JP2019075564A - Heat sink plate - Google Patents

Heat sink plate Download PDF

Info

Publication number
JP2019075564A
JP2019075564A JP2018193243A JP2018193243A JP2019075564A JP 2019075564 A JP2019075564 A JP 2019075564A JP 2018193243 A JP2018193243 A JP 2018193243A JP 2018193243 A JP2018193243 A JP 2018193243A JP 2019075564 A JP2019075564 A JP 2019075564A
Authority
JP
Japan
Prior art keywords
heat dissipation
dissipation plate
thermal expansion
expansion coefficient
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018193243A
Other languages
Japanese (ja)
Inventor
キム,イル−ホ
Il-Ho Kim
チョ,ミョン−ファン
Meoung-Whan Cho
キム,ヨン−ソク
Young-Suk Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodsystem Corp
Original Assignee
Goodsystem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodsystem Corp filed Critical Goodsystem Corp
Publication of JP2019075564A publication Critical patent/JP2019075564A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide a heat sink plate capable of being suitably used for packaging a high-output semiconductor device using a compound semiconductor, which has the same or a similar thermal expansion coefficient to a ceramic material so as to allow good bonding even when bonded to a ceramic material such as alumina (AlO), and at the same time, which is capable of obtaining such high thermal conductivity that a large amount of heat generated in the high-output device can be rapidly discharged to the outside.SOLUTION: The heat sink plate according to the invention has a structure in which two or more kinds of materials are laminated. The heat sink plate includes a core layer in the thickness direction of the heat sink plate, and cover layers covering a top surface and a bottom surface of the core layer. The cover layer comprises a material containing copper, and the core layer is formed of a matrix having a first thermal expansion coefficient and a plurality of layers extending in parallel along the thickness direction of the core layer in a lattice form in the matrix, the plurality of layers being made of an alloy having a second thermal expansion coefficient.SELECTED DRAWING: Figure 1

Description

本発明は、放熱板材に関し、より詳細には、化合物半導体を用いた高出力半導体素子のパッケージング用に適合して使用可能な放熱板材であって、アルミナ(Al)のようなセラミック素材と接合しても良好な接合が可能となるように、セラミック素材と同一ないし類似した熱膨張係数を有し、かつ高出力素子で発生する多量の熱を速やかに外部へ排出可能な高い熱伝導度を得ることができる放熱板材に関する。 The present invention relates to a heat dissipating plate material, and more particularly, a heat dissipating plate material compatible and usable for packaging of a high-power semiconductor device using a compound semiconductor, which is a ceramic such as alumina (Al 2 O 3 ) High thermal energy that has the same or similar thermal expansion coefficient as ceramic material and can quickly discharge a large amount of heat generated by high-power devices so that good bonding is possible even when bonded to the material The present invention relates to a heat dissipation plate capable of obtaining conductivity.

最近、情報通信および国防分野の核心技術として、GaN系化合物半導体を用いた高出力増幅素子が注目を集めている。   Recently, high power amplification devices using GaN-based compound semiconductors have attracted attention as core technologies in the information communication and defense fields.

このような高出力電子素子や光素子では、一般素子に比べて多くの熱が発生しており、このように発生した多量の熱を効率的に排出することができるパッケージング技術が必要である。   Such high-power electronic devices and optical devices generate more heat than general devices, and a packaging technology capable of efficiently discharging a large amount of heat generated in this way is required. .

現在、GaN系化合物半導体を活用した高出力半導体素子には、W/Cuの2層の複合素材、CuとMoの2相の複合素材、Cu/Cu−Mo合金/Cuの3層の複合素材、Cu/Mo/Cu/Mo/Cuの多層の複合素材のように比較的良好な熱伝導度と低い熱膨張係数とを有する金属基複合板材が用いられている。   Currently, high-power semiconductor devices utilizing GaN-based compound semiconductors include a composite material of W / Cu two layers, a composite material of two phases of Cu and Mo, and a composite material of three layers of Cu / Cu-Mo alloy / Cu. A metal matrix composite plate having a relatively good thermal conductivity and a low thermal expansion coefficient, such as a multilayer composite material of Cu / Mo / Cu / Mo / Cu, is used.

ところで、これらの複合板材の厚み方向への熱伝導度は、最大で250W/mK程度であり、実際にそれ以上の高い熱伝導度を具現することができないため、数百ワット級のパワートランジスターのような素子には適用し難い問題がある。   By the way, the thermal conductivity in the thickness direction of these composite plate materials is about 250 W / mK at the maximum, and it can not actually realize a higher thermal conductivity, so several hundreds of watts of power transistors There is a problem which is difficult to apply to such an element.

