WO2019188614A1 - Semiconductor package - Google Patents

Semiconductor package Download PDF

Info

Publication number
WO2019188614A1
WO2019188614A1 PCT/JP2019/011568 JP2019011568W WO2019188614A1 WO 2019188614 A1 WO2019188614 A1 WO 2019188614A1 JP 2019011568 W JP2019011568 W JP 2019011568W WO 2019188614 A1 WO2019188614 A1 WO 2019188614A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
semiconductor package
graphite
anisotropic graphite
parallel
Prior art date
Application number
PCT/JP2019/011568
Other languages
French (fr)
Japanese (ja)
Inventor
真琴 沓水
健介 村島
聡志 奥
克洋 竹馬
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2019188614A1 publication Critical patent/WO2019188614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a semiconductor package with high heat dissipation.
  • Anisotropic graphite is formed by laminating many graphites, and graphite has a crystal orientation plane.
  • Anisotropic graphite has the property that the thermal conductivity in the direction parallel to the crystal orientation plane of graphite is high, but the thermal conductivity in the perpendicular direction is low.
  • anisotropic graphite is used as a material that dissipates heat by efficiently transferring heat from a semiconductor element to a cooler so that heat generated from a semiconductor element disposed on the anisotropic graphite is not concentrated.
  • Patent Document 1 discloses an anisotropic heat conduction element that transfers heat from a heat source.
  • the anisotropic heat transfer element includes a structure in which graphene sheets are stacked along a plane intersecting a contact surface with a heat source. That is, when the X axis, the Y axis orthogonal to the X axis, and the Z axis perpendicular to the XY plane are defined, it is defined that the graphene sheet is parallel to the Z axis.
  • Patent Document 1 does not describe the direction of the structure relative to the heat source or the ratio between the heat source and the length of the structure. Such an anisotropic heat transfer element cannot be said to have good efficiency in radiating heat from a heat source.
  • An object of the present invention is to provide a semiconductor package that is efficient in dissipating heat from a heat source, that is, has high heat dissipation.
  • the inventors of the present invention have the orientation of the anisotropic graphite composite relative to the semiconductor element. It was found that a semiconductor package with high heat dissipation can be obtained by setting the ratio between the length of the semiconductor element and the anisotropic graphite within a specific range.
  • the present inventors have combined graphite and an inorganic material layer having an isotropic thermal diffusivity in order to compensate for the thermal diffusivity in the direction perpendicular to the crystal orientation plane in anisotropic graphite. It has been found that it is effective to use isotropic graphite, and the present invention has been completed.
  • a semiconductor package is a semiconductor package including (A) an anisotropic graphite composite and (B) a semiconductor element, (A) comprises (a1) anisotropic graphite, (a2) metal layer, and (a3) inorganic material layer, (A1) and (a3) are joined by (a2), X-axis, Y-axis orthogonal to X-axis, Z-axis perpendicular to the plane including X-axis and Y-axis, The average value of the lengths of the four sides (side a) parallel to the X axis in (A) is La, The average value of the lengths of the four sides (side b) parallel to the Y axis in (A) is Lb, When the average value of the lengths of the four sides (side c) parallel to the Z axis in (A) is Lc, The crystal orientation plane of the graphite layer
  • a semiconductor package with high heat dissipation can be provided.
  • FIG. 1 is a perspective view illustrating a configuration of a semiconductor package according to one embodiment of the present invention. It is a disassembled perspective view which shows the manufacturing method of the (A) anisotropic graphite complex which concerns on 1 aspect of this invention. It is a disassembled perspective view which shows the manufacturing method of the (A) anisotropic graphite complex which concerns on 1 aspect of this invention. It is a perspective view which shows the structure of the semiconductor package which concerns on Example 1 of this invention. It is a top view of the semiconductor package which concerns on Example 1 of this invention. 7 is a top view of a semiconductor package according to Examples 2 to 9 of the present invention. FIG. 7 is a top view of a semiconductor package according to Comparative Example 1. FIG. 10 is a top view of a semiconductor package according to Comparative Example 2. FIG.
  • a semiconductor package is a semiconductor package including (A) an anisotropic graphite composite and (B) a semiconductor element,
  • the (A) anisotropic graphite composite comprises (a1) anisotropic graphite, (a2) a metal layer, and (a3) an inorganic material layer, (A1) anisotropic graphite and (a3) inorganic material layer are joined by (a2) metal layer; X-axis, Y-axis orthogonal to X-axis, Z-axis perpendicular to the plane including X-axis and Y-axis,
  • the average value of the lengths of the four sides (side a) parallel to the X axis of the (A) anisotropic graphite composite is La
  • the average value of the lengths of the four sides (side b) parallel to the Y axis of the (A) anisotropic graphite composite is Lb, When the average value of the lengths of the four sides (side c) parallel to the
  • the X axis, the Y axis orthogonal to the X axis, and the Z axis perpendicular to the plane including the X axis and the Y axis are defined, and as shown in FIG.
  • four sides parallel to the X axis are side a (reference numeral “3” in FIG. 1 and the like)
  • four sides parallel to the Y axis are side b (reference numeral “4” in FIG. 1 and the like)
  • Z Four sides parallel to the axis are defined as side c (symbol “5” in FIG. 1 and the like).
  • anisotropic graphite composite 10 includes (a1) anisotropic graphite 1, (a2) metal layer 7, and (a3) inorganic material layer 6. Consists of. (A) The anisotropic graphite 1 constituting the anisotropic graphite composite 10 has a crystal orientation plane 2, and graphite is laminated in parallel with the crystal orientation plane 2.
  • reference numeral “2” in FIG. 1 and the like indicates the crystal orientation plane of the anisotropic graphite represented by “thin lines” in FIG. 1, and (a1) indicates the upper surface of the anisotropic graphite. is not.
  • the semiconductor package 30 includes (B) a semiconductor element 8, (A) an anisotropic graphite complex 10, and a cooler 9 in order from the semiconductor element side.
  • (A) the direction of the (B) semiconductor element relative to the anisotropic graphite composite will be described.
  • the semiconductor element 8 is arranged so that the long side 81 thereof is perpendicular to the side a of the anisotropic graphite composite 10 (symbol “3” in FIG. 2). Deploy.
  • the average value (La) of the lengths of the four sides of the side a of the anisotropic graphite composite 10 with respect to the length l2 of the short side 82 of the semiconductor element 8 is three times or more. To do. Accordingly, (B) heat can be efficiently transferred from the semiconductor element 8 to the cooler 9.
  • the shape of the semiconductor element viewed from the Z-axis direction may be a rectangle or other than a rectangle.
  • a rhombus a shape having four sides with rounded corners, or an ellipse may be used.
  • the length (l1) of the long side and the length (l2) of the short side of the semiconductor element are defined by the maximum length of the semiconductor element and the minimum length of the semiconductor element.
  • the length of the long side is l1
  • the length of the short side is l2
  • the thickness is l3.
  • the average value (La) of the lengths of the four sides a of the anisotropic graphite composite is 3 times or more and 5 times the length l2 of the short side of the semiconductor element (B). The above is more preferable.
  • the average value (La) of the lengths of the four sides a of the anisotropic graphite composite is preferably 4 mm or more and 200 mm or less because heat can be efficiently diffused.
  • the range of 100 mm or less is more preferable.
  • the average value (Lb) of the lengths of the four sides b of the anisotropic graphite composite is preferably not less than (B) the length 11 of the long side of the semiconductor element. Since it can diffuse, the range of 6 mm or more and 100 mm or less is preferable, and the range of 10 mm or more and 50 mm or less is more preferable.
  • the average value (Lc) of the lengths of the four sides c of the anisotropic graphite composite is shorter in order to reduce the thermal resistance in the Z-axis direction from the semiconductor element to the cooler (B).
  • (B) it is preferable that the heat is diffused in the direction of the XZ plane before the heat reaches the cooler from the semiconductor element. Therefore, since the average value (Lc) can express the heat transfer performance more effectively, the range is preferably 0.6 mm or more and 5.0 mm or less, and 1.0 mm or more and 3.5 mm or less. The range is more preferable, the range of 1.0 mm or more and 3.0 mm or less is further preferable, and the range of 1.2 mm or more and 2.5 mm or less is particularly preferable.
  • the (a1) anisotropic graphite according to one embodiment of the present invention can be produced by cutting a graphite block having a graphene structure in which six-membered rings are connected by a covalent bond into a predetermined plate shape.
  • the graphite block is not particularly limited as long as it has a graphene structure in which six-membered rings are connected by a covalent bond.
  • a graphene structure in which six-membered rings are connected by a covalent bond has high thermal conductivity in the crystal orientation plane.
  • the graphite block for example, a polymer-decomposed graphite block, a pyrolytic graphite block, an extruded graphite block, a molded graphite block, or the like can be used.
  • the crystal orientation plane of a graphene structure in which six-membered rings are connected by a covalent bond has a high thermal conductivity of 1500 W / mK or more
  • the anisotropic graphite composite has excellent heat transfer performance. It is preferable to use a molecularly decomposed graphite block or a pyrolytic graphite block.
  • a first method for producing a graphite block suitably used for a semiconductor package according to one embodiment of the present invention is to introduce a carbonaceous gas such as methane into a furnace and heat it to about 2000 ° C. with a heater to form fine carbon nuclei. It is a method of forming. The formed carbon nuclei are deposited in layers on the substrate. Thereby, a pyrolytic graphite block can be obtained.
  • the second manufacturing method of the graphite block suitably used for the semiconductor package according to one embodiment of the present invention is a method of manufacturing by laminating a polymer film such as a polyimide resin in multiple layers and then performing heat treatment while pressing and pressing. is there. Specifically, to obtain a graphite block from a polymer film, first, a polymer film as a starting material is laminated in multiple layers, and preheated at a temperature of about 1000 ° C. under reduced pressure or in an inert gas atmosphere. And carbonized to form a carbonized block. Thereafter, the carbonized block is graphitized by heat treatment at a temperature of 2800 ° C. or higher while being press-pressed in an inert gas atmosphere. Thereby, a good graphite crystal structure can be formed, and a graphite block excellent in thermal conductivity can be obtained.
  • a method for cutting the graphite block a known method using a diamond cutter, a wire saw, machining, or the like can be appropriately selected, but a method using a wire saw can be easily processed into a substantially rectangular parallelepiped shape. More preferred.
  • the surface of the graphite block may be polished or roughened, and known techniques such as file polishing, buffing, and blasting can be used as appropriate.
  • (a2) the metal layer and (a3) the inorganic material layer are formed on the upper and lower surfaces of (a1) anisotropic graphite, because of excellent thermal conductivity, (a1) anisotropic graphite More preferably, it is formed on at least one of the upper and lower surfaces and the side surface, and (a1) it is particularly preferably formed on all six surfaces of the anisotropic graphite.
  • Inorganic material layer examples include a metal layer or a ceramic layer made of an isotropic material.
  • Examples of the metal forming the metal layer include known materials such as gold, silver, copper, nickel, aluminum, molybdenum, tungsten, and alloys containing these metals.
  • Examples of the ceramic forming the ceramic layer include known materials such as alumina, zirconia, silicon carbide, silicon nitride, boron nitride, and aluminum nitride.
  • a metal layer is more preferable, and as a metal forming the metal layer, copper is more preferable because thermal conductivity can be further improved.
  • the thickness of the inorganic material layer is preferably in the range of 100 ⁇ m to 300 ⁇ m, and more preferably in the range of 120 ⁇ m to 250 ⁇ m. (A3) If the thickness of the inorganic material layer is 100 ⁇ m or more, (a1) thermal conductivity in a direction in which the heat of anisotropic graphite is relatively difficult to be transmitted can be compensated. Moreover, if the thickness of the (a3) inorganic material layer is 300 ⁇ m or less, (a1) the high thermal conductivity of the anisotropic graphite is not hindered.
  • Examples of the method for forming the (a3) inorganic material layer include (a2) a method of performing plating or sputtering on the metal layer, or (a2) a method of attaching a plate to be the (a3) inorganic material layer to the metal layer. Since it is excellent in thermal conductivity, a method of attaching a plate to be (a3) an inorganic material layer to the (a2) metal layer is more preferable.
  • the (a1) anisotropic graphite is more preferably covered by (a3) an inorganic material layer, and more preferably the whole surface is covered.
  • the (a2) metal layer is used to join (a1) anisotropic graphite and (a3) an inorganic material layer.
  • Metal layer thickness > (A2)
  • the thickness of the metal layer is not particularly limited, it is in the range of 8 ⁇ m or more and 50 ⁇ m because it has good interfacial adhesion as a bonding material and can suppress an increase in thermal resistance. It is preferable.
  • the metal layer is not particularly limited, but a metal layer formed by plating and a metal layer formed by a metal brazing material or solder are more preferable.
  • the (a2) metal layer and (a3) inorganic material layer may be integrated.
  • the (a2) metal layer formed of the metal brazing material can diffuse and bond to (a1) anisotropic graphite, and since its own thermal conductivity is relatively high, it has high thermal conductivity. Can be maintained.
  • the metal layer is a metallic brazing material and (a3) the inorganic material layer is a copper layer, as shown in FIG. 2, (a2) metal layer 7 and (a3) inorganic material layer 6 and ( a1)
  • the anisotropic graphite 1 can be joined.
  • the type of the metallic brazing material is not particularly limited, (a3) it is more preferable to contain silver, copper, and titanium because it has excellent thermal conductivity like the inorganic material layer.
  • the metal layer is a metal brazing material
  • the joining method using the metal brazing material include a known material and a method using a known technique.
  • activated silver brazing is used as the metallic brazing material, it is heated for 10 minutes to 1 hour in a vacuum environment of 1 ⁇ 10 ⁇ 3 Pa and a temperature range of 700 to 1000 ° C., and then cooled to room temperature.
  • (a1) anisotropic graphite and (a3) inorganic material layer can be joined.
  • a method using the hollow frame 21 as the (a3) inorganic material layer will be described with reference to FIG.
  • a lid 20 as an inorganic material layer
  • a metal brazing material or solder that becomes the metal layer 7 as a bonding material
  • anisotropic A
  • An anisotropic graphite composite 10 can be manufactured by disposing the heat-resistant graphite 1, (a2) the metal brazing material or solder to be the metal layer 7 and the lid 20 in this order and heat-bonding them. .
  • the metal brazing material or the solder is bonded to the metal plate 20 in advance, (a1) the anisotropic graphite 1 and the metal plate 20 can be bonded more efficiently.
  • the manufacturing method of the bottomed frame 22 is not particularly limited, but a known method such as a method of cutting out from a plate, a method of bending a cross-shaped plate (FIG. 4) into a box shape, a method of drawing, or the like is appropriately used. You can choose.
  • a metal brazing material or solder to be the metal layer 7 as a bonding material (a1) anisotropy, inside the bottomed frame 22.
  • Graphite 1 (a2) metallic brazing material or solder to be the metal layer 7, and (a3) the lid 20 is disposed in this order as an inorganic material layer, and heat-bonded to form (A) the anisotropic graphite composite 10 Can be produced.
