JP3554304B2 - Semiconductor element storage package and semiconductor device - Google Patents

Semiconductor element storage package and semiconductor device Download PDF

Info

Publication number
JP3554304B2
JP3554304B2 JP2001325871A JP2001325871A JP3554304B2 JP 3554304 B2 JP3554304 B2 JP 3554304B2 JP 2001325871 A JP2001325871 A JP 2001325871A JP 2001325871 A JP2001325871 A JP 2001325871A JP 3554304 B2 JP3554304 B2 JP 3554304B2
Authority
JP
Japan
Prior art keywords
layer
base
semiconductor element
metal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001325871A
Other languages
Japanese (ja)
Other versions
JP2003133492A (en
Inventor
清孝 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001325871A priority Critical patent/JP3554304B2/en
Publication of JP2003133492A publication Critical patent/JP2003133492A/en
Application granted granted Critical
Publication of JP3554304B2 publication Critical patent/JP3554304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LSI(大規模集積回路素子)やFET(電界効果型トランジスター)などの半導体素子を収納するための半導体素子収納用パッケージおよび半導体装置に関する。
【0002】
【従来の技術】
従来の半導体素子収納用パッケージ(以下、半導体パッケージという)の一種である光半導体パッケージを図3に示す。同図の(a),(b),(c)はそれぞれ光半導体パッケージの平面図、断面図及び部分拡大断面図である。尚、同図において、光ファイバおよび光ファイバを取り付けるための筒状の固定部材が光半導体パッケージの側部に設けられるが、これらは省略している。
【0003】
この光半導体パッケージは、上側主面に半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子105がペルチェ素子等の熱電冷却素子Cを介して載置される載置部104およびネジ止め部106を有する略四角形の枠状の基体102と、載置部104を囲繞するようにして取着され、側部に貫通孔または切欠き部から成る入出力端子108の取付部を有する枠体107と、取付部に嵌着された入出力端子108とを具備したものである。
【0004】
また、この光半導体パッケージでは、炭素繊維を炭素で結合した一方向性複合材料109の上下面に、例えば第1層としてクロム(Cr)−鉄(Fe)合金層、第2層として銅(Cu)層、第3層としてFe−ニッケル(Ni)−コバルト(Co)合金層またはFe−Ni合金層の3層構造を有する金属層B1が、高温高圧下で実施される所謂拡散接合法により被着された放熱板101が、枠状の基体102の貫通孔に嵌着されて載置部104を構成する。このとき、第1層にFe−Cr合金層を被着するのは、Feと炭素繊維の炭素(C)とが高温高圧下での接合に際して互いに拡散することにより炭素繊維とCr−Fe合金層とを強固に接合するからである。また、Cu層をFe−Cr合金層に対し、主にFeとCuとの相互拡散により接合させることができ、さらに、熱膨張係数の調整層としてのFe−Ni−Co層を主にNiとCuとの相互拡散によりCu層の表面に接合させることができる。
【0005】
そして、放熱板101と基体102と枠体107と蓋体103とからなる容器内部に、光半導体素子105を気密に封止することにより、光半導体装置となる(特開2000−150745公報参照)。
【0006】
上記従来例では、放熱板101は光半導体素子105の載置部104を形成し、炭素繊維が上面から下面に向かう方向に配列されている。また、放熱板101は、金属層B1の被着がなければ、光半導体素子105の載置面に平行な方向の熱膨張係数は約7×10−6/℃であるが、同じ方向の弾性率が約7GPa(ギガパスカル)と小さいことから、金属層B1の被着により放熱板101の熱膨張係数を大きくすることができ、その熱膨張係数は10×10−6〜13×10−6/℃に調整されている。また、熱伝導率は、光半導体素子105の載置面に平行な方向、即ち一方向性複合材料109の炭素繊維の方向(上下方向)に直交する方向での熱伝導率が30W/m・K以下であるのに対して、炭素繊維の方向では300W/m・K以上である。
【0007】
そして、放熱板101は、熱膨張係数が10×10−6〜13×10−6/℃(室温〜800℃)のFe−Ni−Co合金やFe−Ni合金等から成る枠状の基体102の貫通孔に、例えば銀(Ag)ロウなどのロウ材で挿着されて載置部104となる。これにより、光半導体パッケージは光半導体素子105が発する熱を熱電冷却素子Cを介して外部に効率的に放散する機能を有するものとなる。
【0008】
放熱板101は、放熱材料として一般的なCu−タングステン(W)合金やCu−モリブデン(Mo)合金に比して、炭素繊維が放熱板101の上下方向に配列していることにより、この方向に大きな熱伝導率を有している。放熱板101を用いた光半導体パッケージに収容された光半導体素子105が作動時に発する熱は、放熱板101の炭素繊維の方向に直交する方向の熱伝導率が30W/m・K以下であることから、放熱板101の主面の方向(面方向)にほとんど伝わらないこととなる。
【0009】
よって、光半導体素子105の熱は、選択的に炭素繊維の配列方向、即ち放熱板101の上面側から下面側にかけて伝達されて下面から大気中に放散される。その結果、光半導体素子105は常に適温となり、光半導体素子105を長期にわたり正常かつ安定に作動させ得る。また、光半導体素子105の熱が基体102と枠体107に加わった場合、基体102と枠体107の材質が同じであり、それらの熱膨張係数がいずれも10×10−6〜13×10−6/℃であることから、両者間に大きな熱応力が発生することはない。また、たとえ小さな熱応力が発生したとしても、放熱板101が適度に変形することで基体102と枠体107との間に発生する熱応力が緩和される。従って、基体102上に枠体107を極めて強固に取着しておくことが可能になる。
【0010】
よって、基体102と放熱板101と枠体107と蓋体103とから成る光半導体パッケージの気密封止を完全として、内部に収容される光半導体素子105を長期にわたり正常かつ安定に作動させることが可能になる。
【0011】
【発明が解決しようとする課題】
しかしながら、近年、光半導体素子105の発熱量が大きくなってきており、放熱板101の熱伝達の限界を超えた場合、熱は放熱板101に畜熱されて放熱板101の温度が上昇する場合がある。この場合、放熱板101の熱が熱電冷却素子Cを介して光半導体素子105に加わり、光半導体素子105の温度が上昇して光半導体素子105が誤動作する、または光半導体素子105が熱破壊されるという問題が発生していた。
【0012】
放熱板101の熱伝達の大きさは、放熱板101の上下面に取着された金属層B1の一部がFe−Cr合金層やFe−Ni−Co合金層などの熱伝導率が小さい鉄系の合金からなることで小さくなり、また、これらの合金層を拡散接合により被着させる際にFe原子がCu層に拡散する場合が有り、この場合にも放熱板101の熱伝達の大きさが小さくなっていた。その結果、光半導体素子105の熱は、基体102を介して外部に速やかに放散されにくくなり、基体102の温度が上昇して光半導体素子105が誤作動したり熱破壊するといった不具合を招来していた。
【0013】
また、光半導体パッケージを外部装置にネジ止めにより密着固定するために、剛性の高いFe−Ni−Co合金やFe−Ni合金等からなる基体102を用いており、放熱板101は基体102の貫通孔にAgロウなどのロウ材を介して嵌着されている。そして、光半導体パッケージを外部装置にネジ止め部106の貫通孔にネジを通して締め付けることにより密着固定し、光半導体素子105の熱を外部装置を介して外部に放散する。しかし、放熱板101を基体102の貫通孔に嵌着するに際して、放熱板101の外周面と貫通孔の内面との隙間は、その大きさにバラツキがある場合がある。この場合、放熱板101を貫通孔にロウ付けすると、ロウ材の溜り状態が不均一となり、光半導体パッケージの気密封止が損なわれることがあった。
【0014】
そこで、放熱板101自体を基体として用いる構成が考えられるが、光半導体パッケージを外部装置にネジ止めする際に、放熱板101を構成する一方向性複合材料109が一方向性炭素繊維を厚さ方向に揃えてこれを炭素で結合したものであることから、本質的に厚さ方向の圧縮強度が金属に比べて桁違いに小さい。そのため、ネジによる締め付け時に放熱板101のネジ止め部106が厚さ方向に潰れる場合があった。従って、光半導体パッケージを外部装置に強い締め付け力で固定できなくなり、光半導体素子105の熱が十分に放散されなくなるという問題点があった(特開2000−150746公報参照)。
【0015】
従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、光半導体素子,LSI,FET,MMIC等の半導体素子の熱を効率よく外部に放散して、半導体パッケージ内部に収容する半導体素子を長期に亘り正常かつ安定に作動させるとともに、半導体パッケージの基体を外部装置にネジ止めして密着固定する際に基体が厚さ方向に潰れることのないものとすることにある。
【0016】
【課題を解決するための手段】
本発明の半導体パッケージは、上側主面に半導体素子が載置される載置部を有するとともに両端部にネジ止め部を有する略四角形の基体と、該基体の上側主面に前記載置部を囲繞するようにして取着され、貫通孔または切欠き部からなる入出力端子の取付部を有する枠体と、前記取付部に嵌着された前記入出力端子とを具備した半導体素子収納用パッケージにおいて、前記基体は、銀,チタン,クロム,ジルコニウムおよびタングステンのうちの少なくとも一種を0.2〜10重量部ならびに銅を90〜99.8重量部含有する金属成分が含浸された炭素質母材内に炭素繊維の集合体が分散されているとともに表面にニッケルメッキ層または銅メッキ層が被着された金属炭素複合体を基材とし、該基材の上下面に前記基材側からロウ材層、モリブデン層、ロウ材層および銅層が順次積層されていることを特徴とする。
【0017】
本発明は、金属炭素複合体が炭素繊維と高温高圧下で含浸された金属とからなるため、その表面が緻密になり、金属炭素複合体の表面にNiメッキ層またはCuメッキ層が形成できるようになった。そして、基材の上下面にNiメッキ層,Cuメッキ層を介してロウ材層、Mo層、ロウ材層およびCu層がこの順で強固に接合できるようになった。即ち、Niメッキ層,Cuメッキ層の炭素繊維への被着部における被着力の弱さを、含浸された金属が表面に露出している部位における被着力で補強することができるとともに、金属炭素複合体の表面が緻密なため炭素繊維に被着されるNiメッキ層,Cuメッキ層の表面欠陥が極めて少なくなっており、その結果、金属炭素複合体の表面にNiメッキ層,Cuメッキ層を強固かつ信頼性よく被着することができる。
【0018】
このように、基材表面にNiメッキ層,Cuメッキ層を信頼性良くかつ強固に形成できることによって、ロウ材層を介して熱膨張係数を調整するためのMo層を形成し、またMo層上にロウ材層を介して熱伝導性の極めて良好なCu層を形成することができる。その結果、従来のFe系の金属層を形成した構成では得られない効率のよい熱伝達が可能になる。
【0019】
また本発明は、基材が炭素質母材内にランダムな方向に分散配置された一方向性の炭素繊維の集合体および含浸された金属成分からなる構成であり、半導体素子から基体に伝わった熱は基材の内部でランダムな経路を辿って基体の下側主面および側面に伝わることになる。そして、基体の側面に伝わった熱はその表面のNiメッキ層,Cuメッキ層を介して下側主面へと伝わり、よって基体の下側主面からの熱放散により半導体素子の温度を適正な温度にすることができる。かくして、半導体素子を常に適温として、半導体素子を長期に亘り正常かつ安定に作動させることが可能になる。
【0020】