一方、半導体素子を製造する工程には、アルミナ(Al)のようなセラミック素材とのろう付け接合工程が必須である。 On the other hand, in the process of manufacturing a semiconductor element, a process of brazing and bonding with a ceramic material such as alumina (Al 2 O 3 ) is essential.

このようなろう付け接合工程は、約800℃以上の高温で行われるので、前記金属複合体基板とセラミック素材との間の熱膨張係数の差により、ろう付け接合過程において撓みや破損が発生してしまい、このような撓みや破損は、素子の不良を誘発する。   Since such a brazing and bonding process is performed at a high temperature of about 800 ° C. or more, the difference in thermal expansion coefficient between the metal composite substrate and the ceramic material causes bending and breakage in the brazing and bonding process. Such bending or breakage induces failure of the device.

さらに、最近では、高い出力の実現と製造時の生産効率性とを高めるために、1つの放熱板材に複数個のチップを実装してパッケージの長さが長くなりつつある。このようにパッケージの長さが長くなる場合、放熱板材の長さも長くなり、1つのチップを実装する時には問題がなかった放熱板材と半導体素子との間の熱膨張係数の差も、実装される半導体素子の数が増加する場合、問題となるので、複数個のチップを実装するのに用いられる放熱板材の場合、セラミック素材の熱膨張係数の類似性がより一層重要な要素として浮び上がっており、セラミック素材の熱膨張係数と類似しながらも、放熱特性に優れた放熱板材の開発が至急である。   Furthermore, recently, in order to increase the realization of high output and increase the production efficiency at the time of manufacture, a plurality of chips are mounted on one heat dissipation plate to lengthen the package length. Thus, when the length of the package is increased, the length of the heat dissipation plate is also increased, and the difference in the thermal expansion coefficient between the heat dissipation plate and the semiconductor element, which was not a problem when mounting one chip, is also mounted. This is a problem when the number of semiconductor devices increases, and in the case of a heat dissipation plate used to mount a plurality of chips, the similarity of the thermal expansion coefficients of ceramic materials is emerging as an even more important factor. While being similar to the thermal expansion coefficient of ceramic materials, development of heat dissipation plate excellent in heat dissipation characteristics is urgent.

本発明は、上述した従来技術の問題点を解決するためのものであって、板材の面方向(横及び/または縦方向)に9.0×10−6/K以下の低い熱膨張係数を有し、セラミック材料(特にアルミナ)との接合時、熱変形量の差による撓みや破損が発生しないだけでなく、板材の厚み方向に350W/mK以上の高い熱伝導度を具現することができ、特に数百ワット級のパワートランジスターのような高出力素子のチップを複数個実装する用途に適合して使用可能な放熱板材を提供することを課題としている。 The present invention is intended to solve the problems of the prior art described above, and has a low thermal expansion coefficient of not more than 9.0 × 10 −6 / K in the plane direction (horizontal and / or longitudinal direction) of the plate material. Not only does not cause bending or breakage due to differences in thermal deformation when bonding with a ceramic material (especially alumina), but it can realize high thermal conductivity of 350 W / mK or more in the thickness direction of the plate material In particular, it is an object of the present invention to provide a heat dissipating plate which can be used by being adapted to an application in which a plurality of chips of high power devices such as several hundreds of watt power transistors are mounted.

上記課題を解決するために本発明は、2種以上の物質が積層された構造を有する放熱板材であって、前記放熱板材の厚み方向に、コア層と、前記コア層を上下でカバーするカバー層とを含んでなり、前記カバー層は、銅を含む物質からなり、上記コア層は、第1熱膨張係数を有する母材と、第2熱膨張係数を有する合金からなり、前記コア層の厚み方向に沿って平行に延長する複数の層が前記母材内に格子状に配置されている放熱板材を提供する。   In order to solve the above problems, the present invention is a heat dissipation plate having a structure in which two or more types of substances are stacked, and a cover which covers the core layer and the core layer in the thickness direction of the heat dissipation plate. The cover layer is made of a material containing copper, and the core layer is made of a base material having a first thermal expansion coefficient and an alloy having a second thermal expansion coefficient, and the core layer is made of A heat dissipating plate material is provided, in which a plurality of layers extending in parallel along the thickness direction are arranged in a lattice shape in the base material.

本発明による放熱板材は、板材の厚み方向への熱伝導度が350W/mK以上で、好ましい実施形態によると、熱伝導度が400W/mK以上であるので、高出力素子に適合して使用することができる。   The heat dissipation plate according to the present invention has a thermal conductivity of 350 W / mK or more in the thickness direction of the plate, and according to a preferred embodiment, has a thermal conductivity of 400 W / mK or more. be able to.