  • the metallic brazing material or solder is bonded in advance to the bottomed frame 22 and the metal plate 20, the (a1) anisotropic graphite 1, the bottomed frame 22 and the metal plate 20 are more efficiently bonded. Can be joined.
  • (A) the anisotropic graphite composite according to one aspect of the present invention (a2) a part of the metal layer is impregnated into, for example, at least part of the interlayer of the graphite layer forming the anisotropic graphite (a1)
  • the anisotropic graphite complex includes (a2) a part of the metal layer in at least a part of the layer of the graphite layer forming the anisotropic graphite.
  • a method of impregnating or existing a metal layer between (a1) graphite layers forming anisotropic graphite is as follows: (a3) When inorganic material layer and (a2) metal layer are heat-bonded An effective method is to deliberately expand the graphite layer where minute gaps exist.
  • (a1) As anisotropic graphite, a polymer film such as polyimide resin is laminated in multiple layers, and then heat-treated while pressing with pressure. That is, a method of producing polymer-decomposed graphite by thermal decomposition is preferable. Since polymer-decomposed graphite is produced by laminating polymer films in multiple layers, a gap is formed linearly between the layers derived from the polymer film, compared to pyrolytic graphite produced by the CVD method, etc. can do. Therefore, the metal brazing material or solder can be easily impregnated.
  • (B) if the temperature of the semiconductor element 8 is 160 ° C. or lower, the rank is “A”, and if it exceeds 160 ° C. and is 164 ° C. or lower, the rank is “B”. If the rank exceeds “C” and 179 ° C., the rank is “D”. If the rank is A, B, or C, the semiconductor package has excellent heat transfer performance (if it is 179 ° C. or less). This is a semiconductor package with excellent heat transfer performance. The temperature was rounded off to the first decimal place.
  • the thermal conductivity of the produced graphite block was 1500 W / mK in the direction of the crystal orientation plane and 5 W / mK in the vertical direction of the crystal orientation plane.
  • Example 1 The graphite block (dimensions: 90 mm ⁇ 90 mm, thickness 15 mm) produced in Production Example 1 was placed so that the crystal orientation plane of graphite was parallel to the XZ plane, and cut with a wire saw.
  • the length of the side (side a) parallel to the X axis (and its average value (La)) is 6 mm
  • the length of the side a is 6 mm
  • the length of the side b is 10 mm
  • the length of the side c is 0.6 mm.
  • (A1) (A2) Titanium-based active silver solder having a thickness (ta, tb) of 20 ⁇ m as the metal layer 7 and (a3) oxygen-free copper having a thickness (Ta, Tb) of 200 ⁇ m as the inorganic material layer 6 were stacked in this order. Then, by applying a load of 100 kg / m 2 from the top and bottom in the Z-axis direction and heating at 850 ° C.
  • the anisotropic graphite composite 10 is disposed on the cooler 9, and (B) the semiconductor element is formed on (A) the anisotropic graphite composite 10. 8 was arranged to produce a semiconductor package 30.
  • the semiconductor element 8 is such that (A) the long side 81 is perpendicular to the side a of the anisotropic graphite composite 10 (reference numeral “3” in FIG. 2, etc.). Arranged.
  • the ratio (La / l2) between the average value (La) of the four sides of the side a and the length (l2) of the short side 82 of the (B) semiconductor element 8 was 3.
  • the temperature of the (B) semiconductor element 8 was measured at 173 ° C. with 40 W of heat applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “C”.
  • the evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
  • Example 2 The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw.
  • the length of the side (side a) parallel to the X axis (and its average value (La)) is 10 mm
  • the length of the side (side b) parallel to the Y axis (and its average value (Lb)) is 10 mm
  • the length of the side (side c) parallel to the Z-axis (and its average value (Lc)) is 0.6 mm (a1)
  • the semiconductor package 30 was manufactured by performing the operation as shown in FIG.
  • the temperature of the (B) semiconductor element 8 was measured in a state where a heat amount of 40 W was applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30 and found to be 163 ° C. Therefore, the evaluation of the heat transfer performance was rank “B”.
  • the evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
  • Example 4 (A3) Except that oxygen-free copper having a thickness (Ta, Tb) of 80 ⁇ m was used as the inorganic material layer 6, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG. .
  • Example 5 Except for using oxygen-free copper having a thickness (Ta, Tb) of 320 ⁇ m as the inorganic material layer 6, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG. .
  • the temperature of the (B) semiconductor element 8 was measured at 165 ° C. in a state where a heat amount of 40 W was applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “C”.
  • the evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
  • Example 6 The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw.
  • the length of the side (side a) parallel to the X axis (and its average value (La)) is 10 mm
  • the length of the side (side b) parallel to the Y axis (and its average value (Lb)) is obtained.
  • Titanium-based active silver brazing having a thickness (ta, tb) of 20 ⁇ m was overlaid on the upper and lower surfaces of (a1) anisotropic graphite 1 as (a2) metal layer 7. Thereafter, by performing electrolytic copper plating, a copper layer having a thickness (Ta, Tb) of 200 ⁇ m was formed as (a3) inorganic material layer 6 on (a2) metal layer 7. Note that (a1) a mask was applied to the side surface of the anisotropic graphite 1 before electrolytic copper plating, and the mask was removed after electrolytic copper plating. As a result, (a1) electrolytic copper plating was not formed on the side surface of the anisotropic graphite 1. Thereafter, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG.
  • the temperature of the (B) semiconductor element 8 was measured at 167 ° C. with a heat amount of 40 W applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “C”.
  • the evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
  • Example 7 The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw.
  • the length of the side (side a) parallel to the X axis (and its average value (La)) is 9.6 mm
  • the length of the side (side b) parallel to the Y axis (and its average value (Lb)) )) was 9.6 mm
  • the length of the side (side c) parallel to the Z-axis (and its average value (Lc)) was 0.6 mm.
  • A1 An anisotropic graphite was obtained.
  • the outer dimension of the frame is 10 mm ⁇ 10 mm
  • the inner dimension of the frame is 9.6 mm ⁇ 9.6 mm
  • the width of the frame Is formed into a hollow frame 21 (no cavity inside the frame) having a thickness of 0.2 mm and a thickness of 1.0 mm (0.6 + 0.2 + 0.2 mm), and the dimensions are 9.6 mm ⁇ 9.6 mm
  • thickness Was formed into two lids 20 having a thickness of 200 ⁇ m (0.2 mm).
  • a lid 20 inside the hollow frame 21, a lid 20, a bonding material (a2) a titanium-based active silver solder having a thickness (ta, tb) of 20 ⁇ m as the metal layer 7, (a1) anisotropic graphite 1, (a2) A titanium-based active silver solder having a thickness (ta, tb) of 20 ⁇ m and a lid 20 were arranged in this order as the metal layer 7. Then, by applying a load of 100 kg / m 2 from above and below in the Z-axis direction, heating at 850 ° C. for 30 minutes in a vacuum environment of 1 ⁇ 10 ⁇ 3 Pa, (A) anisotropic graphite composite 10 was obtained.
  • Example 8 The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw.
  • the length of the side (side a) parallel to the X axis (and its average value (La)) is 9.6 mm
  • the length of the side (side b) parallel to the Y axis (and its average value (Lb)) )) was 9.6 mm
  • the length of the side (side c) parallel to the Z-axis (and its average value (Lc)) was 0.6 mm.
  • A1 An anisotropic graphite was obtained.
  • an oxygen-free copper plate having a thickness of 200 ⁇ m as the inorganic material layer 6, as shown in FIG.
  • the dimensions are 10mm x 10mm, the height is 1.0mm (0.6 + 0.2 + 0.2mm), the inner dimensions of the frame are 9.6mm x 9.6mm, and the depth is 0.8mm (0.6 + 0.2mm)
  • a lid 20 having a size of 9.6 mm ⁇ 9.6 mm and a thickness of 200 ⁇ m (0.2 mm).
  • (a2) titanium-based active silver brazing having a thickness (ta, tb) of 20 ⁇ m as a metal layer 7 as a bonding material, (a1) anisotropic graphite 1, (a2) metal layer 7, a titanium-based active silver solder having a thickness (ta, tb) of 20 ⁇ m and a lid 20 were arranged in this order. Then, by applying a load of 100 kg / m 2 from above and below in the Z-axis direction, heating at 850 ° C. for 30 minutes in a vacuum environment of 1 ⁇ 10 ⁇ 3 Pa, (A) anisotropic graphite composite 10 was obtained.
  • the temperature of (B) semiconductor element 8 was measured in a state where a heat amount of 40 W was applied to (B) semiconductor element 8 in the produced semiconductor package 30 and found to be 160 ° C. Therefore, the evaluation of the heat transfer performance was rank “A”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
  • Example 9> (A1) The same operation as in Example 2 was performed except that a highly heat conductive carbon material (trade name: PYROID HT) manufactured by MINTEQ International Inc. was used as the anisotropic graphite 1, as shown in FIG. In addition, a semiconductor package 30 was produced.
  • a highly heat conductive carbon material (trade name: PYROID HT) manufactured by MINTEQ International Inc. was used as the anisotropic graphite 1, as shown in FIG.
  • a semiconductor package 30 was produced.
  • the temperature of the (B) semiconductor element 8 was measured at 165 ° C. in a state where a heat amount of 40 W was applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “C”.
  • the evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
  • Example 2 Except that this (a1) anisotropic graphite was used, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG. (A) The average value (La) of the lengths of the four sides of the side a (symbol “3” in FIG. 9) of the anisotropic graphite composite 10 and the length of the short side 82 of the (B) semiconductor element 8. The ratio (La / l2) to (l2) was 2.
  • the temperature of the (B) semiconductor element 8 was measured at 185 ° C. with 40 W of heat applied to the (B) semiconductor element 8 in the fabricated semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “D”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
  • the temperature of the (B) semiconductor element was measured at a temperature of 194 ° C. with 40 W of heat applied to the (B) semiconductor element in the manufactured semiconductor package. Therefore, the evaluation of the heat transfer performance was rank “D”.
  • the evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
  • Example 2 From the comparison between Example 2 and Comparative Example 1, the heat transfer performance of the semiconductor package is improved by arranging (B) the long side of the semiconductor element perpendicularly to (a1) the side a of the anisotropic graphite. I understand that. This is because in (a1) anisotropic graphite, the heat transfer area can be increased in the direction of side a, which has 300 times higher thermal conductivity than side b.
  • (a1) Arranging (a3) inorganic material layers on the upper and lower surfaces of anisotropic graphite may improve the heat transfer performance of the semiconductor package. I understand. This is because (a1) anisotropic graphite was able to improve the heat transfer performance in the direction of side b, which has a relatively low thermal conductivity. Further, from comparison between Example 2 and Example 3, it can be seen that (a3) oxygen-free copper is preferable to aluminum nitride as the inorganic material layer.
  • the length of side a is 10 mm
  • the length of side b is 10 mm
  • the length of side c is 0.6 mm.
  • the thickness of the oxygen-free copper is preferably 200 ⁇ m, and it can be seen that the heat transfer performance of the semiconductor package is slightly deteriorated whether it is thicker (320 ⁇ m) or thinner (80 ⁇ m). This is to achieve both (a1) improvement of heat transfer performance to the side b having relatively low thermal conductivity and maintenance of heat transfer performance to the side c (thickness direction) in anisotropic graphite. (A3) means that it is important to set the thickness of the inorganic material layer.
  • oxygen-free copper is more suitable as the inorganic material layer (a3) bonded to the anisotropic graphite than the copper layer formed by electrolytic copper plating. I know that there is. This is because oxygen-free copper has better thermal conductivity than a copper layer formed by electrolytic copper plating.
  • Example 7 and Example 8 From the comparison of Example 2, Example 7 and Example 8, (a1) the entire surface of the anisotropic graphite rather than (a3) the inorganic material layer being bonded only to the upper and lower surfaces of the anisotropic graphite (a1) It can be seen that the heat transfer performance of the semiconductor package is higher when (a3) the inorganic material layer is bonded. This is because (B) the heat from the semiconductor element can be diffused to the side surface portion of (a1) anisotropic graphite, and heat can be radiated more efficiently. Further, from the comparison between Example 7 and Example 8, the heat transfer performance of the semiconductor package is higher in the (a3) inorganic material layer using the bottomed frame than in the (a3) inorganic material layer using the hollow frame. I understand that it is expensive. This is because the (a3) inorganic material layer using the bottomed frame has fewer copper plate interfaces in the (a3) inorganic material layer.
  • Example 2 From the comparison between Example 2 and Example 9, it was found that (a2) a part of the titanium-based active silver brazing which is the metal layer 7 exists in a part between the layers of the graphite layer of the anisotropic graphite (a1). It can be seen that the heat transfer performance of the semiconductor package is higher than the case where it does not exist. This is because the gap having low thermal conductivity formed between the graphite layers is filled with a titanium-based active silver braze having relatively good thermal conductivity.
  • a semiconductor package is a semiconductor package including (A) an anisotropic graphite composite and (B) a semiconductor element, (A) comprises (a1) anisotropic graphite, (a2) metal layer, and (a3) inorganic material layer, (A1) and (a3) are joined by (a2), X-axis, Y-axis orthogonal to X-axis, Z-axis perpendicular to the plane including X-axis and Y-axis, The average value of the lengths of the four sides (side a) parallel to the X axis in (A) is La, The average value of the lengths of the four sides (side b) parallel to the Y axis in (A) is Lb, When the average value of the lengths of the four sides (side c) parallel to the Z axis in (A) is Lc, The crystal orientation plane
  • the (a3) is preferably copper.
  • the thickness of (a3) is preferably 100 ⁇ m or more and 300 ⁇ m or less.
  • the La is preferably 10 mm or more.
  • the Lc is preferably 3 mm or less.
  • the (a3) preferably includes a bottomed frame or a hollow frame and a lid.
  • a part of (a2) is provided in at least a part of the interlayer of the graphite layer forming (a1).
  • the (a1) is preferably produced by laminating a polymer film in multiple layers and then heat-treating it while pressing.
  • the present invention can be suitably used for a semiconductor package with high heat dissipation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A semiconductor package (30) comprises: an anisotropic graphite composite (10); and a semiconductor element (8). The anisotropic graphite composite (10) includes anisotropic graphite (1), a metal layer (7), and an inorganic material layer (6). The crystal orientation plane of the graphite layer forming the anisotropic graphite (1) is parallel to the X-Z plane; the semiconductor element (8) is joined to the inorganic material layer (6) such that the long sides of the semiconductor element (8) are perpendicular to the X-Z plane; and a ratio (La/l2) of the average value (La) of the length of the four sides of the anisotropic graphite composite (10) parallel to the X-axis and the length (l2) of the short sides of the semiconductor element (8) is 3 or higher. Due to this configuration, a semiconductor package having high heat dissipation is provided.

Description

半導体パッケージSemiconductor package
 本発明は、放熱性の高い半導体パッケージに関する。 The present invention relates to a semiconductor package with high heat dissipation.
