JP2000022055A - Carbon fabric composite radiator plate - Google Patents

Carbon fabric composite radiator plate

Info

Publication number
JP2000022055A
JP2000022055A JP19151698A JP19151698A JP2000022055A JP 2000022055 A JP2000022055 A JP 2000022055A JP 19151698 A JP19151698 A JP 19151698A JP 19151698 A JP19151698 A JP 19151698A JP 2000022055 A JP2000022055 A JP 2000022055A
Authority
JP
Japan
Prior art keywords
metal member
composite plate
carbon fabric
plate
member layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19151698A
Other languages
Japanese (ja)
Inventor
Junji Ninomiya
淳司 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP19151698A priority Critical patent/JP2000022055A/en
Publication of JP2000022055A publication Critical patent/JP2000022055A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

PROBLEM TO BE SOLVED: To provide a good thermal conductivity in the direction parallel to a surface for excellent heat dissipation efficiency by coating a carbon fabric composite plate, composed in an array in one direction, with a metal member layer of specific thickness or less through a metal base material layer. SOLUTION: Related to a heat radiator plate 1, the surface of a carbon fabric composite plate 2 is sequentially coated with a metal base material layer 3 and a metal member layer 4. Related to the carbon fabric composite plate 2, a carbon fabric 6 is composed with a matrix 5 in parallel to the surface of the composite plate 2 while arrayed in one direction. The thickness is about 0.5-4 mm. Since the carbon fabric composed with the matrix 5 is of high thermal conductivity in longitudinal direction, the thermal conductivity in the direction parallel to the surface of the composite plate 2 may be larger than a metal material such as a silver. The metal member layer 4 is entirely coated over the entire surface of the carbon fabric composite plate as usual. At least both sides surface and beakside, are coated. The thickness of the metal member layer is 100 μm or less. With excellent thermal conductivity in the direction parallel to a surface, the accumulated heat of a semiconductor is dissipated well while the semiconductor element is hard to cause distortion since the elastic modulus in surface direction is small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンピューターの
集積回路(MPU、CPU、DRAMなど)やパワート
ランジスタに使用される半導体素子などの発熱を放散す
るための炭素繊維複合放熱板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber composite heat radiating plate for dissipating heat generated by a semiconductor element used for a computer integrated circuit (MPU, CPU, DRAM, etc.) or a power transistor.

【0002】[0002]

【従来の技術】近年、コンピューターの高性能化、特に
高速化が著しい。前記高速化は、半導体集積回路の高周
波数化により実現されたが、それに伴って半導体素子な
どの発熱量が増大し、その熱放散が重要課題になってい
る。半導体素子の熱放散は、例えば、図3に示すよう
に、半導体パッケージ8の外周の一部を放熱板1で構成
し、放熱板1の内面に半導体素子10を接着剤で接合して
行われている。図3で、9は半導体素子10と回路基板11
を電気接続するボンディングワイヤ、12はセラミック封
止体、13は入出力端子である。
2. Description of the Related Art In recent years, the performance of computers, especially the speed thereof, has been remarkable. The higher speed has been realized by increasing the frequency of the semiconductor integrated circuit. However, the amount of heat generated by the semiconductor element and the like has increased, and heat dissipation has become an important issue. For example, as shown in FIG. 3, the heat dissipation of the semiconductor element is performed by forming a part of the outer periphery of the semiconductor package 8 with the heat sink 1 and bonding the semiconductor element 10 to the inner surface of the heat sink 1 with an adhesive. ing. In FIG. 3, 9 is a semiconductor element 10 and a circuit board 11.
Are electrically connected to each other, 12 is a ceramic sealing body, and 13 is an input / output terminal.

【0003】前記放熱板に、銅やアルミの金属板を用い
ると、前記金属板は熱膨張率が大きいため熱膨張率が小
さい半導体素子(シリコン素子など)との間に熱応力が
生じて、半導体素子が剥がれたり、性能不良を起こした
りする。一方、熱膨張率が小さい材料として、銅/タン
グステン複合材、金属被覆CBN焼結体、窒化アルミニ
ウム、ダイヤモンドなどがあるが、いずれも高価であ
る。このうち銅/タングステン複合材は一部で実用され
ているが、重いうえ、放熱性が不十分といった問題があ
る。このようなことから、炭素母板の厚さ方向に高熱伝
導性の炭素繊維を配列して複合し、さらに表面に金属部
材層を被覆して気密性を持たせた放熱板が提案された。
When a metal plate made of copper or aluminum is used for the heat radiating plate, thermal stress is generated between the metal plate and a semiconductor element (such as a silicon element) having a small coefficient of thermal expansion since the metal plate has a large coefficient of thermal expansion. The semiconductor element may be peeled off or a performance defect may occur. On the other hand, materials having a low coefficient of thermal expansion include a copper / tungsten composite material, a metal-coated CBN sintered body, aluminum nitride, and diamond, all of which are expensive. Among them, the copper / tungsten composite material is used in some cases, but has a problem that it is heavy and has insufficient heat dissipation. For this reason, a heat radiating plate has been proposed in which carbon fibers having high thermal conductivity are arranged and compounded in the thickness direction of the carbon mother plate, and a metal member layer is coated on the surface to provide airtightness.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記放熱板は
熱放散性が厚さ方向には優れるが、表面に平行な方向に
劣り、そのため半導体素子の大きさに較べて放熱板の面
積が広いときに熱放散効率が悪く、その用途は放熱板の
面積を広く取れない箇所に限られる。また炭素繊維が厚
さ方向に配列しているため表面に平行な方向に割れが生
じ易いという問題がある。本発明は、熱膨張率が小さ
く、低コストで、かつ表面に平行な方向への熱伝導性
(ヒートスプレッダー性)に優れ、特に、半導体素子の
大きさに較べて放熱板の面積を広く取れる箇所に使用す
るのに適した炭素繊維複合放熱板の提供を目的とする。
However, the heat sink has excellent heat dissipation in the thickness direction, but is inferior in the direction parallel to the surface, so that the area of the heat sink is large compared to the size of the semiconductor element. Sometimes the heat dissipation efficiency is poor and its use is limited to places where the area of the heat sink cannot be made large. Further, since the carbon fibers are arranged in the thickness direction, there is a problem that cracks are easily generated in a direction parallel to the surface. INDUSTRIAL APPLICABILITY The present invention has a low coefficient of thermal expansion, is low in cost, and is excellent in heat conductivity (heat spreader property) in a direction parallel to the surface, and in particular, can have a large area of a heat sink compared to the size of a semiconductor element. It is an object of the present invention to provide a carbon fiber composite heat sink suitable for use in a location.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
炭素繊維が表面(即ち、厚さ方向に垂直な面)に平行に
かつ一方向に配列して複合された炭素繊維複合板に厚さ
100μm以下の金属部材層が金属下地層を介して被覆
されていることを特徴とする炭素繊維複合放熱板であ
る。
According to the first aspect of the present invention,
A metal member layer having a thickness of 100 μm or less is coated on a carbon fiber composite plate in which carbon fibers are compositely arranged in a direction parallel to the surface (that is, a plane perpendicular to the thickness direction) and a metal base layer. It is a carbon fiber composite radiator plate characterized by the following.

【0006】請求項2記載の発明は、炭素繊維複合板の
全面に金属部材層が金属下地層を介して被覆されている
ことを特徴とする請求項1記載の炭素繊維複合放熱板で
ある。
According to a second aspect of the present invention, there is provided the carbon fiber composite heat radiating plate according to the first aspect, wherein the entire surface of the carbon fiber composite plate is covered with a metal member layer via a metal base layer.

【0007】[0007]

【発明の実施の形態】以下に本発明を図を参照して具体
的に説明する。図1は本発明の放熱板の第1の実施形態
を示す縦断面図である。本発明の放熱板1は、炭素繊維
複合板2の表面に金属下地層3および金属部材層4が順
に被覆されたものであり、前記炭素繊維複合板2は母材
5に炭素繊維6が複合板2の表面(半導体素子の接合
面)に平行にかつ1方向に配列して複合されたものであ
る。厚さは0.5〜4mm程度である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a first embodiment of a heat sink of the present invention. The heat radiating plate 1 of the present invention comprises a carbon fiber composite plate 2 having a surface coated with a metal base layer 3 and a metal member layer 4 in this order. The composite is arranged parallel to the surface of the plate 2 (the bonding surface of the semiconductor element) and in one direction. The thickness is about 0.5 to 4 mm.

【0008】前記母材には、炭素、シリコンカーバイト
などのセラミックス、金属シリコン、Al、Al合金な
ど種々のものが用いられるが、特に、炭素は薄板に切削
加工するまでの加工費が安く望ましい。
As the base material, various materials such as carbon, ceramics such as silicon carbide, metallic silicon, Al, and Al alloy are used. In particular, carbon is preferably inexpensive in terms of processing cost until cutting into a thin plate. .

【0009】前記母材に複合する炭素繊維は長さ方向に
おいて高熱伝導性のため、前記複合板の表面に平行な方
向(炭素繊維の配列方向)の熱伝導率は、銀、銅、アル
ミニウムなどの金属材料より大きくできる。例えば、液
晶ピッチを原料とし3000℃で熱処理したピッチ系炭
素繊維は長さ方向の熱伝導率が1000W/m・k以上
あり、この炭素繊維を1方向に60体積%複合した複合
板の炭素繊維配列方向の熱伝導率は母材の種類に関係な
く500W/m・k以上になる。
Since the carbon fibers to be composited with the base material have high thermal conductivity in the longitudinal direction, the thermal conductivity in the direction parallel to the surface of the composite plate (the direction in which the carbon fibers are arranged) is silver, copper, aluminum or the like. It can be larger than the metal material. For example, a pitch-based carbon fiber heat-treated at 3000 ° C. using a liquid crystal pitch as a raw material has a thermal conductivity in the length direction of 1000 W / m · k or more, and a carbon fiber of a composite plate obtained by compounding the carbon fiber in one direction by 60% by volume. The thermal conductivity in the arrangement direction is 500 W / m · k or more regardless of the type of the base material.

【0010】本発明において、金属下地層は複合板と金
属部材層を接合する作用を果たす。この金属下地層には
銀ろう、Niろう、銅ろうなどの金属ろうが使用され
る。前記金属ろうは、複合板の母材が炭素の場合にも良
好に密着し、特にAg−Ti系合金の活性ろうは密着性
に優れる。前記活性ろう(溶融温度800℃以下)は、
例えば、複合板上にTiを蒸着し、その上にAgを蒸着
し、その後熱処理することにより形成される。 前記活
性ろうはTiが酸化し易いため真空中またはアルゴンガ
ス中などの非酸化性雰囲気でろう付けする。Niろうや
銅ろう(いずれも溶融温度800℃以上)は水素雰囲気
でろう付けできるため連続処理が可能である。
In the present invention, the metal base layer functions to join the composite plate and the metal member layer. Metal brazing such as silver brazing, Ni brazing or copper brazing is used for the metal base layer. The metal braze adheres well even when the base material of the composite plate is carbon. In particular, the active braze of an Ag-Ti alloy has excellent adhesion. The active wax (melting temperature 800 ° C. or less)
For example, it is formed by evaporating Ti on the composite plate, evaporating Ag thereon, and then performing heat treatment. The active solder is brazed in a non-oxidizing atmosphere such as vacuum or argon gas because Ti is easily oxidized. Ni brazing or copper brazing (both melting temperatures of 800 ° C. or higher) can be brazed in a hydrogen atmosphere, so that continuous processing is possible.

【0011】本発明において、金属部材層は、半導体パ
ッケージを組立てるときや使用中に複合板が破損した
り、反ったりするのを防止し、また母材が炭素の場合
は、厚さ方向に貫通する微細孔を封止し、剥離炭素粉に
よる汚染を防止し、加熱冷却が繰り返されたときのガス
の吸着を防止する作用がある。前記金属部材層は、通
常、炭素繊維複合板の全面に被覆する。少なくとも表裏
両面に被覆する。そうしないと母材と金属部材層の熱膨
張率差から反りが生じる。また被覆にあたっては、反り
防止のため、金属部材は複合板の表裏両面に同時に被覆
すること、表裏両面に同種の金属部材層を被覆すること
が望ましい。
In the present invention, the metal member layer prevents the composite plate from being damaged or warped during assembling or using the semiconductor package, and penetrates in the thickness direction when the base material is carbon. This has the effect of sealing the micropores to be formed, preventing contamination by the exfoliated carbon powder, and preventing gas adsorption when heating and cooling are repeated. The metal member layer usually covers the entire surface of the carbon fiber composite plate. Cover at least both sides. Otherwise, warpage occurs due to the difference in thermal expansion coefficient between the base material and the metal member layer. In addition, in order to prevent warpage, it is desirable that the metal member is simultaneously coated on both the front and back surfaces of the composite plate, and that the same kind of metal member layer is coated on both the front and back surfaces.

【0012】金属部材層には、金属下地層との濡れ性が
良く、金属下地層より溶融温度が高く、かつ熱伝導性に
優れる材料、例えばAg、Ag−Ti系合金、銅、モリ
ブデン、ステンレス、ニッケル合金、クロム合金、コバ
ール、42アロイなどの箔、板、放熱フィンなどが適用
される。このうち、接合性の点からは、Ag、Ag−T
i系合金が望ましく、熱膨張率の点からはモリブデン、
コバール、42アロイなどが望ましい。前記金属部材層
は熱膨張率や弾性率が大きいため、あまり厚いと温度変
化時に半導体素子やセラミックス封止材などとの接合部
分が熱応力により剥離することがある。このため本発明
では、金属部材層の厚さは100μm以下に規定する。
特には60μm以下が望ましい。なお、下限は、その効
果を得るために5μm以上が望ましい。炭素繊維複合板
は、0.8mmより薄くすることが困難で、放熱板全体
の厚さを薄くする場合は金属部材層もできるだけ薄く形
成する必要がある。
The metal member layer has a good wettability with the metal base layer, a higher melting temperature than the metal base layer, and a material having excellent thermal conductivity, for example, Ag, Ag-Ti alloy, copper, molybdenum, stainless steel, and the like. , Nickel alloy, chromium alloy, Kovar, 42 alloy, and other foils, plates, and radiating fins. Of these, Ag and Ag-T
An i-based alloy is preferable, and molybdenum,
Kovar, 42 alloy and the like are desirable. Since the metal member layer has a large coefficient of thermal expansion and elasticity, if it is too thick, a joint portion with a semiconductor element or a ceramic sealing material may peel off due to thermal stress when the temperature changes. Therefore, in the present invention, the thickness of the metal member layer is specified to be 100 μm or less.
In particular, it is preferably 60 μm or less. The lower limit is desirably 5 μm or more in order to obtain the effect. It is difficult to make the carbon fiber composite plate thinner than 0.8 mm, and when the thickness of the entire heat sink is reduced, the metal member layer must be formed as thin as possible.

【0013】本発明の放熱板は、高熱伝導性の炭素繊維
を表面に平行に配列したものなので、表面に平行な方向
への熱伝導性に優れ半導体素子の発熱が良好に放散さ
れ、また表面方向の弾性率が小さいため半導体素子に歪
みが生じ難い。また下地層に高温ろう(溶融温度800
℃以上)を用いれば、セラミック封止材などとの接合に
高温半田が使用できる。例えば、金属下地層にNiろう
またはCuろうを用いれば、セラミック封止材との接合
に銀ろうが使用できる。この場合、銀ろうは電気抵抗が
低いため大電流の流れるパワートランジスタにも使用で
きる。
Since the heat sink of the present invention has carbon fibers having high thermal conductivity arranged in parallel to the surface, the heat sink has excellent heat conductivity in a direction parallel to the surface, so that heat generated by the semiconductor element is radiated well. Since the elastic modulus in the direction is small, the semiconductor element is hardly distorted. In addition, a high-temperature solder (melting temperature 800
℃ or more), high-temperature solder can be used for bonding with a ceramic sealing material or the like. For example, if Ni brazing or Cu brazing is used for the metal base layer, silver brazing can be used for joining with the ceramic sealing material. In this case, silver braze can be used for a power transistor through which a large current flows because of its low electric resistance.

【0014】本発明にて用いる炭素繊維複合板は次のよ
うにして製造される。母材が炭素の場合は、一方向に配
列した炭素繊維の束に、固体のピッチ或いはコークスな
どの微粉体を分散した熱硬化性樹脂溶液(フェノール樹
脂をフルフリルアルコールに溶かしたものなど)を含浸
させ、次いで溶媒を乾燥除去して炭素母材前駆体に炭素
繊維が一方向に配列したシート状物(プリプレグ)を作
り、このシート状物を炭素繊維が一方向に向くように多
数枚積層し、この積層体を加圧下で加熱して熱硬化性樹
脂を硬化させ、次いで不活性雰囲気中で高温焼成してフ
ェノール樹脂と、ピッチ或いはコークスの微粉体を炭素
化して炭素−炭素繊維複合ブロックを作り、これを炭素
繊維の配列方向に平行に板状に切出して作製される。こ
の方法によれば、1回の焼成炭化処理で、十分緻密な組
織の母材が得られる。再含浸、再焼成のような緻密化処
理が不要になる。また母材がAlの場合は、一方向に配
列した炭素繊維の束を無機バインダーにより固着し、こ
れを乾燥させてプリフォームとし、このプリフォームを
予熱し、これにAl溶湯を加圧含浸させてAl−炭素繊
維複合ブロックを作り、これを炭素繊維の配列方向に平
行に板状に切出して作製される。
The carbon fiber composite board used in the present invention is manufactured as follows. When the base material is carbon, a thermosetting resin solution (such as a phenol resin dissolved in furfuryl alcohol) in which fine powder such as solid pitch or coke is dispersed in a bundle of carbon fibers arranged in one direction. Impregnated and then the solvent is removed by drying to form a sheet material (prepreg) in which carbon fibers are arranged in one direction in the carbon matrix precursor, and a large number of such sheets are laminated so that the carbon fibers face in one direction. Then, the laminate is heated under pressure to cure the thermosetting resin, and then calcined at a high temperature in an inert atmosphere to carbonize the phenol resin and the fine powder of pitch or coke to form a carbon-carbon fiber composite block. And cut it out into a plate parallel to the direction of arrangement of the carbon fibers. According to this method, a base material having a sufficiently dense structure can be obtained by one firing carbonization treatment. Densification treatment such as re-impregnation and re-firing becomes unnecessary. When the base material is Al, a bundle of carbon fibers arranged in one direction is fixed with an inorganic binder, and dried to form a preform. The preform is preheated, and the molten aluminum is impregnated with pressure. To produce an Al-carbon fiber composite block, which is cut out in a plate shape in parallel with the arrangement direction of the carbon fibers.

【0015】前記複合板に金属部材層を被覆して放熱板
とする方法には、例えば、図2イに示すように炭素繊維
複合板2の全面に金属下地層(Ag−Ti層など)3を
めっきし、次いで、図2ロに示すように2枚の金属部材
層4(Ni箔など)をそれぞれ上下からホットプレスの
型7を押圧し密着させて被覆する方法が挙げられる。
In the method of forming a heat sink by coating the composite plate with a metal member layer, for example, as shown in FIG. 2A, a metal base layer (such as an Ag-Ti layer) 3 is formed on the entire surface of the carbon fiber composite plate 2. Then, as shown in FIG. 2B, the two metal member layers 4 (Ni foil or the like) are coated by pressing and pressing the hot press mold 7 from above and below, respectively.

【0016】[0016]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)炭素/炭素繊維複合ブロックを段落001
4に記載した方法により作製し、これをマルチワイヤソ
ーを用いて炭素繊維配列方向に平行に切断して複合板
(25.4mm角、厚さ1.0mm)を得、この複合板の全面にNi
−P合金(金属下地層)を30μm厚さにめっきし、そ
の上に厚さ35μmの銅箔(金属部材層)を重ね、これ
を水素連続焼鈍炉中で950℃に加熱(無加圧)して図
1に示したのと同じ構造の放熱板を製造した。前記複合
板の物性を表1に示す。
The present invention will be described below in detail with reference to examples. (Example 1) A carbon / carbon fiber composite block is described in paragraph 001.
4 and cut in parallel with the carbon fiber arrangement direction using a multi-wire saw
(25.4 mm square, thickness 1.0 mm), and Ni
-P alloy (metal underlayer) is plated to a thickness of 30 µm, and a copper foil (metal member layer) having a thickness of 35 µm is laminated thereon, and heated to 950 ° C in a hydrogen continuous annealing furnace (no pressure). Then, a heat sink having the same structure as that shown in FIG. 1 was manufactured. Table 1 shows the physical properties of the composite plate.

【0017】[0017]

【表1】 [Table 1]

【0018】(実施例2)実施例1で用いたのと同じ複
合板の全面にTi−Ag合金(金属下地層)を10μm
厚さに蒸着し、その上に厚さ35μmのNi箔(金属部
材層)を850℃、5MPaの条件で真空ホットプレス
(図2イ、ロ参照)により被覆して放熱板を製造した。
(Example 2) A Ti-Ag alloy (metal underlayer) having a thickness of 10 μm was formed on the entire surface of the same composite plate as used in Example 1.
It was vapor-deposited to a thickness, and a 35 μm-thick Ni foil (metal member layer) was coated thereon by a vacuum hot press (see FIGS. 2A and 2B) at 850 ° C. and 5 MPa to produce a heat sink.

【0019】(比較例1)炭素/炭素繊維複合ブロック
から複合板を炭素繊維配列方向に直角に切断した他は実
施例1と同じ方法により放熱板を製造した。
Comparative Example 1 A radiator plate was manufactured in the same manner as in Example 1 except that a composite plate was cut from a carbon / carbon fiber composite block at a right angle to the direction in which carbon fibers were arranged.

【0020】(比較例2)実施例1で用いたのと同じ複
合板の両面に厚さ35μmの銅箔をエポキシ系樹脂接着
剤(約40μm厚さ)で張り合わせ、50kg/cm2
の圧力を付与しつつ150℃にて2時間保持し接合して
放熱板を製造した。
Comparative Example 2 A copper foil having a thickness of 35 μm was adhered to both surfaces of the same composite board as used in Example 1 with an epoxy resin adhesive (about 40 μm thick), and 50 kg / cm 2.
While applying the pressure and holding at 150 ° C. for 2 hours to form a heat sink.

【0021】実施例1、2、比較例1、2で得られた各
々の放熱板について、断面を観察したが、いずれも各層
が良好に接合されていることが確認された。
The cross section of each of the heat sinks obtained in Examples 1 and 2 and Comparative Examples 1 and 2 was observed, and it was confirmed that each layer was well bonded.

【0022】実施例1、2、比較例1、2で得られた各
放熱板(厚さ約1mm)の片面に厚さ0.5mmのシリ
コン板を、他面に厚さ1mmのアルミナ板をそれぞれ半
田接合して試験片とし、これを150℃に加熱したとき
に生じる接続部の熱歪率を各放熱板の両側について測定
した。前記半田には錫60%、鉛40%の半田を用い
た。また、各試験片の耐熱温度を測定した。結果を表2
に示す。表2には、各放熱板の熱伝導率、電気抵抗、熱
膨張率、弾性率などの物性を併記した。また従来の放熱
板の測定結果および物性も併記した。
Each of the heat sinks (thickness: about 1 mm) obtained in Examples 1 and 2 and Comparative Examples 1 and 2 was provided with a silicon plate having a thickness of 0.5 mm on one side and an alumina plate having a thickness of 1 mm on the other side. Each of the test pieces was solder-joined to form a test piece, and the heat distortion rate of a connection portion generated when the test piece was heated to 150 ° C. was measured on both sides of each heat sink. As the solder, a solder containing 60% of tin and 40% of lead was used. Further, the heat resistance temperature of each test piece was measured. Table 2 shows the results
Shown in Table 2 also shows physical properties such as thermal conductivity, electrical resistance, thermal expansion coefficient, and elastic modulus of each heat sink. The measurement results and physical properties of the conventional heat sink are also shown.

【0023】[0023]

【表2】 (注)※No.1は実施例1、No.2は実施例2、No.3は比較例1、No.4は比較例2、 No.5〜8 の材種は備考欄に記載、No.9は銅/タングステン板。[Table 2] (Note) * No.1 is Example 1, No.2 is Example 2, No.3 is Comparative Example 1, No.4 is Comparative Example 2, and grades of No.5-8 are described in the remarks column. No. 9 is a copper / tungsten plate.

【0024】表2より明らかなように、本発明例品は、
表面に平行な方向の熱伝導率が高く、半導体素子の大き
さに対して広い面積を取れる箇所に使用する場合に有利
であり、また熱膨張率および弾性率が低いため接合部の
熱歪率が小さく、また耐熱温度が高く、放熱板に適する
ものであった。これに対し、比較例品は放熱板として要
求される特性のいずれかが劣り、かつ、銀板、タングス
テン板、銅/タングステン板は高価であり実用性に欠け
るものである。
As is clear from Table 2, the product of the present invention is
High thermal conductivity in the direction parallel to the surface, which is advantageous when used in places where a large area can be taken with respect to the size of the semiconductor element. Also, since the coefficient of thermal expansion and the elastic modulus are low, the thermal strain coefficient of the joint is low. And the heat resistance was high, so that it was suitable for a heat sink. On the other hand, the comparative example product is inferior in any of the characteristics required as a heat sink, and the silver plate, the tungsten plate, and the copper / tungsten plate are expensive and lack practicality.

【0025】次に、前記試験片について0℃と150℃
の温度間で熱サイクル試験を1000回繰り返したが、
本発明例ではシリコン板やアルミナ板の剥離や破損など
は全く認められなかった。これに対し、比較例1では炭
素母材に割れが発生し、また比較例2では放熱板の厚さ
方向の電気抵抗が10mΩと大きくなりパワーデバイス
などの用途には適用できないものであった。またシリコ
ン板を高温半田(350℃)で接合したときは、前記接
着剤は黒く変色し、融けだして銅箔が剥離した。
Next, the test pieces were subjected to 0 ° C. and 150 ° C.
The heat cycle test was repeated 1000 times between the temperatures of
In the example of the present invention, peeling or breakage of the silicon plate or the alumina plate was not recognized at all. On the other hand, in Comparative Example 1, cracks occurred in the carbon base material, and in Comparative Example 2, the electric resistance in the thickness direction of the heat sink increased to 10 mΩ, which was not applicable to power devices and the like. When the silicon plate was joined by high-temperature solder (350 ° C.), the adhesive turned black, melted, and the copper foil peeled off.

【0026】次に、実施例1の放熱板の炭素繊維配列方
向に直交する側面Sの金属部材層と金属下地層を除去し
た放熱板Aを用意し、この放熱板と実施例1で製造した
放熱板Bの内面に半導体素子を接合し、これらの放熱板
を用いて図3に示す半導体パッケージをそれぞれ組立
て、これらを3日間大気中に放置したのち、各々のボン
ディング性を調査した。放熱板B(実施例1)では良好
にボンディングできたが、放熱板Aでは、実用上問題な
い程度であるが、ボンディング性が若干低下し、また側
面S近傍の金属部材層に僅かながら変色が認められた。
前記ボンディング性の低下は金属部材層の部分的欠如に
よる歪みの発生によるものと考えられる。
Next, a radiator plate A was prepared by removing the metal member layer and the metal base layer on the side surface S of the radiator plate of Example 1 perpendicular to the carbon fiber arrangement direction. The semiconductor elements were bonded to the inner surface of the heat sink B, and the semiconductor packages shown in FIG. 3 were assembled using these heat sinks, left in the air for three days, and then their bonding properties were examined. Although the heat radiating plate B (Example 1) was excellent in bonding, the heat radiating plate A had no practical problem, but the bonding property was slightly lowered, and the metal member layer near the side surface S was slightly discolored. Admitted.
It is considered that the decrease in the bonding property is caused by the occurrence of distortion due to the partial lack of the metal member layer.

【0027】[0027]

【発明の効果】以上に述べたように、本発明の放熱板
は、高熱伝導性の炭素繊維が表面に平行にかつ一方向に
配列し複合した複合板に金属部材層が金属下地層を介し
て被覆されたもので、表面に平行な方向への熱伝導性が
良好なため半導体素子の大きさに較べて広い面積の放熱
板として用いて熱放散効率に優れる。また炭素繊維は熱
膨張率が半導体素子なみに小さいため半導体素子の剥が
れや性能不良が起き難い。また金属部材層の被覆により
気密性や封止性が改善される。金属部材層の厚さを10
0μm以下に薄く規定するため金属部材層の半導体素子
に及ぼす影響が小さく半導体素子の剥がれなどが起き難
い。金属部材層を放熱板の全面に被覆することによりボ
ンディング性などが向上する。依って、工業上顕著な効
果を奏する。
As described above, according to the heat sink of the present invention, the metal member layer is provided with the metal base layer on the composite plate in which the carbon fibers having high thermal conductivity are arranged in parallel and unidirectionally on the surface. Since it has good thermal conductivity in the direction parallel to the surface, it is used as a heat radiating plate having a large area compared to the size of the semiconductor element, and has excellent heat dissipation efficiency. In addition, since the carbon fiber has a coefficient of thermal expansion as small as that of a semiconductor element, peeling of the semiconductor element and poor performance are unlikely to occur. In addition, the airtightness and the sealing property are improved by coating the metal member layer. Set the thickness of the metal member layer to 10
Since the thickness is specified to be 0 μm or less, the influence of the metal member layer on the semiconductor element is small, and peeling of the semiconductor element hardly occurs. By covering the entire surface of the heat sink with the metal member layer, the bonding property and the like are improved. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放熱板の実施形態を示す縦断面図であ
る。
FIG. 1 is a longitudinal sectional view showing an embodiment of a heat sink of the present invention.

【図2】イ、ロは本発明の放熱板の製造方法の実施形態
を示す工程説明図である。
FIGS. 2A and 2B are process explanatory views showing an embodiment of the method for manufacturing a heat sink according to the present invention.

【図3】放熱板が具備された半導体パッケージの説明図
である。
FIG. 3 is an explanatory view of a semiconductor package provided with a heat sink.

【符号の説明】[Explanation of symbols]

1 放熱板 2 複合板 3 金属下地層 4 金属部材層 5 複合板の母材 6 炭素繊維 7 ホットプレスの型 8 半導体パッケージ 9 半導体素子 10 セラミック封止体 11 ボンディングワイヤ 12 入出力端子 13 回路基板 DESCRIPTION OF SYMBOLS 1 Heat sink 2 Composite board 3 Metal underlayer 4 Metal member layer 5 Base material of composite board 6 Carbon fiber 7 Hot press type 8 Semiconductor package 9 Semiconductor element 10 Ceramic sealing body 11 Bonding wire 12 I / O terminal 13 Circuit board

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維が表面に平行にかつ一方向に配
列して複合された炭素繊維複合板に厚さ100μm以下
の金属部材層が金属下地層を介して被覆されていること
を特徴とする炭素繊維複合放熱板。
1. A carbon fiber composite plate in which carbon fibers are arrayed in parallel and unidirectionally on a surface, and a metal member layer having a thickness of 100 μm or less is coated via a metal base layer. Carbon fiber composite heat sink.
【請求項2】 炭素繊維複合板の全面に金属部材層が金
属下地層を介して被覆されていることを特徴とする請求
項1記載の炭素繊維複合放熱板。
2. The carbon fiber composite heat radiating plate according to claim 1, wherein a metal member layer is coated on the entire surface of the carbon fiber composite plate via a metal base layer.
JP19151698A 1998-07-07 1998-07-07 Carbon fabric composite radiator plate Pending JP2000022055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19151698A JP2000022055A (en) 1998-07-07 1998-07-07 Carbon fabric composite radiator plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19151698A JP2000022055A (en) 1998-07-07 1998-07-07 Carbon fabric composite radiator plate

Publications (1)

Publication Number Publication Date
JP2000022055A true JP2000022055A (en) 2000-01-21

Family

ID=16275963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19151698A Pending JP2000022055A (en) 1998-07-07 1998-07-07 Carbon fabric composite radiator plate

Country Status (1)

Country Link
JP (1) JP2000022055A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043186A (en) * 1998-07-31 2000-02-15 Nippon Steel Corp Good heat conductive composite material
JP2004526305A (en) * 2001-01-19 2004-08-26 シェブロン ユー.エス.エー. インコーポレイテッド Diamondoid-containing materials in microelectronics
JP2008112893A (en) * 2006-10-31 2008-05-15 Hitachi Metals Ltd Manufacturing method of high thermal conduction composite material
WO2010013383A1 (en) * 2008-07-30 2010-02-04 株式会社アライドマテリアル Heat spreader and method for manufacturing the heat spreader
DE102013108808B4 (en) * 2012-08-22 2016-01-07 Infineon Technologies Ag A method of manufacturing a carbon / metal composite and method of making a semiconductor element array
JP2017117868A (en) * 2015-12-22 2017-06-29 昭和電工株式会社 Method of manufacturing insulation substrate and insulation substrate
JP2020113758A (en) * 2019-01-10 2020-07-27 株式会社アカネ Radiator and power semiconductor radiator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043186A (en) * 1998-07-31 2000-02-15 Nippon Steel Corp Good heat conductive composite material
JP2004526305A (en) * 2001-01-19 2004-08-26 シェブロン ユー.エス.エー. インコーポレイテッド Diamondoid-containing materials in microelectronics
JP2008112893A (en) * 2006-10-31 2008-05-15 Hitachi Metals Ltd Manufacturing method of high thermal conduction composite material
WO2010013383A1 (en) * 2008-07-30 2010-02-04 株式会社アライドマテリアル Heat spreader and method for manufacturing the heat spreader
JP4435868B1 (en) * 2008-07-30 2010-03-24 株式会社アライドマテリアル Heat spreader and manufacturing method thereof
DE102013108808B4 (en) * 2012-08-22 2016-01-07 Infineon Technologies Ag A method of manufacturing a carbon / metal composite and method of making a semiconductor element array
US10017870B2 (en) 2012-08-22 2018-07-10 Infineon Technologies Ag Method for fabricating a heat sink, and heat sink
JP2017117868A (en) * 2015-12-22 2017-06-29 昭和電工株式会社 Method of manufacturing insulation substrate and insulation substrate
JP2020113758A (en) * 2019-01-10 2020-07-27 株式会社アカネ Radiator and power semiconductor radiator
JP7296122B2 (en) 2019-01-10 2023-06-22 株式会社アカネ Heat radiators and heat radiators for power semiconductors

Similar Documents

Publication Publication Date Title
JP4348565B2 (en) High thermal conductivity / low thermal expansion composite material and heat dissipation board
JP3115238B2 (en) Silicon nitride circuit board
US20110274888A1 (en) Composite Material, Method for Producing a Composite Material and Adhesive or Binding Material
JP4344934B2 (en) High thermal conductivity / low thermal expansion composite material, heat dissipation substrate and manufacturing method thereof
JP5562234B2 (en) Heat dissipation base and electronic device using the same
KR20090004864A (en) Aluminum/silicon carbide composite and radiating part comprising the same
KR102496716B1 (en) Ceramic Board Manufacturing Method
EP0915512B1 (en) Ceramic substrate having a metal circuit
WO2019188614A1 (en) Semiconductor package
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP2000022055A (en) Carbon fabric composite radiator plate
JP3193305B2 (en) Composite circuit board
JP2004253736A (en) Heat spreader module
JP5361273B2 (en) Aluminum-graphite composite, circuit board using the same, and method for producing the same
JP2772273B2 (en) Silicon nitride circuit board
JPH09298260A (en) Heat radiation plate
JPH09321190A (en) Heat sink
JP2020057648A (en) Manufacturing method of anisotropic graphite composite
JP3934966B2 (en) Ceramic circuit board
JP2772274B2 (en) Composite ceramic substrate
JP3554304B2 (en) Semiconductor element storage package and semiconductor device
KR102621334B1 (en) Manufacturing method of ceramic heat dissipation substrate simplified masking process
JP2000031254A (en) Ceramic electrostatic chuck and manufacture thereof
JP3729637B2 (en) Electronic components
JP4737885B2 (en) Module board