また、本発明による放熱板材は、面方向(横または縦)方向への熱膨張係数が8.0×10−6/K〜9.0×10−6/Kと、放熱板材とろう付け接合されるセラミック物質からなる高出力素子との熱膨張係数の差が大きくないため、2以上の素子をパッケージするためにろう付け工程を行う過程における、撓みや剥離またはセラミックの破損を防止することができる。 Further, the heat radiation sheet according to the present invention, the plane direction (horizontal or vertical) thermal expansion coefficient and 8.0 × 10 -6 /K~9.0×10 -6 / K in the direction, the heat dissipation plate and brazing To prevent bending, peeling, or ceramic breakage in the process of performing a brazing process to package two or more elements, since the difference in thermal expansion coefficient with the high-power element made of ceramic material is not large. it can.

本発明による放熱板材の構造と、本発明で規定する厚み方向と面方向(長手及び幅)を示した図である。It is the figure which showed the structure of the thermal radiation board | plate material by this invention, and the thickness direction and surface direction (longitudinal length and width) prescribed | regulated by this invention. 本発明の好ましい実施形態による放熱板材の全体構造を示した図である。FIG. 2 is a view showing the entire structure of a heat dissipation plate according to a preferred embodiment of the present invention. 本発明の好ましい実施形態による放熱板材を構成するコア層の構造を示した図である。It is a figure showing structure of a core layer which constitutes a heat dissipation plate by a desirable embodiment of the present invention. 本発明の好ましい実施形態による放熱板材を構成するコア層の平面像である。It is a plane image of a core layer which constitutes a heat dissipation plate according to a preferred embodiment of the present invention. 図4の平面像を拡大した図であって、Cu−Moからなる格子内の複合組織を構成する黒鉛粒子が一方向に配向された状態を示している。It is the figure which expanded the planar image of FIG. 4, Comprising: The state which the graphite particle which comprises the composite structure | tissue in the lattice which consists of Cu-Mo was orientated to one direction is shown. 本発明の好ましい実施形態による放熱板材を構成するコア層の断面像である。It is a cross-sectional image of the core layer which comprises the heat sink material by a desirable embodiment of the present invention. 図6の断面像を拡大した図であって、Cu−Moからなる格子内の複合組織を構成する黒鉛粒子が厚み方向に配向された状態を示している。It is the figure which expanded the cross-sectional image of FIG. 6, Comprising: The state which the graphite particle which comprises the composite structure | tissue in the grid | lattice which consists of Cu-Mo was orientated to the thickness direction is shown. 本発明の好ましい実施形態による放熱板材の幅(y)方向の熱膨張係数の測定結果を示した図である。It is the figure which showed the measurement result of the thermal expansion coefficient of the width (y) direction of the thermal radiation board material by the desirable embodiment of the present invention. 本発明の好ましい実施形態による放熱板材の長手(x)方向の熱膨張係数の測定結果を示した図である。It is the figure which showed the measurement result of the thermal expansion coefficient of the longitudinal (x) direction of the thermal radiation board | plate material by preferable embodiment of this invention.

以下、添付図面を参照して本発明の好ましい実施例を詳細に説明する。しかし、以下において例示する本発明の実施例は、様々な別の形態で変形されてもよく、本発明の範囲が以下に詳述する実施例に限定されるものではない。本発明の実施例は、当業界における平均的な知識を有した者に本発明をより完全に説明するために提供されるものである。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiments of the present invention illustrated below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments detailed below. The examples of the present invention are provided to more fully describe the present invention to those of ordinary skill in the art.

本発明者は、板材の面方向(板材の長手及び幅方向)に9.0×10−6/K以下の低い熱膨張係数を有するだけでなく、板材の厚み方向に350W/mK以上の高い熱伝導度を具現することができる放熱板材を具現するために研究した結果、以下のような構造を有する放熱板材を通じて、上述した長軸方向の熱膨張係数と板材の厚み方向の熱伝導度の具現ができることを見出して、本発明に到るようになった。 The inventor of the present invention not only has a low thermal expansion coefficient of 9.0 × 10 −6 / K or less in the surface direction of the plate (longitudinal direction and width direction of the plate), but also has a high 350 W / mK or more in the thickness direction of the plate. As a result of research conducted to embody the heat dissipation plate capable of realizing the thermal conductivity, the above-mentioned thermal expansion coefficient of the major axis direction and the thermal conductivity of the thickness direction of the plate through the heat dissipation plate having the following structure Having found that it can be embodied, it came to the present invention.

図1は、本発明による放熱板材の構造と、本発明で規定する厚み方向と面方向(長手及び幅)を示した図である。長手方向は、相対的に長尺の長軸方向であり、幅方向は、長手方向に対して垂直な方向を意味し、長手方向と幅方向の長さが同一である場合、両方のうち、いずれかの一方の方向を長手方向とし、他方の方向を幅方向と定義する。   FIG. 1 is a view showing the structure of a heat dissipating plate material according to the present invention, and the thickness direction and the surface direction (longitudinal and width) specified in the present invention. The longitudinal direction is a relatively long major axis direction, the width direction means a direction perpendicular to the longitudinal direction, and when the lengths in the longitudinal direction and the width direction are the same, of the two, One of the directions is defined as the longitudinal direction, and the other direction is defined as the width direction.

本発明による放熱板材は、2種以上の物質が積層された構造を有し、その厚み方向に、コア層と、前記コア層を上、下でカバーするカバー層とを含んでなり、前記カバー層は、銅を含む物質からなり、前記コア層は、例えば、銅と炭素を含む物質の複合組織からなる第1の熱膨張係数を有する母材と、前記母材内に、例えば、Cu、Mo、またはCuとMoを含む第2の熱膨張係数を有する合金層が格子状に配置されていることを特徴とする。   The heat dissipating plate material according to the present invention has a structure in which two or more kinds of substances are laminated, and includes a core layer and a cover layer which covers the core layer in the thickness direction, the cover The layer is made of a material containing copper, and the core layer is, for example, a base material having a first thermal expansion coefficient made of a composite structure of a material containing copper and carbon, and, for example, Cu, in the base material. It is characterized in that Mo, or an alloy layer having a second thermal expansion coefficient containing Cu and Mo is arranged in a lattice.

このように、本発明では、カバー層を銅を主成分とする物質を用い、コア層を銅と炭素を含む物質の複合組織とするとともに、前記複合組織内に格子形態に配置された、Cu、Mo、またはCuとMoを含む合金層を配置することにより、カバー層とコア層の耐剥離性を高め、同時に厚み方向に、現在使用されている放熱板材では具現することのできない高い熱伝導度とともに、面方向(長手及び幅方向)の熱膨張係数をセラミック材料と類似に合わせることができるようにする。また、本発明による放熱板材の素材及び構造は、放熱板材に2つ以上の素子が接合されても、熱変形量の差を最小化することができ、剥離またはセラミックの破損を防げるようになる。   As described above, in the present invention, the cover layer is made of a material containing copper as a main component, and the core layer has a composite structure of a material containing copper and carbon, and Cu arranged in a lattice form in the composite structure By arranging an alloy layer containing Mo, Mo, or Cu and Mo, the peel resistance of the cover layer and the core layer can be enhanced, and at the same time, high thermal conductivity which can not be realized by the heat dissipating plate currently used in the thickness direction. In addition, the thermal expansion coefficients in the plane direction (longitudinal and widthwise directions) can be matched analogously to the ceramic material. In addition, the material and structure of the heat dissipating plate material according to the present invention can minimize the difference in the amount of thermal deformation even if two or more elements are joined to the heat dissipating plate, thereby preventing peeling or breakage of the ceramic. .

また、前記放熱板材において、前記複合組織は、銅と板状の黒鉛物質とからなり、前記板状の黒鉛物質は、前記放熱板材の厚み方向に沿って平行に配向されており、同時に前記板状の黒鉛物質は、前記放熱板材の厚み方向に垂直な面方向のうち、一方向(すなわち、長手方向または幅方向)に沿って平行に配向されていてもよい。前記板状の黒鉛物質の形状は、板状の形状はもちろん、フレーク(flake)状、鱗状のような形状の粉末を含むことを意味する。   Further, in the heat dissipating plate material, the composite structure is made of copper and a plate-like graphite material, and the plate-like graphite material is oriented in parallel along the thickness direction of the heat dissipating plate, and at the same time the plate The graphite material may be oriented in parallel along one direction (i.e., the longitudinal direction or the width direction) of the surface direction perpendicular to the thickness direction of the heat dissipation plate. The shape of the plate-like graphite material means that it includes not only a plate-like shape but also powders having a flake-like shape and a bowl-like shape.