 異方性グラファイトはグラファイトが多数積層されて形成されており、グラファイトは、結晶配向面を有する。異方性グラファイトは、グラファイトの結晶配向面に対して平行な方向への熱伝導率は高いものの、垂直な方向への熱伝導率が低いという性質を有する。 Anisotropic graphite is formed by laminating many graphites, and graphite has a crystal orientation plane. Anisotropic graphite has the property that the thermal conductivity in the direction parallel to the crystal orientation plane of graphite is high, but the thermal conductivity in the perpendicular direction is low.
 半導体パッケージにおいて、異方性グラファイトは、その上部に配置した半導体素子から発生する熱が集中しないように、熱を半導体素子から冷却器に効率的に移動させて放熱する材料として利用される。 In a semiconductor package, anisotropic graphite is used as a material that dissipates heat by efficiently transferring heat from a semiconductor element to a cooler so that heat generated from a semiconductor element disposed on the anisotropic graphite is not concentrated.
 特許文献1には、熱源から熱を移動させる異方性熱伝導素子が開示されている。その異方性熱伝達素子は、熱源との接触面と交差する面に沿ってグラフェンシートが積層された構造体を含んでいる。つまり、X軸、X軸に直交するY軸、X-Y平面に垂直なZ軸を定義したとき、前記Z軸に対してグラフェンシートが平行であることを規定している。 Patent Document 1 discloses an anisotropic heat conduction element that transfers heat from a heat source. The anisotropic heat transfer element includes a structure in which graphene sheets are stacked along a plane intersecting a contact surface with a heat source. That is, when the X axis, the Y axis orthogonal to the X axis, and the Z axis perpendicular to the XY plane are defined, it is defined that the graphene sheet is parallel to the Z axis.
日本国公開特許公報「特開2011-23670号公報」Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2011-23670”
 しかし、特許文献1には、熱源に対する構造体の向き、あるいは、熱源と構造体の長さとの比に関する記載は無い。このような異方性熱伝達素子は、熱源から熱を放熱する効率が良いとは言えない。 However, Patent Document 1 does not describe the direction of the structure relative to the heat source or the ratio between the heat source and the length of the structure. Such an anisotropic heat transfer element cannot be said to have good efficiency in radiating heat from a heat source.
 本発明の目的は、熱源から熱を放熱する効率が良い、即ち、放熱性の高い半導体パッケージを提供することにある。 An object of the present invention is to provide a semiconductor package that is efficient in dissipating heat from a heat source, that is, has high heat dissipation.
 本発明者らは、異方性グラファイトと金属層と無機材質層とを備えた異方性グラファイト複合体と、半導体素子とを備えた半導体パッケージにおいて、半導体素子に対する異方性グラファイト複合体の向きを規定し、半導体素子と異方性グラファイトの長さとの比を特定の範囲とすることで、放熱性の高い半導体パッケージが得られることを見出した。また、本発明者らは、異方性グラファイトにおける結晶配向面に垂直な方向への熱拡散率を補うため、グラファイトと、等方性の熱拡散率を有する無機材質層とを複合し、異方性グラファイトとすることも有効であることを見出し、本発明を完成するに至った。 In the semiconductor package including the anisotropic graphite composite including the anisotropic graphite, the metal layer, and the inorganic material layer, and the semiconductor element, the inventors of the present invention have the orientation of the anisotropic graphite composite relative to the semiconductor element. It was found that a semiconductor package with high heat dissipation can be obtained by setting the ratio between the length of the semiconductor element and the anisotropic graphite within a specific range. In addition, the present inventors have combined graphite and an inorganic material layer having an isotropic thermal diffusivity in order to compensate for the thermal diffusivity in the direction perpendicular to the crystal orientation plane in anisotropic graphite. It has been found that it is effective to use isotropic graphite, and the present invention has been completed.
 即ち、本発明の一実施形態には下記〔1〕で示される発明が含まれる。
〔1〕本発明の一態様に係る半導体パッケージは、(A)異方性グラファイト複合体と、(B)半導体素子とを備えた半導体パッケージであり、
 前記(A)が、(a1)異方性グラファイト、(a2)金属層、および(a3)無機材質層を備え、
 前記(a1)と(a3)とが、(a2)によって接合しており、
 X軸、X軸と直交するY軸、X軸とY軸とを含む平面に垂直なZ軸における、
前記(A)のX軸に平行な4辺(辺a)の長さの平均値をLaとし、
前記(A)のY軸に平行な4辺(辺b)の長さの平均値をLbとし、
前記(A)のZ軸に平行な4辺(辺c)の長さの平均値をLcとしたとき、
 前記(a1)を形成するグラファイト層の結晶配向面が、X軸とZ軸とを含むX-Z平面と平行であり、
前記(B)の長辺の長さをl1とし、
前記(B)の短辺の長さをl2とし、
前記(B)の厚さをl3としたとき、
 前記(B)の長辺がX軸とZ軸とを含むX-Z平面と垂直になるように、前記(B)が、前記(A)が備える(a3)と接合しており、
 前記(A)のX軸に平行な4辺の長さの平均値(La)と前記(B)の短辺の長さ(l2)との比率(La/l2)が、3以上である。
That is, one embodiment of the present invention includes the invention shown in [1] below.
[1] A semiconductor package according to an aspect of the present invention is a semiconductor package including (A) an anisotropic graphite composite and (B) a semiconductor element,
(A) comprises (a1) anisotropic graphite, (a2) metal layer, and (a3) inorganic material layer,
(A1) and (a3) are joined by (a2),
X-axis, Y-axis orthogonal to X-axis, Z-axis perpendicular to the plane including X-axis and Y-axis,
The average value of the lengths of the four sides (side a) parallel to the X axis in (A) is La,
The average value of the lengths of the four sides (side b) parallel to the Y axis in (A) is Lb,
When the average value of the lengths of the four sides (side c) parallel to the Z axis in (A) is Lc,
The crystal orientation plane of the graphite layer forming the (a1) is parallel to the XZ plane including the X axis and the Z axis;
The length of the long side of (B) is l1,
The length of the short side of (B) is l2,
When the thickness of the (B) is l3,
(B) is joined to (a3) included in (A) so that the long side of (B) is perpendicular to the XZ plane including the X axis and the Z axis,
The ratio (La / l2) of the average value (La) of the lengths of the four sides parallel to the X axis in (A) and the length (l2) of the short sides in (B) is 3 or more.
 本発明によれば、放熱性の高い半導体パッケージを提供することができる。 According to the present invention, a semiconductor package with high heat dissipation can be provided.
本発明の一態様に係る(A)異方性グラファイト複合体の構成を示す斜視図である。It is a perspective view which shows the structure of the (A) anisotropic graphite complex which concerns on 1 aspect of this invention. 本発明の一態様に係る半導体パッケージの構成を示す斜視図である。1 is a perspective view illustrating a configuration of a semiconductor package according to one embodiment of the present invention. 本発明の一態様に係る(A)異方性グラファイト複合体の製造方法を示す分解斜視図である。It is a disassembled perspective view which shows the manufacturing method of the (A) anisotropic graphite complex which concerns on 1 aspect of this invention. 本発明の一態様に係る(A)異方性グラファイト複合体の製造方法を示す分解斜視図である。It is a disassembled perspective view which shows the manufacturing method of the (A) anisotropic graphite complex which concerns on 1 aspect of this invention. 本発明の実施例1に係る半導体パッケージの構成を示す斜視図である。It is a perspective view which shows the structure of the semiconductor package which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体パッケージの上面図である。It is a top view of the semiconductor package which concerns on Example 1 of this invention. 本発明の実施例2~9に係る半導体パッケージの上面図である。7 is a top view of a semiconductor package according to Examples 2 to 9 of the present invention. FIG. 比較例1に係る半導体パッケージの上面図である。7 is a top view of a semiconductor package according to Comparative Example 1. FIG. 比較例2に係る半導体パッケージの上面図である。10 is a top view of a semiconductor package according to Comparative Example 2. FIG.
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、本明細書において、「平行」とは、「平行」と、本発明の技術分野において「実質的に平行」であると見なされる範疇とを包含する概念を意図し、「垂直」とは、「垂直」と、本発明の技術分野において「実質的に垂直」であると見なされる範疇とを包含する概念を意図する。 One embodiment of the present invention will be described below, but the present invention is not limited to this. The present invention is not limited to each configuration described below, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments and examples are appropriately used. Embodiments and examples obtained in combination are also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are used as references in this specification. Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more and B or less”. In this specification, “parallel” means a concept including “parallel” and a category considered to be “substantially parallel” in the technical field of the present invention. , "Vertical" and a category that is considered "substantially vertical" in the technical field of the present invention.
 本発明の一態様に係る半導体パッケージは、(A)異方性グラファイト複合体と、(B)半導体素子とを備えた半導体パッケージであり、
 前記(A)異方性グラファイト複合体が、(a1)異方性グラファイト、(a2)金属層、および(a3)無機材質層を備え、
 前記(a1)異方性グラファイトと(a3)無機材質層とが、(a2)金属層によって接合しており、
 X軸、X軸と直交するY軸、X軸とY軸とを含む平面に垂直なZ軸における、
前記(A)異方性グラファイト複合体のX軸に平行な4辺(辺a)の長さの平均値をLaとし、
前記(A)異方性グラファイト複合体のY軸に平行な4辺(辺b)の長さの平均値をLbとし、
前記(A)異方性グラファイト複合体のZ軸に平行な4辺(辺c)の長さの平均値をLcとしたとき、
 前記(a1)異方性グラファイトを形成するグラファイト層の結晶配向面が、X軸とZ軸とを含むX-Z平面と平行であり、
前記(B)半導体素子の長辺の長さをl1とし、
前記(B)半導体素子の短辺の長さをl2とし、
前記(B)半導体素子の厚さをl3としたとき、
 前記(B)半導体素子の長辺がX軸とZ軸とを含むX-Z平面と垂直になるように、前記(B)半導体素子が、前記(A)異方性グラファイト複合体が備える(a3)無機材質層と接合しており、
 前記(A)異方性グラファイト複合体のX軸に平行な4辺の長さの平均値(La)と前記(B)半導体素子の短辺の長さ(l2)との比率(La/l2)が、3以上である。
A semiconductor package according to one embodiment of the present invention is a semiconductor package including (A) an anisotropic graphite composite and (B) a semiconductor element,
The (A) anisotropic graphite composite comprises (a1) anisotropic graphite, (a2) a metal layer, and (a3) an inorganic material layer,
(A1) anisotropic graphite and (a3) inorganic material layer are joined by (a2) metal layer;
X-axis, Y-axis orthogonal to X-axis, Z-axis perpendicular to the plane including X-axis and Y-axis,
The average value of the lengths of the four sides (side a) parallel to the X axis of the (A) anisotropic graphite composite is La,
The average value of the lengths of the four sides (side b) parallel to the Y axis of the (A) anisotropic graphite composite is Lb,
When the average value of the lengths of the four sides (side c) parallel to the Z axis of the (A) anisotropic graphite composite is Lc,
(A1) the crystal orientation plane of the graphite layer forming the anisotropic graphite is parallel to the XZ plane including the X axis and the Z axis;
(B) The length of the long side of the semiconductor element is l1,
(B) The length of the short side of the semiconductor element is l2,
When the thickness of the (B) semiconductor element is l3,
(B) The anisotropic graphite composite is provided in the (B) semiconductor element so that the long side of the (B) semiconductor element is perpendicular to the XZ plane including the X axis and the Z axis ( a3) Bonded to the inorganic material layer,
The ratio (La / l2) of the average value (La) of the lengths of the four sides parallel to the X axis of the (A) anisotropic graphite composite and the length (l2) of the short sides of the (B) semiconductor element ) Is 3 or more.
 本発明の一態様に係る半導体パッケージを構成する部材である、(A)異方性グラファイト複合体、(B)半導体素子などに関して、以下に説明する。 (A) An anisotropic graphite composite, (B) a semiconductor element, and the like, which are members constituting a semiconductor package according to one embodiment of the present invention, will be described below.
 <(A)異方性グラファイト複合体>
 以下の説明においては、X軸、X軸と直交するY軸、X軸とY軸とを含む平面に垂直なZ軸を定義し、図1に示すように、(A)異方性グラファイト複合体10の辺のうち、X軸に平行な4辺を辺a(図1等の符号「3」)、Y軸に平行な4辺を辺b(図1等の符号「4」)、Z軸に平行な4辺を辺c(図1等の符号「5」)と規定する。
<(A) Anisotropic graphite composite>
In the following description, the X axis, the Y axis orthogonal to the X axis, and the Z axis perpendicular to the plane including the X axis and the Y axis are defined, and as shown in FIG. Of the sides of the body 10, four sides parallel to the X axis are side a (reference numeral “3” in FIG. 1 and the like), four sides parallel to the Y axis are side b (reference numeral “4” in FIG. 1 and the like), Z Four sides parallel to the axis are defined as side c (symbol “5” in FIG. 1 and the like).
 図1に示すように、本発明の一態様に係る(A)異方性グラファイト複合体10は、(a1)異方性グラファイト1、(a2)金属層7、および(a3)無機材質層6からなる。(A)異方性グラファイト複合体10を構成する(a1)異方性グラファイト1は、結晶配向面2を有し、当該結晶配向面2に平行に、グラファイトが積層している。 As shown in FIG. 1, (A) anisotropic graphite composite 10 according to one embodiment of the present invention includes (a1) anisotropic graphite 1, (a2) metal layer 7, and (a3) inorganic material layer 6. Consists of. (A) The anisotropic graphite 1 constituting the anisotropic graphite composite 10 has a crystal orientation plane 2, and graphite is laminated in parallel with the crystal orientation plane 2.
 なお、図1等の符号「2」は、図1において“細線”で表されている異方性グラファイトの結晶配向面を指しており、(a1)異方性グラファイトの上面を指しているのではない。 Note that reference numeral “2” in FIG. 1 and the like indicates the crystal orientation plane of the anisotropic graphite represented by “thin lines” in FIG. 1, and (a1) indicates the upper surface of the anisotropic graphite. is not.
 <半導体パッケージ>
 図2に示すように、本発明の一態様に係る半導体パッケージ30は、半導体素子側から順に、(B)半導体素子8、(A)異方性グラファイト複合体10、および冷却器9で構成される。
<Semiconductor package>
As shown in FIG. 2, the semiconductor package 30 according to one embodiment of the present invention includes (B) a semiconductor element 8, (A) an anisotropic graphite complex 10, and a cooler 9 in order from the semiconductor element side. The
 <(a1)異方性グラファイトおよび(B)半導体素子の構成>
 本発明の一態様に係る半導体パッケージにおいては、(A)異方性グラファイト複合体における(a1)異方性グラファイトの結晶配向面の方向、並びに、(A)異方性グラファイト複合体に対する(B)半導体素子の方向が重要である。
<Configuration of (a1) Anisotropic Graphite and (B) Semiconductor Device>
In the semiconductor package according to one embodiment of the present invention, (A) the direction of the crystal orientation plane of the anisotropic graphite (A1) in the anisotropic graphite complex, and (A) (B ) The orientation of the semiconductor element is important.