このとき、基体内に含浸された金属成分はAg,チタン(Ti),クロム(Cr),ジルコニウム(Zr),Wのうちの少なくとも一種を0.2〜10重量部ならびにCuを90〜99.8重量部含有することから、Cuとその周囲の炭素質母材との密着性が良好となり、Cuのみを含浸させた場合に比べて伝熱性が大きく向上する。その結果、半導体素子が発する熱は基体内をランダムな方向に伝わり、大きな熱量を基体の広範囲で放散させることが可能になるため、半導体素子を常に適温として、長期に亘り正常かつ安定に作動させることが可能になる。
【0021】
また、本発明の半導体パッケージの基材は、含浸された金属、および基材の上下面に形成され、ロウ材層、モリブデン層、ロウ材層および銅層が順次積層されて成る金属層によって剛性が高くなっているが、その弾性率は極めて小さく、被着された金属層によって半導体素子の載置面に平行な方向の熱膨張係数が10×10−6〜13×10−6/℃(室温〜800℃)に調整される。これにより、半導体素子の熱によって基体と半導体素子との接合部および基体と枠体との間で熱応力が発生しても、これらの熱応力は基体が適度に変形することで緩和される。
【0022】
本発明において、好ましくは、前記モリブデン層の厚さが5〜100μmであり、前記銅層の厚さが100〜1000μmであることを特徴とする。
【0023】
本発明は、上記の構成により、近時の高密度配線のLSIやFETなどの半導体素子から大量の熱が発せられても、この熱が最外層のCu層により効率よく横方向に伝達され、次いでMo層を介して基材に伝えられ、基材の内部を通じて良好に基材の下側主面および側面を介して下側主面へと伝えられ、基体の下側主面から効率よく外部に放散されることになる。よって、半導体素子が作動する際の温度を常に適正な温度にすることが可能になる。
【0024】
本発明の半導体装置は、本発明の半導体素子収納用パッケージと、前記載置部に載置固定されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に取着された蓋体とを具備したことを特徴とする。
【0025】
本発明は、上記の構成により、基体が炭素質母材に金属が含浸されていることから、Niメッキ層,Cuメッキ層およびロウ材層を介して熱伝導性に優れる金属層を接合することができ、よって半導体素子の熱を基体を介して極めて効率良く外部に放散させることができる。従って、半導体素子を長期に亘り正常かつ安定に作動させることができる。また、基体は主成分として金属である銅が炭素質母材内に含浸されているのでその圧縮強度が大きくなり、基体を外部装置にネジ止めする際に生じる押圧力や圧縮応力が基体表面に加わった場合に、基体の上下主面にMo層やCu層が形成されていることと併せて、基体が押圧力や圧縮応力に対して潰れ難くなる。従って、例えばマザーボード等の外部装置にネジ止めした際に、基体が厚さ方向に潰れて締め付けが緩くなって密着固定が不十分となり、外部への熱放散性が劣化するといった不具合が解消される。
【0026】
【発明の実施の形態】
本発明の半導体パッケージについて以下に詳細に説明する。図1,図2は本発明の半導体パッケージについて実施の形態の一例を示すものであり、図1は半導体パッケージの断面図、図2は本発明の半導体パッケージの基体の部分拡大断面図である。図1において、1は基体、1aは半導体素子2の載置部、2はIC,LSI,FET等の半導体素子、3は枠体、3aは枠体3に設けられた入出力端子の取付部である。基体1と枠体3と蓋体5とで、半導体素子2を収容する容器が基本的に構成されており、また入出力端子4が取付部3aに嵌着されている。なお、13はネジ止め部である。
【0027】
また、図2において、AはNiメッキ層6が金属炭素複合体A1の表面に形成された基材、1bは炭素質母材、1cは一方向性の炭素繊維の集合体、1dはAg,Ti,Cr,Zr,Wのうちの少なくとも一種を0.2〜10重量部ならびにCuを90〜99.8重量部含有する金属成分である。また、7は基材A上にロウ材層8を介して形成されたMo層、9はMo層7上にロウ材層8を介して形成されたCu層、Bは基材1の上下面に形成された、ロウ材層8、Mo層7、ロウ材層8およびCu層9とを順次積層して成る金属層である。
【0028】
図2に示すように、基体1は、金属成分1dが含浸された炭素質母材1b内に一方向性の炭素繊維の集合体1cが分散された金属炭素複合体A1およびNiメッキ層6から成る基材Aと、金属層Bとから成り、金属炭素複合体A1は例えば以下の工程[1]〜[5]によって作製される。
【0029】
[1]一方向性の炭素繊維の束を炭素で結合した板状の塊を一方向性の炭素繊維からなる小さな集合体に破砕し、破砕された集合体を集めて固体のピッチあるいはコークス等の微粉末を分散させたフェノール樹脂等の熱硬化性樹脂の溶液中に浸す。なお、板状の塊を破砕して得られる集合体の大きさは、その形状を例えば略立方体としてみた場合一辺が0.1〜1mm程度である。
【0030】
[2]この集合体を乾燥させて所定の圧力を加えるとともに加熱して熱硬化性樹脂部分を硬化させ板状のブロックを得る。
【0031】
[3]これを不活性雰囲気中、高温で焼成することでフェノール樹脂とピッチあるいはコークスの微粉末を炭化させてブロック状の炭素質母材1bとする。炭素質母材1bは、それ自体200〜300W/m・Kの大きな熱伝導率を有し、半導体素子2が発する熱の伝熱経路としても機能する。
【0032】
[4]次いでブロック状の炭素質母材1b内にCuを主体とする金属成分を不活性雰囲気下で高温高圧で含浸させる方法、即ち熔湯鍛造法によって含浸させる。このとき、含浸されたCuはCu塊となって炭素質母材1bに分散される。含浸されたCuには予めAg,Ti,Cr,ZrおよびWのうちの少なくとも一種を0.2〜10重量部含有させている。これらの金属のうちAg以外のものはCuの融点(約1083℃)よりも高い融点を有しているが、溶融したCuと混在することによってCuと固溶体を作り、含浸時に液体となって炭素質母材1bに含浸される。
【0033】
[5]次に、ブロック状の炭素質母材1b内に炭素繊維およびCu等の金属成分1dを分散させ、次いでブロック状の炭素質母材1b板状に切り出して基材Aとなる板を作製する。板の寸法は、例えば厚さが1mm〜2mm程度、縦横の寸法が100mm程度である。
【0034】
さらに、この板を所望の形状に加工して個々の金属炭素複合体A1を作製し、金属炭素複合体A1の表面にNiメッキ層6を形成して基材Aを得る。ついで基材Aの上下面にロウ材層8、Mo層7、ロウ材層8、Cu層9を順次形成して金属層Bを有する基体1を得る。
【0035】
金属炭素複合体A1は、内部にCu等の金属成分1dが分散されて成り、含有する金属によりCuと炭素質母材1bとの密着性が良好なものとなる。また、金属炭素複合体A1の熱膨張係数は、Cu等の金属成分1dが分散されていることにより8×10−6〜10×10−6/℃となっている。このとき、CuにAgが含有されていると、Cuと炭素質母材1bとの濡れ性が高温高圧下で良好となることは実験的に確認されている。また、Ag以外の金属をCuに含有させた場合、炭素質母材1bとの間で炭化チタン(TiC),炭化クロム(CrC),炭化ジルコニウム(ZrC),炭化タングステン(WC)などの炭化物が生成され、これらの炭化物を介してCuと炭素質母材1bとが密着する。その結果、Cuと炭素質母材1bとの間での熱伝達がさらに良好なものとなり、半導体素子2の熱が半導体素子2の載置部1aの面に平行な方向(面方向)にも良好に伝達され、金属炭素複合体A1による熱伝達が極めて良好になる。
【0036】
このとき、金属炭素複合体A1に対する金属成分1dの含有量は10〜20重量%がよい。10重量%未満になると、水平方向で所望の熱伝導率が得られず、20重量%を超えると、基体1と半導体素子2との熱膨張係数差が大きくなり、半導体素子2と基体1との接合部にクラックが発生し易くなる。基体1と半導体素子2との熱膨張係数差を考慮すると、より好ましくは15〜20重量%がよい。また、金属成分1dの含有量を10〜20重量%と好適な範囲とすることにより、金属炭素複合体A1の表面に現われる金属成分1dの表面積の割合は、金属炭素複合体A1の表面積に対して約6〜10%となり、これによりNiメッキ層6,Cuメッキ層6の被着強度が向上する。
【0037】
また、Cu等の金属成分1dが金属炭素複合体A1内に分散されていることによって基体1のネジ止め部13の潰れが大きく軽減される。よって、半導体パッケージを外部装置にネジで締め付けて密着固定する場合に強固に締め付けることができる。この基体1は、図2に示すように、基材Aの上下面に、基材Aの熱膨張係数を調整するためのMo層7と、熱伝達を良好にするためのCu層9と、これらの層を順次接合するための2つのロウ材層8との4層構造の金属層Bが形成されている。Cu層9は、半導体素子2の熱を伝達する伝熱媒体となって熱を横方向(面方向)に効率よく伝達する。
【0038】
そして、基体1の上側主面に枠体3を半田や銀ロウ等のロウ材でロウ付けすることにより、枠体3が基体1上に取着される。
【0039】
また、基材Aの上下面に基材A側からロウ材層8、Mo層7、ロウ材層8およびCu層9から成る金属層Bが形成されていることから、金属層Bが基体1の熱膨張係数を枠体3の熱膨張係数に近似させる機能を有している。また、金属炭素複合体A1がその表面に多数の気孔が存在する多孔質であるとしても、その気孔は金属層Bによって完全に塞がれる。その結果、半導体パッケージ内部の気密封止の信頼性が高いものとなる。また、半導体パッケージ内部に半導体素子2を収納し半導体装置と成した後、ヘリウムを使用して半導体装置の気密検査をする場合、ヘリウムの一部が基材Aの気孔内にトラップされることが有効に防止され、半導体装置の気密封止の検査が正確に行える。
【0040】
本発明者は、本発明を完成させるに際して金属層の組み合わせを種々検討して本発明を完成するに至ったのであるが、本出願人は、基材A側からFe−Cr合金層、Cu層およびMo層から成る金属層を形成した構成を既に提案している(従来例A:特開2000−133756公報参照)。この従来例Aでは、Fe−Cr合金層はCu層の熱膨張係数に近い熱膨張係数を有しかつカーボンとの拡散接合が可能ということで用いたが、上述したように、Fe−Cr合金層、Cu層、Mo層をこの順序で基材A側から拡散接合させる際に拡散接合の条件が適正でないと、Fe−Cr合金層中のFeがMo層やCu層に拡散してMo層やCu層の熱伝導率が劣化し、また、Fe−Cr合金層中のCrがMo層に拡散してMo層が脆化し、さらに、Fe−Cr合金層中のCrが拡散してFe−Cr合金層に空隙が発生し熱伝導率が劣化することが明らかになった。なお、Cu層はCrの拡散を抑えるために形成するが、Fe,Crの拡散を抑えるのに十分ではないことが判った。
【0041】
従って、本発明者は、拡散接合によらない接合が上記の不具合を発生させないために必要であると考え、基材AにMo層7とCu層9をロウ材層8で順次接合した構成を発明したものである。しかしながら、上記従来例Aでは、光半導体素子を載置する放熱板が厚さ方向に炭素繊維を配列するとともに炭素繊維を炭素で結合した一方向性複合材料から成るため、一方向性複合材料の表面に多数の気孔が存在しており、その結果一方向性複合材料の表面にロウ接合を可能にするNiメッキ層,Cuメッキ層を形成するのがきわめて困難であった。そこで、本発明者は、本発明の金属成分1dが含浸された炭素質母材1b内に炭素繊維の集合体1cが分散された金属炭素複合体A1を用いることによって、ロウ接合を可能にするNiメッキ層,Cuメッキ層を金属炭素複合体A1の表面に強固かつ緻密に形成できることを見出し、本発明の完成に至ったのである。
【0042】
そして、本発明のMo層7は熱膨張係数が約5×10−6/℃であるため、大きな熱膨張係数(約17×10−6/℃)を有するCu層9の熱膨張を調整する機能を有し、またMo層7はFe−Cr合金層に比べて熱伝導率が約4倍と高いことから、大きな熱放散性を得ることができる。また、本発明では、ロウ材層8によりMo層7とCu層9とを基材Aに強固に接合させることができ、また拡散接合を不要としたことで従来用いられていたFe−Cr合金層を無くすことができ、よって拡散接合時のFeやCrの拡散を解消することができる。さらに、Cr拡散のバリア層として用いられていたCu層9をMo層7上に形成することができ、半導体素子2の熱を効率よく外部に放散させることができるようになった。
【0043】
また、本発明において、金属層BをMo層7とCu層9と2つのロウ材層8との4層で形成するのは、ロウ材層8を介してCu層9を形成することにより、基材Aの熱膨張係数をFe−Ni−Co合金やFe−Ni合金からなる枠体3の熱膨張係数10×10−6〜13×10−6/℃(室温〜800℃)に近づけるためである。
【0044】
そして、好ましくは300〜3000μm程度の厚さで主に使用される金属炭素複合体A1に対して、ロウ材層8の厚さは5〜30μm、Mo層7の厚さは5〜100μm、Cu層8の厚さは100〜1000μmとすることが好ましい。
【0045】