また、本発明において、‘厚み方向または面方向のうち、一方向に平行に配向された組織'とは、当該方向と板状粒子とがなす内角が45°未満である粒子が、複合組織の面積分率で50%を超えた組織を意味し、45°未満である粒子が、複合組織の面積分率で70%以上であることが好ましい。   Further, in the present invention, “a tissue oriented parallel to one direction in the thickness direction or plane direction” means that particles having an internal angle of less than 45 ° between the direction and the plate-like particles are “complex tissue”. It means that the area fraction is more than 50%, and particles less than 45 ° are preferably 70% or more in area fraction of the composite tissue.

このような構造を通じて厚み方向の熱伝導度を高めるとともに、面方向への熱膨張係数を低く維持することができる。   Such a structure can increase the thermal conductivity in the thickness direction and maintain the thermal expansion coefficient in the surface direction low.

また、前記放熱板材において、前記カバー層は、銅または銅合金からなっていてもよく、好ましい例として、前記カバー層は、Cu含有量が99重量%以上である純Cuからなっていてもよい。   Further, in the heat dissipating plate material, the cover layer may be made of copper or a copper alloy, and as a preferable example, the cover layer may be made of pure Cu having a Cu content of 99% by weight or more. .

また、前記放熱板材において、前記合金層は、Cu−Mo合金からなっていてもよい。また、好ましい例として、前記Cu−Mo合金は、Cu30〜60重量%、Mo40〜70重量%を含んでいてもよいが、これは、Cuの含有量が30重量%未満であれば、熱膨張係数が7×10−6/K以下とあまりにも小さくて、セラミックとろう付け接合の際にセラミック方向にたわむ現象が発生し、60重量%超過であれば、熱膨張係数が9×10−6/K以上とあまりにも大きい過ぎて、セラミックと反対方向にたわむ現象が発生し、Moの含有量が40重量%未満であれば、熱膨張係数が9×10−6/K以上とあまりにも大きい過ぎて、セラミックと反対方向にたわむ現象が発生し、70重量%超過であれば、熱膨張係数が7×10−6/K以下とあまりにも小さくて、ろう付け接合の際にセラミック方向にたわむ現象が発生するからである。 Further, in the heat dissipation plate, the alloy layer may be made of a Cu-Mo alloy. As a preferred example, the Cu-Mo alloy may contain 30 to 60% by weight of Cu and 40 to 70% by weight of Mo, but if the content of Cu is less than 30% by weight, the thermal expansion The coefficient of expansion is too small, 7 × 10 -6 / K or less, bending occurs in the ceramic direction during brazing with ceramic, and if it exceeds 60% by weight, the thermal expansion coefficient is 9 × 10 -6 If the content of Mo is less than 40% by weight, the thermal expansion coefficient is too large at 9 × 10 -6 / K or more if the content of Mo is less than 40% by weight. The phenomenon of bending in the opposite direction to the ceramic occurs, and if it exceeds 70% by weight, the thermal expansion coefficient is too small, 7 × 10 -6 / K or less, and it bends in the ceramic direction during brazing. The phenomenon occurs It is because it is born.

前記放熱板材の厚み方向において、前記カバー層の厚みは、全体厚みの5%未満である場合、熱膨張係数があまりにも低すぎて、たわみが発生するかまたは放熱特性が低下することがあり、40%超過の場合、熱膨張係数があまり大きくて、反対方向へのたわみが発生することがあるため、5〜40%であることが好ましく、上、下層の厚みは、実質的に同一であるものが好ましい。   When the thickness of the cover layer is less than 5% of the total thickness in the thickness direction of the heat dissipation plate, the thermal expansion coefficient may be too low and deflection may occur or the heat dissipation characteristics may be degraded. If it exceeds 40%, the thermal expansion coefficient is so large that deflection in the opposite direction may occur, so it is preferably 5 to 40%, and the thicknesses of the upper and lower layers are substantially the same. Is preferred.

図2は、本発明の好ましい実施形態による放熱板材の全体構造を示した図であり、図3は、本発明の好ましい実施形態による放熱板材を構成するコア層の構造を示した図である。   FIG. 2 is a view showing an entire structure of a heat dissipation plate according to a preferred embodiment of the present invention, and FIG. 3 is a view showing a structure of a core layer constituting the heat release plate according to the preferred embodiment of the present invention.

図2に示されたように、本発明の好ましい実施例による放熱板材は、Cuカバー層の内部にコア層が配置された構造からなる。
前記コア層は、図3に示されたように、Cuと黒鉛からなる複合材からなる母材に、上面から見る時、Cu−Mo合金層が長手(x方向)及び幅(y方向)方向に格子状に配置されており、このCu−Mo合金層は、コア層の厚み方向を延長して下面から見る時も、同一の格子状の形態を成している。
As shown in FIG. 2, the heat dissipation plate according to the preferred embodiment of the present invention has a structure in which a core layer is disposed inside a Cu cover layer.
The core layer, as shown in FIG. 3, is a matrix made of a composite material of Cu and graphite, viewed from the top, the Cu-Mo alloy layer is in the longitudinal (x direction) and width (y direction) directions The Cu--Mo alloy layer has the same lattice form even when viewed from the lower surface, extending the thickness direction of the core layer.

このようなCu−Mo合金層の配置は、x方向及びy方向への熱膨張係数を低くすると同時に、厚み方向への熱伝導度を最大限維持できるようにし、且つCuからなるカバー層との接合時に、Cu−Mo合金層との接合面積を最小化して、層間の剥離を防ぐことにも寄与する。   Such arrangement of the Cu-Mo alloy layer makes it possible to maintain the thermal conductivity in the thickness direction as much as possible while reducing the thermal expansion coefficient in the x direction and y direction, and with the cover layer made of Cu. At the time of bonding, the bonding area with the Cu—Mo alloy layer is minimized, which also contributes to the prevention of delamination.

また、図3の赤色点線で示されたCu−Mo格子で区分される単位母材組織は、その下の拡大図に示されたように、Cuと板状の黒鉛材の複合材とからなり、板状の黒鉛材は、厚み方向に略平行に配向されるともに、y方向に対しても平行に配向されたことを特徴とする。このような構造を通じて、厚み方向への熱伝導度を最大化することができ、同時に面方向への熱膨張を抑制することができるようになる。   Further, the unit matrix structure divided by the Cu-Mo lattice shown by the red dotted line in FIG. 3 is made of a composite material of Cu and a plate-like graphite material as shown in the enlarged view below it. The plate-like graphite material is characterized in that it is oriented substantially parallel to the thickness direction and also oriented parallel to the y direction. Through such a structure, the thermal conductivity in the thickness direction can be maximized, and at the same time, the thermal expansion in the surface direction can be suppressed.

図4は、本発明の好ましい実施形態による放熱板材を構成するコア層の平面(上面)像である。図4において明るいグレーの格子形態からなる部分が、Co−Mo合金(Co:45重量%、Mo:55重量%)部分であり、相対的に黒い部分が、Cuと鱗状の黒鉛粒子との複合組織部分である。図5から確認されるように、Cu−Mo合金格子内の複合組織を構成する黒鉛粒子は、格子の一方向に配向された状態を示している。   FIG. 4 is a plan (upper surface) image of a core layer constituting a heat dissipation plate according to a preferred embodiment of the present invention. In FIG. 4, the light gray lattice part is a Co-Mo alloy (Co: 45% by weight, Mo: 55% by weight) part, and the relatively black part is a composite of Cu and a scaly graphite particle. It is an organizational part. As confirmed from FIG. 5, the graphite particles constituting the composite structure in the Cu—Mo alloy lattice show a state of being oriented in one direction of the lattice.

図6は、本発明の好ましい実施形態による放熱板材を構成するコア層の断面像であって、厚み方向に沿って等間隔に配置されたCu−Mo(最も明るいグレー)からなる格子を示している。また、コアの上、下面には、Cuからなるカバー層が見られる。   FIG. 6 is a cross-sectional image of a core layer constituting a heat dissipation plate according to a preferred embodiment of the present invention, showing a grid of Cu—Mo (brightest gray) arranged at equal intervals along the thickness direction There is. In addition, on the upper and lower surfaces of the core, a cover layer made of Cu can be seen.

図7は、図6の断面像を拡大したものであって、Cu−Moからなる格子内の複合組織を構成する黒鉛粒子が厚み方向に配向された状態を示している。   FIG. 7 is an enlarged view of the cross-sectional image of FIG. 6 and shows a state in which the graphite particles constituting the composite structure in the Cu-Mo lattice are oriented in the thickness direction.

図8、図9及び表1は、本発明の好ましい実施例による放熱板材と、この放熱板材と比較例1(銅(Cu)/銅−モリブデン合金(Cu−Mo)/銅(Cu)の構造を有し、厚み方向の長さの比率が、Cu40%、Cu−Mo20%、Cu40%からなり、全体厚みは本発明の実施例と同一である)、及び本発明の放熱板材と同一のサイズの純銅で製造した板材の熱伝導度及び熱膨張係数を比較したものである。   8, 9 and Table 1 show the structure of the heat dissipating plate according to the preferred embodiment of the present invention, and the structure of this heat dissipating plate and Comparative Example 1 (copper (Cu) / copper-molybdenum alloy (Cu-Mo) / copper (Cu) And the length ratio in the thickness direction is Cu 40%, Cu-Mo 20%, Cu 40%, and the overall thickness is the same as the embodiment of the present invention), and the same size as the heat dissipation plate of the present invention The thermal conductivity and thermal expansion coefficient of the board | plate material manufactured with the pure copper of this are compared.

表1から確認されるように、本発明の実施例による放熱板材の熱膨張係数は、面方向(長手及び幅)において8.1×10−6/K〜8.8×10−6/Kの熱膨張係数を示しており、高出力の半導体素子を構成するセラミック物質の熱膨張係数との差が殆どなく、2以上の素子を実装する時に、撓みや剥離の問題が発生しない。 As can be seen from Table 1, the thermal expansion coefficient of the cooling plate according to an embodiment of the present invention, 8.1 × 10 -6 in the planar direction (longitudinal and width) /K~8.8×10 -6 / K The thermal expansion coefficient of the ceramic material constituting the high-power semiconductor device is almost the same as that of the ceramic material constituting the high-power semiconductor device, and no problem of bending or peeling occurs when mounting two or more devices.

また、本発明の実施例による放熱板材の厚み方向の熱伝導度は400W/mKの水準であるが、これは、既存の比較例1の板材はもちろん、銅のみからなる板材(比較例2)に比べても優れているだけでなく、面方向に9×10−6/K以下の熱膨張係数を具現することができるいかなる放熱板材に比べても、顕著に向上した熱伝導性を有する。 The thermal conductivity in the thickness direction of the heat dissipating plate material according to the embodiment of the present invention is 400 W / mK, which is a plate material made of only copper as well as the existing plate material of comparative example 1 (comparative example 2) It is not only superior to the above, but also has a significantly improved thermal conductivity compared to any heat dissipation plate capable of realizing a thermal expansion coefficient of 9 × 10 −6 / K or less in the surface direction.

Claims (8)

2種以上の物質が積層された構造を有する放熱板材であって、
前記放熱板材の厚み方向に、コア層と、前記コア層を上下でカバーするカバー層とを含んでなり、
前記カバー層は、銅を含む物質からなり、
上記コア層は、第1熱膨張係数を有する母材と、第2熱膨張係数を有する合金からなり、前記コア層の厚み方向に沿って平行に延長する複数の層が前記母材内に格子状に配置されている放熱板材。
A heat dissipation plate having a structure in which two or more kinds of substances are stacked,
A core layer and a cover layer which covers the core layer in the upper and lower direction in the thickness direction of the heat dissipation plate,
The cover layer is made of a material containing copper,
The core layer is composed of a base material having a first thermal expansion coefficient and an alloy having a second thermal expansion coefficient, and a plurality of layers extending in parallel along the thickness direction of the core layer are latticed in the base material. Heat-dissipation plate placed in the shape of a circle.
前記母材は、銅と炭素を含む物質の複合組織からなり、
前記複数の層は、Cu、Mo、またはCuとMoを含む合金層からなる請求項1に記載の放熱板材。
The matrix consists of a composite of copper and carbon containing material,
The heat dissipation plate according to claim 1, wherein the plurality of layers are made of Cu, Mo, or an alloy layer containing Cu and Mo.
前記複合組織は、銅と板状の黒鉛物質とからなり、
前記板状の黒鉛物質は、前記放熱板材の厚み方向に沿って平行に配向されており、
かつ、前記板状の黒鉛物質は、前記放熱板材の厚み方向に垂直な面方向のうち、一方向に沿って平行に配向されている請求項1に記載の放熱板材。
The composite structure is made of copper and a plate-like graphite material,
The plate-like graphite material is oriented in parallel along the thickness direction of the heat dissipation plate,
The heat dissipating plate material according to claim 1, wherein the plate-like graphite material is oriented in parallel along one of the surface directions perpendicular to the thickness direction of the heat dissipating plate material.
前記カバー層は、銅または銅合金からなる請求項1に記載の放熱板材。   The heat dissipation plate according to claim 1, wherein the cover layer is made of copper or a copper alloy. 前記合金層は、Cu−Mo合金である請求項2に記載の放熱板材。   The heat dissipation plate according to claim 2, wherein the alloy layer is a Cu-Mo alloy. 前記合金層は、Cu30〜60重量%と、Mo40〜70重量%を含む請求項5に記載の放熱板材。   The heat dissipation plate according to claim 5, wherein the alloy layer contains 30 to 60 wt% of Cu and 40 to 70 wt% of Mo. 前記放熱板材は、板材の厚み方向への熱伝導度が350W/mK以上であり、
長手および幅方向の熱膨張係数が、8.0×10−6/K〜9.0×10−6/Kである請求項1乃至6のいずれか1項に記載の放熱板材。
The heat dissipation plate has a thermal conductivity of 350 W / mK or more in the thickness direction of the plate,
The heat dissipation plate according to any one of claims 1 to 6 , wherein the thermal expansion coefficient in the longitudinal direction and the width direction is 8.0 × 10 -6 / K to 9.0 × 10 -6 / K.
前記放熱板材の厚み方向において、前記カバー層の厚みは、全体厚みの5〜40%である請求項1乃至6のいずれか1項に記載の放熱板材。   The heat dissipation plate according to any one of claims 1 to 6, wherein the thickness of the cover layer in the thickness direction of the heat dissipation plate is 5 to 40% of the entire thickness.
JP2018193243A 2017-10-12 2018-10-12 Heat sink plate Pending JP2019075564A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170132188 2017-10-12
KR10-2017-0132188 2017-10-12
KR1020170174778A KR102064158B1 (en) 2017-10-12 2017-12-19 Heat sink plate
KR10-2017-0174778 2017-12-19

Publications (1)

Publication Number Publication Date
JP2019075564A true JP2019075564A (en) 2019-05-16

Family

ID=66282983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193243A Pending JP2019075564A (en) 2017-10-12 2018-10-12 Heat sink plate

Country Status (2)

Country Link
JP (1) JP2019075564A (en)
KR (1) KR102064158B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102047435B1 (en) * 2019-07-31 2019-11-27 (재)대구기계부품연구원 Metal Matrix Composite Heat Spreader with High Thermal Conduction Efficiency

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124611A (en) * 2000-10-16 2002-04-26 Yamaha Corp Heat sink for electronic device, method for manufacturing the same and semiconductor laser module employing the heat sink
JP2009124110A (en) * 2007-10-22 2009-06-04 Fujitsu Ltd Sheet structure and method of manufacturing the same, and electronic instrument
JP2015153900A (en) * 2014-02-14 2015-08-24 島根県 Laminate and manufacturing method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003800A (en) * 2009-06-19 2011-01-06 Hitachi Cable Ltd Low thermal expansion type composite heat sink and method of manufacturing the same
JP5719740B2 (en) * 2011-09-30 2015-05-20 株式会社日立製作所 Wiring material and semiconductor module using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124611A (en) * 2000-10-16 2002-04-26 Yamaha Corp Heat sink for electronic device, method for manufacturing the same and semiconductor laser module employing the heat sink
JP2009124110A (en) * 2007-10-22 2009-06-04 Fujitsu Ltd Sheet structure and method of manufacturing the same, and electronic instrument
JP2015153900A (en) * 2014-02-14 2015-08-24 島根県 Laminate and manufacturing method of the same

Also Published As

Publication number Publication date
KR20190041383A (en) 2019-04-22
KR102064158B1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6621076B2 (en) Power module substrate, power module substrate with heat sink, and power module
JP2009016621A (en) Heat dissipation plate for semiconductor package, and semiconductor device
KR101949694B1 (en) Heat sink plate
JP6423731B2 (en) Semiconductor module
US20130328200A1 (en) Direct bonded copper substrate and power semiconductor module
JP2012033559A (en) Semiconductor device
JP5520815B2 (en) Insulating substrate and base for power module
US20190271510A1 (en) Manufacturing method of vapor chamber
JP2006269966A (en) Wiring substrate and its manufacturing method
JP2013098451A (en) Semiconductor device and wiring board
JP6638282B2 (en) Light emitting module with cooler and method of manufacturing light emitting module with cooler
KR20200108599A (en) Heat sink plate
JP2019075564A (en) Heat sink plate
JP2007201458A (en) Anisotropic cooling element and semiconductor element equipped with the same
WO2017051798A1 (en) Light-emitting module substrate, light-emitting module, substrate for light-emitting module having cooler, and production method for light-emitting module substrate
JP2018125462A (en) Graphite radiator plate
TWM595383U (en) A heat dissipation type electronic device
US10777484B2 (en) Heat sink plate
JP2014160763A (en) Insulation substrate
CN219937038U (en) Heat radiation structure, packaging assembly, packaging integrated piece and power electronic unit of power module
KR102257877B1 (en) Heat sink plate
JP5320354B2 (en) Heat dissipation device
US10825974B2 (en) Light-emitting diode package and method of manufacture
JP2005277381A (en) Package for storing electronic component and electronic device
JP2017220610A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200804