 先ず、(A)異方性グラファイト複合体における(a1)異方性グラファイトの結晶配向面の方向に関して説明する。図2に示すように、(B)半導体素子8から(A)異方性グラファイト複合体を通して冷却器9へ熱を効率的に伝達するには、(a1)異方性グラファイト1の結晶配向面2(図1)を、X-Z平面に平行に配置する。これにより、(B)半導体素子8から、X軸方向とZ軸方向とに効率的に熱を伝達することができる。 First, the direction of the crystal orientation plane of (a1) anisotropic graphite in (A) anisotropic graphite composite will be described. As shown in FIG. 2, in order to efficiently transfer heat from the (B) semiconductor element 8 to the cooler 9 through the (A) anisotropic graphite complex, (a1) the crystal orientation plane of the anisotropic graphite 1 2 (FIG. 1) is placed parallel to the XZ plane. Thus, (B) heat can be efficiently transferred from the semiconductor element 8 in the X-axis direction and the Z-axis direction.
 続いて、(A)異方性グラファイト複合体に対する(B)半導体素子の方向に関して説明する。図2に示すように、(A)異方性グラファイト複合体10の辺a(図2等の符号「3」)に対し、(B)半導体素子8をその長辺81が垂直となるように配置する。また、(B)半導体素子8の短辺82の長さl2に対して、(A)異方性グラファイト複合体10の辺aの4辺の長さの平均値(La)を3倍以上とする。これにより、(B)半導体素子8から冷却器9へ、効率的に熱を伝達することができる。 Subsequently, (A) the direction of the (B) semiconductor element relative to the anisotropic graphite composite will be described. As shown in FIG. 2, (A) the semiconductor element 8 is arranged so that the long side 81 thereof is perpendicular to the side a of the anisotropic graphite composite 10 (symbol “3” in FIG. 2). Deploy. In addition, (B) the average value (La) of the lengths of the four sides of the side a of the anisotropic graphite composite 10 with respect to the length l2 of the short side 82 of the semiconductor element 8 is three times or more. To do. Accordingly, (B) heat can be efficiently transferred from the semiconductor element 8 to the cooler 9.
 <(B)半導体素子の形状>
 (B)半導体素子をZ軸方向から見た形状は、長方形であってもよく、長方形以外でもよい。例えば、菱形や、隅に丸みがある四辺を有する形状であってもよく、楕円であってもよい。長方形以外の形状の場合、(B)半導体素子の長辺の長さ(l1)および短辺の長さ(l2)は、半導体素子の最大長さおよび半導体素子の最小長さで規定される。
<(B) Shape of semiconductor element>
(B) The shape of the semiconductor element viewed from the Z-axis direction may be a rectangle or other than a rectangle. For example, a rhombus, a shape having four sides with rounded corners, or an ellipse may be used. In the case of a shape other than a rectangle, (B) the length (l1) of the long side and the length (l2) of the short side of the semiconductor element are defined by the maximum length of the semiconductor element and the minimum length of the semiconductor element.
 <(A)異方性グラファイト複合体の各辺の長さ、および(B)半導体素子の各辺の長さと厚さの定義>
 (A)異方性グラファイト複合体において、X軸に平行な4辺(辺a)の長さの平均値をLaとし、Y軸に平行な4辺(辺b)の長さの平均値をLbとし、Z軸に平行な4辺(辺c)の長さの平均値をLcとする。
<(A) Definition of length of each side of anisotropic graphite composite and (B) length and thickness of each side of semiconductor element>
(A) In the anisotropic graphite composite, the average value of the lengths of the four sides (side a) parallel to the X axis is La, and the average value of the lengths of the four sides (side b) parallel to the Y axis is Let Lb be the average value of the lengths of the four sides (side c) parallel to the Z axis.
 (B)半導体素子において、長辺の長さをl1とし、短辺の長さをl2とし、厚さをl3とする。 (B) In the semiconductor element, the length of the long side is l1, the length of the short side is l2, and the thickness is l3.
 (La/l2)
 (A)異方性グラファイト複合体の辺aの4辺の長さの平均値(La)は、(B)半導体素子の短辺の長さl2に対して、3倍以上であり、5倍以上がより好ましい。
(La / l2)
(A) The average value (La) of the lengths of the four sides a of the anisotropic graphite composite is 3 times or more and 5 times the length l2 of the short side of the semiconductor element (B). The above is more preferable.
 (La)
 (A)異方性グラファイト複合体の辺aの4辺の長さの平均値(La)は、効率的に熱を拡散することができることから、4mm以上、200mm以下の範囲が好ましく、10mm以上、100mm以下の範囲がより好ましい。
(La)
(A) The average value (La) of the lengths of the four sides a of the anisotropic graphite composite is preferably 4 mm or more and 200 mm or less because heat can be efficiently diffused. The range of 100 mm or less is more preferable.
 (Lb)
 (A)異方性グラファイト複合体の辺bの4辺の長さの平均値(Lb)は、(B)半導体素子の長辺の長さl1以上であることが好ましく、効率的に熱を拡散することができることから、6mm以上、100mm以下の範囲が好ましく、10mm以上、50mm以下の範囲がより好ましい。
(Lb)
(A) The average value (Lb) of the lengths of the four sides b of the anisotropic graphite composite is preferably not less than (B) the length 11 of the long side of the semiconductor element. Since it can diffuse, the range of 6 mm or more and 100 mm or less is preferable, and the range of 10 mm or more and 50 mm or less is more preferable.
 (Lc)
 (A)異方性グラファイト複合体の辺cの4辺の長さの平均値(Lc)は、(B)半導体素子から冷却器までのZ軸方向の熱抵抗を減らすには、より短いことが好ましいものの、(B)半導体素子から冷却器に熱が達するまでに当該熱をX-Z平面の方向に拡散させるには、より長いことが好ましい。それゆえ、前記平均値(Lc)は、熱伝達性能をより効果的に発現することができることから、0.6mm以上、5.0mm以下の範囲が好ましく、1.0mm以上、3.5mm以下の範囲がより好ましく、1.0mm以上、3.0mm以下の範囲がさらに好ましく、1.2mm以上、2.5mm以下の範囲が特に好ましい。
(Lc)
(A) The average value (Lc) of the lengths of the four sides c of the anisotropic graphite composite is shorter in order to reduce the thermal resistance in the Z-axis direction from the semiconductor element to the cooler (B). Although (B) it is preferable that the heat is diffused in the direction of the XZ plane before the heat reaches the cooler from the semiconductor element. Therefore, since the average value (Lc) can express the heat transfer performance more effectively, the range is preferably 0.6 mm or more and 5.0 mm or less, and 1.0 mm or more and 3.5 mm or less. The range is more preferable, the range of 1.0 mm or more and 3.0 mm or less is further preferable, and the range of 1.2 mm or more and 2.5 mm or less is particularly preferable.
 <(a1)異方性グラファイトの製造方法>
 本発明の一態様に係る(a1)異方性グラファイトは、六員環が共有結合で繋がったグラフェン構造を有するグラファイトブロックを、所定の板状の形状に切断することで製造することができる。
<(A1) Method for producing anisotropic graphite>
The (a1) anisotropic graphite according to one embodiment of the present invention can be produced by cutting a graphite block having a graphene structure in which six-membered rings are connected by a covalent bond into a predetermined plate shape.
 <グラファイトブロック>
 グラファイトブロックは、六員環が共有結合で繋がったグラフェン構造を有すればよく、特に制限されない。六員環が共有結合で繋がったグラフェン構造は、結晶配向面に高い熱伝導性を有する。グラファイトブロックとしては、例えば、高分子分解グラファイトブロック、熱分解グラファイトブロック、押出成形グラファイトブロック、モールド成形グラファイトブロックなどを用いることができる。中でも、六員環が共有結合で繋がったグラフェン構造の結晶配向面に1500W/mK以上の高い熱伝導率を有し、(A)異方性グラファイト複合体が熱伝達性能に優れることから、高分子分解グラファイトブロック、もしくは、熱分解グラファイトブロックを用いることが好ましい。
<Graphite block>
The graphite block is not particularly limited as long as it has a graphene structure in which six-membered rings are connected by a covalent bond. A graphene structure in which six-membered rings are connected by a covalent bond has high thermal conductivity in the crystal orientation plane. As the graphite block, for example, a polymer-decomposed graphite block, a pyrolytic graphite block, an extruded graphite block, a molded graphite block, or the like can be used. Among them, the crystal orientation plane of a graphene structure in which six-membered rings are connected by a covalent bond has a high thermal conductivity of 1500 W / mK or more, and (A) the anisotropic graphite composite has excellent heat transfer performance. It is preferable to use a molecularly decomposed graphite block or a pyrolytic graphite block.
 <グラファイトブロックの製造方法>
 本発明の一態様に係る半導体パッケージに好適に用いられるグラファイトブロックの第一の製造方法は、メタンなどの炭素質ガスを炉内に導入し、ヒーターで2000℃程度まで加熱し、微細な炭素核を形成する方法である。形成された炭素核は、基板上に層状に堆積する。これにより、熱分解グラファイトブロックを得ることができる。
<Method for producing graphite block>
A first method for producing a graphite block suitably used for a semiconductor package according to one embodiment of the present invention is to introduce a carbonaceous gas such as methane into a furnace and heat it to about 2000 ° C. with a heater to form fine carbon nuclei. It is a method of forming. The formed carbon nuclei are deposited in layers on the substrate. Thereby, a pyrolytic graphite block can be obtained.
 本発明の一態様に係る半導体パッケージに好適に用いられるグラファイトブロックの第二の製造方法は、ポリイミド樹脂などの高分子フィルムを多層に積層した後、プレス加圧しながら熱処理することによって作製する方法である。具体的には、高分子フィルムからグラファイトブロックを得るには、先ず、出発物質である高分子フィルムを多層に積層し、減圧下もしくは不活性ガス雰囲気下で、1000℃程度の温度で予備加熱処理して炭素化し、炭素化ブロックとする。その後、この炭素化ブロックを不活性ガス雰囲気下でプレス加圧しながら、2800℃以上の温度で熱処理することにより、グラファイト化させる。これにより、良好なグラファイト結晶構造を形成することができ、熱伝導性に優れたグラファイトブロックを得ることができる。 The second manufacturing method of the graphite block suitably used for the semiconductor package according to one embodiment of the present invention is a method of manufacturing by laminating a polymer film such as a polyimide resin in multiple layers and then performing heat treatment while pressing and pressing. is there. Specifically, to obtain a graphite block from a polymer film, first, a polymer film as a starting material is laminated in multiple layers, and preheated at a temperature of about 1000 ° C. under reduced pressure or in an inert gas atmosphere. And carbonized to form a carbonized block. Thereafter, the carbonized block is graphitized by heat treatment at a temperature of 2800 ° C. or higher while being press-pressed in an inert gas atmosphere. Thereby, a good graphite crystal structure can be formed, and a graphite block excellent in thermal conductivity can be obtained.
 グラファイトブロックを切断する方法としては、ダイヤモンドカッター、ワイヤーソー、マシニングなどを用いる公知の方法を適宜選択することができるものの、グラファイトブロックを略直方体形状に容易に加工できることから、ワイヤーソーを用いる方法がより好ましい。 As a method for cutting the graphite block, a known method using a diamond cutter, a wire saw, machining, or the like can be appropriately selected, but a method using a wire saw can be easily processed into a substantially rectangular parallelepiped shape. More preferred.
 また、グラファイトブロックは、表面を研磨もしくは粗面化してもよく、例えば、やすり研磨、バフ研磨、ブラスト処理などの公知の技術を適宜用いることができる。 The surface of the graphite block may be polished or roughened, and known techniques such as file polishing, buffing, and blasting can be used as appropriate.
 <(A)異方性グラファイト複合体の構成>
 (A)異方性グラファイト複合体において、(a1)異方性グラファイトの上下面(X-Y平面に平行な面)のうち、少なくとも片面には、(a2)金属層、および(a3)無機材質層が形成されており、(a1)異方性グラファイトと(a3)無機材質層とが、(a2)金属層によって接合されている。熱伝導性に優れることから、(a2)金属層、および(a3)無機材質層は、(a1)異方性グラファイトの上下面に形成されていることがより好ましく、(a1)異方性グラファイトの上下面と、側面のうちの少なくとも一つとに形成されていることがさらに好ましく、(a1)異方性グラファイトの六面全てに形成されていることが特に好ましい。
<Configuration of (A) Anisotropic Graphite Composite>
(A) In the anisotropic graphite composite, (a1) At least one of the upper and lower surfaces (surface parallel to the XY plane) of anisotropic graphite has (a2) a metal layer and (a3) inorganic A material layer is formed, and (a1) anisotropic graphite and (a3) inorganic material layer are joined by (a2) metal layer. It is more preferable that (a2) the metal layer and (a3) the inorganic material layer are formed on the upper and lower surfaces of (a1) anisotropic graphite, because of excellent thermal conductivity, (a1) anisotropic graphite More preferably, it is formed on at least one of the upper and lower surfaces and the side surface, and (a1) it is particularly preferably formed on all six surfaces of the anisotropic graphite.
 <(a3)無機材質層>
 (a3)無機材質層としては、等方性の材料からなる金属層もしくはセラミックス層が挙げられる。(a1)異方性グラファイトにおける結晶配向面に垂直な方向(Y軸方向)へは、熱が相対的に伝わり難い。そのため、熱伝導率が比較的高い、等方性の材料と複合することで、(a1)異方性グラファイトのY軸方向への熱伝導性を補うことができ、より高い放熱効果を発現することができる。
<(A3) Inorganic material layer>
(A3) Examples of the inorganic material layer include a metal layer or a ceramic layer made of an isotropic material. (A1) Heat is relatively difficult to transfer in the direction perpendicular to the crystal orientation plane in the anisotropic graphite (Y-axis direction). Therefore, by combining with an isotropic material having a relatively high thermal conductivity, (a1) the thermal conductivity in the Y-axis direction of anisotropic graphite can be supplemented, and a higher heat dissipation effect is exhibited. be able to.
 金属層を形成する金属としては、金、銀、銅、ニッケル、アルミニウム、モリブデン、タングステン、およびこれら金属を含む合金など、公知の材料が挙げられる。 Examples of the metal forming the metal layer include known materials such as gold, silver, copper, nickel, aluminum, molybdenum, tungsten, and alloys containing these metals.
 セラミックス層を形成するセラミックスとしては、アルミナ、ジルコニア、炭化珪素、窒化珪素、窒化ホウ素、窒化アルミなど、公知の材料が挙げられる。 Examples of the ceramic forming the ceramic layer include known materials such as alumina, zirconia, silicon carbide, silicon nitride, boron nitride, and aluminum nitride.
 熱伝導性をより高めることができることから、(a3)無機材質層としては、金属層がより好ましく、また、金属層を形成する金属としては、銅がより好ましい。 (A3) As the inorganic material layer, a metal layer is more preferable, and as a metal forming the metal layer, copper is more preferable because thermal conductivity can be further improved.
 <(a3)無機材質層の厚さ>
 (a3)無機材質層の厚さは、100μm以上、300μm以下の範囲が好ましく、120μm以上、250μm以下の範囲がより好ましい。(a3)無機材質層の厚さが100μm以上であれば、(a1)異方性グラファイトの熱が相対的に伝わり難い方向の熱伝導性を補うことができる。また、(a3)無機材質層の厚さが300μm以下であれば、(a1)異方性グラファイトの高い熱伝導率を阻害することがない。
<(A3) Thickness of inorganic material layer>
(A3) The thickness of the inorganic material layer is preferably in the range of 100 μm to 300 μm, and more preferably in the range of 120 μm to 250 μm. (A3) If the thickness of the inorganic material layer is 100 μm or more, (a1) thermal conductivity in a direction in which the heat of anisotropic graphite is relatively difficult to be transmitted can be compensated. Moreover, if the thickness of the (a3) inorganic material layer is 300 μm or less, (a1) the high thermal conductivity of the anisotropic graphite is not hindered.
 <(a3)無機材質層の形成方法>
 (a3)無機材質層の形成方法としては、(a2)金属層にめっき、またはスパッタリングを行う方法、あるいは(a2)金属層に(a3)無機材質層となる板を貼り付ける方法が挙げられる。熱伝導性に優れることから、(a2)金属層に(a3)無機材質層となる板を貼り付ける方法がより好ましい。
<(A3) Formation method of inorganic material layer>
Examples of the method for forming the (a3) inorganic material layer include (a2) a method of performing plating or sputtering on the metal layer, or (a2) a method of attaching a plate to be the (a3) inorganic material layer to the metal layer. Since it is excellent in thermal conductivity, a method of attaching a plate to be (a3) an inorganic material layer to the (a2) metal layer is more preferable.
 そして、(a1)異方性グラファイトは、(a3)無機材質層によってその上下面が覆われていることがより好ましく、その全面が覆われていることがさらに好ましい。 The (a1) anisotropic graphite is more preferably covered by (a3) an inorganic material layer, and more preferably the whole surface is covered.
 <(a2)金属層>
 (a2)金属層は、(a1)異方性グラファイトと、(a3)無機材質層とを接合するために用いられる。
<(A2) Metal layer>
The (a2) metal layer is used to join (a1) anisotropic graphite and (a3) an inorganic material layer.
 <(a2)金属層の厚さ>
 (a2)金属層の厚さは、特に制限されないものの、接合材としての良好な界面接着性を有すること、並びに、熱抵抗の増加を抑制することができることから、8μm以上、50μmの範囲であることが好ましい。
<(A2) Metal layer thickness>
(A2) Although the thickness of the metal layer is not particularly limited, it is in the range of 8 μm or more and 50 μm because it has good interfacial adhesion as a bonding material and can suppress an increase in thermal resistance. It is preferable.
 <(a2)金属層の材質>
 (a2)金属層としては、特に制限されないものの、めっきによって形成された金属層、および、金属系ろう材あるいは半田によって形成された金属層がより好ましい。
<(A2) Material of metal layer>
(A2) The metal layer is not particularly limited, but a metal layer formed by plating and a metal layer formed by a metal brazing material or solder are more preferable.
 めっきによって(a2)金属層が形成された場合には、当該(a2)金属層と(a3)無機材質層とが一体となる場合もある。 When (a2) metal layer is formed by plating, the (a2) metal layer and (a3) inorganic material layer may be integrated.
 金属系ろう材によって形成された(a2)金属層は、(a1)異方性グラファイトに拡散し接合することができ、また、それ自体の熱伝導率が比較的高いので、高い熱伝導性を維持することができる。 The (a2) metal layer formed of the metal brazing material can diffuse and bond to (a1) anisotropic graphite, and since its own thermal conductivity is relatively high, it has high thermal conductivity. Can be maintained.
 例えば、(a2)金属層を金属系ろう材とし、(a3)無機材質層を銅層とすると、図2に示すように、(a2)金属層7および(a3)無機材質層6と、(a1)異方性グラファイト1とを接合することができる。 For example, if (a2) the metal layer is a metallic brazing material and (a3) the inorganic material layer is a copper layer, as shown in FIG. 2, (a2) metal layer 7 and (a3) inorganic material layer 6 and ( a1) The anisotropic graphite 1 can be joined.
 金属系ろう材の種類は、特に制限されないものの、(a3)無機材質層と同様に熱伝導性に優れることから、銀、銅、チタンを含むことがより好ましい。 Although the type of the metallic brazing material is not particularly limited, (a3) it is more preferable to contain silver, copper, and titanium because it has excellent thermal conductivity like the inorganic material layer.
 <(a2)金属層が金属系ろう材である場合>
 金属系ろう材を用いた接合方法としては、公知の材料並びに公知の技術を用いた方法が挙げられる。例えば、金属系ろう材として活性銀ろうを用いた場合には、1×10-3Paの真空環境、および700~1000℃の温度範囲で10分間から1時間加熱し、その後、常温まで冷却することによって、(a1)異方性グラファイトと(a3)無機材質層とを接合することができる。また、接合状態を良好にするために、加熱時に、(a1)異方性グラファイトまたは(a3)無機材質層に荷重をかけてもよい。
<(A2) When the metal layer is a metal brazing material>
Examples of the joining method using the metal brazing material include a known material and a method using a known technique. For example, when activated silver brazing is used as the metallic brazing material, it is heated for 10 minutes to 1 hour in a vacuum environment of 1 × 10 −3 Pa and a temperature range of 700 to 1000 ° C., and then cooled to room temperature. Thus, (a1) anisotropic graphite and (a3) inorganic material layer can be joined. Moreover, in order to make a joining state favorable, you may apply a load to (a1) anisotropic graphite or (a3) inorganic material layer at the time of a heating.
 また、(a3)無機材質層を、(a2)金属層として金属系ろう材を用いて、(a1)異方性グラファイトの全面に接合する場合には、図3に示すように、(a3)無機材質層として中空枠21を用いた方式、もしくは、図4に示すように、(a3)無機材質層として有底枠22を用いた方式で、(A)異方性グラファイト複合体を形成することが好ましい。(a1)異方性グラファイト1の各面にそれぞれ(a3)無機材質層を接合する場合に比べて、(a3)無機材質層同士の界面が減るため、(A)異方性グラファイト複合体は効率的に熱を拡散することができる。 When (a3) the inorganic material layer is bonded to the entire surface of (a1) anisotropic graphite using (a2) a metal brazing material as the metal layer, as shown in FIG. (A) An anisotropic graphite composite is formed by a method using a hollow frame 21 as an inorganic material layer, or a method using a bottomed frame 22 as an inorganic material layer as shown in FIG. It is preferable. (A1) Compared with the case where (a3) the inorganic material layer is bonded to each surface of the anisotropic graphite 1, (a3) the interface between the inorganic material layers is reduced. Heat can be diffused efficiently.
 (中空枠を用いた方式)
 図3を用いて、(a3)無機材質層として中空枠21を用いた方式について説明する。中空枠21を用いた方式では、中空枠21の内部に、(a3)無機材質層として蓋20、接合材である(a2)金属層7となる金属系ろう材あるいは半田、(a1)異方性グラファイト1、(a2)金属層7となる金属系ろう材あるいは半田、および蓋20をこの順で配置し、加熱接合することで(A)異方性グラファイト複合体10を作製することができる。このとき、金属系ろう材あるいは半田は、金属板20に予め接着されていると、より効率的に(a1)異方性グラファイト1と金属板20とを接合することができる。
(Method using hollow frame)
A method using the hollow frame 21 as the (a3) inorganic material layer will be described with reference to FIG. In the system using the hollow frame 21, (a3) a lid 20 as an inorganic material layer, (a2) a metal brazing material or solder that becomes the metal layer 7 as a bonding material, (a1) anisotropic (A) An anisotropic graphite composite 10 can be manufactured by disposing the heat-resistant graphite 1, (a2) the metal brazing material or solder to be the metal layer 7 and the lid 20 in this order and heat-bonding them. . At this time, if the metal brazing material or the solder is bonded to the metal plate 20 in advance, (a1) the anisotropic graphite 1 and the metal plate 20 can be bonded more efficiently.
 (有底枠を用いた方式)
 図4を用いて、(a3)無機材質層として有底枠22を用いた方式について説明する。有底枠22の作製方法は、特に制限されないが、板から削り出す方法、十字状の板(図4)を箱型に加工する曲げ加工による方法、絞り加工による方法など、公知の方法を適宜選択することができる。このようにして作製された有底枠22を用いた方式では、有底枠22の内部に、接合材である(a2)金属層7となる金属系ろう材あるいは半田、(a1)異方性グラファイト1、(a2)金属層7となる金属系ろう材あるいは半田、および(a3)無機材質層として蓋20をこの順で配置し、加熱接合することで(A)異方性グラファイト複合体10を作製することができる。このとき、金属系ろう材あるいは半田は、有底枠22および金属板20に予め接着されていると、より効率的に(a1)異方性グラファイト1と有底枠22および金属板20とを接合することができる。
(Method using a bottomed frame)
A method using the bottomed frame 22 as the (a3) inorganic material layer will be described with reference to FIG. The manufacturing method of the bottomed frame 22 is not particularly limited, but a known method such as a method of cutting out from a plate, a method of bending a cross-shaped plate (FIG. 4) into a box shape, a method of drawing, or the like is appropriately used. You can choose. In the method using the bottomed frame 22 produced in this way, (a2) a metal brazing material or solder to be the metal layer 7 as a bonding material, (a1) anisotropy, inside the bottomed frame 22. Graphite 1, (a2) metallic brazing material or solder to be the metal layer 7, and (a3) the lid 20 is disposed in this order as an inorganic material layer, and heat-bonded to form (A) the anisotropic graphite composite 10 Can be produced. At this time, if the metallic brazing material or solder is bonded in advance to the bottomed frame 22 and the metal plate 20, the (a1) anisotropic graphite 1, the bottomed frame 22 and the metal plate 20 are more efficiently bonded. Can be joined.
 <(a2)金属層の(a1)異方性グラファイトへの含浸>
 本発明の一態様に係る(A)異方性グラファイト複合体において、(a2)金属層の一部は、(a1)異方性グラファイトを形成するグラファイト層の層間の少なくとも一部に、例えば含浸するようにして存在していることが好ましい。即ち、(A)異方性グラファイト複合体は、(a1)異方性グラファイトを形成するグラファイト層の層間の少なくとも一部に、(a2)金属層の一部を備えることが好ましい。(a1)異方性グラファイトの層間には、微小な隙間が存在する場合があり、この隙間は(A)異方性グラファイト複合体の熱伝達性能を阻害する。そのため、この隙間に(a2)金属層の一部が存在することによって、良好な熱伝達性を発現することができる。
<(A2) Impregnation of (a1) anisotropic graphite of metal layer>
In (A) the anisotropic graphite composite according to one aspect of the present invention, (a2) a part of the metal layer is impregnated into, for example, at least part of the interlayer of the graphite layer forming the anisotropic graphite (a1) Thus, it is preferable to exist. That is, it is preferable that (A) the anisotropic graphite complex includes (a2) a part of the metal layer in at least a part of the layer of the graphite layer forming the anisotropic graphite. (A1) There may be a minute gap between the layers of the anisotropic graphite, and this gap hinders the heat transfer performance of the (A) anisotropic graphite composite. Therefore, the presence of a part of the metal layer (a2) in the gap can exhibit good heat transfer properties.
 (a2)金属層を(a1)異方性グラファイトを形成するグラファイト層の層間に含浸させる、あるいは存在させる方法としては、(a3)無機材質層と(a2)金属層とを加熱接合するときに、微小な隙間が存在するグラファイト層の層間を敢えて拡げる方法が効果的である。 (A2) A method of impregnating or existing a metal layer between (a1) graphite layers forming anisotropic graphite is as follows: (a3) When inorganic material layer and (a2) metal layer are heat-bonded An effective method is to deliberately expand the graphite layer where minute gaps exist.
 また、加熱接合のときにグラファイト層の層間を効率的に拡げる方法としては、(a1)異方性グラファイトとして、ポリイミド樹脂などの高分子フィルムを多層に積層した後、プレス加圧しながら熱処理することによって、即ち、熱分解することによって、高分子分解グラファイトを作製する方法が好ましい。高分子分解グラファイトは、高分子フィルムを多層に積層して作製されるため、CVD法などによって作製される熱分解グラファイトなどに比べて、高分子フィルム間に由来する層間によって直線状に隙間を形成することができる。そのため、金属系ろう材あるいは半田を容易に含浸させることができる。 As a method for efficiently expanding the interlayer of the graphite layer at the time of heat bonding, (a1) As anisotropic graphite, a polymer film such as polyimide resin is laminated in multiple layers, and then heat-treated while pressing with pressure. That is, a method of producing polymer-decomposed graphite by thermal decomposition is preferable. Since polymer-decomposed graphite is produced by laminating polymer films in multiple layers, a gap is formed linearly between the layers derived from the polymer film, compared to pyrolytic graphite produced by the CVD method, etc. can do. Therefore, the metal brazing material or solder can be easily impregnated.
 次に、本発明に係る半導体パッケージに関して、実施例および比較例を挙げてさらに詳細に説明するが、本発明は係る実施例のみに制限されるものではない。 Next, the semiconductor package according to the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to only the examples.
 <熱伝達性能の評価>
 図5に示すように、(A)異方性グラファイト複合体10の上面の中央部に、(B)半導体素子8(l1:6mm、l2:2mm)を半田で接合した。また、(A)異方性グラファイト複合体10の下面に、水冷式の冷却器9(寸法:30mm×30mm)を、信越化学工業(株)製のシリコーンオイルコンパウンド(品名:G-775)を用いて取り付けた。冷却器9には25℃の水を循環させた。そして、(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を熱電対で測定した。
<Evaluation of heat transfer performance>
As shown in FIG. 5, (B) a semiconductor element 8 (11: 6 mm, 12: 2 mm) was joined to the central portion of the upper surface of (A) the anisotropic graphite composite 10 with solder. Further, (A) a water-cooled cooler 9 (dimensions: 30 mm × 30 mm) is placed on the lower surface of the anisotropic graphite composite 10, and a silicone oil compound (product name: G-775) manufactured by Shin-Etsu Chemical Co., Ltd. Used to attach. Water of 25 ° C. was circulated through the cooler 9. Then, (B) the temperature of the semiconductor element 8 was measured with a thermocouple in a state where a heat amount of 40 W was applied to the semiconductor element 8.