金属炭素複合体A1の厚さが300μm未満では、ブロック状の炭素質母材1bをスライス加工する際に金属成分1dが飛び散る場合が有るため量産が困難となり、3000μmを超えると、金属成分1dの含浸が不均一となり熱伝導性に偏りが発生し易い。
【0046】
ロウ材層8の厚さが5μm未満の場合、Mo層7の接合層として機能しなくなる場合がある。即ち、ロウ材層8に発生する応力によってロウ材層8が剥れ易くなる。また、ロウ材層8の厚さが30μmを超えると、ロウ材層8と基材Aとの熱膨張係数差により発生する応力によって、基材Aの表面からロウ材層8が剥れることがあり、基材Aとの密着性が劣化し易くなる。このロウ材層8はNiメッキ層6またはCuメッキ層6とMo層7、およびMo層7とCu層9との接合媒体として機能するとともに、Cu層9から伝わる熱を基材Aに効率よく伝える熱伝達媒体としても機能する。また、ロウ材層8は比較的軟質であることから、基材AとCu層9との熱膨張差による応力を緩和する所謂応力緩和層としても機能する。なお、ロウ材層8は主にAgとCuから成るAgロウなどの熱伝導率に比較的優れるロウ材からなる。
【0047】
Mo層7の厚さが5μm未満の場合、基体1の熱膨張係数を調整する効果が小さくなり、基体1にFe−Ni−Co合金やFe−Ni合金からなる枠体3をロウ付けした場合にロウ材にクラックが発生し易くなる。Mo層7の厚さが100μmを超えると、基材Aの熱膨張係数が小さくなり過ぎ、枠体3を基体1の上面にロウ付けする際にロウ材にクラックが発生し易くなる。
【0048】
Cu層9の厚さが100μm未満の場合、金属層Bの熱膨張係数が9×10−6/℃以下となり、枠体3を基体1に取着すると枠体3と基体1との熱膨張差により枠体3と基体1との接合部にクラックが発生し易くなり、また横方向への熱放散性が小さくなり、半導体素子2の熱を効率よく放散できなくなり易い。Cu層8の厚さが1000μmを超えると、金属層Bの熱膨張係数が15×10−6/℃以上になり、枠体3と基体1との接合部にクラックが発生し易くなる。より好ましくは250〜850μmが良い。
【0049】
以上のことから、本発明の基体1は、その上側主面に枠体3を取着した後両者に半導体素子2の熱が加わったとしても、基体1と枠体3との間には両者の熱膨張係数差に起因する熱応力が殆ど発生しなくなる。また、熱応力が発生しても、基体1の弾性率が小さいことから、基体1がその熱応力を吸収し、その結果基体1は枠体3に強固に接合され、かつ半導体素子2の熱を大気中に良好に発散させ得る。さらに、半導体素子2と基体1との間に生じる熱応力は、基体1がその熱応力を吸収するように変形し、半導体素子2と基体1との間で大きな熱応力が発生することはない。従って、容器内部に収容した半導体素子2を長期に亘り正常かつ安定に作動させることができる。
【0050】
本発明の金属層Bは、具体的には、厚さが約1mmの基材Aの上下面に、例えば、厚さ約10μmのAgロウ箔、厚さ約50μmのMo箔、厚さ約10μmのAgロウ箔、厚さ約500μmのCu板を順次載置し、次に還元雰囲気下で例えば850℃で1時間加熱することにより形成される。この金属層Bを上下面に形成した基体1は、上側主面から下側主面にかけて400W/m・K以上の熱伝導率が得られ、また載置部1aの面の面方向においては基材A内部に分散された炭素繊維および金属成分1dにより300〜350W/m・Kの熱伝導率が得られる。その結果、基体1は、載置部1aに載置された半導体素子2の熱を極めて効率よく下側主面に伝達させることができ、基体1の下側主面全面から熱が効率よく放散されることとなる。
【0051】
載置部1aの面方向の熱伝導率を測定してみると、上記の如く300〜350W/m・K以上となっており、図3のような一方向性複合材料109を用いたものと比較して10〜12倍と大きいことが明らかになった。従って、半導体素子2の熱は、熱電冷却素子Cを介して基体1に伝達され、次いで基体1の上側主面から下側主面にかけて基体1内のランダム方向の伝熱経路によって効率よく伝わり、さらに外部装置を介して空気中に放散される。
【0052】
また、炭素質母材1bに金属成分1dを含浸させると、金属炭素複合体A1の密度は3〜4g/cmとなり、金属成分1dを含浸させていないもの(約2g/cm)に比べると大きいが、従来のCu−W合金に比べて1/3〜1/5程度であり、極めて軽量である。従って、近時の小型軽量化が進む電子装置へ実装する際に有利である。
【0053】
さらに、炭素質母材1bを用いた基体1はその弾性率が枠体3を構成するFe−Ni−Co合金等の金属に比べて小さいことから、基体1と枠体3との間に、また基体1と半導体素子2との間に熱膨張係数差があったとしても、これらの間に発生する熱応力は基体1が適度に変形して吸収される。その結果、基体1と枠体3、および基体1と半導体素子2とは強固に接合し、半導体素子2の熱を常に大気中に効率よく放散させ得るとともに半導体素子2を長期に亘って正常かつ安定に作動させることができる。
【0054】
また、基材Aの上下面に金属層Bを被着した基体1において、基材Aと上面の金属層Bとの間、および基材Aと下面の金属層Bとの間に、基材Aと金属層Bとの熱膨張係数の相違に起因する熱応力が発生しても、それぞれの熱応力はそれらの方向が上下面で同方向かつほぼ同等となることから、基体1は基材Aと金属層Bとの間に発生する熱応力によって変形せず常に平坦となる。従って、枠体3の下面に基体1を強固に接合できるとともに、半導体素子2の熱を基体1を介して大気中に効率よく放散させることができる。
【0055】
本発明の枠体3は、基体1の上側主面の外周部に載置部1aを囲繞するようにロウ材、ガラスまたは樹脂等の接合材を介して接合されている。枠体3はFe−Ni−Co合金やFe−Ni合金からなり、例えばFe−Ni−Co合金のインゴット(塊)を従来周知のプレス成型法、押出し法などの金属加工法により所定の枠状に成型することによって作製される。Fe−Ni−Co合金,Fe−Ni合金からなる枠体3は、その熱膨張係数が約10×10−6〜13×10−6/℃(室温〜800℃)であり、基体1の熱膨張係数10×10−6〜13×10−6/℃と実質的に同じである。よって、基体1と枠体3との間に発生する熱応力は殆どなく、また基体1の弾性率がFe−Ni−Co合金等の金属に比べて小さいことから、熱応力が発生してもそれは基体1の適度な変形によって吸収される。従って、枠体3と基体1とを接合する接合材にクラックなどが発生したり、基体1に反りが発生することが解消できる。
【0056】
また枠体3は、その側部に貫通孔または切欠き部からなる取付部3aが形成されており、取付部3aには、枠体3の内側から外側にかけて導通する複数のメタライズ配線層10が形成された入出力端子4が嵌着されている。入出力端子4は、メタライズ配線層10を枠体3に対し電気的絶縁をもって枠体3の内側から外側にかけて配設する作用をなし、酸化アルミニウム(Al)質焼結体などの電気絶縁材料からなる。そして、取付部3aの内面に対向する入出力端子4の側面に予めメタライズ層を被着させておき、このメタライズ層を取付部3aの内面に銀ロウなどのロウ材でロウ付けすることによって、取付部3aに入出力端子4が嵌着される。
【0057】
この入出力端子4の電気絶縁材料から成る本体部分は以下のように作製される。まず、例えばAl,酸化珪素(SiO),酸化マグネシウム(MgO),酸化カルシウム(CaO)などの原料粉末に適当なバインダー、溶剤等を添加混合してスラリーとなす。このスラリーをドクターブレード法やカレンダーロール法によってセラミックグリーンシートとし、次いでセラミックグリーンシートに適当な打ち抜き加工を施し、メタライズ配線層10となる金属層を形成する。このセラミックグリーンシートを複数枚積層し、約1600℃の温度で焼成することによって入出力端子4の本体部分が作製される。
【0058】
さらに入出力端子4は、複数のメタライズ配線層10がセラミック積層体である本体部分に埋設されるように形成されている。このメタライズ配線層10の枠体3内側に位置する部位には、半導体素子2の各電極がボンディングワイヤ12を介して電気的に接続され、メタライズ配線層10の枠体3外側に位置する部位には、外部装置と接続される外部リード端子11が銀ロウなどのロウ材を介し取着されている。このメタライズ配線層10は半導体素子2の各電極を外部装置に接続するための導電路であり、W,Mo,Mnなどの高融点金属粉末により形成されている。例えばメタライズ配線層10は、上記高融点金属粉末に適当な有機バインダー、溶剤などを添加混合して得たペーストを、入出力端子4となるセラミックグリーンシートに予め従来周知のスクリーン印刷法により所定パターンに印刷塗布し焼成することによって形成される。
【0059】
なお、メタライズ配線層10は、その露出表面にNi,金(Au)などの耐食性に優れかつロウ材との濡れ性に優れる金属を1〜20μmの厚さでメッキ法により被着させておくのがよく、メタライズ配線層10の酸化腐食を有効に防止することができ、またメタライズ配線層10への外部リード端子11のロウ付けを強固にすることができる。
【0060】
また、メタライズ配線層10に銀ロウなどのロウ材でロウ付けされる外部リード端子11は、容器内部に収容する半導体素子2の各電極を外部装置に電気的に接続するものである。外部リード端子11を外部装置に接続することにより、半導体素子2はメタライズ配線層10,外部リード端子11を介して外部装置に電気的に接続される。この外部リード端子11は、Fe−Ni−Co合金やFe−Ni合金などの金属材料からなり、例えばFe−Ni−Co合金のインゴット(塊)に圧延加工法や打ち抜き加工法などの従来周知の金属加工法を施すことによって所定の形状に形成される。
【0061】
かくして、本発明の半導体パッケージは、基体1の載置部1a上に半導体素子2をガラス,樹脂,ロウ材などの接着剤を介して接着固定し、半導体素子2の各電極をボンディングワイヤ11を介して所定のメタライズ配線層10に接続し、しかる後、枠体3の上面に蓋体5をガラス,樹脂,ロウ材などからなる封止材を介して接合し、基体1、枠体3および蓋体5からなる容器内部に半導体素子2を気密に収容することにより、製品としての半導体装置となる。
【0062】
なお、本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更は可能である。例えば、枠体3の側部に筒状の光ファイバ固定部材を設けて光信号を入出力できるようにし、半導体素子として光半導体素子を収容した光半導体パッケージに本発明構成を適用しても良い。
【0063】
【発明の効果】
本発明は、上側主面に半導体素子が載置される載置部を有するとともに両端部にネジ止め部を有する略四角形の基体は、Ag,Ti,Cr,ZrおよびWのうちの少なくとも一種を0.2〜10重量部ならびにCuを90〜99.8重量部含有する金属成分が含浸された炭素質母材内に炭素繊維の集合体が分散されているとともに表面にNiメッキ層またはCuメッキ層が被着された金属炭素複合体を基材とし、基材の上下面に基材側からロウ材層、Mo層、ロウ材層およびCu層が順次積層されていることにより、金属炭素複合体が炭素繊維と高温高圧下で含浸された金属とからなるため、その表面が緻密になり、金属炭素複合体の表面にNiメッキ層またはCuメッキ層が形成できるようになった。そして、基材の上下面にNiメッキ層,Cuメッキ層を介してロウ材層、Mo層、ロウ材層およびCu層がこの順で強固に接合できるようになった。即ち、Niメッキ層,Cuメッキ層の炭素繊維への被着部における被着力の弱さを、含浸された金属が表面に露出している部位における被着力で補強することができ、また金属炭素複合体の表面が緻密なため炭素繊維に被着されるNiメッキ層,Cuメッキ層の表面欠陥が極めて少なくなり、その結果金属炭素複合体の表面にNiメッキ層,Cuメッキ層を強固かつ信頼性よく被着することができる。
【0064】
このように、基材表面にNiメッキ層,Cuメッキ層を信頼性良くかつ強固に形成できることによって、ロウ材層を介して熱膨張係数を調整するためのMo層を形成し、またMo層上にロウ材層を介して熱伝導性の極めて良好なCu層を形成することができる。その結果、従来のFe系の金属層を形成した構成では得られない効率のよい熱伝達が可能になる。
【0065】
また、半導体素子から基体に伝わった熱は基材の内部でランダムな経路を辿って基体の下側主面および側面に伝わり、基体の側面に伝わった熱はその表面のNiメッキ層,Cuメッキ層を介して下側主面へと伝わり、よって基体の下側主面からの熱放散により半導体素子の温度を適正な温度にすることができる。そのため、半導体素子を常に適温として半導体素子を長期に亘り正常かつ安定に作動させることが可能になる。また、基体内に含浸された金属成分はAg,Ti,Cr,Zr,Wのうちの少なくとも一種を0.2〜10重量部ならびにCuを90〜99.8重量部含有することから、Cuとその周囲の炭素質母材との密着性が良好となり、Cuのみを含浸させた場合に比べて伝熱性が大きく向上する。その結果、半導体素子の熱は基体内をランダムな方向に伝わり、大きな熱量を基体の広範囲で放散させることが可能になるため、半導体素子を常に適温として長期に亘り正常かつ安定に作動させることが可能になる。
【0066】
さらに、基材は、含浸された金属、および基材の上下面に形成され、ロウ材層、Mo層、ロウ材層およびCu層が順次積層されて成る金属層によって剛性が高くなっているが、その弾性率は極めて小さく、金属層によって半導体素子の載置部の面方向の熱膨張係数が10×10−6〜13×10−6/℃(室温〜800℃)に調整される。これにより、半導体素子の熱によって基体と半導体素子との接合部および基体と枠体との間で熱応力が発生しても、これらの熱応力は基体が適度に変形することで緩和される。
【0067】
本発明は、好ましくは、モリブデン層の厚さが5〜100μmであり、銅層の厚さが100〜1000μmであることにより、近時の高密度配線のLSIやFETなどの半導体素子から大量の熱が発せられても、この熱が最外層のCu層により効率よく横方向に伝達され、次いでMo層を介して基材に伝えられ、基材の内部を通じて良好に基材の下側主面および側面を介して下側主面へと伝えられ、基体の下側主面から効率よく外部に放散されることになる。よって、半導体素子が作動する際の温度を常に適正な温度にすることが可能になる。
【0068】
本発明の半導体装置は、本発明の半導体素子収納用パッケージと、載置部に載置固定されるとともに入出力端子に電気的に接続された半導体素子と、枠体の上面に取着された蓋体とを具備したことにより、基体が炭素質母材に金属が含浸されていることから、Niメッキ層,Cuメッキ層およびロウ材層を介して熱伝導性に優れる金属層を接合することができ、よって半導体素子の熱を基体を介して極めて効率良く外部に放散させ得る。従って、半導体素子を長期に亘り正常かつ安定に作動させることができる。また、基体は主成分として金属である銅が炭素質母材内に含浸されているので圧縮強度が大きくなり、基体を外部装置にネジ止めする際に生じる押圧力や圧縮応力が基体表面に加わった場合に、基体の上下主面にMo層やCu層が形成されていることと併せて、基体が押圧力や圧縮応力に対して潰れ難くなる。従って、例えばマザーボード等の外部装置にネジ止めした際に、基体が厚さ方向に潰れて締め付けが緩くなって密着固定が不十分となり、外部への熱放散性が劣化するといった不具合が解消される。
【図面の簡単な説明】
【図1】本発明の半導体パッケージについて実施の形態の例を示す断面図である。
【図2】本発明の半導体パッケージにおける基体の部分拡大断面図である。
【図3】(a)は従来の半導体パッケージの平面図、(b)は従来の半導体パッケージの断面図、(c)は従来の半導体パッケージにおける基体の部分拡大断面図である。
【符号の説明】
1:基体
1a:載置部
1b:炭素質母材
1c:炭素繊維の集合体
1d:金属成分
2:半導体素子
3:枠体
3a:取付部
4:入出力端子
6:Niメッキ層またはCuメッキ層
7:Mo層
8:ロウ材層
9:Cu層
13:ネジ止め部
A:基材
B:金属層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor element housing package for housing a semiconductor element such as an LSI (Large Scale Integrated Circuit) or an FET (Field Effect Transistor) and a semiconductor device.
[0002]
[Prior art]
FIG. 3 shows an optical semiconductor package which is a kind of a conventional semiconductor element housing package (hereinafter, referred to as a semiconductor package). (A), (b) and (c) of the same figure are a plan view, a sectional view and a partially enlarged sectional view of the optical semiconductor package, respectively. In the figure, an optical fiber and a cylindrical fixing member for attaching the optical fiber are provided on the side of the optical semiconductor package, but these are omitted.
[0003]
In this optical semiconductor package, a mounting portion 104 on which an optical semiconductor element 105 such as a semiconductor laser (LD) or a photodiode (PD) is mounted via a thermoelectric cooling element C such as a Peltier element is screwed on the upper main surface. Frame body 102 having a substantially quadrangular frame shape having a portion 106, and a frame body which is attached so as to surround the mounting portion 104, and has a mounting portion for an input / output terminal 108 formed of a through hole or a notch on a side portion. 107 and an input / output terminal 108 fitted to the mounting portion.
[0004]
In this optical semiconductor package, for example, a chromium (Cr) -iron (Fe) alloy layer as a first layer and copper (Cu) as a second layer are formed on upper and lower surfaces of the unidirectional composite material 109 in which carbon fibers are bonded with carbon. ) Layer and a metal layer B1 having a three-layer structure of a Fe-nickel (Ni) -cobalt (Co) alloy layer or a Fe-Ni alloy layer as a third layer are formed by a so-called diffusion bonding method performed at high temperature and high pressure. The attached heat radiating plate 101 is fitted into the through hole of the frame-shaped base 102 to form the mounting portion 104. At this time, the Fe—Cr alloy layer is applied to the first layer because Fe and carbon (C) of the carbon fiber are mutually diffused at the time of joining under high temperature and high pressure, so that the carbon fiber and the Cr—Fe alloy layer are bonded. This is because they are firmly joined. Further, the Cu layer can be joined to the Fe—Cr alloy layer mainly by the interdiffusion of Fe and Cu, and the Fe—Ni—Co layer as the thermal expansion coefficient adjusting layer is mainly made of Ni and Ni. It can be bonded to the surface of the Cu layer by interdiffusion with Cu.
[0005]
Then, the optical semiconductor element 105 is hermetically sealed in a container including the heat radiating plate 101, the base 102, the frame 107, and the lid 103, thereby forming an optical semiconductor device (see JP-A-2000-150745). .
[0006]
In the above conventional example, the radiator plate 101 forms the mounting portion 104 of the optical semiconductor element 105, and the carbon fibers are arranged in the direction from the upper surface to the lower surface. If the metal plate B1 is not attached, the heat radiation plate 101 has a thermal expansion coefficient of about 7 × 10 in a direction parallel to the mounting surface of the optical semiconductor element 105. -6 / ° C., but since the elastic modulus in the same direction is as small as about 7 GPa (gigapascal), the thermal expansion coefficient of the heat radiating plate 101 can be increased by attaching the metal layer B1, and the thermal expansion coefficient is 10 × 10 -6 ~ 13 × 10 -6 / ° C. The thermal conductivity is 30 W / m · in the direction parallel to the mounting surface of the optical semiconductor element 105, that is, the direction perpendicular to the direction of the carbon fibers of the unidirectional composite material 109 (up and down direction). K or less, but 300 W / m · K or more in the direction of carbon fibers.
[0007]
The radiator plate 101 has a coefficient of thermal expansion of 10 × 10 -6 ~ 13 × 10 -6 / C (room temperature to 800 ° C.) is inserted into a through hole of a frame-shaped base member 102 made of an Fe—Ni—Co alloy, an Fe—Ni alloy, or the like with a brazing material such as silver (Ag) brazing, and placed. It becomes the unit 104. Thus, the optical semiconductor package has a function of efficiently dissipating the heat generated by the optical semiconductor element 105 to the outside via the thermoelectric cooling element C.
[0008]
The radiator plate 101 has carbon fibers arranged in the vertical direction of the radiator plate 101 as compared with a general Cu-tungsten (W) alloy or Cu-molybdenum (Mo) alloy as a radiator material. Has high thermal conductivity. The heat generated when the optical semiconductor element 105 housed in the optical semiconductor package using the heat radiating plate 101 is operated has a heat conductivity of 30 W / m · K or less in a direction orthogonal to the direction of the carbon fibers of the heat radiating plate 101. Therefore, it hardly propagates in the direction of the main surface of the heat sink 101 (plane direction).
[0009]
Therefore, the heat of the optical semiconductor element 105 is selectively transmitted in the direction in which the carbon fibers are arranged, that is, from the upper surface side to the lower surface side of the heat sink 101, and is radiated from the lower surface to the atmosphere. As a result, the optical semiconductor element 105 always has an appropriate temperature, and the optical semiconductor element 105 can operate normally and stably for a long time. When the heat of the optical semiconductor element 105 is applied to the base 102 and the frame 107, the base 102 and the frame 107 are made of the same material and have a thermal expansion coefficient of 10 × 10 -6 ~ 13 × 10 -6 / ° C., no large thermal stress occurs between the two. Even if a small thermal stress is generated, the heat stress generated between the base 102 and the frame 107 is reduced by appropriately deforming the heat sink 101. Therefore, the frame 107 can be extremely firmly attached to the base 102.
[0010]
Therefore, it is possible to completely and hermetically seal the optical semiconductor package including the base 102, the heat radiation plate 101, the frame 107, and the lid 103, and to operate the optical semiconductor element 105 housed therein normally and stably for a long period of time. Will be possible.
[0011]
[Problems to be solved by the invention]
However, in recent years, the amount of heat generated by the optical semiconductor element 105 has been increased, and when the heat transfer limit of the heat sink 101 is exceeded, heat is transferred to the heat sink 101 and the temperature of the heat sink 101 rises. There is. In this case, the heat of the heat radiating plate 101 is applied to the optical semiconductor element 105 via the thermoelectric cooling element C, and the temperature of the optical semiconductor element 105 rises, causing the optical semiconductor element 105 to malfunction or the optical semiconductor element 105 to be thermally destroyed. Problem had occurred.
[0012]
The heat transfer of the heat radiating plate 101 is such that a part of the metal layer B1 attached to the upper and lower surfaces of the heat radiating plate 101 has a small heat conductivity such as an Fe-Cr alloy layer or an Fe-Ni-Co alloy layer. In some cases, Fe atoms may diffuse into the Cu layer when these alloy layers are applied by diffusion bonding. In this case, too, the magnitude of heat transfer of the radiator plate 101 may be reduced. Was getting smaller. As a result, the heat of the optical semiconductor element 105 is less likely to be quickly dissipated to the outside via the base 102, and the temperature of the base 102 rises, resulting in a malfunction such that the optical semiconductor element 105 malfunctions or is thermally damaged. I was
[0013]
Further, in order to tightly fix the optical semiconductor package to an external device by screwing, a base 102 made of a highly rigid Fe—Ni—Co alloy or Fe—Ni alloy is used. The hole is fitted through a brazing material such as Ag brazing. Then, the optical semiconductor package is tightly fixed to an external device by tightening a screw into a through hole of the screw portion 106, and heat of the optical semiconductor element 105 is radiated to the outside through the external device. However, when the heat radiating plate 101 is fitted into the through hole of the base 102, the size of the gap between the outer peripheral surface of the heat radiating plate 101 and the inner surface of the through hole may vary. In this case, when the heat radiating plate 101 is brazed to the through holes, the state of the brazing material becomes uneven, and the hermetic sealing of the optical semiconductor package may be impaired.
[0014]
Therefore, a configuration using the heat radiating plate 101 itself as a base is conceivable. However, when the optical semiconductor package is screwed to an external device, the unidirectional composite material 109 constituting the heat radiating plate 101 has a thickness of the unidirectional carbon fiber. Since they are aligned in the same direction and bonded with carbon, the compressive strength in the thickness direction is essentially significantly lower than that of metal. For this reason, the screw fixing portion 106 of the heat radiating plate 101 may be crushed in the thickness direction when tightening with the screw. Therefore, there has been a problem that the optical semiconductor package cannot be fixed to the external device with a strong tightening force, and the heat of the optical semiconductor element 105 cannot be sufficiently dissipated (see JP-A-2000-150746).
[0015]
Accordingly, the present invention has been completed in view of the above problems, and an object of the present invention is to efficiently dissipate heat of a semiconductor device such as an optical semiconductor device, an LSI, an FET, an MMIC, etc. It is an object of the present invention to allow a semiconductor element to be accommodated to operate normally and stably for a long period of time, and to prevent the base of a semiconductor package from being crushed in a thickness direction when the base of the semiconductor package is screwed and fixed to an external device.
[0016]
[Means for Solving the Problems]
The semiconductor package of the present invention has a mounting portion on which a semiconductor element is mounted on an upper main surface and a substantially rectangular base having screwing portions at both ends, and the mounting portion described above on the upper main surface of the base. A semiconductor element housing package comprising a frame body attached to and surrounding the input / output terminal, the input / output terminal being fitted to the attachment portion, the frame body having an input / output terminal attachment portion formed of a through hole or a notch portion. Wherein the base material is a carbonaceous base material impregnated with a metal component containing 0.2 to 10 parts by weight of at least one of silver, titanium, chromium, zirconium and tungsten and 90 to 99.8 parts by weight of copper. The base material is a metal-carbon composite in which an aggregate of carbon fibers is dispersed and a nickel-plated layer or a copper-plated layer is adhered on the surface, and the upper and lower surfaces of the base material are brazed from the base material side. Layer, mo Buden layer, the brazing material layer and the copper layer, characterized in that are sequentially stacked.
[0017]
In the present invention, the metal-carbon composite is composed of carbon fibers and a metal impregnated under high temperature and pressure, so that the surface thereof becomes dense and a Ni plating layer or a Cu plating layer can be formed on the surface of the metal carbon composite. Became. Then, the brazing material layer, the Mo layer, the brazing material layer, and the Cu layer can be firmly joined in this order to the upper and lower surfaces of the base material via the Ni plating layer and the Cu plating layer. That is, it is possible to reinforce the weak adhesion at the portion where the Ni plating layer and the Cu plating layer are adhered to the carbon fiber by the adhesion at the portion where the impregnated metal is exposed on the surface, and at the same time, the metal carbon Since the surface of the composite is dense, the surface defects of the Ni plating layer and the Cu plating layer adhered to the carbon fiber are extremely reduced. As a result, the Ni plating layer and the Cu plating layer are formed on the surface of the metal carbon composite. It can be firmly and reliably attached.
[0018]
As described above, since the Ni plating layer and the Cu plating layer can be reliably and firmly formed on the surface of the base material, the Mo layer for adjusting the thermal expansion coefficient is formed via the brazing material layer. Thus, a Cu layer having extremely good thermal conductivity can be formed via the brazing material layer. As a result, efficient heat transfer, which cannot be obtained with a configuration in which a conventional Fe-based metal layer is formed, can be achieved.
[0019]
Further, the present invention is a configuration in which the base material is composed of an aggregate of unidirectional carbon fibers dispersed and arranged in a random direction in the carbonaceous matrix and the impregnated metal component, and is transmitted from the semiconductor element to the base material. The heat will be transmitted to the lower main surface and the side surfaces of the substrate by following a random path inside the substrate. Then, the heat transmitted to the side surface of the base is transmitted to the lower main surface via the Ni plating layer and the Cu plating layer on the surface, so that the heat from the lower main surface of the base allows the temperature of the semiconductor element to be adjusted appropriately. Can be temperature. Thus, the semiconductor element can always be kept at an appropriate temperature, and the semiconductor element can be normally and stably operated for a long period of time.
[0020]
At this time, the metal component impregnated in the base is 0.2 to 10 parts by weight of at least one of Ag, titanium (Ti), chromium (Cr), zirconium (Zr) and W, and 90 to 99. By containing 8 parts by weight, the adhesion between Cu and the surrounding carbonaceous base material becomes good, and the heat conductivity is greatly improved as compared with the case where only Cu is impregnated. As a result, the heat generated by the semiconductor element is transmitted in a random direction in the base, and a large amount of heat can be dissipated in a wide range of the base, so that the semiconductor element is always kept at an appropriate temperature and operates normally and stably for a long time. It becomes possible.
[0021]
Further, the base material of the semiconductor package of the present invention is formed by the impregnated metal and the metal layer formed on the upper and lower surfaces of the base material, and the brazing material layer, the molybdenum layer, the brazing material layer, and the copper layer are sequentially laminated. Has a very low modulus of elasticity, and the coefficient of thermal expansion in the direction parallel to the mounting surface of the semiconductor element is 10 × 10 -6 ~ 13 × 10 -6 / ° C (room temperature to 800 ° C). Thereby, even if thermal stress is generated between the joint between the base and the semiconductor element and between the base and the frame due to the heat of the semiconductor element, these thermal stresses are reduced by the base being appropriately deformed.
[0022]
In the present invention, preferably, the thickness of the molybdenum layer is 5 to 100 μm, and the thickness of the copper layer is 100 to 1000 μm.
[0023]
According to the present invention, even when a large amount of heat is recently generated from a semiconductor element such as an LSI or a FET having a high-density wiring by the above-described configuration, this heat is efficiently transferred in the lateral direction to the outermost Cu layer, Then, it is transmitted to the base material through the Mo layer, is transmitted through the inside of the base material to the lower main surface through the lower main surface and the side surface of the base material, and is efficiently externalized from the lower main surface of the base material. Will be dissipated. Therefore, the temperature at which the semiconductor element operates can always be set to an appropriate temperature.
[0024]
A semiconductor device according to the present invention includes a semiconductor element housing package according to the present invention, a semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal, and a semiconductor device mounted on an upper surface of the frame. And a lid attached thereto.
[0025]
According to the present invention, a metal layer having excellent thermal conductivity is joined via a Ni plating layer, a Cu plating layer, and a brazing material layer because the base material is impregnated with a metal in the carbonaceous base material. Therefore, the heat of the semiconductor element can be very efficiently dissipated to the outside through the base. Therefore, the semiconductor element can be normally and stably operated for a long time. In addition, since the base material has copper as a main component impregnated in the carbonaceous base material, its compressive strength increases, and the pressing force and compressive stress generated when the base material is screwed to an external device are applied to the base surface. When it is applied, the Mo layer and the Cu layer are formed on the upper and lower main surfaces of the substrate, and the substrate is less likely to be crushed by a pressing force or a compressive stress. Therefore, for example, when screws are screwed to an external device such as a motherboard, the problem that the base is crushed in the thickness direction, the tightening is loosened, the tight fixing is insufficient, and the heat dissipation to the outside is deteriorated is solved. .
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
The semiconductor package of the present invention will be described in detail below. 1 and 2 show an example of an embodiment of the semiconductor package of the present invention. FIG. 1 is a sectional view of the semiconductor package, and FIG. 2 is a partially enlarged sectional view of a base of the semiconductor package of the present invention. In FIG. 1, 1 is a base, 1a is a mounting portion of a semiconductor element 2, 2 is a semiconductor element such as an IC, LSI, or FET, 3 is a frame, 3a is a mounting portion of an input / output terminal provided on the frame 3. It is. A container for accommodating the semiconductor element 2 is basically constituted by the base 1, the frame 3, and the lid 5, and the input / output terminal 4 is fitted to the mounting portion 3a. In addition, 13 is a screwing part.
[0027]
Further, in FIG. 2, A is a substrate having a Ni plating layer 6 formed on the surface of the metal-carbon composite A1, 1b is a carbonaceous base material, 1c is an aggregate of unidirectional carbon fibers, 1d is Ag, A metal component containing 0.2 to 10 parts by weight of at least one of Ti, Cr, Zr, and W and 90 to 99.8 parts by weight of Cu. 7 is a Mo layer formed on the base material A via the brazing material layer 8, 9 is a Cu layer formed on the Mo layer 7 via the brazing material layer 8, and B is the upper and lower surfaces of the base material 1. Is a metal layer formed by sequentially laminating the brazing material layer 8, the Mo layer 7, the brazing material layer 8, and the Cu layer 9 formed in the above-described manner.
[0028]
As shown in FIG. 2, the base 1 is composed of a metal-carbon composite A1 in which a unidirectional carbon fiber aggregate 1c is dispersed in a carbonaceous base material 1b impregnated with a metal component 1d and a Ni plating layer 6. The metal-carbon composite A1 is composed of the base material A and the metal layer B, and is produced, for example, by the following steps [1] to [5].
[0029]
[1] A plate-like mass obtained by binding unidirectional carbon fiber bundles with carbon is crushed into small aggregates made of unidirectional carbon fibers, and the crushed aggregates are collected to form a solid pitch or coke. Is immersed in a solution of a thermosetting resin such as a phenol resin in which the fine powder is dispersed. The size of the aggregate obtained by crushing the plate-like mass is about 0.1 to 1 mm on one side when the shape is viewed as, for example, a substantially cubic.
[0030]
[2] The aggregate is dried, and a predetermined pressure is applied and heated to cure the thermosetting resin portion to obtain a plate-like block.
[0031]
[3] This is fired at a high temperature in an inert atmosphere to carbonize the fine powder of phenol resin and pitch or coke to obtain a block-like carbonaceous base material 1b. The carbonaceous base material 1b itself has a large thermal conductivity of 200 to 300 W / m · K, and also functions as a heat transfer path for heat generated by the semiconductor element 2.
[0032]
[4] Next, the block-like carbonaceous base material 1b is impregnated with a metal component mainly composed of Cu at a high temperature and a high pressure in an inert atmosphere, that is, by a melt forging method. At this time, the impregnated Cu is dispersed as a Cu lump in the carbonaceous base material 1b. The impregnated Cu contains 0.2 to 10 parts by weight of at least one of Ag, Ti, Cr, Zr and W in advance. Among these metals, those other than Ag have a melting point higher than the melting point of Cu (about 1083 ° C.). However, when mixed with molten Cu, a solid solution is formed with Cu, which becomes a liquid at the time of impregnation and becomes carbon. The base material 1b is impregnated.
[0033]
[5] Next, carbon fiber and a metal component 1d such as Cu are dispersed in the block-like carbonaceous base material 1b, and then the plate is cut out into a block-like carbonaceous base material 1b to form a substrate A. Make it. The dimensions of the plate are, for example, about 1 mm to 2 mm in thickness and about 100 mm in vertical and horizontal dimensions.
[0034]
Further, this plate is processed into a desired shape to produce individual metal-carbon composites A1, and a Ni plating layer 6 is formed on the surface of the metal-carbon composites A1 to obtain a base material A. Next, a brazing material layer 8, a Mo layer 7, a brazing material layer 8, and a Cu layer 9 are sequentially formed on the upper and lower surfaces of the base material A to obtain the base 1 having the metal layer B.
[0035]
The metal-carbon composite A1 has a metal component 1d such as Cu dispersed therein, and the metal contained therein provides good adhesion between Cu and the carbonaceous base material 1b. The coefficient of thermal expansion of the metal-carbon composite A1 is 8 × 10 because the metal component 1d such as Cu is dispersed. -6 -10 × 10 -6 / ° C. At this time, it has been experimentally confirmed that when Cu contains Ag, the wettability between Cu and the carbonaceous base material 1b is improved under high temperature and high pressure. When a metal other than Ag is contained in Cu, carbides such as titanium carbide (TiC), chromium carbide (CrC), zirconium carbide (ZrC), and tungsten carbide (WC) are formed between the metal and Cu. Cu and the carbonaceous base material 1b adhere to each other through these carbides. As a result, the heat transfer between the Cu and the carbonaceous base material 1b is further improved, and the heat of the semiconductor element 2 is also transferred in a direction (plane direction) parallel to the surface of the mounting portion 1a of the semiconductor element 2. Good heat transfer is achieved, and heat transfer by the metal-carbon composite A1 is extremely good.
[0036]
At this time, the content of the metal component 1d with respect to the metal-carbon composite A1 is preferably 10 to 20% by weight. If it is less than 10% by weight, a desired thermal conductivity in the horizontal direction cannot be obtained, and if it exceeds 20% by weight, the difference in thermal expansion coefficient between the base 1 and the semiconductor element 2 increases, and the semiconductor element 2 and the base 1 Cracks are likely to occur at the joints. Considering the difference in the coefficient of thermal expansion between the base 1 and the semiconductor element 2, the content is more preferably 15 to 20% by weight. In addition, by setting the content of the metal component 1d to a suitable range of 10 to 20% by weight, the ratio of the surface area of the metal component 1d appearing on the surface of the metal-carbon composite A1 to the surface area of the metal-carbon composite A1 Thus, the adhesion strength of the Ni plating layer 6 and the Cu plating layer 6 is improved.
[0037]
In addition, since the metal component 1d such as Cu is dispersed in the metal-carbon composite A1, crushing of the screw portion 13 of the base 1 is greatly reduced. Therefore, when the semiconductor package is tightly fixed to the external device by screws, the semiconductor package can be firmly tightened. As shown in FIG. 2, the base 1 has a Mo layer 7 for adjusting the thermal expansion coefficient of the base A, a Cu layer 9 for improving heat transfer, A metal layer B having a four-layer structure with two brazing material layers 8 for sequentially joining these layers is formed. The Cu layer 9 serves as a heat transfer medium for transferring heat of the semiconductor element 2 and efficiently transfers heat in the lateral direction (plane direction).
[0038]
Then, the frame 3 is attached to the base 1 by brazing the frame 3 to the upper main surface of the base 1 with a brazing material such as solder or silver brazing.
[0039]
Further, since the metal layer B including the brazing material layer 8, the Mo layer 7, the brazing material layer 8, and the Cu layer 9 is formed on the upper and lower surfaces of the base material A from the base A side, the metal layer B is Has a function of approximating the coefficient of thermal expansion of the frame 3 to the coefficient of thermal expansion of the frame 3. Further, even if the metal-carbon composite A1 is porous having a large number of pores on its surface, the pores are completely closed by the metal layer B. As a result, the reliability of hermetic sealing inside the semiconductor package is high. Further, when the semiconductor device 2 is housed inside the semiconductor package to form a semiconductor device, and then the hermetic inspection of the semiconductor device is performed using helium, a part of helium may be trapped in the pores of the base material A. This is effectively prevented, and the inspection for hermetic sealing of the semiconductor device can be accurately performed.
[0040]
The inventor of the present invention completed the present invention by variously examining combinations of metal layers when completing the present invention. However, the present applicant has found that a Fe-Cr alloy layer, a Cu layer And a structure in which a metal layer composed of a Mo layer is formed (conventional example A: refer to JP-A-2000-133756). In the conventional example A, the Fe—Cr alloy layer is used because it has a thermal expansion coefficient close to the thermal expansion coefficient of the Cu layer and is capable of diffusion bonding with carbon. When the diffusion bonding conditions are not appropriate when the diffusion bonding of the layer, the Cu layer, and the Mo layer in this order from the substrate A side, the Fe in the Fe—Cr alloy layer diffuses into the Mo layer or the Cu layer, and the Mo layer is diffused. And the thermal conductivity of the Cu layer deteriorates, and the Cr in the Fe-Cr alloy layer diffuses into the Mo layer, making the Mo layer embrittled. Further, the Cr in the Fe-Cr alloy layer diffuses and the Fe- It became clear that voids were generated in the Cr alloy layer and the thermal conductivity deteriorated. Although the Cu layer was formed to suppress the diffusion of Cr, it was found that the Cu layer was not sufficient to suppress the diffusion of Fe and Cr.
[0041]
Therefore, the present inventor considers that bonding not based on diffusion bonding is necessary in order not to cause the above-described problem, and has a configuration in which the Mo layer 7 and the Cu layer 9 are sequentially bonded to the base material A with the brazing material layer 8. It was invented. However, in the above-mentioned conventional example A, the heat sink on which the optical semiconductor element is mounted is made of a unidirectional composite material in which carbon fibers are arranged in the thickness direction and the carbon fibers are bonded with carbon. Many pores are present on the surface, and as a result, it is extremely difficult to form a Ni plating layer and a Cu plating layer on the surface of the unidirectional composite material, which enable brazing. Therefore, the present inventor enables brazing by using the metal-carbon composite A1 in which the aggregate 1c of carbon fibers is dispersed in the carbonaceous base material 1b impregnated with the metal component 1d of the present invention. The inventors have found that a Ni plating layer and a Cu plating layer can be firmly and densely formed on the surface of the metal-carbon composite A1, and have completed the present invention.
[0042]
The Mo layer 7 of the present invention has a coefficient of thermal expansion of about 5 × 10 -6 / ° C, a large coefficient of thermal expansion (about 17 × 10 -6 / ° C) and has a function of adjusting the thermal expansion of the Cu layer 9, and the Mo layer 7 has a heat conductivity of about 4 times higher than that of the Fe-Cr alloy layer, so that a large heat dissipation property is obtained. be able to. Further, in the present invention, the Mo layer 7 and the Cu layer 9 can be firmly joined to the base material A by the brazing material layer 8, and the Fe—Cr alloy which has been conventionally used because diffusion bonding is not required The layer can be eliminated, so that the diffusion of Fe and Cr during diffusion bonding can be eliminated. Further, the Cu layer 9 used as the Cr diffusion barrier layer can be formed on the Mo layer 7, and the heat of the semiconductor element 2 can be efficiently radiated to the outside.
[0043]
In the present invention, the metal layer B is formed of the four layers of the Mo layer 7, the Cu layer 9, and the two brazing material layers 8 by forming the Cu layer 9 with the brazing material layer 8 interposed therebetween. The thermal expansion coefficient of the base material A is 10 × 10 which is the thermal expansion coefficient of the frame 3 made of an Fe—Ni—Co alloy or an Fe—Ni alloy. -6 ~ 13 × 10 -6 / ° C (room temperature to 800 ° C).
[0044]
The thickness of the brazing material layer 8 is 5 to 30 μm, the thickness of the Mo layer 7 is 5 to 100 μm, and the thickness of the metal carbon composite A1 is preferably about 300 to 3000 μm. The thickness of the layer 8 is preferably 100 to 1000 μm.
[0045]
If the thickness of the metal-carbon composite A1 is less than 300 μm, mass production becomes difficult because the metal component 1d may be scattered when the block-shaped carbonaceous base material 1b is sliced, and if it exceeds 3000 μm, the metal component 1d The impregnation is not uniform and the thermal conductivity tends to be uneven.
[0046]
If the thickness of the brazing material layer 8 is less than 5 μm, it may not function as a bonding layer of the Mo layer 7. That is, the brazing material layer 8 is easily peeled off by the stress generated in the brazing material layer 8. Further, when the thickness of the brazing material layer 8 exceeds 30 μm, the brazing material layer 8 may be peeled off from the surface of the base material A due to stress generated due to a difference in thermal expansion coefficient between the brazing material layer 8 and the base material A. Yes, the adhesion to the base material A is likely to deteriorate. The brazing material layer 8 functions as a bonding medium between the Ni plating layer 6 or the Cu plating layer 6 and the Mo layer 7 and between the Mo layer 7 and the Cu layer 9, and efficiently transfers heat transmitted from the Cu layer 9 to the base material A. It also functions as a heat transfer medium. Further, since the brazing material layer 8 is relatively soft, it also functions as a so-called stress relieving layer that relieves stress due to a difference in thermal expansion between the base material A and the Cu layer 9. The brazing material layer 8 is made of a brazing material having relatively excellent thermal conductivity such as an Ag brazing mainly composed of Ag and Cu.
[0047]
When the thickness of the Mo layer 7 is less than 5 μm, the effect of adjusting the thermal expansion coefficient of the base 1 is reduced, and when the frame 3 made of an Fe—Ni—Co alloy or an Fe—Ni alloy is brazed to the base 1 Cracks are easily generated in the brazing material. If the thickness of the Mo layer 7 exceeds 100 μm, the thermal expansion coefficient of the base material A becomes too small, and cracks easily occur in the brazing material when the frame 3 is brazed to the upper surface of the base 1.
[0048]
When the thickness of the Cu layer 9 is less than 100 μm, the coefficient of thermal expansion of the metal layer B is 9 × 10 -6 / ° C. or less, and when the frame 3 is attached to the base 1, cracks are likely to occur at the joint between the frame 3 and the base 1 due to the difference in thermal expansion between the frame 3 and the base 1, and The heat dissipation is small, and the heat of the semiconductor element 2 cannot be efficiently dissipated easily. When the thickness of the Cu layer 8 exceeds 1000 μm, the coefficient of thermal expansion of the metal layer B becomes 15 × 10 -6 / ° C or more, and cracks are likely to occur at the joint between the frame 3 and the base 1. More preferably, the thickness is 250 to 850 μm.
[0049]
As described above, even if the heat of the semiconductor element 2 is applied to the base 1 of the present invention after the frame 3 is attached to the upper main surface thereof, the base 1 and the frame 3 remain Almost no thermal stress due to the difference in thermal expansion coefficient. Even if thermal stress is generated, since the elastic modulus of the base 1 is small, the base 1 absorbs the thermal stress. As a result, the base 1 is firmly joined to the frame 3 and the heat of the semiconductor element 2 is reduced. Can be well vented into the atmosphere. Further, the thermal stress generated between the semiconductor element 2 and the base 1 is deformed so that the base 1 absorbs the thermal stress, and no large thermal stress is generated between the semiconductor element 2 and the base 1. . Therefore, the semiconductor element 2 housed in the container can be operated normally and stably for a long period of time.
[0050]
Specifically, the metal layer B of the present invention includes, for example, an Ag brazing foil having a thickness of about 10 μm, a Mo foil having a thickness of about 50 μm, a thickness of about 10 μm Ag foil and a Cu plate having a thickness of about 500 μm are sequentially placed and then heated at, for example, 850 ° C. for 1 hour in a reducing atmosphere. The substrate 1 having the metal layer B formed on the upper and lower surfaces has a thermal conductivity of 400 W / m · K or more from the upper main surface to the lower main surface, and has a base in the surface direction of the mounting portion 1a. A thermal conductivity of 300 to 350 W / m · K is obtained by the carbon fibers dispersed in the material A and the metal component 1d. As a result, the base 1 can transfer the heat of the semiconductor element 2 mounted on the mounting portion 1a to the lower main surface extremely efficiently, and the heat is efficiently radiated from the entire lower main surface of the base 1. Will be done.
[0051]
When the thermal conductivity in the surface direction of the mounting portion 1a is measured, the thermal conductivity is 300 to 350 W / m · K or more as described above, and the one using the unidirectional composite material 109 as shown in FIG. It became clear that it was as large as 10 to 12 times in comparison. Therefore, the heat of the semiconductor element 2 is transmitted to the base 1 via the thermoelectric cooling element C, and then efficiently transmitted from the upper main surface to the lower main surface of the base 1 by a random heat transfer path in the base 1, It is further released into the air via an external device.
[0052]
When the carbonaceous base material 1b is impregnated with the metal component 1d, the density of the metal-carbon composite A1 is 3 to 4 g / cm. 3 And those not impregnated with the metal component 1d (about 2 g / cm 3 ), But about 1/3 to 1/5 of the conventional Cu-W alloy, which is extremely light. Therefore, it is advantageous when it is mounted on an electronic device that is recently becoming smaller and lighter.
[0053]
Further, since the elastic modulus of the base 1 using the carbonaceous base material 1b is smaller than that of the metal constituting the frame 3, such as an Fe—Ni—Co alloy, the distance between the base 1 and the frame 3 Further, even if there is a difference in thermal expansion coefficient between the base 1 and the semiconductor element 2, the thermal stress generated therebetween is appropriately deformed and absorbed by the base 1. As a result, the base 1 and the frame 3 and the base 1 and the semiconductor element 2 are firmly joined to each other, so that the heat of the semiconductor element 2 can always be efficiently dissipated into the atmosphere, and the semiconductor element 2 can be normally and continuously used for a long time. It can be operated stably.
[0054]
Further, in the base 1 having the metal layer B adhered to the upper and lower surfaces of the base A, the base material is provided between the base A and the upper metal layer B and between the base A and the lower metal layer B. Even if a thermal stress is generated due to a difference in the thermal expansion coefficient between the metal layer A and the metal layer B, the respective thermal stresses are substantially the same in the upper and lower surfaces and are substantially equal. It is always flat without being deformed by the thermal stress generated between A and the metal layer B. Therefore, the base 1 can be firmly joined to the lower surface of the frame 3, and the heat of the semiconductor element 2 can be efficiently radiated into the atmosphere via the base 1.
[0055]
The frame 3 of the present invention is joined to the outer peripheral portion of the upper main surface of the base 1 so as to surround the mounting portion 1a via a joining material such as brazing material, glass or resin. The frame body 3 is made of an Fe—Ni—Co alloy or an Fe—Ni alloy. For example, an ingot of the Fe—Ni—Co alloy is formed into a predetermined frame shape by a conventionally known metal working method such as a press molding method or an extrusion method. It is manufactured by molding. The frame 3 made of an Fe—Ni—Co alloy or an Fe—Ni alloy has a thermal expansion coefficient of about 10 × 10 -6 ~ 13 × 10 -6 / ° C (room temperature to 800 ° C) and the coefficient of thermal expansion of the substrate 1 is 10 × 10 -6 ~ 13 × 10 -6 / ° C. Accordingly, there is almost no thermal stress generated between the base 1 and the frame 3, and since the elastic modulus of the base 1 is smaller than that of a metal such as an Fe-Ni-Co alloy, even if a thermal stress is generated, It is absorbed by moderate deformation of the substrate 1. Therefore, cracks and the like in the joining material for joining the frame 3 and the base 1 and warpage of the base 1 can be prevented.
[0056]
The frame 3 has a mounting portion 3a formed of a through hole or a notch on a side portion thereof. The mounting portion 3a includes a plurality of metallized wiring layers 10 that conduct from the inside to the outside of the frame 3. The formed input / output terminal 4 is fitted. The input / output terminals 4 function to dispose the metallized wiring layer 10 from the inside to the outside of the frame 3 with electrical insulation from the frame 3, and the aluminum oxide (Al) 2 O 3 ) It is made of an electrically insulating material such as a sintered compact. Then, a metallized layer is previously applied to the side surface of the input / output terminal 4 facing the inner surface of the mounting portion 3a, and the metallized layer is brazed to the inner surface of the mounting portion 3a with a brazing material such as silver brazing. The input / output terminal 4 is fitted to the mounting portion 3a.
[0057]
The main body of the input / output terminal 4 made of an electrically insulating material is manufactured as follows. First, for example, Al 2 O 3 , Silicon oxide (SiO 2 ), Magnesium oxide (MgO), calcium oxide (CaO), etc., and a suitable binder, solvent, etc. are added to and mixed with the raw material powder to form a slurry. This slurry is formed into a ceramic green sheet by a doctor blade method or a calendar roll method, and then the ceramic green sheet is subjected to an appropriate punching process to form a metal layer to be the metallized wiring layer 10. By laminating a plurality of the ceramic green sheets and firing at a temperature of about 1600 ° C., the main body of the input / output terminal 4 is manufactured.
[0058]
Further, the input / output terminal 4 is formed so that the plurality of metallized wiring layers 10 are embedded in a main body portion which is a ceramic laminate. Each electrode of the semiconductor element 2 is electrically connected to a portion of the metallized wiring layer 10 located inside the frame 3 via a bonding wire 12. The external lead terminal 11 connected to an external device is attached via a brazing material such as silver brazing. The metallized wiring layer 10 is a conductive path for connecting each electrode of the semiconductor element 2 to an external device, and is formed of a high melting point metal powder such as W, Mo, and Mn. For example, the metallized wiring layer 10 is formed by adding a paste obtained by adding an appropriate organic binder, a solvent, and the like to the high melting point metal powder, and forming a predetermined pattern on a ceramic green sheet serving as the input / output terminal 4 by a conventionally well-known screen printing method. It is formed by printing, coating and firing.
[0059]
The metallized wiring layer 10 has a metal having excellent corrosion resistance and excellent wettability with a brazing material, such as Ni or gold (Au), having a thickness of 1 to 20 μm on the exposed surface by plating. Therefore, oxidation corrosion of the metallized wiring layer 10 can be effectively prevented, and brazing of the external lead terminals 11 to the metallized wiring layer 10 can be strengthened.
[0060]
The external lead terminals 11 brazed to the metallized wiring layer 10 with a brazing material such as silver brazing electrically connect the respective electrodes of the semiconductor element 2 housed in the container to an external device. By connecting the external lead terminal 11 to an external device, the semiconductor element 2 is electrically connected to the external device via the metallized wiring layer 10 and the external lead terminal 11. The external lead terminal 11 is made of a metal material such as an Fe-Ni-Co alloy or an Fe-Ni alloy. For example, a conventional well-known method such as a rolling method or a punching method is applied to an ingot of the Fe-Ni-Co alloy. A predetermined shape is formed by applying a metal working method.
[0061]
Thus, in the semiconductor package of the present invention, the semiconductor element 2 is bonded and fixed on the mounting portion 1a of the base 1 with an adhesive such as glass, resin, brazing material, etc., and the respective electrodes of the semiconductor element 2 are connected with the bonding wires 11. Then, the lid 5 is joined to the upper surface of the frame 3 via a sealing material made of glass, resin, brazing material or the like, and the base 1, frame 3 and A semiconductor device as a product is obtained by hermetically housing the semiconductor element 2 in a container formed of the lid 5.
[0062]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the present invention may be applied to an optical semiconductor package containing an optical semiconductor element as a semiconductor element by providing a cylindrical optical fiber fixing member on the side of the frame 3 so that an optical signal can be input and output. .
[0063]
【The invention's effect】
According to the present invention, a substantially rectangular base having a mounting portion on which a semiconductor element is mounted on an upper main surface and having screwing portions at both ends is made of at least one of Ag, Ti, Cr, Zr and W. An aggregate of carbon fibers is dispersed in a carbonaceous matrix impregnated with a metal component containing 0.2 to 10 parts by weight and 90 to 99.8 parts by weight of Cu, and a Ni plating layer or Cu plating on the surface. The metal-carbon composite having the metal-carbon composite on which the layer is applied is used as a base material, and a brazing material layer, a Mo layer, a brazing material layer, and a Cu layer are sequentially laminated on the upper and lower surfaces of the base material from the base material side. Since the body is composed of carbon fibers and a metal impregnated under high temperature and high pressure, the surface becomes dense, and a Ni plating layer or a Cu plating layer can be formed on the surface of the metal-carbon composite. Then, the brazing material layer, the Mo layer, the brazing material layer, and the Cu layer can be firmly joined in this order to the upper and lower surfaces of the base material via the Ni plating layer and the Cu plating layer. That is, the weak adhesion at the portion where the Ni plating layer and the Cu plating layer are adhered to the carbon fiber can be reinforced by the adhesion at the portion where the impregnated metal is exposed on the surface. Since the surface of the composite is dense, the surface defects of the Ni plating layer and the Cu plating layer adhered to the carbon fiber are extremely reduced. As a result, the Ni plating layer and the Cu plating layer on the surface of the metal-carbon composite are firmly and reliably formed. It can be adhered well.
[0064]
As described above, since the Ni plating layer and the Cu plating layer can be reliably and firmly formed on the surface of the base material, the Mo layer for adjusting the thermal expansion coefficient is formed via the brazing material layer. Thus, a Cu layer having extremely good thermal conductivity can be formed via the brazing material layer. As a result, efficient heat transfer, which cannot be obtained with a configuration in which a conventional Fe-based metal layer is formed, can be achieved.
[0065]
Further, the heat transmitted from the semiconductor element to the base is transmitted to the lower main surface and side surfaces of the base by following a random path inside the base, and the heat transmitted to the side surfaces of the base is subjected to Ni plating layer and Cu plating on the surface. The temperature is transmitted to the lower main surface through the layer, and the temperature of the semiconductor element can be adjusted to an appropriate temperature by dissipating heat from the lower main surface of the base. Therefore, the semiconductor element can be normally and appropriately operated at a proper temperature for a long period of time to operate normally and stably. Further, since the metal component impregnated in the base contains 0.2 to 10 parts by weight of at least one of Ag, Ti, Cr, Zr, and W and 90 to 99.8 parts by weight of Cu, Adhesion with the surrounding carbonaceous base material is improved, and heat transfer is greatly improved as compared with the case where only Cu is impregnated. As a result, the heat of the semiconductor element is transmitted in a random direction in the base, and a large amount of heat can be dissipated in a wide range of the base, so that the semiconductor element can always be operated at a proper temperature and operate normally and stably for a long period of time. Will be possible.
[0066]
Further, the base material is formed on the upper and lower surfaces of the impregnated metal and the base material, and the rigidity is increased by a metal layer in which a brazing material layer, a Mo layer, a brazing material layer, and a Cu layer are sequentially laminated. The elastic modulus is extremely small, and the metal layer has a thermal expansion coefficient of 10 × 10 in the surface direction of the mounting portion of the semiconductor element. -6 ~ 13 × 10 -6 / ° C (room temperature to 800 ° C). Thereby, even if thermal stress is generated between the joint between the base and the semiconductor element and between the base and the frame due to the heat of the semiconductor element, these thermal stresses are reduced by the base being appropriately deformed.
[0067]
In the present invention, preferably, the thickness of the molybdenum layer is 5 to 100 μm and the thickness of the copper layer is 100 to 1000 μm, so that a large amount of semiconductor elements such as recent high-density wiring LSIs and FETs can be used. Even if heat is generated, this heat is efficiently transferred in the lateral direction by the outermost Cu layer, and then transferred to the base material through the Mo layer, so that the lower main surface of the base material can be satisfactorily passed through the inside of the base material. Then, the light is transmitted to the lower main surface via the side surface and is efficiently radiated to the outside from the lower main surface of the base. Therefore, the temperature at which the semiconductor element operates can always be set to an appropriate temperature.
[0068]
A semiconductor device according to the present invention includes a semiconductor element housing package according to the present invention, a semiconductor element mounted and fixed on a mounting portion and electrically connected to an input / output terminal, and attached to an upper surface of a frame. Since the base body is impregnated with the metal in the carbonaceous base material by providing the lid, the metal layer having excellent thermal conductivity is joined via the Ni plating layer, the Cu plating layer, and the brazing material layer. Therefore, the heat of the semiconductor element can be very efficiently dissipated to the outside through the base. Therefore, the semiconductor element can be normally and stably operated for a long time. In addition, since the base material contains copper, which is a metal as a main component, in the carbonaceous base material, the compressive strength increases, and a pressing force or a compressive stress generated when the base material is screwed to an external device is applied to the base surface. In this case, the Mo layer and the Cu layer are formed on the upper and lower main surfaces of the base, and the base is less likely to be crushed by a pressing force or a compressive stress. Therefore, for example, when screws are screwed to an external device such as a motherboard, the problem that the base is crushed in the thickness direction, the tightening is loosened, the tight fixing is insufficient, and the heat dissipation to the outside is deteriorated is solved. .
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a semiconductor package of the present invention.
FIG. 2 is a partially enlarged sectional view of a base in the semiconductor package of the present invention.
3A is a plan view of a conventional semiconductor package, FIG. 3B is a cross-sectional view of a conventional semiconductor package, and FIG. 3C is a partially enlarged cross-sectional view of a base of the conventional semiconductor package.
[Explanation of symbols]
1: Substrate
1a: Receiver
1b: Carbonaceous base material
1c: aggregate of carbon fibers
1d: metal component
2: Semiconductor element
3: Frame
3a: mounting part
4: Input / output terminal
6: Ni plating layer or Cu plating layer
7: Mo layer
8: brazing material layer
9: Cu layer
13: Screw stop
A: Substrate
B: Metal layer

Claims (3)

上側主面に半導体素子が載置される載置部を有するとともに両端部にネジ止め部を有する略四角形の基体と、該基体の上側主面に前記載置部を囲繞するようにして取着され、貫通孔または切欠き部からなる入出力端子の取付部を有する枠体と、前記取付部に嵌着された前記入出力端子とを具備した半導体素子収納用パッケージにおいて、前記基体は、銀,チタン,クロム,ジルコニウムおよびタングステンのうちの少なくとも一種を0.2〜10重量部ならびに銅を90〜99.8重量部含有する金属成分が含浸された炭素質母材内に炭素繊維の集合体が分散されているとともに表面にニッケルメッキ層または銅メッキ層が被着された金属炭素複合体を基材とし、該基材の上下面に前記基材側からロウ材層、モリブデン層、ロウ材層および銅層が順次積層されていることを特徴とする半導体素子収納用パッケージ。A substantially rectangular base having a mounting portion on which the semiconductor element is mounted on the upper main surface and having screw portions at both ends, and attached to the upper main surface of the base so as to surround the mounting portion. In a semiconductor device housing package comprising a frame having an input / output terminal attachment portion formed of a through hole or a notch portion, and the input / output terminal fitted to the attachment portion, the base is made of silver. Of carbon fibers in a carbonaceous matrix impregnated with a metal component containing 0.2 to 10 parts by weight of at least one of titanium, chromium, zirconium and tungsten and 90 to 99.8 parts by weight of copper A metal-carbon composite on which a nickel-plated layer or a copper-plated layer is adhered on the surface, and a brazing material layer, a molybdenum layer, and a brazing material on the upper and lower surfaces of the substrate from the substrate side. Layer and copper Semiconductor device package for housing but characterized in that it is sequentially laminated. 前記モリブデン層の厚さが5〜100μmであり、前記銅層の厚さが100〜1000μmであることを特徴とする請求項1記載の半導体素子収納用パッケージ。2. The package according to claim 1, wherein the molybdenum layer has a thickness of 5 to 100 [mu] m, and the copper layer has a thickness of 100 to 1000 [mu] m. 請求項1または請求項2記載の半導体素子収納用パッケージと、前記載置部に載置固定されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に取着された蓋体とを具備したことを特徴とする半導体装置。3. The package for accommodating a semiconductor element according to claim 1 or 2, a semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal, and attached to an upper surface of the frame. A semiconductor device, comprising:
JP2001325871A 2001-10-24 2001-10-24 Semiconductor element storage package and semiconductor device Expired - Fee Related JP3554304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325871A JP3554304B2 (en) 2001-10-24 2001-10-24 Semiconductor element storage package and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325871A JP3554304B2 (en) 2001-10-24 2001-10-24 Semiconductor element storage package and semiconductor device

Publications (2)

Publication Number Publication Date
JP2003133492A JP2003133492A (en) 2003-05-09
JP3554304B2 true JP3554304B2 (en) 2004-08-18

Family

ID=19142348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325871A Expired - Fee Related JP3554304B2 (en) 2001-10-24 2001-10-24 Semiconductor element storage package and semiconductor device

Country Status (1)

Country Link
JP (1) JP3554304B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI388042B (en) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg Integrated circuit nanotube-based substrate
US9390999B2 (en) 2005-03-23 2016-07-12 Noriaki Kawamura Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure
US8570747B2 (en) 2008-12-04 2013-10-29 Hewlett-Packard Development Company, L.P. Carbon laminated enclosure

Also Published As

Publication number Publication date
JP2003133492A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP2006303400A (en) Package for containing electronic component, electronic device and its packaging structure
JP3659336B2 (en) Package for storing semiconductor elements
JP3554304B2 (en) Semiconductor element storage package and semiconductor device
JP2001313345A (en) Package for accommodating semiconductor device
JP4454164B2 (en) Package for storing semiconductor elements
JP2000183253A (en) Package for housing semiconductor element
JP2004296726A (en) Heat dissipating member, package for containing semiconductor element, and semiconductor device
JP3457898B2 (en) Optical semiconductor element storage package
JP2003046042A (en) Semiconductor element for storing package and semiconductor device
JP3659306B2 (en) Package for storing semiconductor elements
JP3987649B2 (en) Package for storing semiconductor elements
JP4514598B2 (en) Electronic component storage package and electronic device
JP2003068954A (en) Package for housing semiconductor element
JP3457901B2 (en) Optical semiconductor element storage package
JP3659304B2 (en) Package for storing semiconductor elements
JP3659298B2 (en) Package for storing semiconductor elements
JP4360567B2 (en) Package for storing semiconductor elements
JP2003037204A (en) Package for accommodating semiconductor element
JP3659300B2 (en) Package for storing semiconductor elements
JPH07211822A (en) Package for accommodating semiconductor element
JP2003133467A (en) Package for containing semiconductor element and semiconductor device
JP3659301B2 (en) Package for storing semiconductor elements
JP3659297B2 (en) Package for storing semiconductor elements
JP3659299B2 (en) Package for storing semiconductor elements
JP4485893B2 (en) Electronic component storage package and electronic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees