-08-21 2017-02-23 昭和電工株式会社 Composite of aluminum and carbon particle and insulating substrate

Also Published As

Publication number Publication date
JP2019096841A (en) 2019-06-20
CN111386601A (en) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6580385B2 (en) Composite of aluminum and carbon particles and method for producing the same
US10347559B2 (en) High thermal conductivity/low coefficient of thermal expansion composites
JP6423731B2 (en) Semiconductor module
WO2011065457A1 (en) Laminate and manufacturing method for same
TW200921871A (en) Heat conductor
WO2018180159A1 (en) Method for producing insulated circuit board with heat sink
WO2019188614A1 (en) Semiconductor package
JP6544983B2 (en) Cooling board
WO2019106874A1 (en) Insulating substrate and heat dissipation device
JP2011071260A (en) Laminating material and manufacturing method thereof, and insulated laminating material and manufacturing method thereof
JP5654369B2 (en) Laminate production method
JP2020053613A (en) Composite substrate
WO2019159776A1 (en) Cooling device
JP2014168044A (en) Substrate for power module with heat sink and method for manufacturing the same
JP6498040B2 (en) Composite of aluminum and carbon particles and insulating substrate
JP6327513B2 (en) Semiconductor device and manufacturing method thereof
JP2018041868A (en) Heat dissipation substrate
WO2020059605A1 (en) Semiconductor package
JP6682403B2 (en) Insulating substrate manufacturing method and insulating substrate
JP7302446B2 (en) Heat dissipation device
JP2017063126A (en) Manufacturing method for resistor, and resistor
JP2021143392A (en) Production method of aluminum-carbon particle composite
JP2019075564A (en) Heat sink plate
JP2009200455A (en) Semiconductor heat-radiating substrate
TWI491085B (en) Complex heat dissipater and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884516

Country of ref document: EP

Kind code of ref document: A1