 測定の結果、(B)半導体素子8の温度が、160℃以下であればランクを「A」、160℃を超え164℃以下であればランクを「B」、164℃を超え179℃以下であればランクを「C」、179℃を超えていればランクを「D」とし、ランクがA,BまたはCであれば、半導体パッケージが熱伝達性能に優れている(179℃以下であれば熱伝達性能に優れた半導体パッケージである)と判断した。なお、温度は、小数点第1位を四捨五入して整数にした。 As a result of the measurement, (B) if the temperature of the semiconductor element 8 is 160 ° C. or lower, the rank is “A”, and if it exceeds 160 ° C. and is 164 ° C. or lower, the rank is “B”. If the rank exceeds “C” and 179 ° C., the rank is “D”. If the rank is A, B, or C, the semiconductor package has excellent heat transfer performance (if it is 179 ° C. or less). This is a semiconductor package with excellent heat transfer performance. The temperature was rounded off to the first decimal place.
 <製造例1>
 グラファイトブロックを以下の方法で作製した。
<Production Example 1>
A graphite block was produced by the following method.
 (株)カネカ製のポリイミドフィルム(寸法:100mm×100mm、厚さ25μm)を1500枚積層した後、40kg/cmの加圧力でプレス加圧しながら、不活性ガス雰囲気下、最高温度2900℃で熱処理することによってグラファイトブロック(寸法:90mm×90mm、厚さ15mm)を作製した。 After laminating 1500 sheets of Kaneka's polyimide film (dimensions: 100 mm × 100 mm, thickness 25 μm), press and pressurize with a pressure of 40 kg / cm 2 , under an inert gas atmosphere, at a maximum temperature of 2900 ° C. A graphite block (dimensions: 90 mm × 90 mm, thickness 15 mm) was produced by heat treatment.
 作製したグラファイトブロックの熱伝導率は、結晶配向面の方向で1500W/mKであり、結晶配向面の鉛直方向で5W/mKであった。 The thermal conductivity of the produced graphite block was 1500 W / mK in the direction of the crystal orientation plane and 5 W / mK in the vertical direction of the crystal orientation plane.
 <実施例1>
 製造例1で作製したグラファイトブロック(寸法:90mm×90mm、厚さ15mm)を、グラファイトの結晶配向面がX-Z平面と平行になるように配置し、ワイヤーソーで切断した。これにより、X軸に平行な辺(辺a)の長さ(およびその平均値(La))が6mm、Y軸に平行な辺(辺b)の長さ(およびその平均値(Lb))が10mm、Z軸に平行な辺(辺c)の長さ(およびその平均値(Lc))が0.6mmである(a1)異方性グラファイトを得た。
<Example 1>
The graphite block (dimensions: 90 mm × 90 mm, thickness 15 mm) produced in Production Example 1 was placed so that the crystal orientation plane of graphite was parallel to the XZ plane, and cut with a wire saw. Thus, the length of the side (side a) parallel to the X axis (and its average value (La)) is 6 mm, and the length of the side (side b) parallel to the Y axis (and its average value (Lb)). (A1) anisotropic graphite having a length of 10 mm and a side (side c) parallel to the Z axis (and its average value (Lc)) of 0.6 mm was obtained.
 次に、図5に示すように、辺aの長さが6mm、辺bの長さが10mm、辺cの長さが0.6mmである(a1)異方性グラファイト1の上下面に、(a2)金属層7として厚さ(ta,tb)20μmのチタン系活性銀ろう、および(a3)無機材質層6として厚さ(Ta,Tb)200μmの無酸素銅をこの順に重ねた。そして、Z軸方向の上下から100kg/mの荷重を加えた状態で、1×10-3Paの真空環境下、850℃で30分間加熱することにより、(a1)異方性グラファイト1の上下面(X-Y平面に平行な面)に(a2)金属層7を備える(A)異方性グラファイト複合体10を得た。 Next, as shown in FIG. 5, the length of the side a is 6 mm, the length of the side b is 10 mm, and the length of the side c is 0.6 mm. (A1) (A2) Titanium-based active silver solder having a thickness (ta, tb) of 20 μm as the metal layer 7 and (a3) oxygen-free copper having a thickness (Ta, Tb) of 200 μm as the inorganic material layer 6 were stacked in this order. Then, by applying a load of 100 kg / m 2 from the top and bottom in the Z-axis direction and heating at 850 ° C. for 30 minutes in a vacuum environment of 1 × 10 −3 Pa, (a1) the anisotropic graphite 1 (A) An anisotropic graphite composite 10 provided with (a2) the metal layer 7 on the upper and lower surfaces (surface parallel to the XY plane) was obtained.
 得られた(A)異方性グラファイト複合体10において、(a1)異方性グラファイト1のグラファイト層の層間の一部には、(a2)金属層7であるチタン系活性銀ろうの一部が存在していた。 In the obtained (A) anisotropic graphite composite 10, (a1) a part of the titanium-based active silver brazing which is the metal layer 7 is located in a part of the interlayer of the graphite layer of the anisotropic graphite 1. Existed.
 次に、図5,6に示すように、冷却器9の上に(A)異方性グラファイト複合体10を配置し、(A)異方性グラファイト複合体10の上に(B)半導体素子8を配置して、半導体パッケージ30を作製した。図6に示すように、(B)半導体素子8は、(A)異方性グラファイト複合体10の辺a(図2等の符号「3」)に対し、その長辺81が垂直となるように配置した。前記辺aの4辺の長さの平均値(La)と前記(B)半導体素子8の短辺82の長さ(l2)との比率(La/l2)は、3であった。 Next, as shown in FIGS. 5 and 6, (A) the anisotropic graphite composite 10 is disposed on the cooler 9, and (B) the semiconductor element is formed on (A) the anisotropic graphite composite 10. 8 was arranged to produce a semiconductor package 30. As shown in FIG. 6, (B) the semiconductor element 8 is such that (A) the long side 81 is perpendicular to the side a of the anisotropic graphite composite 10 (reference numeral “3” in FIG. 2, etc.). Arranged. The ratio (La / l2) between the average value (La) of the four sides of the side a and the length (l2) of the short side 82 of the (B) semiconductor element 8 was 3.
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、173℃であった。従って、熱伝達性能の評価はランク「C」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 The temperature of the (B) semiconductor element 8 was measured at 173 ° C. with 40 W of heat applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “C”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <実施例2>
 製造例1で作製したグラファイトブロックを、グラファイトの結晶配向面がX-Z平面と平行になるように配置し、ワイヤーソーで切断した。これにより、X軸に平行な辺(辺a)の長さ(およびその平均値(La))が10mm、Y軸に平行な辺(辺b)の長さ(およびその平均値(Lb))が10mm、Z軸に平行な辺(辺c)の長さ(およびその平均値(Lc))が0.6mmである(a1)異方性グラファイトを得た以外は、実施例1と同様の操作を行って、図7に示すように、半導体パッケージ30を作製した。(A)異方性グラファイト複合体10の辺aの4辺の長さの平均値(La)と前記(B)半導体素子8の短辺82の長さ(l2)との比率(La/l2)は、5であった。
<Example 2>
The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw. Thus, the length of the side (side a) parallel to the X axis (and its average value (La)) is 10 mm, and the length of the side (side b) parallel to the Y axis (and its average value (Lb)). 10 mm, the length of the side (side c) parallel to the Z-axis (and its average value (Lc)) is 0.6 mm (a1) The same as in Example 1 except that anisotropic graphite was obtained. The semiconductor package 30 was manufactured by performing the operation as shown in FIG. (A) Ratio (La / l2) of the average value (La) of the lengths of the four sides a of the anisotropic graphite composite 10 to the length (l2) of the short side 82 of the (B) semiconductor element 8 ) Was 5.
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、163℃であった。従って、熱伝達性能の評価はランク「B」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 The temperature of the (B) semiconductor element 8 was measured in a state where a heat amount of 40 W was applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30 and found to be 163 ° C. Therefore, the evaluation of the heat transfer performance was rank “B”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <実施例3>
 (a3)無機材質層6として厚さ(Ta,Tb)200μmの窒化アルミニウムを用いた以外は、実施例2と同様の操作を行って、図7に示すように、半導体パッケージ30を作製した。
<Example 3>
(A3) Except that aluminum nitride having a thickness (Ta, Tb) of 200 μm was used as the inorganic material layer 6, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG.
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、178℃であった。従って、熱伝達性能の評価はランク「C」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 When the temperature of (B) semiconductor element 8 was measured in a state where a heat amount of 40 W was applied to (B) semiconductor element 8 in the produced semiconductor package 30, it was 178 ° C. Therefore, the evaluation of the heat transfer performance was rank “C”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <実施例4>
 (a3)無機材質層6として厚さ(Ta,Tb)80μmの無酸素銅を用いた以外は、実施例2と同様の操作を行って、図7に示すように、半導体パッケージ30を作製した。
<Example 4>
(A3) Except that oxygen-free copper having a thickness (Ta, Tb) of 80 μm was used as the inorganic material layer 6, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG. .
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、170℃であった。従って、熱伝達性能の評価はランク「C」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 When the temperature of (B) semiconductor element 8 was measured in the state where 40 W of heat was applied to (B) semiconductor element 8 in the produced semiconductor package 30, it was 170 ° C. Therefore, the evaluation of the heat transfer performance was rank “C”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <実施例5>
 (a3)無機材質層6として厚さ(Ta,Tb)320μmの無酸素銅を用いた以外は、実施例2と同様の操作を行って、図7に示すように、半導体パッケージ30を作製した。
<Example 5>
(A3) Except for using oxygen-free copper having a thickness (Ta, Tb) of 320 μm as the inorganic material layer 6, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG. .
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、165℃であった。従って、熱伝達性能の評価はランク「C」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 The temperature of the (B) semiconductor element 8 was measured at 165 ° C. in a state where a heat amount of 40 W was applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “C”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <実施例6>
 製造例1で作製したグラファイトブロックを、グラファイトの結晶配向面がX-Z平面と平行になるように配置し、ワイヤーソーで切断した。これにより、X軸に平行な辺(辺a)の長さ(およびその平均値(La))が10mm、Y軸に平行な辺(辺b)の長さ(およびその平均値(Lb))が10mm、Z軸に平行な辺(辺c)の長さ(およびその平均値(Lc))が0.6mmである(a1)異方性グラファイトを得た。この(a1)異方性グラファイト1の上下面に、(a2)金属層7として厚さ(ta,tb)20μmのチタン系活性銀ろうを重ねた。その後、電解銅めっきを行うことによって、(a2)金属層7の上に、(a3)無機材質層6として厚さ(Ta,Tb)200μmの銅層を形成した。なお、(a1)異方性グラファイト1の側面には、電解銅めっきを行う前にマスクを行い、電解銅めっきを行った後にマスクを取り除いた。これにより、(a1)異方性グラファイト1の側面には電解銅めっきが形成されないようにした。その後、実施例2と同様の操作を行って、図7に示すように、半導体パッケージ30を作製した。
<Example 6>
The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw. Thus, the length of the side (side a) parallel to the X axis (and its average value (La)) is 10 mm, and the length of the side (side b) parallel to the Y axis (and its average value (Lb)). (A1) anisotropic graphite having a length of 10 mm and a side (side c) parallel to the Z axis (and its average value (Lc)) of 0.6 mm was obtained. Titanium-based active silver brazing having a thickness (ta, tb) of 20 μm was overlaid on the upper and lower surfaces of (a1) anisotropic graphite 1 as (a2) metal layer 7. Thereafter, by performing electrolytic copper plating, a copper layer having a thickness (Ta, Tb) of 200 μm was formed as (a3) inorganic material layer 6 on (a2) metal layer 7. Note that (a1) a mask was applied to the side surface of the anisotropic graphite 1 before electrolytic copper plating, and the mask was removed after electrolytic copper plating. As a result, (a1) electrolytic copper plating was not formed on the side surface of the anisotropic graphite 1. Thereafter, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG.
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、167℃であった。従って、熱伝達性能の評価はランク「C」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 The temperature of the (B) semiconductor element 8 was measured at 167 ° C. with a heat amount of 40 W applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “C”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <実施例7>
 製造例1で作製したグラファイトブロックを、グラファイトの結晶配向面がX-Z平面と平行になるように配置し、ワイヤーソーで切断した。これにより、X軸に平行な辺(辺a)の長さ(およびその平均値(La))が9.6mm、Y軸に平行な辺(辺b)の長さ(およびその平均値(Lb))が9.6mm、Z軸に平行な辺(辺c)の長さ(およびその平均値(Lc))が0.6mmである(a1)異方性グラファイトを得た。
<Example 7>
The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw. Thus, the length of the side (side a) parallel to the X axis (and its average value (La)) is 9.6 mm, and the length of the side (side b) parallel to the Y axis (and its average value (Lb)) )) Was 9.6 mm, and the length of the side (side c) parallel to the Z-axis (and its average value (Lc)) was 0.6 mm. (A1) An anisotropic graphite was obtained.
 また、(a3)無機材質層6として、無酸素銅を、図3に示すように、枠の外側の寸法が10mm×10mm、枠の内側の寸法が9.6mm×9.6mm、枠の幅が0.2mm、厚さが1.0mm(0.6+0.2+0.2mm)である中空枠21(枠の内部に空洞は無い)に成形すると共に、寸法が9.6mm×9.6mm、厚さが200μm(0.2mm)である2枚の蓋20に成形した。 Further, (a3) oxygen-free copper as the inorganic material layer 6, as shown in FIG. 3, the outer dimension of the frame is 10 mm × 10 mm, the inner dimension of the frame is 9.6 mm × 9.6 mm, the width of the frame Is formed into a hollow frame 21 (no cavity inside the frame) having a thickness of 0.2 mm and a thickness of 1.0 mm (0.6 + 0.2 + 0.2 mm), and the dimensions are 9.6 mm × 9.6 mm, thickness Was formed into two lids 20 having a thickness of 200 μm (0.2 mm).
 そして、中空枠21の内部に、蓋20、接合材である(a2)金属層7として厚さ(ta,tb)20μmのチタン系活性銀ろう、(a1)異方性グラファイト1、(a2)金属層7として厚さ(ta,tb)20μmのチタン系活性銀ろう、および蓋20をこの順で配置した。そして、Z軸方向の上下から100kg/mの荷重を加えた状態で、1×10-3Paの真空環境下、850℃で30分間加熱することにより、(A)異方性グラファイト複合体10を得た。 Then, inside the hollow frame 21, a lid 20, a bonding material (a2) a titanium-based active silver solder having a thickness (ta, tb) of 20 μm as the metal layer 7, (a1) anisotropic graphite 1, (a2) A titanium-based active silver solder having a thickness (ta, tb) of 20 μm and a lid 20 were arranged in this order as the metal layer 7. Then, by applying a load of 100 kg / m 2 from above and below in the Z-axis direction, heating at 850 ° C. for 30 minutes in a vacuum environment of 1 × 10 −3 Pa, (A) anisotropic graphite composite 10 was obtained.
 得られた(A)異方性グラファイト複合体10において、(a1)異方性グラファイト1の全面に(a2)金属層7であるチタン系活性銀ろうが存在すると共に、(a1)異方性グラファイト1のグラファイト層の層間の一部には、(a2)金属層7であるチタン系活性銀ろうの一部が存在していた。その後、実施例2と同様の操作を行って、図7に示すように、半導体パッケージ30を作製した。 In the obtained (A) anisotropic graphite composite 10, (a1) the titanium-based active silver brazing which is the metal layer 7 exists on the entire surface of the anisotropic graphite 1, and (a1) the anisotropy A part of (a2) the titanium-based active silver brazing which is the metal layer 7 was present in a part of the graphite layer of the graphite 1. Thereafter, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG.
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、162℃であった。従って、熱伝達性能の評価はランク「B」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 When the temperature of (B) semiconductor element 8 was measured in the state where 40 W of heat was applied to (B) semiconductor element 8 in the produced semiconductor package 30, it was 162 ° C. Therefore, the evaluation of the heat transfer performance was rank “B”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <実施例8>
 製造例1で作製したグラファイトブロックを、グラファイトの結晶配向面がX-Z平面と平行になるように配置し、ワイヤーソーで切断した。これにより、X軸に平行な辺(辺a)の長さ(およびその平均値(La))が9.6mm、Y軸に平行な辺(辺b)の長さ(およびその平均値(Lb))が9.6mm、Z軸に平行な辺(辺c)の長さ(およびその平均値(Lc))が0.6mmである(a1)異方性グラファイトを得た。
<Example 8>
The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw. Thus, the length of the side (side a) parallel to the X axis (and its average value (La)) is 9.6 mm, and the length of the side (side b) parallel to the Y axis (and its average value (Lb)) )) Was 9.6 mm, and the length of the side (side c) parallel to the Z-axis (and its average value (Lc)) was 0.6 mm. (A1) An anisotropic graphite was obtained.
 また、(a3)無機材質層6として、厚さ200μmの無酸素銅の板を、図4に示すように、十字状に型抜き加工した後、箱型に加工する曲げ加工によって、枠の外側の寸法が10mm×10mm、高さが1.0mm(0.6+0.2+0.2mm)、枠の内側の寸法が9.6mm×9.6mm、深さが0.8mm(0.6+0.2mm)である有底枠22に成形すると共に、寸法が9.6mm×9.6mm、厚さが200μm(0.2mm)である蓋20に成形した。 Further, (a3) an oxygen-free copper plate having a thickness of 200 μm as the inorganic material layer 6, as shown in FIG. The dimensions are 10mm x 10mm, the height is 1.0mm (0.6 + 0.2 + 0.2mm), the inner dimensions of the frame are 9.6mm x 9.6mm, and the depth is 0.8mm (0.6 + 0.2mm) And a lid 20 having a size of 9.6 mm × 9.6 mm and a thickness of 200 μm (0.2 mm).
 そして、有底枠22の内部に、接合材である(a2)金属層7として厚さ(ta,tb)20μmのチタン系活性銀ろう、(a1)異方性グラファイト1、(a2)金属層7として厚さ(ta,tb)20μmのチタン系活性銀ろう、および蓋20をこの順で配置した。そして、Z軸方向の上下から100kg/mの荷重を加えた状態で、1×10-3Paの真空環境下、850℃で30分間加熱することにより、(A)異方性グラファイト複合体10を得た。 And inside the bottomed frame 22, (a2) titanium-based active silver brazing having a thickness (ta, tb) of 20 μm as a metal layer 7 as a bonding material, (a1) anisotropic graphite 1, (a2) metal layer 7, a titanium-based active silver solder having a thickness (ta, tb) of 20 μm and a lid 20 were arranged in this order. Then, by applying a load of 100 kg / m 2 from above and below in the Z-axis direction, heating at 850 ° C. for 30 minutes in a vacuum environment of 1 × 10 −3 Pa, (A) anisotropic graphite composite 10 was obtained.
 得られた(A)異方性グラファイト複合体10において、(a1)異方性グラファイト1の全面に(a2)金属層7であるチタン系活性銀ろうが存在すると共に、(a1)異方性グラファイト1のグラファイト層の層間の一部には、(a2)金属層7であるチタン系活性銀ろうの一部が存在していた。その後、実施例2と同様の操作を行って、図7に示すように、半導体パッケージ30を作製した。 In the obtained (A) anisotropic graphite composite 10, (a1) the titanium-based active silver brazing which is the metal layer 7 exists on the entire surface of the anisotropic graphite 1, and (a1) the anisotropy A part of (a2) the titanium-based active silver brazing which is the metal layer 7 was present in a part of the graphite layer of the graphite 1. Thereafter, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG.
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、160℃であった。従って、熱伝達性能の評価はランク「A」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 The temperature of (B) semiconductor element 8 was measured in a state where a heat amount of 40 W was applied to (B) semiconductor element 8 in the produced semiconductor package 30 and found to be 160 ° C. Therefore, the evaluation of the heat transfer performance was rank “A”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <実施例9>
 (a1)異方性グラファイト1として、MINTEQ International Inc. 製の高熱伝導性カーボン材料(商品名:PYROID HT )を用いた以外は、実施例2と同様の操作を行って、図7に示すように、半導体パッケージ30を作製した。
<Example 9>
(A1) The same operation as in Example 2 was performed except that a highly heat conductive carbon material (trade name: PYROID HT) manufactured by MINTEQ International Inc. was used as the anisotropic graphite 1, as shown in FIG. In addition, a semiconductor package 30 was produced.
 得られた(A)異方性グラファイト複合体10において、(a1)異方性グラファイト1のグラファイト層の層間には、(a2)金属層7は存在していなかった。 In the obtained (A) anisotropic graphite composite 10, (a2) the metal layer 7 did not exist between the graphite layers of (a1) anisotropic graphite 1.
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、165℃であった。従って、熱伝達性能の評価はランク「C」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 The temperature of the (B) semiconductor element 8 was measured at 165 ° C. in a state where a heat amount of 40 W was applied to the (B) semiconductor element 8 in the manufactured semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “C”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <比較例1>
 図8に示すように、(B)半導体素子8を、(A)異方性グラファイト複合体10の辺a(図8等の符号「3」)に対し、その長辺81が並行となるように配置した以外は、実施例2と同様の操作を行って、半導体パッケージ30を作製した。
<Comparative Example 1>
As shown in FIG. 8, (B) the semiconductor element 8 is arranged so that the long side 81 thereof is parallel to the side a (reference numeral “3” in FIG. 8) of the (A) anisotropic graphite composite 10. A semiconductor package 30 was fabricated by performing the same operation as in Example 2 except that the semiconductor package 30 was disposed.
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、187℃であった。従って、熱伝達性能の評価はランク「D」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 When the temperature of (B) semiconductor element 8 was measured in the state where 40 W of heat was applied to (B) semiconductor element 8 in the produced semiconductor package 30, it was 187 ° C. Therefore, the evaluation of the heat transfer performance was rank “D”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <比較例2>
 製造例1で作製したグラファイトブロックを、グラファイトの結晶配向面がX-Z平面と平行になるように配置し、ワイヤーソーで切断した。これにより、X軸に平行な辺(辺a)の長さ(およびその平均値(La))が4mm、Y軸に平行な辺(辺b)の長さ(およびその平均値(Lb))が10mm、Z軸に平行な辺(辺c)の長さ(およびその平均値(Lc))が0.6mmである(a1)異方性グラファイトを得た。この(a1)異方性グラファイトを用いた以外は、実施例2と同様の操作を行って、図9に示すように、半導体パッケージ30を作製した。(A)異方性グラファイト複合体10の辺a(図9等の符号「3」)の4辺の長さの平均値(La)と前記(B)半導体素子8の短辺82の長さ(l2)との比率(La/l2)は、2であった。
<Comparative example 2>
The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw. Thus, the length of the side (side a) parallel to the X axis (and its average value (La)) is 4 mm, and the length of the side (side b) parallel to the Y axis (and its average value (Lb)). (A1) anisotropic graphite having a length of 10 mm and a side (side c) parallel to the Z axis (and its average value (Lc)) of 0.6 mm was obtained. Except that this (a1) anisotropic graphite was used, the same operation as in Example 2 was performed to produce a semiconductor package 30 as shown in FIG. (A) The average value (La) of the lengths of the four sides of the side a (symbol “3” in FIG. 9) of the anisotropic graphite composite 10 and the length of the short side 82 of the (B) semiconductor element 8. The ratio (La / l2) to (l2) was 2.
 作製した半導体パッケージ30における(B)半導体素子8に40Wの熱量を加えた状態で、(B)半導体素子8の温度を測定したところ、185℃であった。従って、熱伝達性能の評価はランク「D」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 The temperature of the (B) semiconductor element 8 was measured at 185 ° C. with 40 W of heat applied to the (B) semiconductor element 8 in the fabricated semiconductor package 30. Therefore, the evaluation of the heat transfer performance was rank “D”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
 <比較例3>
 製造例1で作製したグラファイトブロックを、グラファイトの結晶配向面がX-Z平面と平行になるように配置し、ワイヤーソーで切断した。これにより、X軸に平行な辺(辺a)の長さ(およびその平均値(La))が10mm、Y軸に平行な辺(辺b)の長さ(およびその平均値(Lb))が10mm、Z軸に平行な辺(辺c)の長さ(およびその平均値(Lc))が1.0mmである(a1)異方性グラファイトを得た。この(a1)異方性グラファイトのみを用いて、即ち、(a2)金属層および(a3)無機材質層を用いないで、実施例2と同様の操作を行って、半導体パッケージを作製した。
<Comparative Example 3>
The graphite block produced in Production Example 1 was arranged so that the crystal orientation plane of graphite was parallel to the XZ plane, and was cut with a wire saw. Thus, the length of the side (side a) parallel to the X axis (and its average value (La)) is 10 mm, and the length of the side (side b) parallel to the Y axis (and its average value (Lb)). (A1) anisotropic graphite having a length of 10 mm and a side (side c) parallel to the Z axis (and its average value (Lc)) of 1.0 mm was obtained. Using this (a1) anisotropic graphite alone, that is, without using (a2) the metal layer and (a3) the inorganic material layer, the same operation as in Example 2 was performed to produce a semiconductor package.
 作製した半導体パッケージにおける(B)半導体素子に40Wの熱量を加えた状態で、(B)半導体素子の温度を測定したところ、194℃であった。従って、熱伝達性能の評価はランク「D」であった。評価結果を半導体パッケージの構成と共に、表1に示す。 The temperature of the (B) semiconductor element was measured at a temperature of 194 ° C. with 40 W of heat applied to the (B) semiconductor element in the manufactured semiconductor package. Therefore, the evaluation of the heat transfer performance was rank “D”. The evaluation results are shown in Table 1 together with the configuration of the semiconductor package.
Figure JPOXMLDOC01-appb-T000001
 実施例2と比較例1との比較から、(B)半導体素子の長辺を(a1)異方性グラファイトの辺aに対して垂直に配置することで、半導体パッケージの熱伝達性能が向上することが分かる。これは、(a1)異方性グラファイトにおいて、辺bに対して熱伝導性が300倍高い辺aの方向へ、伝熱面積を大きくすることができたためである。
Figure JPOXMLDOC01-appb-T000001
From the comparison between Example 2 and Comparative Example 1, the heat transfer performance of the semiconductor package is improved by arranging (B) the long side of the semiconductor element perpendicularly to (a1) the side a of the anisotropic graphite. I understand that. This is because in (a1) anisotropic graphite, the heat transfer area can be increased in the direction of side a, which has 300 times higher thermal conductivity than side b.
 また、実施例1と比較例2との比較から、(a1)異方性グラファイトの辺aを(B)半導体素子の短辺に対して3倍以上の長さにすることで、半導体パッケージの熱伝達性能が高くなることが分かる。 Further, from the comparison between Example 1 and Comparative Example 2, (a1) the side a of the anisotropic graphite is set to a length of three times or more with respect to the short side of the (B) semiconductor element. It can be seen that the heat transfer performance is improved.
 実施例2および実施例3と比較例3との比較から、(a1)異方性グラファイトの上下面に(a3)無機材質層を配置することで、半導体パッケージの熱伝達性能が向上することが分かる。これは、(a1)異方性グラファイトにおいて、熱伝導性が相対的に低い辺bの方向への熱伝達性能を向上させることができたためである。また、実施例2と実施例3との比較から、(a3)無機材質層として窒化アルミニウムよりも無酸素銅の方が好ましいことが分かる。 From comparison between Example 2 and Example 3 and Comparative Example 3, (a1) Arranging (a3) inorganic material layers on the upper and lower surfaces of anisotropic graphite may improve the heat transfer performance of the semiconductor package. I understand. This is because (a1) anisotropic graphite was able to improve the heat transfer performance in the direction of side b, which has a relatively low thermal conductivity. Further, from comparison between Example 2 and Example 3, it can be seen that (a3) oxygen-free copper is preferable to aluminum nitride as the inorganic material layer.
 実施例2、実施例4および実施例5の比較から、辺aの長さが10mm、辺bの長さが10mm、辺cの長さが0.6mmである(a1)異方性グラファイトに対して、無酸素銅の厚さは200μmが好適であり、それより厚く(320μm)ても、薄く(80μm)ても、半導体パッケージの熱伝達性能が若干低下していることが分かる。これは、(a1)異方性グラファイトにおける、熱伝導性が相対的に低い辺bへの熱伝達性能の向上と、辺c(厚さ方向)への熱伝達性能の維持とを両立させることができる厚さに、(a3)無機材質層の厚さを設定することが重要であることを意味する。 From comparison between Example 2, Example 4 and Example 5, the length of side a is 10 mm, the length of side b is 10 mm, and the length of side c is 0.6 mm. On the other hand, the thickness of the oxygen-free copper is preferably 200 μm, and it can be seen that the heat transfer performance of the semiconductor package is slightly deteriorated whether it is thicker (320 μm) or thinner (80 μm). This is to achieve both (a1) improvement of heat transfer performance to the side b having relatively low thermal conductivity and maintenance of heat transfer performance to the side c (thickness direction) in anisotropic graphite. (A3) means that it is important to set the thickness of the inorganic material layer.
 実施例2および実施例6の比較から、(a1)異方性グラファイトと接合する(a3)無機材質層としては、電解銅めっきで形成された銅層よりも、無酸素銅の方が好適であることが分かる。これは、電解銅めっきで形成された銅層よりも、無酸素銅の方が熱伝導性に優れているためである。 From the comparison between Example 2 and Example 6, (a1) oxygen-free copper is more suitable as the inorganic material layer (a3) bonded to the anisotropic graphite than the copper layer formed by electrolytic copper plating. I know that there is. This is because oxygen-free copper has better thermal conductivity than a copper layer formed by electrolytic copper plating.
 実施例2、実施例7および実施例8の比較から、(a1)異方性グラファイトの上下面のみに(a3)無機材質層が接合されているよりも、(a1)異方性グラファイトの全面に亘って(a3)無機材質層が接合されている方が、半導体パッケージの熱伝達性能が高いことが分かる。これは、(B)半導体素子からの熱を(a1)異方性グラファイトの側面部分にまで拡散させることができ、より効率的に放熱することができるためである。また、実施例7および実施例8の比較から、中空枠を用いた(a3)無機材質層よりも、有底枠を用いた(a3)無機材質層の方が、半導体パッケージの熱伝達性能が高いことが分かる。これは、有底枠を用いた(a3)無機材質層の方が、当該(a3)無機材質層における銅板の界面が少ないためである。 From the comparison of Example 2, Example 7 and Example 8, (a1) the entire surface of the anisotropic graphite rather than (a3) the inorganic material layer being bonded only to the upper and lower surfaces of the anisotropic graphite (a1) It can be seen that the heat transfer performance of the semiconductor package is higher when (a3) the inorganic material layer is bonded. This is because (B) the heat from the semiconductor element can be diffused to the side surface portion of (a1) anisotropic graphite, and heat can be radiated more efficiently. Further, from the comparison between Example 7 and Example 8, the heat transfer performance of the semiconductor package is higher in the (a3) inorganic material layer using the bottomed frame than in the (a3) inorganic material layer using the hollow frame. I understand that it is expensive. This is because the (a3) inorganic material layer using the bottomed frame has fewer copper plate interfaces in the (a3) inorganic material layer.
 実施例2および実施例9の比較から、(a1)異方性グラファイトのグラファイト層の層間の一部に(a2)金属層7であるチタン系活性銀ろうの一部が存在している方が、存在していない場合と比べて、半導体パッケージの熱伝達性能が高いことが分かる。これは、グラファイト層の層間に形成される、熱伝導性の低い隙間が、熱伝導性の比較的良好なチタン系活性銀ろうで満たされるためである。 From the comparison between Example 2 and Example 9, it was found that (a2) a part of the titanium-based active silver brazing which is the metal layer 7 exists in a part between the layers of the graphite layer of the anisotropic graphite (a1). It can be seen that the heat transfer performance of the semiconductor package is higher than the case where it does not exist. This is because the gap having low thermal conductivity formed between the graphite layers is filled with a titanium-based active silver braze having relatively good thermal conductivity.
 上述した通り、本発明の一実施形態には下記〔1〕~〔9〕で示される発明が含まれる。
〔1〕本発明の一態様に係る半導体パッケージは、(A)異方性グラファイト複合体と、(B)半導体素子とを備えた半導体パッケージであり、
 前記(A)が、(a1)異方性グラファイト、(a2)金属層、および(a3)無機材質層を備え、
 前記(a1)と(a3)とが、(a2)によって接合しており、
 X軸、X軸と直交するY軸、X軸とY軸とを含む平面に垂直なZ軸における、
前記(A)のX軸に平行な4辺(辺a)の長さの平均値をLaとし、
前記(A)のY軸に平行な4辺(辺b)の長さの平均値をLbとし、
前記(A)のZ軸に平行な4辺(辺c)の長さの平均値をLcとしたとき、
 前記(a1)を形成するグラファイト層の結晶配向面が、X軸とZ軸とを含むX-Z平面と平行であり、
前記(B)の長辺の長さをl1とし、
前記(B)の短辺の長さをl2とし、
前記(B)の厚さをl3としたとき、
 前記(B)の長辺がX軸とZ軸とを含むX-Z平面と垂直になるように、前記(B)が、前記(A)が備える(a3)と接合しており、
 前記(A)のX軸に平行な4辺の長さの平均値(La)と前記(B)の短辺の長さ(l2)との比率(La/l2)が、3以上である。
〔2〕前記(a3)が、銅であることが好ましい。
〔3〕前記(a3)の厚さが、100μm以上、300μm以下であることが好ましい。
〔4〕前記Laが、10mm以上であることが好ましい。
〔5〕前記Lcが、3mm以下であることが好ましい。
〔6〕前記(a3)によって(a1)の全面が覆われていることが好ましい。
〔7〕前記(a3)が、有底枠もしくは中空枠と蓋とを備えることが好ましい。
〔8〕前記(a1)を形成するグラファイト層の層間の少なくとも一部に、(a2)の一部を備えることが好ましい。
〔9〕前記(a1)が、高分子フィルムを多層に積層した後、プレス加圧しながら熱処理することによって作製されていることが好ましい。
As described above, one embodiment of the present invention includes the inventions shown in the following [1] to [9].
[1] A semiconductor package according to an aspect of the present invention is a semiconductor package including (A) an anisotropic graphite composite and (B) a semiconductor element,
(A) comprises (a1) anisotropic graphite, (a2) metal layer, and (a3) inorganic material layer,
(A1) and (a3) are joined by (a2),
X-axis, Y-axis orthogonal to X-axis, Z-axis perpendicular to the plane including X-axis and Y-axis,
The average value of the lengths of the four sides (side a) parallel to the X axis in (A) is La,
The average value of the lengths of the four sides (side b) parallel to the Y axis in (A) is Lb,
When the average value of the lengths of the four sides (side c) parallel to the Z axis in (A) is Lc,
The crystal orientation plane of the graphite layer forming the (a1) is parallel to the XZ plane including the X axis and the Z axis;
The length of the long side of (B) is l1,
The length of the short side of (B) is l2,
When the thickness of the (B) is l3,
(B) is joined to (a3) included in (A) so that the long side of (B) is perpendicular to the XZ plane including the X axis and the Z axis,
The ratio (La / l2) of the average value (La) of the lengths of the four sides parallel to the X axis in (A) and the length (l2) of the short sides in (B) is 3 or more.
[2] The (a3) is preferably copper.
[3] The thickness of (a3) is preferably 100 μm or more and 300 μm or less.
[4] The La is preferably 10 mm or more.
[5] The Lc is preferably 3 mm or less.
[6] It is preferable that the entire surface of (a1) is covered with the above (a3).
[7] The (a3) preferably includes a bottomed frame or a hollow frame and a lid.
[8] It is preferable that a part of (a2) is provided in at least a part of the interlayer of the graphite layer forming (a1).
[9] The (a1) is preferably produced by laminating a polymer film in multiple layers and then heat-treating it while pressing.
 本発明は、放熱性の高い半導体パッケージに、好適に利用することができる。 The present invention can be suitably used for a semiconductor package with high heat dissipation.
  1 異方性グラファイト
  2 結晶配向面
  3 (異方性グラファイト複合体の)辺a
  4 (異方性グラファイト複合体の)辺b
  5 (異方性グラファイト複合体の)辺c
  6 無機材質層
  7 金属層
  8 半導体素子
  9 冷却器
 10 異方性グラファイト複合体
 20 蓋
 21 中空枠
 22 有底枠
 30 半導体パッケージ
 81 (半導体素子の)長辺
 82 (半導体素子の)短辺
1 Anisotropic Graphite 2 Crystal Orientation Plane 3 Side (of Anisotropic Graphite Composite) a
4 Side (of anisotropic graphite composite) b
5 Side c (of anisotropic graphite composite)
6 Inorganic material layer 7 Metal layer 8 Semiconductor element 9 Cooler 10 Anisotropic graphite complex 20 Lid 21 Hollow frame 22 Bottomed frame 30 Semiconductor package 81 Long side of semiconductor element 82 Short side of semiconductor element

Claims (9)

  1.  (A)異方性グラファイト複合体と、(B)半導体素子とを備えた半導体パッケージであり、
     前記(A)が、(a1)異方性グラファイト、(a2)金属層、および(a3)無機材質層を備え、
     前記(a1)と(a3)とが、(a2)によって接合しており、
     X軸、X軸と直交するY軸、X軸とY軸とを含む平面に垂直なZ軸における、
    前記(A)のX軸に平行な4辺(辺a)の長さの平均値をLaとし、
    前記(A)のY軸に平行な4辺(辺b)の長さの平均値をLbとし、
    前記(A)のZ軸に平行な4辺(辺c)の長さの平均値をLcとしたとき、
     前記(a1)を形成するグラファイト層の結晶配向面が、X軸とZ軸とを含むX-Z平面と平行であり、
    前記(B)の長辺の長さをl1とし、
    前記(B)の短辺の長さをl2とし、
    前記(B)の厚さをl3としたとき、
     前記(B)の長辺がX軸とZ軸とを含むX-Z平面と垂直になるように、前記(B)が、前記(A)が備える(a3)と接合しており、
     前記(A)のX軸に平行な4辺の長さの平均値(La)と前記(B)の短辺の長さ(l2)との比率(La/l2)が、3以上である、
    半導体パッケージ。
    (A) a semiconductor package comprising an anisotropic graphite composite and (B) a semiconductor element;
    (A) comprises (a1) anisotropic graphite, (a2) metal layer, and (a3) inorganic material layer,
    (A1) and (a3) are joined by (a2),
    X-axis, Y-axis orthogonal to X-axis, Z-axis perpendicular to the plane including X-axis and Y-axis,
    The average value of the lengths of the four sides (side a) parallel to the X axis in (A) is La,
    The average value of the lengths of the four sides (side b) parallel to the Y axis in (A) is Lb,
    When the average value of the lengths of the four sides (side c) parallel to the Z axis in (A) is Lc,
    The crystal orientation plane of the graphite layer forming the (a1) is parallel to the XZ plane including the X axis and the Z axis;
    The length of the long side of (B) is l1,
    The length of the short side of (B) is l2,
    When the thickness of the (B) is l3,
    (B) is joined to (a3) included in (A) so that the long side of (B) is perpendicular to the XZ plane including the X axis and the Z axis,
    The ratio (La / l2) of the average value (La) of the lengths of the four sides parallel to the X axis of (A) and the length (l2) of the short sides of (B) is 3 or more.
    Semiconductor package.
  2.  前記(a3)が、銅である、請求項1に記載の半導体パッケージ。 The semiconductor package according to claim 1, wherein (a3) is copper.
  3.  前記(a3)の厚さが、100μm以上、300μm以下である、請求項1または2に記載の半導体パッケージ。 The semiconductor package according to claim 1 or 2, wherein the thickness of (a3) is not less than 100 µm and not more than 300 µm.
  4.  前記Laが、10mm以上である、請求項1~3の何れか一項に記載の半導体パッケージ。 The semiconductor package according to any one of claims 1 to 3, wherein the La is 10 mm or more.
  5.  前記Lcが、3mm以下である、請求項1~4の何れか一項に記載の半導体パッケージ。 The semiconductor package according to any one of claims 1 to 4, wherein the Lc is 3 mm or less.
  6.  前記(a3)によって(a1)の全面が覆われている、請求項1~5の何れか一項に記載の半導体パッケージ。 6. The semiconductor package according to claim 1, wherein the entire surface of (a1) is covered with the (a3).
  7.  前記(a3)が、有底枠もしくは中空枠と蓋とを備える、請求項1~6の何れか一項に記載の半導体パッケージ。 The semiconductor package according to any one of claims 1 to 6, wherein (a3) includes a bottomed frame or a hollow frame and a lid.
  8.  前記(a1)を形成するグラファイト層の層間の少なくとも一部に、(a2)の一部を備える、請求項1~7の何れか一項に記載の半導体パッケージ。 The semiconductor package according to any one of claims 1 to 7, wherein a part of (a2) is provided at least partly between the layers of the graphite layer forming the (a1).
  9.  前記(a1)が、高分子フィルムを多層に積層した後、プレス加圧しながら熱処理することによって作製されている、請求項8に記載の半導体パッケージ。 9. The semiconductor package according to claim 8, wherein (a1) is manufactured by laminating a polymer film in multiple layers and then performing heat treatment while pressing and pressing.
PCT/JP2019/011568 2018-03-28 2019-03-19 Semiconductor package WO2019188614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018062843A JP2021100006A (en) 2018-03-28 2018-03-28 Semiconductor package
JP2018-062843 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188614A1 true WO2019188614A1 (en) 2019-10-03

Family

ID=68060525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011568 WO2019188614A1 (en) 2018-03-28 2019-03-19 Semiconductor package

Country Status (2)

Country Link
JP (1) JP2021100006A (en)
WO (1) WO2019188614A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050337A1 (en) * 2020-09-02 2022-03-10 株式会社カネカ Vapor chamber and semiconductor package having same mounted thereon
JP2023006510A (en) * 2021-06-30 2023-01-18 日亜化学工業株式会社 Light-emitting module, vehicle lamp, and heat dissipation member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004555A1 (en) * 2022-06-30 2024-01-04 株式会社カネカ Graphite composite and graphite composite production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238733A (en) * 2011-05-12 2012-12-06 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element and manufacturing method thereof
JP2017112334A (en) * 2015-12-18 2017-06-22 株式会社サーモグラフィティクス Heat conduction structure, manufacturing method of the same, cooling device, and semiconductor module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238733A (en) * 2011-05-12 2012-12-06 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element and manufacturing method thereof
JP2017112334A (en) * 2015-12-18 2017-06-22 株式会社サーモグラフィティクス Heat conduction structure, manufacturing method of the same, cooling device, and semiconductor module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050337A1 (en) * 2020-09-02 2022-03-10 株式会社カネカ Vapor chamber and semiconductor package having same mounted thereon
JP2023006510A (en) * 2021-06-30 2023-01-18 日亜化学工業株式会社 Light-emitting module, vehicle lamp, and heat dissipation member
US11725796B2 (en) 2021-06-30 2023-08-15 Nichia Corporation Light-emitting module, vehicle lamp, and heat dissipation member

Also Published As

Publication number Publication date
JP2021100006A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6580385B2 (en) Composite of aluminum and carbon particles and method for producing the same
JP6529433B2 (en) Thermal management assembly including bulk graphene material
WO2019188614A1 (en) Semiconductor package
JP2016026391A (en) Anisotropic thermal conduction element and manufacturing method
JP5759902B2 (en) Laminate and method for producing the same
CN112839799B (en) Carbonaceous member with metal layer and heat conductive plate
TW200933117A (en) Layered heat spreader and method of making the same
WO2020059605A1 (en) Semiconductor package
WO2015104954A1 (en) Electronic circuit device
JP7213482B2 (en) Graphite composites and semiconductor packages
JP7142864B2 (en) Method for producing anisotropic graphite composite
JP6498040B2 (en) Composite of aluminum and carbon particles and insulating substrate
KR20130099790A (en) Heterostructure for heat dissipation and method of fabricating the same
TWM435811U (en) Composite heat sink
JP2020053613A (en) Composite substrate
JP7096999B2 (en) Manufacturing method of composite board for heat dissipation material and heat dissipation unit
JP2000022055A (en) Carbon fabric composite radiator plate
WO2019106874A1 (en) Insulating substrate and heat dissipation device
JP7232257B2 (en) Anisotropic graphite and anisotropic graphite composites
JP2015153900A (en) Laminate and manufacturing method of the same
JP5979478B2 (en) Three-layer structure laminated diamond base substrate, heat radiation mounting substrate for power semiconductor module, and manufacturing method thereof
JP7302446B2 (en) Heat dissipation device
JP6682403B2 (en) Insulating substrate manufacturing method and insulating substrate
JP2021090014A (en) Heat dissipation sheet and heat dissipation sheet manufacturing method
JP2021143392A (en) Production method of aluminum-carbon particle composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP