JP2018041868A - Heat dissipation substrate - Google Patents

Heat dissipation substrate Download PDF

Info

Publication number
JP2018041868A
JP2018041868A JP2016175698A JP2016175698A JP2018041868A JP 2018041868 A JP2018041868 A JP 2018041868A JP 2016175698 A JP2016175698 A JP 2016175698A JP 2016175698 A JP2016175698 A JP 2016175698A JP 2018041868 A JP2018041868 A JP 2018041868A
Authority
JP
Japan
Prior art keywords
heat dissipation
layer
metal
dissipation substrate
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016175698A
Other languages
Japanese (ja)
Inventor
石川 信二
Shinji Ishikawa
信二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Materials Co Ltd filed Critical Nippon Steel and Sumikin Materials Co Ltd
Priority to JP2016175698A priority Critical patent/JP2018041868A/en
Publication of JP2018041868A publication Critical patent/JP2018041868A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat dissipation substrate capable of restraining curvature deformation after brazing.SOLUTION: In a heat dissipation substrate 10A where Cu layers 12, 14, 16 and metal A layers 18 composed of metal A are laminated alternately, the Cu layers 12, 14, 16 are laminated asymmetrically in the thickness direction.SELECTED DRAWING: Figure 1

Description

本発明は、電子部品に適用される放熱基板に関する。   The present invention relates to a heat dissipation substrate applied to an electronic component.

電気自動車、ハイブリッド自動車や風力発電では、電力制御用の部品としてパワーモジュールが用いられる。パワーモジュールは、セラミックスで形成された絶縁基板と、金属で形成された放熱基板が接合されていると共に、接合材を介して半導体デバイス、特に、大電力で動作するLSI、IC、パワートランジスタ等がろう付けされる。大電力で動作する半導体デバイスは、使用時において熱を発生する。   In electric vehicles, hybrid vehicles and wind power generation, power modules are used as power control components. In power modules, an insulating substrate made of ceramics and a heat dissipation substrate made of metal are joined together, and semiconductor devices, especially LSIs, ICs, power transistors, etc. that operate at high power are connected via a joining material. It is brazed. Semiconductor devices that operate with high power generate heat during use.

放熱基板は、これらの半導体デバイスから発生する熱を効率よく拡散・放熱することが要求される。ところが、パワーモジュールは、上記の通り、異種材料からなる接合体であるため、製造時だけでなく、使用時における温度変化によって内部応力が発生する。この内部応力によって、放熱基板が変形してしまうという問題がある。そのため、放熱基板は、高い機械的強度と高い熱伝導率とを備えることが望まれる。   The heat dissipation substrate is required to efficiently diffuse and dissipate heat generated from these semiconductor devices. However, since the power module is a joined body made of different materials as described above, an internal stress is generated not only at the time of manufacture but also by temperature change at the time of use. There is a problem that the heat dissipation substrate is deformed by the internal stress. Therefore, it is desired that the heat dissipation substrate has high mechanical strength and high thermal conductivity.

これに対して、例えば特許文献1には、3層構造からなる放熱基板としてCu層、Mo層、Cu層を順に積層したクラッド材が開示されている。この3層構造のクラッド材におけるMoの体積比を20%から99.6%の範囲で変化させることにより、熱伝導率と熱膨張係数を制御し、Mo単体よりも高い熱伝導率と、Cu単体よりも小さい熱膨張係数とを得ている。   On the other hand, for example, Patent Document 1 discloses a clad material in which a Cu layer, a Mo layer, and a Cu layer are sequentially laminated as a heat dissipation substrate having a three-layer structure. By changing the volume ratio of Mo in this three-layer clad material in the range of 20% to 99.6%, the thermal conductivity and thermal expansion coefficient are controlled, higher thermal conductivity than Mo alone, and higher than Cu alone. Also obtained with a small thermal expansion coefficient.

また、特許文献2にはCu層、Mo層、Cu層を順に積層した3層構造のクラッド材の熱膨張係数とCuの体積比の関係が開示されている。この構造のクラッド材においては、Mo層が1層の場合には、例えば熱膨張係数を12×10-6/K以下とするためには、熱伝導率が低いMoの使用量を全体の質量の20%以上としなければならない。そのため、このクラッド材の厚さ方向における熱伝導率は、230W/(m・K)程度にとどまる。 Patent Document 2 discloses a relationship between a thermal expansion coefficient of a clad material having a three-layer structure in which a Cu layer, a Mo layer, and a Cu layer are sequentially laminated and a volume ratio of Cu. In the clad material having this structure, when the Mo layer is one layer, for example, in order to make the thermal expansion coefficient 12 × 10 −6 / K or less, the amount of Mo having low thermal conductivity is reduced to the total mass. Must be 20% or more. Therefore, the thermal conductivity in the thickness direction of this clad material is only about 230 W / (m · K).

さらに特許文献3には、Cu層と、Mo層とが交互に5層以上積層されたクラッド材が開示されている。この場合、5層以上積層することにより、熱膨張係数がより小さく、かつ熱伝導率がより高いクラッド材を得ることができる。   Further, Patent Document 3 discloses a clad material in which five or more Cu layers and Mo layers are alternately laminated. In this case, by laminating five or more layers, a clad material having a smaller thermal expansion coefficient and a higher thermal conductivity can be obtained.

特開平2−102551号公報Japanese Patent Laid-Open No. 2-102551 特開平6−268115号公報JP-A-6-268115 特開2007−115731号公報JP 2007-115731 A

放熱基板は、接合される半導体デバイスの信頼性を確保するため、半導体デバイスの動作温度である150℃付近の温度において半導体デバイスの熱膨張係数に近いことが必要である。そのため、放熱基板は、熱膨張係数が低い金属で構成された層が全体に占める体積比率を10%超にする必要がある。上記のように構成された放熱基板は、セラミックス基板より熱膨張係数が小さい。したがって放熱基板は、組立時のろう付けにおける加熱温度(例えば800℃)では、セラミックス基板の方がより大きく熱変形するため、冷却後において反り変形が生じる。   In order to ensure the reliability of the semiconductor device to be joined, the heat dissipation substrate needs to be close to the thermal expansion coefficient of the semiconductor device at a temperature around 150 ° C., which is the operating temperature of the semiconductor device. For this reason, the heat dissipation substrate needs to have a volume ratio exceeding 10% of the entire layer composed of a metal having a low thermal expansion coefficient. The heat dissipation substrate configured as described above has a smaller coefficient of thermal expansion than the ceramic substrate. Therefore, the heat dissipation substrate is warped and deformed after cooling because the ceramic substrate undergoes thermal deformation more greatly at the heating temperature (for example, 800 ° C.) during brazing during assembly.

本発明は、ろう付け後における反り変形を抑制することができる放熱基板を提供することを目的とする。   An object of this invention is to provide the thermal radiation board which can suppress the curvature deformation after brazing.

本発明に係る放熱基板は、Cu層と、金属Aからなる金属A層とが、交互に積層された放熱基板において、前記Cu層が厚さ方向に非対称に積層されたことを特徴とする。   The heat dissipation substrate according to the present invention is characterized in that, in a heat dissipation substrate in which Cu layers and metal A layers made of metal A are alternately stacked, the Cu layers are stacked asymmetrically in the thickness direction.

本発明によれば、放熱基板は、Cu層が厚さ方向に非対称に積層されていることにより、銀ロウ付け後における反り変形が抑制される。   According to the present invention, since the Cu layer is laminated asymmetrically in the thickness direction, warpage deformation after silver brazing is suppressed in the heat dissipation substrate.

本実施形態に係る放熱基板の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the thermal radiation board which concerns on this embodiment. 本実施形態に係る放熱基板の使用状態を示す側面図である。It is a side view which shows the use condition of the heat sink which concerns on this embodiment. 変形例に係る放熱基板の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the thermal radiation board | substrate which concerns on a modification.

以下、図面を参照して本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示す放熱基板10Aは、矩形状であって、Cu又はCu合金からなるCu層12,14,16と、金属Aからなる金属A層18とが、交互に積層されている。放熱基板10Aは、厚さ方向に見て、4辺がそれぞれ直線状である。本図の場合、放熱基板10Aは、厚さ方向の中央にCu層14、当該Cu層14の両側に金属A層18、さらに外表面にそれぞれCu層12,16が積層され、合計5層で形成されている。金属Aは、Mo又はWである。   The heat dissipation substrate 10A shown in FIG. 1 has a rectangular shape, and Cu layers 12, 14, 16 made of Cu or Cu alloy and metal A layers 18 made of metal A are alternately stacked. As shown in the thickness direction, the heat dissipation substrate 10A has four sides that are linear. In the case of this figure, the heat dissipation substrate 10A has a Cu layer 14 at the center in the thickness direction, a metal A layer 18 on both sides of the Cu layer 14, and Cu layers 12 and 16 on the outer surface. Is formed. The metal A is Mo or W.

放熱基板10Aは、厚さ方向に非対称に形成されている。すなわち放熱基板10Aは、厚さ方向の中心から数えて同じ位置にあるCu層12,16が、異なる厚さである。本図の場合、一表面側に配置されるCu層12の厚さが、一表面と反対側の他表面側に配置されるCu層16の厚さより、厚い。また金属A層18は互いに同じ厚さである。Cu層12の厚さは、Cu層14,16の厚さより、少なくとも0.02mm厚いのが好ましい。Cu層12の厚さは、例えば、0.30〜0.60mm、Cu層14,16の厚さは、例えば、0.25〜0.55mmの範囲で選択とすることができる。Cu層12の厚さが、上記上限以下であれば、金属A層18による低熱膨張の効果が得られるので、信頼性が損なわれることもない。またCu層12の厚さが、上記下限以上であれば、十分な機械的強度が得られる。また金属A層18の厚さは、0.03〜0.10mmとすることができる。   The heat dissipation board 10A is formed asymmetrically in the thickness direction. That is, in the heat dissipation substrate 10A, the Cu layers 12 and 16 at the same position counted from the center in the thickness direction have different thicknesses. In the case of this figure, the thickness of the Cu layer 12 arranged on one surface side is thicker than the thickness of the Cu layer 16 arranged on the other surface side opposite to the one surface. The metal A layers 18 have the same thickness. The thickness of the Cu layer 12 is preferably at least 0.02 mm thicker than the thickness of the Cu layers 14 and 16. The thickness of the Cu layer 12 can be selected, for example, in the range of 0.30 to 0.60 mm, and the thickness of the Cu layers 14 and 16 can be selected in the range of, for example, 0.25 to 0.55 mm. If the thickness of the Cu layer 12 is equal to or less than the above upper limit, the effect of low thermal expansion by the metal A layer 18 can be obtained, and reliability is not impaired. If the thickness of the Cu layer 12 is equal to or greater than the above lower limit, sufficient mechanical strength can be obtained. The thickness of the metal A layer 18 can be 0.03 to 0.10 mm.

次に上記のように構成された放熱基板10Aの製造方法について説明する。放熱基板10Aは、Cu板と金属A板を接合する工程と、放熱基板10Aを切り出す工程とにより製造することができる。   Next, a method for manufacturing the heat dissipation board 10A configured as described above will be described. The heat dissipation substrate 10A can be manufactured by a step of bonding a Cu plate and a metal A plate and a step of cutting out the heat dissipation substrate 10A.

Cu板と金属A板を接合する工程は、Cu板と金属A板を交互に5層重ねて高温で1軸方向に加圧する熱間プレス加工を施す。具体的には、圧力1〜10MPa、温度925〜1025℃の条件で、プレス機を用いて行う。熱間プレス加工中の雰囲気は、Cuの酸化を防ぐため、酸素を含まない雰囲気であるのが好ましく、例えば、還元ガス雰囲気、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気、又は真空中であるのが好ましい。上記の工程により、Cu層12,14,16と金属A層18が交互に重なった5層からなる接合体が得られる。   In the process of joining the Cu plate and the metal A plate, hot pressing is performed in which five layers of the Cu plate and the metal A plate are alternately stacked and pressed in a uniaxial direction at a high temperature. Specifically, it is performed using a press machine under conditions of a pressure of 1 to 10 MPa and a temperature of 925 to 1025 ° C. The atmosphere during hot pressing is preferably an atmosphere that does not contain oxygen in order to prevent Cu oxidation. For example, a reducing gas atmosphere, a nitrogen atmosphere, an argon atmosphere, a helium atmosphere, or a vacuum is preferred. . By the above-described process, a bonded body composed of five layers in which the Cu layers 12, 14, 16 and the metal A layers 18 are alternately overlapped is obtained.

次いで、放熱基板10Aを切り出す工程について説明する。本工程では、上記のようにして得られた接合体から、打ち抜き加工により、所定の大きさの放熱基板10Aを切り出す。すなわち接合体の最下層に雄型を接触させ、接合体の最上層に雌型を接触させ、雄型を雌型方向に移動することによって、放熱基板10Aを打ち抜く。   Next, a process of cutting out the heat dissipation substrate 10A will be described. In this step, the heat dissipation substrate 10A having a predetermined size is cut out from the joined body obtained as described above by punching. In other words, the male die is brought into contact with the lowermost layer of the joined body, the female die is brought into contact with the uppermost layer of the joined body, and the male die is moved in the female die direction, thereby punching the heat dissipation substrate 10A.

上記のように製造された放熱基板10Aは、図2に示すように、一表面側に銀ロウを含む接合部21を介してセラミックス基板20が接合される。通常、放熱基板10Aとセラミックス基板20を銀ロウによって接合する際、800℃〜830℃に加熱される。   As shown in FIG. 2, the ceramic substrate 20 is bonded to one surface of the heat dissipation substrate 10 </ b> A manufactured as described above via a bonding portion 21 containing silver brazing. Usually, when the heat dissipation substrate 10A and the ceramic substrate 20 are joined by silver brazing, the substrate is heated to 800 ° C to 830 ° C.

加熱されることによって、放熱基板10Aとセラミックス基板20は、熱膨張する。加熱温度が800℃以上になると、銀ロウが溶解し、放熱基板10Aとセラミックス基板20の間に流れ込み、固化することで放熱基板10Aとセラミックス基板20を接合する。   By being heated, the heat dissipation substrate 10A and the ceramic substrate 20 are thermally expanded. When the heating temperature is 800 ° C. or higher, the silver solder is melted, flows between the heat dissipation substrate 10A and the ceramic substrate 20, and solidifies to bond the heat dissipation substrate 10A and the ceramic substrate 20.

冷却されると、放熱基板10Aとセラミックス基板20は、それぞれ熱収縮する。本実施形態の場合、放熱基板10Aは、Cu層12,14,16が厚さ方向に非対称に積層されていることにより、銀ロウ付け後における反り変形が抑制される。   When cooled, the heat dissipation substrate 10A and the ceramic substrate 20 each thermally contract. In the case of the present embodiment, in the heat dissipation substrate 10A, the Cu layers 12, 14, and 16 are laminated asymmetrically in the thickness direction, so that warpage deformation after silver brazing is suppressed.

放熱基板10Aとセラミックス基板20の熱膨張率の差に応じ、放熱基板10Aとセラミックス基板20の間に熱応力が生じる。セラミックス基板20に接する一表面側のCu層12の厚さが、他表面側のCu層16より厚いので、放熱基板10Aは、一表面側の方が他表面側より熱膨張率が大きい。したがって放熱基板10Aは、厚さ方向に対称な従来の放熱基板10Aに比べ、一表面側においてセラミックス基板20との熱膨張差が小さいため、セラミックス基板20との間の熱応力が小さくなる。上記の通り放熱基板10Aは、セラミックス基板20との間の熱応力が小さいので、反りが抑制される。さらにCuは塑性変形しやすいため、Cu層12が塑性変形することにより、放熱基板10Aの反りが抑制されると考えられる。   A thermal stress is generated between the heat dissipation substrate 10A and the ceramic substrate 20 according to the difference in thermal expansion coefficient between the heat dissipation substrate 10A and the ceramic substrate 20. Since the Cu layer 12 on one surface side in contact with the ceramic substrate 20 is thicker than the Cu layer 16 on the other surface side, the thermal expansion substrate 10A has a higher thermal expansion coefficient on the one surface side than on the other surface side. Accordingly, the heat dissipation substrate 10A has a smaller difference in thermal expansion from the ceramic substrate 20 on one surface side than the conventional heat dissipation substrate 10A that is symmetric in the thickness direction, so that the thermal stress between the heat dissipation substrate 10A and the ceramic substrate 20 is reduced. As described above, since the thermal stress between the heat dissipation substrate 10A and the ceramic substrate 20 is small, warpage is suppressed. Furthermore, since Cu is easily plastically deformed, it is considered that the warpage of the heat dissipation substrate 10A is suppressed when the Cu layer 12 is plastically deformed.

本実施形態の場合、放熱基板10Aは、積層されたCu層12,14,16と金属A層18とを備えることにより、CuとMoとからなる複合合金を芯材として備える従来の放熱基板に比べ、より薄い金属A層18で高い機械的強度を得ることができる。したがって、放熱基板10Aは、金属A層18を薄くすることができるので、より高い熱伝導性を得ることができる。   In the case of the present embodiment, the heat dissipation board 10A is a conventional heat dissipation board that includes the laminated Cu layers 12, 14, 16 and the metal A layer 18 so as to include a composite alloy composed of Cu and Mo as a core material. In comparison, a higher mechanical strength can be obtained with the thinner metal A layer 18. Therefore, since the heat dissipation substrate 10A can make the metal A layer 18 thinner, higher thermal conductivity can be obtained.

(変形例)
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
(Modification)
The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.

上記実施形態の場合、金属A層18は、同じ厚さである場合について説明したが、本発明はこれに限らない。図1と同じ構成について同じ符号を付した図3を参照して変形例を説明する。本図に示すように、放熱基板10Bは、セラミックス基板が接合される一表面側に配置される前記金属A層18の厚さより、前記一表面と反対側の他表面側に配置される前記金属A層22の厚さが厚い。金属A層22の厚さは、金属A層18の厚さより、少なくとも0.02mm厚いのが好ましい。金属A層22の厚さは、例えば、0.05〜0.15mmの範囲で選択することができる。放熱基板10Bは、機械的剛性が高い前記金属A層22を他表面側に配置したことにより、反りをより抑制することができる。金属A層22の厚さが、上記上限以下であれば、放熱基板10Bとセラミックス基板の熱膨脹率差による反りを本発明の効果により抑制することができる。また金属A層22の厚さが、上記下限以上であれば、金属A層22による低熱膨張化の効果と高い機械的剛性の効果が得られる。   In the case of the above embodiment, the case where the metal A layer 18 has the same thickness has been described, but the present invention is not limited to this. A modification will be described with reference to FIG. 3 in which the same components as those in FIG. As shown in this figure, the heat dissipating substrate 10B has the metal disposed on the other surface side opposite to the one surface from the thickness of the metal A layer 18 disposed on the one surface side to which the ceramic substrate is bonded. The A layer 22 is thick. The thickness of the metal A layer 22 is preferably at least 0.02 mm thicker than the thickness of the metal A layer 18. The thickness of the metal A layer 22 can be selected, for example, in the range of 0.05 to 0.15 mm. The heat dissipation substrate 10B can further suppress warpage by disposing the metal A layer 22 having high mechanical rigidity on the other surface side. If the thickness of the metal A layer 22 is not more than the above upper limit, warpage due to the difference in thermal expansion coefficient between the heat dissipation substrate 10B and the ceramic substrate can be suppressed by the effect of the present invention. Moreover, if the thickness of the metal A layer 22 is equal to or greater than the above lower limit, the effect of reducing thermal expansion and the effect of high mechanical rigidity due to the metal A layer 22 can be obtained.

上記実施形態の場合、放熱基板10Aは、5層である場合について説明したが、本発明はこれに限らず、9層、13層でもよい。いずれの場合も最表面は、Cu層であるのが好ましい。放熱基板10Aは、5層であることにより、金属A層を2層以上含む。したがって変形例に示すように、一表面側と他表面側の金属A層18,22の厚さを変えることにより、反りをより抑制することができる。   In the case of the above-described embodiment, the case where the heat dissipation substrate 10A has five layers has been described, but the present invention is not limited to this, and may be nine layers or thirteen layers. In any case, the outermost surface is preferably a Cu layer. Since the heat dissipation substrate 10A has five layers, it includes two or more metal A layers. Therefore, as shown in the modification, warping can be further suppressed by changing the thicknesses of the metal A layers 18 and 22 on the one surface side and the other surface side.

10A,10B 放熱基板
12,14,16 Cu層
18,22 金属A層
20 セラミックス基板
10A, 10B Heat dissipation substrate 12, 14, 16 Cu layer 18, 22 Metal A layer 20 Ceramic substrate

Claims (5)

Cu層と、金属Aからなる金属A層とが、交互に積層された放熱基板において、前記Cu層が厚さ方向に非対称に積層されたことを特徴とする放熱基板。 A heat dissipation substrate in which Cu layers and metal A layers made of metal A are alternately stacked, wherein the Cu layer is stacked asymmetrically in the thickness direction. 前記Cu層と前記金属A層とが厚さ方向に合計5、9又は13層積層されたことを特徴とする請求項1記載の放熱基板。 The heat dissipation substrate according to claim 1, wherein the Cu layer and the metal A layer are laminated in a total of 5, 9 or 13 layers in the thickness direction. セラミックス基板が接合される一表面側に配置される前記Cu層の厚さが、前記一表面と反対側の他表面側に配置される前記Cu層の厚さより、厚いことを特徴とする請求項1又は2記載の放熱基板。 The thickness of the Cu layer disposed on the one surface side to which the ceramic substrate is bonded is thicker than the thickness of the Cu layer disposed on the other surface side opposite to the one surface. The heat dissipation board of 1 or 2. 前記他表面側に配置される前記金属A層の厚さが、前記一表面側に配置される前記金属A層の厚さより、厚いことを特徴とする請求項3記載の放熱基板。 The heat dissipation substrate according to claim 3, wherein a thickness of the metal A layer disposed on the other surface side is larger than a thickness of the metal A layer disposed on the one surface side. 前記金属Aが、Mo又はWであることを特徴とする請求項1〜4のいずれか1項記載の放熱基板。
The heat dissipation substrate according to any one of claims 1 to 4, wherein the metal A is Mo or W.
JP2016175698A 2016-09-08 2016-09-08 Heat dissipation substrate Pending JP2018041868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175698A JP2018041868A (en) 2016-09-08 2016-09-08 Heat dissipation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175698A JP2018041868A (en) 2016-09-08 2016-09-08 Heat dissipation substrate

Publications (1)

Publication Number Publication Date
JP2018041868A true JP2018041868A (en) 2018-03-15

Family

ID=61626493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175698A Pending JP2018041868A (en) 2016-09-08 2016-09-08 Heat dissipation substrate

Country Status (1)

Country Link
JP (1) JP2018041868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220102982A (en) * 2021-01-14 2022-07-21 주식회사 코스텍시스 Heat dissipation material and power module of dual side cooling
JP2022169059A (en) * 2021-04-27 2022-11-09 Ngkエレクトロデバイス株式会社 package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220102982A (en) * 2021-01-14 2022-07-21 주식회사 코스텍시스 Heat dissipation material and power module of dual side cooling
KR102492306B1 (en) * 2021-01-14 2023-01-26 주식회사 코스텍시스 Heat dissipation material and power module of dual side cooling
JP2022169059A (en) * 2021-04-27 2022-11-09 Ngkエレクトロデバイス株式会社 package
US11854934B2 (en) 2021-04-27 2023-12-26 NGK Electronics Devices, Inc. Package with heat dissipating substrate
JP7444814B2 (en) 2021-04-27 2024-03-06 Ngkエレクトロデバイス株式会社 package

Similar Documents

Publication Publication Date Title
JP4558012B2 (en) Semiconductor package heat dissipation plate and semiconductor device
KR102300972B1 (en) Substrate unit for power modules, and power module
JP6171622B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
KR101188150B1 (en) Cooling device
JP5918008B2 (en) Manufacturing method of cooler
WO2015053316A1 (en) Substrate for heat sink-equipped power module, and production method for same
JP5759902B2 (en) Laminate and method for producing the same
WO2015163453A1 (en) Power module substrate unit and power module
JP6417834B2 (en) Power module substrate with cooler and method for manufacturing power module substrate with cooler
JP5989465B2 (en) Insulating substrate manufacturing method
JP6024477B2 (en) Manufacturing method of power module substrate with heat sink
JP2016167548A (en) Method manufacturing substrate for power module with heat sink
JP2019087586A (en) Method of manufacturing insulated circuit board, method of manufacturing insulated circuit board with heat sink, insulated circuit board, insulated circuit board with heat sink, and method of manufacturing laminated structure of insulated circuit board
JP5987418B2 (en) Manufacturing method of power module substrate with heat sink
JP2018041868A (en) Heat dissipation substrate
JP6357917B2 (en) Power module substrate with heat sink, method for manufacturing the same, and power module
JP2013222758A (en) Method of manufacturing insulation board
JP5654369B2 (en) Laminate production method
JP5772088B2 (en) Power module substrate manufacturing method and power module substrate
JP2015070061A (en) Method for manufacturing power module substrate
WO2018190023A1 (en) Heat dissipation substrate, heat dissipation substrate electrode, semiconductor package, and semiconductor module
WO2022138711A1 (en) Composite material, semiconductor package, and method for manufacturing composite material
JP5666372B2 (en) Laminated material for insulating substrates
JP6264822B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP2018041867A (en) Heat dissipation substrate and method of manufacturing heat dissipation substrate