JP2004296726A - Heat radiating member, package for storing semiconductor element, and semiconductor device - Google Patents

Heat radiating member, package for storing semiconductor element, and semiconductor device Download PDF

Info

Publication number
JP2004296726A
JP2004296726A JP2003086195A JP2003086195A JP2004296726A JP 2004296726 A JP2004296726 A JP 2004296726A JP 2003086195 A JP2003086195 A JP 2003086195A JP 2003086195 A JP2003086195 A JP 2003086195A JP 2004296726 A JP2004296726 A JP 2004296726A
Authority
JP
Japan
Prior art keywords
semiconductor element
mounting portion
heat
copper
heat radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086195A
Other languages
Japanese (ja)
Inventor
Masahiko Miyauchi
正彦 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003086195A priority Critical patent/JP2004296726A/en
Priority to US10/758,302 priority patent/US6921971B2/en
Publication of JP2004296726A publication Critical patent/JP2004296726A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】半導体素子が作動する際に発する熱を大気中に効果的に放散できない。
【解決手段】半導体素子11の搭載部を有する放熱部材1と、その上面に取着された、配線導体6を有する絶縁枠体5と、その上面に搭載部を覆うように取着される蓋体10とを具備する半導体素子収納用パッケージであって、放熱部材1は、タングステンまたはモリブデンと銅とのマトリクスから成る枠状の基体2の中央部にダイヤモンドおよび銀銅合金から成る貫通金属体3が埋設されているとともに、それらの上下面に銅層4が接合されている。また、貫通金属体3は、半導体素子11の外周より基体2の厚み分大きい外周を有しているとよい。放熱部材1の熱伝導が良好であるため、半導体素子11の発した熱を外部や大気中に良好に放散させることができる。
【選択図】 図1
An object of the present invention is to effectively dissipate heat generated when a semiconductor element operates into the atmosphere.
A heat dissipating member having a mounting portion for a semiconductor element, an insulating frame having wiring conductors mounted on an upper surface thereof, and a lid mounted on the upper surface so as to cover the mounting portion. A heat dissipation member 1 comprising a through metal body 3 made of diamond and silver-copper alloy in the center of a frame-shaped base body 2 made of a matrix of tungsten or molybdenum and copper. Are embedded, and a copper layer 4 is bonded to the upper and lower surfaces thereof. Further, it is preferable that the through metal body 3 has an outer periphery that is larger than the outer periphery of the semiconductor element 11 by the thickness of the base 2. Since the heat radiation member 1 has good heat conduction, the heat generated by the semiconductor element 11 can be satisfactorily radiated to the outside or the atmosphere.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は良好な放熱特性の放熱構造を有する放熱部材および半導体素子収納用パッケージおよびそれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
従来、半導体素子を収容するための半導体素子収納用パッケージは、一般に酸化アルミニウム質焼結体・ムライト質焼結体・ガラスセラミックス焼結体等の電気絶縁材料から成る絶縁枠体と、半導体素子が搭載されてその動作時に発生する熱を外部もしくは大気中に良好に放散させるための銅とタングステンとの合金材料または銅とモリブデンとの合金材料から成る放熱部材と蓋体とから構成されており、放熱部材の上面の半導体素子の搭載部を取り囲むように絶縁枠体が配置されているとともに、これら絶縁枠体および放熱部材によって形成される凹部の内側から外表面にかけて、タングステン・モリブデン・マンガン・銅・銀等から成る複数の配線導体が絶縁枠体に被着され導出されている。そして、放熱部材の上面の搭載部に半導体素子をガラス・樹脂・ロウ材等の接着剤を介して接着固定するとともに、この半導体素子の各電極をボンディングワイヤを介して配線導体に電気的に接続し、しかる後、絶縁枠体に蓋体をガラス・樹脂・ロウ材等から成る封止材を介して接合し、放熱部材と絶縁枠体と蓋体とから成る容器の内部に半導体素子を収容することによって製品としての半導体装置となる。この半導体装置は、さらに放熱効率を向上させるために、ねじ止め等によって外部放熱板に搭載される場合もある。
【0003】
このようなタングステンと銅との合金材料等から成る放熱部材を具備した半導体素子収納用パッケージは、放熱部材の熱伝導率が高く、なおかつ放熱部材の熱膨張係数が半導体素子の構成材料であるシリコン・ガリウム砒素やパッケージの構成材料として使われるセラミック材料等と熱膨張係数が近似することから、パワーICや高周波トランジスタ等の高発熱半導体素子を搭載する半導体素子収納用パッケージとして注目されている。
【0004】
【特許文献1】
特開平9−312361号公報
【0005】
【発明が解決しようとする課題】
近年、パワーICや高周波トランジスタの高集積化に伴う発熱量の増大によって、現在では300W/m・K以上の熱伝導率を持つ放熱部材が求められている。しかしながら、前述のタングステンと銅との合金材料またはモリブデンと銅との合金材料から成る放熱部材の熱伝導率は200W/m・K程度とその要求に対して低いため、放熱特性が不十分になりつつあるという問題がある。
【0006】
これに対し、タングステンと銅とがマトリクス状に構成された複合材料から成る放熱部材を用いることが提案されている。また、銅または銅合金の高熱伝導層と、Fe−Ni系合金の低熱膨張層が交互に積層され、低熱膨張層を挟み込む高熱伝導層が低熱膨張層に形成した複数の貫通孔を介して連続している複合材料から成る伝熱基板を用いることも提案されている(例えば、特許文献1参照。)。
【0007】
しかしながら、このタングステンと銅とがマトリクス状に構成された複合材料から成る放熱部材を用いた半導体素子収納用パッケージでは、タングステンは熱伝導率・熱膨張係数が共に低く、銅は熱伝導率・熱膨張係数が共に高いため、銅の含有量を増加させるに従って放熱部材の熱伝導率・熱膨張率を共に増加させることができるものの、熱伝導率を向上させるために銅の含有量を増加させると、半導体素子と放熱部材との熱膨張係数の差が大きくなり、半導体素子を放熱部材に強固に接合することができなくなってしまうという問題が発生する。
【0008】
また、銅または銅合金の高熱伝導層とFe−Ni系合金の低熱膨張層とから成る複合材料から成る伝熱基板を用いる場合は、一般にFe−Ni系合金は熱伝導率が低く(例えばFe−42Ni合金の場合であれば約16W/m・K)、基板の厚み方向の伝熱性が低いという問題があった。
【0009】
加えて、銅または銅合金の高熱伝導層と、Fe−Ni系合金の低熱膨張層とが交互に積層され、低熱膨張層を挟み込む高熱伝導層が低熱膨張層に形成した複数の貫通孔を介して連続している複合材料の場合は、熱膨張率が異なる材料を複雑に配しているため、加熱時に基板が大きく反ってしまうという問題があった。
【0010】
また、この複合材料から成る放熱部材を用いた半導体素子収納用パッケージでは、パッケージ組み立ての際の高温時に銅が膨張しかつ塑性変形を起こすため、冷却後に元の状態に戻らず、その結果、放熱部材の表面が粗くなるという問題が発生することがある。
【0011】
一般に放熱部材の表面粗さは、半導体素子をガラス・樹脂・ロウ材等の接着剤を介して放熱部材に接着固定する際の接着剤中のボイド発生による放熱部材と半導体素子との接合強度の低下を防止するために、放熱部材の表面粗さを算術平均粗さRaでRa≦30μmにすることが必要とされる。そのため、この複合材料から成る放熱部材を用いる場合は、表面粗さを算術平均粗さRaでRa≦30μmにするために研摩によって表面を平滑にすることが行なわれるが、半導体素子の搭載部を取り囲むように絶縁枠体が取着されたパッケージでは、放熱部材の搭載部を研摩することができないという問題があった。
【0012】
本発明は上記従来の技術における問題に鑑み案出されたものであり、その目的は、半導体素子収納用パッケージに用いることによって、半導体素子の発した熱を外部や大気中に良好に放散させることができ、かつ半導体素子を放熱部材に強固に接着させることが可能な放熱部材、ならびにその放熱部材を用いた半導体素子収納用パッケージおよびそれを用いた半導体装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明の放熱部材は、タングステンまたはモリブデンと銅とのマトリクスから成る枠状の基体の中央部の上面から下面にかけてダイヤモンドおよび銀銅合金から成る貫通金属体が埋設されているとともに、前記基体および前記貫通金属体の上下面を覆ってそれぞれ銅層が接合されていることを特徴とするものである。
【0014】
また、本発明の第1の半導体素子収納用パッケージは、上面の中央部に半導体素子が搭載される搭載部を有する平板状の、上記構成の本発明の放熱部材と、この放熱部材の上面に前記搭載部を取り囲んで取着された、内側の前記搭載部周辺から外表面に導出する複数の配線導体を有する絶縁枠体と、この絶縁枠体の上面に前記搭載部を覆うように取着される蓋体とから成ることを特徴とするものである。
【0015】
また、本発明の第2の半導体素子収納用パッケージは、上面の中央部に半導体素子が搭載される搭載部を有する平板状の、上記構成の本発明の放熱部材と、この放熱部材の上面に前記搭載部を取り囲んで取着された、内側の前記搭載部周辺から外表面に導出する複数の配線導体を有する絶縁枠体とを具備し、前記放熱部材と前記絶縁枠体とからなる凹部に前記半導体素子を封止する封止樹脂が注入されることを特徴とするものである。
【0016】
また、本発明の半導体素子収納用パッケージは、上記構成の本発明の第1または第2の半導体素子収納用パッケージにおいて、前記貫通金属体は、前記半導体素子の外周より前記基体の厚み分大きい外周を有していることを特徴とするものである。
【0017】
さらに、本発明の第1の半導体装置は、上記構成の本発明の第1の半導体素子収納用パッケージの前記搭載部に半導体素子を搭載するとともにこの半導体素子の電極と前記配線導体とを電気的に接続し、前記絶縁枠体の上面に前記搭載部を覆うように前記蓋体を取着して成ることを特徴とするものである。
【0018】
また、本発明の第2の半導体装置は、上記構成の本発明の第2の半導体素子収納用パッケージの前記搭載部に半導体素子を搭載するとともにこの半導体素子の電極と前記配線導体とを電気的に接続し、前記放熱部材と前記絶縁枠体とからなる前記凹部に前記搭載部を覆うように前記封止樹脂を注入して成ることを特徴とするものである。
【0019】
本発明の放熱部材によれば、タングステンまたはモリブデンと銅とのマトリクスから成る枠状の基体の中央部の上面から下面にかけてダイヤモンドおよび銀銅合金から成る貫通金属体が埋設されているとともに、基体および貫通金属体の上下面を覆ってそれぞれ銅層が接合されていることから、タングステンまたはモリブデンと銅とのマトリクスのみで形成された従来の放熱部材に比べて、半導体素子の下部に、ダイヤモンドおよび銀銅合金から成る高熱伝導部分を配置することによって、半導体素子で発生した熱を半導体素子の搭載面に垂直な方向により多く伝えることができ、その結果、半導体素子に発生する熱をこの放熱部材を介して大気中に良好に放熱することができる。
【0020】
その際、貫通金属体を、この放熱部材に搭載される半導体素子の外周より基体の厚み分大きい外周を有しているものとすることにより、半導体素子で発生した熱を上面の半導体素子の搭載部から下面へと垂直な方向により多く伝えることができるとともに、貫通金属体内においても半導体素子の大きさに対してその外周から外側へ基体の厚み分大きな範囲で水平な方向への熱の広がりを持たせることが可能となり、その結果、半導体素子が発生する熱をこの放熱部材を介して大気中あるいは外部放熱板に良好に放散することができる。
【0021】
さらに、放熱部材の中央部に埋設された、基体の上面から下面にかけて貫通するダイヤモンドと銀銅合金から成る貫通金属体の上下面を、基体および貫通金属体の上下面にそれぞれこれらを覆って接合されている銅層と直接接合していることから、これら銅層とダイヤモンドおよび銀銅合金から成る貫通導体とにより放熱部材内における熱の伝達を極めて良好なものとすることができる。
【0022】
また、貫通金属体は、それ自体の材質として熱膨張は大きいが、放熱部材を構成している貫通金属体以外の部分の基体についてはこの放熱部材に搭載される半導体素子の材料であるシリコン・ガリウム砒素等と同等な熱膨張率を有するタングステンまたはモリブデンと銅とのマトリクスから成ることから、半導体素子の搭載部の熱膨張は周囲の枠状の基体の熱膨張に規制されることとなり、放熱部材における銀銅合金中の銅の占める割合が多いにもかかわらず、半導体素子の搭載部の水平方向への熱膨張が抑制される。これらの結果、この放熱部材に搭載される半導体素子を長期間にわたり正常、かつ安定に搭載して作動させることが可能となる。
【0023】
また、本発明の第1の半導体素子収納用パッケージによれば、上面の中央部に半導体素子が搭載される搭載部を有する平板状の、上記構成の本発明の放熱部材と、この放熱部材の上面に搭載部を取り囲んで取着された、内側の搭載部周辺から外表面に導出する複数の配線導体を有する絶縁枠体と、この絶縁枠体の上面に搭載部を覆うように取着される蓋体とから成ることから、半導体素子の下部に、ダイヤモンドおよび銀銅合金から成る高熱伝導部分を配置することによって、半導体素子で発生した熱を半導体素子の搭載面に垂直な方向により多く伝えることができ、その結果、半導体素子に発生する熱をこの放熱部材を介して大気中に良好に放熱することが可能となり、半導体素子を長期間にわたり正常、かつ安定に搭載して作動させることが可能となる。
【0024】
また、本発明の第2の半導体素子収納用パッケージによれば、上面の中央部に半導体素子が搭載される搭載部を有する平板状の、上記構成の本発明の放熱部材と、この放熱部材の上面に搭載部を取り囲んで取着された、内側の搭載部周辺から外表面に導出する複数の配線導体を有する絶縁枠体とを具備し、放熱部材と絶縁枠体とからなる凹部に半導体素子を封止する封止樹脂が注入されることから、半導体素子の下部に、ダイヤモンドおよび銀銅合金から成る高熱伝導部分を配置することによって、半導体素子で発生した熱を半導体素子の搭載面に垂直な方向により多く伝えることができ、その結果、半導体素子に発生する熱をこの放熱部材を介して大気中に良好に放熱することが可能となり、半導体素子を長期間にわたり正常、かつ安定に搭載して作動させることが可能となる。
【0025】
さらに、本発明の半導体素子収納用パッケージによれば、上記構成の本発明の第1または第2の半導体素子収納用パッケージにおいて、貫通金属体を、半導体素子の外周より放熱部材の基体の厚み分大きい外周を有しているものとしたときには、半導体素子に発生する熱が、搭載面に対して垂直面と同等に、搭載面に対して平面方向にも伝わるので、その結果、伝わる熱量が増加し、放熱部材の放熱性が向上して、半導体素子を長期間にわたり正常、かつ安定に搭載して作動させることが可能となる。
【0026】
さらに、本発明の第1の半導体装置によれば、上記構成の本発明の第1の半導体素子収納用パッケージの搭載部に半導体素子を搭載するとともにこの半導体素子の電極と配線導体とを電気的に接続し、絶縁枠体の上面に搭載部を覆うように蓋体を取着して成ることから、以上のような本発明の第1の半導体素子収納用パッケージの特長を備えた、半導体素子の放熱部材への接合が強固で、放熱特性が極めて良好な、長期にわたって安定して半導体素子を作動させることができる半導体装置を提供することができる。
【0027】
さらにまた、本発明の第2の半導体装置によれば、上記構成の本発明の第2の半導体素子収納用パッケージの搭載部に半導体素子を搭載するとともにこの半導体素子の電極と配線導体とを電気的に接続し、放熱部材と絶縁枠体とからなる凹部に搭載部を覆うように封止樹脂を注入して成ることから、以上のような本発明の第2の半導体素子収納用パッケージの特長を備えた、半導体素子の放熱部材への接合が強固で、放熱特性が極めて良好な、長期にわたって安定して半導体素子を作動させることができる半導体装置を提供することができる。
【0028】
【発明の実施の形態】
次に、本発明を添付図面に基づき詳細に説明する。
【0029】
図1は本発明の放熱部材を用いた本発明の半導体素子収納用パッケージおよびそれを用いた本発明の半導体装置の実施の形態の一例を示す断面図であり、本発明の第1の半導体素子収納用パッケージおよび半導体装置の例を示している。図1において、1は放熱部材、2は放熱部材1の基体、3は貫通金属体、4(4a・4b)は銅層、5は絶縁枠体、6は配線導体、7はリード端子、10は蓋体である。これら放熱部材1と絶縁枠体5と蓋体10とで半導体素子11を収納する半導体素子収納用パッケージ8が構成される。また、この放熱部材1の搭載部に半導体素子11を搭載した後に、絶縁枠体5の上面に搭載部を覆うように蓋体10を取着して封止することにより半導体装置14が構成される。
【0030】
絶縁枠体5は酸化アルミニウム質焼結体・ムライト質焼結体・ガラスセラミックス焼結体等から成り、ロウ材9を介して放熱部材1の上面に搭載部を取り囲んで接着固定されることにより取着される。なお、このロウ材9による接着固定に際しては、通常、ロウ付け用の金属層(図示せず)が絶縁枠体5の放熱部材1との接合部に形成される。
【0031】
また、放熱部材1には、その上面の中央部の搭載部に半導体素子11が樹脂・ガラス・ロウ材等の接着材12を介して固定される。なお、接着剤12としてロウ材を用いる場合には、ロウ付け用の金属層(図示せず)が放熱部材1の半導体素子11との接着部に形成される。ただし、放熱部材1の貫通金属体3の上面に接合された銅層4(4a)により十分なロウ付けができる場合には、このロウ付け用の金属層は特に必要ではない。
【0032】
絶縁枠体5は、例えば、酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤等を混合添加して泥奬状となすとともに、これからドクターブレード法やカレンダーロール法を採用することによってセラミックグリーンシート(セラミック生シート)を形成し、しかる後に、このセラミックグリーンシートに適当な打ち抜き加工を施すとともに、タングステン・モリブデン・マンガン・銅・銀・ニッケル・パラジウム・金等の金属材料粉末に適当な有機バインダ・溶剤を混合して成る導電性ペーストをグリーンシートに予めスクリーン印刷法等により所定パターンに印刷塗布した後に、このグリーンシートを複数枚積層し、約1600℃の温度で焼成することによって作製される。
【0033】
また、絶縁枠体5には、放熱部材1と絶縁枠体5とで構成される凹部5aの内側の搭載部周辺から絶縁枠体5の外表面にかけて導出する配線導体6が形成されており、配線導体6の凹部5aの内側の一端には半導体素子11の各電極がボンディングワイヤ13を介して電気的に接続される。
【0034】
配線導体6はタングステン・モリブデン等の高融点金属から成り、タングステン・モリブデン等の金属粉末に適当な有機バインダ・溶剤等を添加混合して得た金属ペーストを絶縁枠体5となるセラミックグリーンシートに予めスクリーン印刷法等によって所定のパターンに印刷塗布しておくことによって、絶縁基体1および放熱部品5による凹部5aの内側の搭載部周辺から絶縁枠体5の外表面にかけて被着形成される。
【0035】
また、配線導体6はその露出する表面にニッケル・金等の耐食性に優れ、かつボンディングワイヤ13のボンディング性に優れる金属を1〜20μmの厚みにメッキ法によって被着させておくと、配線導体6の酸化腐食を有効に防止できるとともに配線導体6へのボンディングワイヤ13の接続を強固となすことができる。従って、配線導体6は、その露出する表面にニッケル・金等の耐食性に優れ、かつボンディング性に優れる金属を1〜20μmの厚みに被着させておくことが望ましい。
【0036】
放熱部材1は、半導体素子11の作動に伴い発生する熱を吸収するとともに大気中に放散させる、あるいは外部放熱板に伝導させる機能を有する。例えば、平均粒径が5〜40μmのタングステン粉末またはモリブデン粉末を、枠状に加圧成形し、これを1300〜1600℃の雰囲気中で焼結させることで、10〜50質量%の銅を含浸させて得た後に、基体2の中央部の上面から下面にかけて貫通金属体3を形成するための枠形状の穴開け加工を行なう。半導体素子11の搭載部に上面から下面にかけて形成された枠形状に、ダイヤモンド粒子および銀銅合金粉末を所定量充填し、これを真空雰囲気下にて800〜1000℃の温度で焼成して焼結させることで、単一の貫通導体を持つ、タングステンまたはモリブデンと銅とのマトリクスから成る枠状の基体2と、基体2の中央部の上面から下面にかけて埋設されたダイヤモンドおよび銀銅合金から成る貫通金属体3と、基体2および貫通金属体3の上面を覆って接合された銅層4aならびに基体2および貫通金属体3の下面に接合された銅層4bとから成る放熱部材1が形成される。
【0037】
ここで、貫通金属体3を構成するダイヤモンドおよび銀銅合金は、ダイヤモンドと銀銅合金の構成比率が、ダイヤモンドが60〜40質量%、銀銅合金が40〜60質量%であることが好ましい。ダイヤモンドの構成比率が60質量%より多い場合には、ダイヤモンドの粒子間を埋める銀銅合金成分が不足してしまい、貫通金属体3の内部にダイヤモンドと銀銅合金の接合が不十分な部分が発生し、充分な緻密体を得ることができなくなり、その結果、半導体素子11で発生した熱を効率良く貫通金属体3の内部を伝熱させることが困難となる傾向がある。また、ダイヤモンドの構成比率が40質量%より少ない場合には、貫通金属体3の内部は充分な緻密体が得られるが、貫通金属体3の熱伝導率は銀銅合金の熱伝導率に大きく依存して低下してしまい、その結果、半導体素子11で発生した熱を効率良く貫通導体3の内部を伝熱させることが困難となる傾向がある。
【0038】
本発明における放熱部材1は、前記構成比率でダイヤモンドと銀銅合金とを所定量計量した後、これらを混合した粉末を、タングステンまたはモリブデンと銅とのマトリクスから成る枠状の基体2に充填加圧し、その基体2の上下面を銅層4aおよび銅層4bで挟み、還元雰囲気下にて780℃〜900℃の温度で焼結させることによって得られる。このとき、放熱部材1は、ダイヤモンドの周囲を銀銅合金がマトリクスとして埋めて緻密な構造を有しており、ダイヤモンドの高熱伝導率を効率良く発揮させて利用することができ、貫通金属体3の熱伝導率が充分に高いので、半導体素子11で発生した熱を効率良く大気中に放熱させることができる。
【0039】
銅層4の内、半導体素子11の搭載部となる放熱部材1の上面側の銅層4aは、その上面の算術平均粗さRaがRa>30(μm)の場合は、半導体素子11をガラス・樹脂・ロウ材等の接着剤12を介して接着固定する際に、接着剤12中にボイドが発生することがあり、接着剤12中に発生したボイドは半導体素子11と放熱部材1との接合強度を低下させるだけでなく、半導体素子11と放熱部材1との間の熱伝達を阻害し、半導体素子収納用パッケージ8および半導体装置14の熱放散性を低下させるおそれがある。
【0040】
従って、半導体素子11の搭載部となる基体2の上面の銅層4aは、算術平均粗さRaがRa≦30(μm)で表面が平滑であることが好ましい。
【0041】
貫通金属体3は、図2に放熱部材1を搭載部側から見た場合の基体2の平面図を示すように、半導体素子11の外周より基体2の厚みT分大きい外周、すなわち半導体素子11の外周からその全周にわたって外側に基体2の厚みTの距離を隔てた外周を有するように形成されている。一般的に、等方性材料の場合には、熱は平面方向および垂直方向ともに同等に伝わるので、結果として、45度程度の広がりをもって伝わることになる。従って、貫通金属体3は、貫通金属体3と半導体素子11の搭載部の領域とのなす角度15として45度程度を確保するために、半導体素子11の外周より基体2の厚みT分大きい外周を有することが望ましい。
【0042】
一方、半導体素子11が搭載される上面とは反対側の基体2および貫通金属体3の下面に接合された銅層4bの下面の算術平均粗さRaは、Ra≦30(μm)であることが好ましい。本発明の第1の半導体素子収納用パッケージ8は、アルミニウムや銅等の導体あるいは、高熱伝導を有するセラミック体から成る支持基板へネジ止めにより、またははんだ等の溶融金属・ロウ材を用いることにより接続される場合がある。このとき、銅層4bの下面の算術平均粗さRaがRa>30(μm)の場合には、半導体素子収納用パッケージ8と支持基板とを十分に密着させることが困難となり、両者の間に空隙やボイドが発生してしまい、その結果、半導体素子7で発生した熱を半導体素子収納用パッケージ8からこの支持基板へ効率良く伝達させることができなくなるおそれがある。したがって、下面の銅層4bの外側表面となる下面は、支持基板との良好な密着性が得られるように算術平均粗さRaがRa≦30(μm)と平滑であることが望ましい。
【0043】
銅層4(4a・4b)の厚みは、それぞれ800μmより厚くなると基体2と銅層4(4a・4b)との熱膨張差によって発生する応力が大きくなり十分な接合強度が得られない傾向があることから、800μm以下としておくことが望ましい。また、銅層4(4a・4b)の厚みが50μm以上であれば、半導体素子11の作動に伴い発生する熱が銅層4(4a・4b)の平面方向に十分広がるので、放熱部材1の熱放散性は良好なものとなる。
【0044】
なお、放熱部材1の基体2および貫通金属体3の上下面に接合される銅層4(4a・4b)の材料は、純銅に限られるものではなく、熱伝導性が良好でタングステンまたはモリブデンと銅とのマトリックスである基体2および銅から成る貫通金属体3と十分な接合強度が得られるものであれば、銅を主成分とする各種の銅合金であっても構わない。
【0045】
かくして、上述の本発明の第1の半導体素子収納用パッケージ8によれば、放熱部材1の搭載部上に半導体素子11をガラス・樹脂・ロウ材等から成る接着剤12を介して接着固定するとともに、半導体素子11の各電極をボンディングワイヤ13を介して所定の配線導体6に電気的に接続し、しかる後に、絶縁枠体5の上面に搭載部を覆うように蓋体10を取着して凹部5a内に半導体素子11を封止することによって、製品としての本発明の第1の半導体装置14となる。
【0046】
次に、図3は本発明の放熱部材を用いた本発明の半導体素子収納用パッケージおよびそれを用いた本発明の半導体装置の実施の形態の他の例を示す断面図であり、本発明の第2の半導体素子収納用パッケージおよび半導体装置の例を示している。図3において、21は絶縁枠体、22は封止樹脂、23は放熱部材である。この絶縁枠体21と封止樹脂22と放熱部材23とで、半導体素子27を収納する本発明の第2の半導体素子収納用パッケージ28が構成される。また、この放熱部材23の搭載部に半導体素子27を搭載した後に、絶縁枠体21と放熱部材23とからなる凹部にエポキシ等の封止樹脂22を注入して半導体素子27を封止することにより、本発明の半導体装置34が構成される。
【0047】
なお、この第2の半導体素子収納用パッケージ28および第2の半導体装置33において、絶縁枠体21,放熱部材23,半導体素子27は、それぞれ前述の絶縁枠体5,放熱部材1,半導体素子11と同様である。
【0048】
絶縁枠体21はロウ材29を介して放熱部材23に接着固定されて取着される。また、放熱部材23には、その上面の中央部の搭載部に半導体素子27が接着剤30を介して接着固定される。
【0049】
また、絶縁枠体21には、絶縁枠体21と放熱部材23とで構成される凹部21aから絶縁枠体21の外表面にかけて導出する配線導体31が形成されており、配線導体31の一端には半導体素子27の各電極がボンディングワイヤ32を介して電気的に接続される。
【0050】
放熱部材23は、半導体素子27の作動に伴い発生する熱を吸収するとともに大気中に放散させる機能を有し、タングステンまたはモリブデンおよび銅のマトリクスから成る基体24に貫通金属体25が埋設され、その上下面に銅層26(26a・26b)が接合されることにより、本発明の第2の半導体素子収納用パッケージ28における放熱部材23が形成されている。
【0051】
ここで、ダイヤモンドおよび銀銅合金から成る貫通金属体23は、ダイヤモンドと銀銅合金の構成比率が、ダイヤモンドが60〜40質量%、銀銅合金が40〜60質量%であることが好ましい。ダイヤモンドの構成比率が60質量%より多い場合には、ダイヤモンドの粒子間を埋める銀銅合金成分が不足してしまい、貫通金属体23の内部にダイヤモンドと銀銅合金の接合が不十分な部分が発生し、充分な緻密体を得ることができなくなり、半導体素子27で発生した熱を効率良く貫通金属体23の内部を伝熱させることが困難となる傾向がある。また、ダイヤモンドの構成比率が40質量%より少ない場合には、貫通金属体23の内部は充分な緻密体が得られるが、貫通金属体23の熱伝導率は銀銅合金の熱伝導率に大きく依存して低下してしまい、その結果、半導体素子27で発生した熱を効率良く貫通導体23の内部を伝熱させることが困難となる傾向がある。
【0052】
本発明における放熱部材1は、前記構成比率でダイヤモンドと銀銅合金とを所定量計量した後、これらを混合した粉末を、タングステンまたはモリブデンと銅とのマトリクスから成る枠状の基体24に充填加圧し、その基体24の上下面を銅層26aおよび銅層26bで挟み、還元雰囲気下にて780℃〜900℃の温度で焼結させることによって得られる。このとき、放熱部材1は、ダイヤモンドの周囲を銀銅合金がマトリクスとして埋めて緻密な構造を有しており、ダイヤモンドの高熱伝導率を効率良く発揮させて利用することができ、貫通金属体23の熱伝導率が充分に高いので、半導体素子27で発生した熱を効率良く大気中に放熱させることができる。
【0053】
この放熱部材23においても、銅層26(26a)の内、半導体素子27が搭載される上面の中央部は、算術平均粗さRaが0.05≦Ra≦30(μm)になるように、例えば研磨されており、銅層26aと封止樹脂22との接合強度を良好なものとするとともに、半導体素子収納用パッケージ28と支持基板とを十分に密着させて、半導体素子27で発生した熱を半導体素子収納用パッケージ28からこの支持基板へ効率良く伝達させることができるものとされている。
【0054】
この貫通金属体25も、図4に放熱部材23を搭載部側から見た場合の基体24の平面図を示すように、半導体素子27の外周より放熱部材23の基体24の厚みT分大きい外周、すなわち半導体素子27の外周からその全周にわたって外側に放熱部材23の厚みTの距離を隔てた外周を有するように形成されている。
【0055】
銅層26(26a・26b)の厚みも、マトリクスから成る基体24と銅層26(26a・26b)との十分な接合強度が得られるように、800μm以下としておくことが望ましい。また、銅層26aの厚みが50μm以上であれば、半導体素子27の作動に伴い発生する熱が銅層26aの平面方向に十分広がるので、放熱部材23の熱放散性はさらに向上する。
【0056】
なお、放熱部材23の上下面に接合される銅層26(26a・26b)の材料も、純銅に限られるものではなく、熱伝導性が良好でタングステンまたはモリブデンおよび銅のマトリックスから成る基体24と十分な接合強度が得られるものであれば、銅を主成分とする各種の銅合金であっても構わない。
【0057】
また、放熱部材23の上下面に接合される銅層26(26a・26b)も、少なくとも貫通金属体25が埋設されている部位の上下面、例えば半導体素子27の搭載部および外部放熱板との接合部に形成されれば十分であり、必ずしも放熱部材23の上下面の全面を覆う必要はない。
【0058】
かくして、本発明の第2の半導体素子収納用パッケージ28によれば、放熱部材23の搭載部上に半導体素子27をガラス・樹脂・ロウ材等から成る接着剤30を介して接着固定するとともに、半導体素子27の各電極をボンディングワイヤ32を介して所定の配線導体31に接続させ、必要に応じて配線導体31に取着された外部リード端子33に電気的に接続して導出し、しかる後に、放熱部材23と絶縁枠体21とにより形成される凹部21aに封止樹脂22を注入して半導体素子27を封止し、凹部21a内に半導体素子27を収容することによって、製品としての本発明の第2の半導体装置34となる。
【0059】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更が可能である。例えば、半導体素子11・27で発生した熱を放熱部材1・23から大気中に効率良く放散させるために、放熱部材1・23の基体2・24および貫通金属体3・25の下面に接合された銅層4b・26bに、放熱フィンを接続したり、放熱フィンをロウ付け等で接合して放熱フィンが放熱部材1・23と一体化した形状としてもよく、これによって、半導体素子11・27の作動に伴い発生する熱を放熱部材1・23により吸収するとともに大気中に放散させる作用をさらに向上することができる。
【0060】
【発明の効果】
本発明の放熱部材によれば、タングステンまたはモリブデンと銅とのマトリクスから成る枠状の基体の中央部の上面から下面にかけてダイヤモンドおよび銀銅合金から成る貫通金属体が埋設されているとともに、基体および貫通金属体の上下面を覆ってそれぞれ銅層が接合されていることから、タングステンまたはモリブデンと銅とのマトリクスのみで形成された従来の放熱部材に比べて、半導体素子の下部に、ダイヤモンドおよび銀銅合金から成る高熱伝導部分を配置することによって、半導体素子で発生した熱を半導体素子の搭載面に垂直な方向により多く伝えることができ、その結果、半導体素子に発生する熱をこの放熱部材を介して大気中に良好に放熱することができる。
【0061】
その際、貫通金属体を、この放熱部材に搭載される半導体素子の外周より基体の厚み分大きい外周を有しているものとすることにより、半導体素子で発生した熱を上面の半導体素子の搭載部から下面へと垂直な方向により多く伝えることができるとともに、貫通金属体内においても半導体素子の大きさに対してその外周から外側へ基体の厚み分大きな範囲で水平な方向への熱の広がりを持たせることが可能となり、その結果、半導体素子が発生する熱をこの放熱部材を介して大気中あるいは外部放熱板に良好に放散することができる。
【0062】
さらに、放熱部材の中央部に埋設された、基体の上面から下面にかけて貫通するダイヤモンドと銀銅合金から成る貫通金属体の上下面を、基体および貫通金属体の上下面にそれぞれこれらを覆って接合されている銅層と直接接合していることから、これら銅層とダイヤモンドおよび銀銅合金から成る貫通導体とにより放熱部材内における熱の伝達を極めて良好なものとすることができる。
【0063】
また、貫通金属体は、それ自体の材質として熱膨張は大きいが、放熱部材を構成している貫通金属体以外の部分の基体についてはこの放熱部材に搭載される半導体素子の材料であるシリコン・ガリウム砒素等と同等な熱膨張率を有するタングステンまたはモリブデンと銅とのマトリクスから成ることから、半導体素子の搭載部の熱膨張は周囲の枠状の基体の熱膨張に規制されることとなり、放熱部材における銀銅合金中の銅の占める割合が多いにもかかわらず、半導体素子の搭載部の水平方向への熱膨張が抑制される。これらの結果、この放熱部材に搭載される半導体素子を長期間にわたり正常、かつ安定に搭載して作動させることが可能となる。
【0064】
また、本発明の第1の半導体素子収納用パッケージによれば、上面の中央部に半導体素子が搭載される搭載部を有する平板状の、上記構成の本発明の放熱部材と、この放熱部材の上面に搭載部を取り囲んで取着された、内側の搭載部周辺から外表面に導出する複数の配線導体を有する絶縁枠体と、この絶縁枠体の上面に搭載部を覆うように取着される蓋体とから成ることから、半導体素子の下部に、ダイヤモンドおよび銀銅合金から成る高熱伝導部分を配置することによって、半導体素子で発生した熱を半導体素子の搭載面に垂直な方向により多く伝えることができ、その結果、半導体素子に発生する熱をこの放熱部材を介して大気中に良好に放熱することが可能となり、半導体素子を長期間にわたり正常、かつ安定に搭載して作動させることが可能となる。
【0065】
また、本発明の第2の半導体素子収納用パッケージによれば、上面の中央部に半導体素子が搭載される搭載部を有する平板状の、上記構成の本発明の放熱部材と、この放熱部材の上面に搭載部を取り囲んで取着された、内側の搭載部周辺から外表面に導出する複数の配線導体を有する絶縁枠体とを具備し、放熱部材と絶縁枠体とからなる凹部に半導体素子を封止する封止樹脂が注入されることから、半導体素子の下部に、ダイヤモンドおよび銀銅合金から成る高熱伝導部分を配置することによって、半導体素子で発生した熱を半導体素子の搭載面に垂直な方向により多く伝えることができ、その結果、半導体素子に発生する熱をこの放熱部材を介して大気中に良好に放熱することが可能となり、半導体素子を長期間にわたり正常、かつ安定に搭載して作動させることが可能となる。
【0066】
さらに、本発明の半導体素子収納用パッケージによれば、上記構成の本発明の第1または第2の半導体素子収納用パッケージにおいて、貫通金属体を、半導体素子の外周より放熱部材の基体の厚み分大きい外周を有しているものとしたときには、半導体素子に発生する熱が、搭載面に対して垂直面と同等に、搭載面に対して平面方向にも伝わるので、その結果、伝わる熱量が増加し、放熱部材の放熱性が向上して、半導体素子を長期間にわたり正常、かつ安定に搭載して作動させることが可能となる。
【0067】
さらに、本発明の第1の半導体装置によれば、上記構成の本発明の第1の半導体素子収納用パッケージの搭載部に半導体素子を搭載するとともにこの半導体素子の電極と配線導体とを電気的に接続し、絶縁枠体の上面に搭載部を覆うように蓋体を取着して成ることから、以上のような本発明の第1の半導体素子収納用パッケージの特長を備えた、半導体素子の放熱部材への接合が強固で、放熱特性が極めて良好な、長期にわたって安定して半導体素子を作動させることができる半導体装置を提供することができる。
【0068】
さらにまた、本発明の第2の半導体装置によれば、上記構成の本発明の第2の半導体素子収納用パッケージの搭載部に半導体素子を搭載するとともにこの半導体素子の電極と配線導体とを電気的に接続し、放熱部材と絶縁枠体とからなる凹部に搭載部を覆うように封止樹脂を注入して成ることから、以上のような本発明の第2の半導体素子収納用パッケージの特長を備えた、半導体素子の放熱部材への接合が強固で、放熱特性が極めて良好な、長期にわたって安定して半導体素子を作動させることができる半導体装置を提供することができる。
【0069】
以上により、本発明によれば、半導体素子収納用パッケージに用いることによって、半導体素子の発した熱を外部や大気中に良好に放散させることができ、かつ半導体素子を放熱部材に強固に接着させることが可能な放熱部材、ならびにその放熱部材を用いた半導体素子収納用パッケージおよびそれを用いた半導体装置を提供することができた。
【図面の簡単な説明】
【図1】本発明の半導体素子収納用パッケージおよびそれを用いた本発明の半導体装置の実施の形態の一例を示す断面図である。
【図2】本発明の放熱部材1を搭載部側から見た場合の基体2の平面図である。
【図3】本発明の半導体素子収納用パッケージおよびそれを用いた本発明の半導体装置の実施の形態の他の例を示す断面図である。
【図4】本発明の放熱部材23を搭載部側から見た場合の基体24の平面図である。
【符号の説明】
1、23・・・・・放熱部材
2、24・・・・・基体
3、25・・・・・貫通金属体
4、4a、4b、26、26a、26b・・・・・銅層
5、21・・・・・絶縁枠体
5a、21a・・・・・凹部
6、31・・・・・配線導体
7、33・・・・・リード端子
8、28・・・・・半導体素子収納用パッケージ
9、29・・・・・ロウ材
10・・・・・蓋体
11、27・・・・・半導体素子
12、30・・・・・接着材
13、32・・・・・ボンディングワイヤ
14、34・・・・・半導体装置
15・・・・・貫通金属体と半導体素子の搭載部の領域とのなす角度
22・・・・・封止樹脂
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat dissipating member having a heat dissipating structure having good heat dissipating characteristics, a package for accommodating a semiconductor element, and a semiconductor device using the same.
[0002]
[Prior art]
Conventionally, a semiconductor element housing package for housing a semiconductor element generally includes an insulating frame body made of an electrically insulating material such as an aluminum oxide sintered body, a mullite sintered body, a glass ceramic sintered body, and a semiconductor element. It is composed of a heat dissipating member and a lid made of an alloy material of copper and tungsten or an alloy material of copper and molybdenum for favorably dissipating heat generated at the time of its operation to the outside or the atmosphere, An insulating frame is arranged so as to surround the mounting portion of the semiconductor element on the upper surface of the heat radiating member, and tungsten, molybdenum, manganese, copper is provided from the inside to the outer surface of the concave portion formed by the insulating frame and the heat radiating member. -A plurality of wiring conductors made of silver or the like are attached to the insulating frame and led out. The semiconductor element is bonded and fixed to the mounting portion on the upper surface of the heat radiating member via an adhesive such as glass, resin, brazing material, etc., and each electrode of the semiconductor element is electrically connected to a wiring conductor via a bonding wire. Thereafter, the lid is joined to the insulating frame via a sealing material made of glass, resin, brazing material, or the like, and the semiconductor element is housed in a container formed of the heat dissipating member, the insulating frame, and the lid. By doing so, it becomes a semiconductor device as a product. This semiconductor device may be mounted on an external heat radiating plate by screwing or the like in order to further improve the heat radiation efficiency.
[0003]
The semiconductor element housing package provided with such a heat dissipating member made of an alloy material of tungsten and copper, etc., has a high heat conductivity of the heat dissipating member, and has a thermal expansion coefficient of silicon which is a constituent material of the semiconductor element. Since the thermal expansion coefficient is close to that of gallium arsenide or a ceramic material used as a constituent material of the package, the package is attracting attention as a semiconductor element housing package for mounting a high heat generating semiconductor element such as a power IC or a high-frequency transistor.
[0004]
[Patent Document 1]
JP-A-9-321361
[0005]
[Problems to be solved by the invention]
In recent years, due to an increase in the amount of heat generated due to high integration of power ICs and high-frequency transistors, a heat dissipating member having a thermal conductivity of 300 W / m · K or more is now required. However, the thermal conductivity of the above-described heat-dissipating member made of the alloy material of tungsten and copper or the alloy material of molybdenum and copper is about 200 W / m · K, which is low for the requirement, so that the heat-dissipating characteristics become insufficient. There is a problem that is going on.
[0006]
On the other hand, it has been proposed to use a heat radiation member made of a composite material in which tungsten and copper are arranged in a matrix. In addition, a high thermal conductive layer of copper or a copper alloy and a low thermal expansion layer of an Fe-Ni alloy are alternately laminated, and a high thermal conductive layer sandwiching the low thermal expansion layer is continuously formed through a plurality of through holes formed in the low thermal expansion layer. It has also been proposed to use a heat transfer substrate made of a composite material (see, for example, Patent Document 1).
[0007]
However, in a semiconductor element housing package using a heat dissipating member made of a composite material in which tungsten and copper are arranged in a matrix, tungsten has low thermal conductivity and thermal expansion coefficient, and copper has thermal conductivity and thermal expansion coefficient. Since both expansion coefficients are high, the thermal conductivity and thermal expansion coefficient of the heat dissipating member can both be increased as the copper content is increased, but when the copper content is increased to improve the thermal conductivity, In addition, the difference in the thermal expansion coefficient between the semiconductor element and the heat radiating member increases, which causes a problem that the semiconductor element cannot be firmly joined to the heat radiating member.
[0008]
In addition, when a heat transfer substrate made of a composite material including a high thermal conductive layer of copper or a copper alloy and a low thermal expansion layer of an Fe—Ni alloy is used, the Fe—Ni alloy generally has a low thermal conductivity (eg, Fe In the case of a -42Ni alloy, about 16 W / mK), there is a problem that the heat conductivity in the thickness direction of the substrate is low.
[0009]
In addition, a high thermal conductive layer of copper or a copper alloy and a low thermal expansion layer of an Fe-Ni alloy are alternately laminated, and a high thermal conductive layer sandwiching the low thermal expansion layer is formed through a plurality of through holes formed in the low thermal expansion layer. In the case of a composite material that is continuously continuous, materials having different coefficients of thermal expansion are arranged in a complicated manner, so that there is a problem that the substrate is greatly warped during heating.
[0010]
Also, in a semiconductor element housing package using a heat dissipating member made of this composite material, copper expands and undergoes plastic deformation at high temperatures during package assembly, so that it does not return to its original state after cooling. There may be a problem that the surface of the member becomes rough.
[0011]
Generally, the surface roughness of the heat dissipating member is determined by the bonding strength between the heat dissipating member and the semiconductor element due to generation of voids in the adhesive when the semiconductor element is bonded and fixed to the heat dissipating member via an adhesive such as glass, resin, brazing material, or the like. In order to prevent the reduction, it is necessary that the surface roughness of the heat radiating member be Ra ≦ 30 μm in arithmetic average roughness Ra. Therefore, when a heat dissipating member made of this composite material is used, the surface is smoothed by polishing to make the surface roughness Ra ≦ 30 μm with the arithmetic average roughness Ra. In a package in which an insulating frame is attached so as to surround it, there is a problem that the mounting portion of the heat radiating member cannot be polished.
[0012]
The present invention has been devised in view of the above-described problems in the related art, and an object of the present invention is to dissipate heat generated by a semiconductor element to the outside or the atmosphere by using the semiconductor element in a package for housing a semiconductor element. It is an object of the present invention to provide a heat radiating member capable of firmly bonding a semiconductor element to a heat radiating member, a semiconductor element housing package using the heat radiating member, and a semiconductor device using the same.
[0013]
[Means for Solving the Problems]
The heat radiating member of the present invention has a through-metal body made of diamond and a silver-copper alloy embedded from the upper surface to the lower surface of a central portion of a frame-shaped base made of a matrix of tungsten or molybdenum and copper, and the base and the base. A copper layer is bonded to the through metal body so as to cover the upper and lower surfaces thereof.
[0014]
Further, the first semiconductor element housing package of the present invention is a flat plate-shaped heat radiating member of the present invention having a mounting portion on which a semiconductor element is mounted at the center of the upper surface, and a heat radiating member of the present invention. An insulating frame body having a plurality of wiring conductors extending from the inner periphery of the mounting portion to the outer surface, which is mounted around the mounting portion, and mounted on the upper surface of the insulating frame so as to cover the mounting portion; And a lid body to be used.
[0015]
Further, the second semiconductor element housing package of the present invention is a flat plate-shaped heat radiating member having the mounting portion on which the semiconductor element is mounted at the center of the upper surface, and the heat radiating member of the present invention having the above-described structure. An insulating frame having a plurality of wiring conductors extending from the inner periphery of the mounting portion to the outer surface attached to and surrounding the mounting portion, and provided in a recess formed by the heat dissipation member and the insulating frame. A sealing resin for sealing the semiconductor element is injected.
[0016]
Further, in the semiconductor device housing package of the present invention, in the first or second semiconductor element housing package of the present invention having the above configuration, the outer periphery of the through metal body is larger than the outer periphery of the semiconductor element by the thickness of the base. It is characterized by having.
[0017]
Further, in the first semiconductor device of the present invention, a semiconductor element is mounted on the mounting portion of the first semiconductor element housing package of the present invention having the above-described configuration, and an electrode of the semiconductor element and the wiring conductor are electrically connected. , And the lid is attached to the upper surface of the insulating frame so as to cover the mounting portion.
[0018]
According to a second semiconductor device of the present invention, a semiconductor element is mounted on the mounting portion of the second semiconductor element housing package of the present invention having the above configuration, and an electrode of the semiconductor element and the wiring conductor are electrically connected. And injecting the sealing resin into the concave portion formed by the heat radiating member and the insulating frame so as to cover the mounting portion.
[0019]
According to the heat dissipating member of the present invention, a penetrating metal body made of diamond and a silver-copper alloy is buried from the upper surface to the lower surface of a central portion of a frame-shaped substrate made of a matrix of tungsten or molybdenum and copper, and Since the copper layers are bonded to cover the upper and lower surfaces of the penetrating metal body, respectively, compared to a conventional heat dissipating member formed only of a matrix of tungsten or molybdenum and copper, diamond and silver are provided below the semiconductor element. By arranging a high heat conducting portion made of a copper alloy, more heat generated in the semiconductor element can be transmitted in a direction perpendicular to the mounting surface of the semiconductor element, and as a result, the heat generated in the semiconductor element is transferred to the heat dissipating member. The heat can be satisfactorily dissipated into the atmosphere through the air.
[0020]
At this time, the penetrating metal body has an outer periphery that is larger than the outer periphery of the semiconductor element mounted on the heat dissipating member by the thickness of the base, so that heat generated in the semiconductor element can be mounted on the upper surface of the semiconductor element. In addition to being able to transmit more heat in the vertical direction from the part to the lower surface, even in the penetrating metal body, heat spread in the horizontal direction in a range larger than the size of the semiconductor element from the outer periphery to the outside by the thickness of the base. As a result, heat generated by the semiconductor element can be satisfactorily dissipated to the atmosphere or to an external heat radiating plate via the heat radiating member.
[0021]
Further, the upper and lower surfaces of a penetrating metal body made of diamond and a silver-copper alloy penetrating from the upper surface to the lower surface of the base and embedded in the center of the heat radiating member are joined to the upper and lower surfaces of the base and the penetrating metal body, respectively. Since it is directly bonded to the copper layer provided, the copper layer and the through conductor made of diamond and silver-copper alloy can make heat transfer in the heat radiation member extremely good.
[0022]
Further, the penetrating metal body has a large thermal expansion as its own material. However, the base of the portion other than the penetrating metal body constituting the heat radiating member is made of silicon, which is a material of the semiconductor element mounted on the heat radiating member. Since it is composed of a matrix of tungsten or molybdenum and copper having the same coefficient of thermal expansion as gallium arsenide or the like, the thermal expansion of the mounting portion of the semiconductor element is restricted by the thermal expansion of the surrounding frame-shaped base, and heat radiation Despite the large proportion of copper in the silver-copper alloy in the member, the thermal expansion of the mounting portion of the semiconductor element in the horizontal direction is suppressed. As a result, the semiconductor element mounted on the heat radiating member can be normally and stably mounted and operated for a long time.
[0023]
Further, according to the first semiconductor element housing package of the present invention, the heat radiating member of the present invention having the above-mentioned configuration, which has a mounting portion on which the semiconductor element is mounted at the center of the upper surface, An insulating frame having a plurality of wiring conductors extending from the periphery of the inner mounting portion to the outer surface, which is attached around the mounting portion on the upper surface, and is mounted on the upper surface of the insulating frame so as to cover the mounting portion. The heat generated by the semiconductor element is transmitted more in the direction perpendicular to the mounting surface of the semiconductor element by arranging a high heat conducting portion made of diamond and a silver-copper alloy below the semiconductor element because the lid has As a result, heat generated in the semiconductor element can be satisfactorily radiated to the atmosphere through the heat radiating member, and the semiconductor element can be normally and stably mounted and operated for a long period of time. It is possible.
[0024]
Further, according to the second package for housing a semiconductor element of the present invention, the heat radiating member of the present invention having the above-described configuration, which has a mounting portion in which a semiconductor element is mounted at the center of the upper surface, and An insulating frame having a plurality of wiring conductors extending from the periphery of the inner mounting portion to the outer surface attached to the upper surface so as to surround the mounting portion, wherein the semiconductor element is provided in a recess formed by the heat radiating member and the insulating frame. Since a sealing resin for sealing the semiconductor element is injected, a high heat conducting portion made of diamond and a silver-copper alloy is arranged under the semiconductor element, so that heat generated in the semiconductor element is perpendicular to the mounting surface of the semiconductor element. The heat generated in the semiconductor element can be radiated to the atmosphere through this heat radiating member, and the semiconductor element can be normally and stably transmitted over a long period of time. Mounting and it is possible to operate.
[0025]
Further, according to the semiconductor element housing package of the present invention, in the first or second semiconductor element housing package of the present invention having the above-described structure, the penetrating metal body is separated from the outer periphery of the semiconductor element by the thickness of the base of the heat dissipation member. When the semiconductor device has a large outer periphery, the heat generated in the semiconductor element is transmitted to the mounting surface in a plane direction as well as to the mounting surface, so that the amount of heat transmitted increases. In addition, the heat radiation property of the heat radiation member is improved, and the semiconductor element can be normally and stably mounted and operated for a long period of time.
[0026]
Further, according to the first semiconductor device of the present invention, the semiconductor element is mounted on the mounting portion of the first semiconductor element housing package of the present invention having the above configuration, and the electrodes and the wiring conductor of the semiconductor element are electrically connected. And a lid attached to the upper surface of the insulating frame so as to cover the mounting portion. Therefore, the semiconductor device having the above-described features of the first semiconductor device housing package of the present invention is provided. The semiconductor device can be provided which has a strong bonding to the heat radiating member, has extremely good heat radiation characteristics, and can operate the semiconductor element stably for a long period of time.
[0027]
Further, according to the second semiconductor device of the present invention, the semiconductor element is mounted on the mounting portion of the second semiconductor element housing package of the present invention having the above-mentioned configuration, and the electrodes and the wiring conductor of the semiconductor element are electrically connected. The above-described features of the second semiconductor element housing package of the present invention, as described above, are obtained by injecting a sealing resin so as to cover the mounting portion in the recess formed by the heat radiating member and the insulating frame body. It is possible to provide a semiconductor device that has a strong bonding of the semiconductor element to the heat radiating member, has extremely good heat radiation characteristics, and can operate the semiconductor element stably for a long time.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings.
[0029]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a semiconductor element housing package of the present invention using a heat radiating member of the present invention and a semiconductor device of the present invention using the same. 4 shows an example of a storage package and a semiconductor device. In FIG. 1, 1 is a heat radiating member, 2 is a base of the heat radiating member 1, 3 is a penetrating metal body, 4 (4a, 4b) is a copper layer, 5 is an insulating frame, 6 is a wiring conductor, 7 is a lead terminal, Is a lid. The heat dissipation member 1, the insulating frame 5 and the lid 10 constitute a semiconductor element housing package 8 for housing the semiconductor element 11. After the semiconductor element 11 is mounted on the mounting portion of the heat radiating member 1, the semiconductor device 14 is configured by attaching and sealing the lid 10 on the upper surface of the insulating frame 5 so as to cover the mounting portion. You.
[0030]
The insulating frame 5 is made of an aluminum oxide sintered body, a mullite sintered body, a glass ceramic sintered body, or the like, and is bonded and fixed to the upper surface of the heat radiating member 1 via a brazing material 9 so as to surround the mounting portion. Be attached. At the time of bonding and fixing with the brazing material 9, usually, a metal layer (not shown) for brazing is formed at the joint of the insulating frame 5 and the heat radiating member 1.
[0031]
Further, the semiconductor element 11 is fixed to the mounting portion at the center of the upper surface of the heat dissipating member 1 via an adhesive 12 such as resin, glass, and brazing material. When a brazing material is used as the adhesive 12, a metal layer (not shown) for brazing is formed at a bonding portion between the heat dissipation member 1 and the semiconductor element 11. However, when sufficient brazing can be performed by the copper layer 4 (4a) joined to the upper surface of the penetrating metal body 3 of the heat radiation member 1, the brazing metal layer is not particularly necessary.
[0032]
When the insulating frame 5 is made of, for example, an aluminum oxide sintered body, an organic binder, a solvent, a plasticizer, a dispersant, etc., suitable for a raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. And a ceramic green sheet (raw ceramic sheet) is formed by employing a doctor blade method or a calender roll method, and then a suitable punching process is performed on the ceramic green sheet. In addition to applying a suitable organic binder and solvent to a metal material powder such as tungsten, molybdenum, manganese, copper, silver, nickel, palladium, gold, etc., a conductive paste is formed on a green sheet in a predetermined pattern by screen printing or the like. After printing and coating on the sheet, multiple green sheets are laminated , It is produced by firing at a temperature of about 1600 ° C..
[0033]
In addition, a wiring conductor 6 is formed on the insulating frame 5 so as to extend from the periphery of the mounting portion inside the concave portion 5 a formed by the heat radiating member 1 and the insulating frame 5 to the outer surface of the insulating frame 5. Each electrode of the semiconductor element 11 is electrically connected to one end inside the recess 5 a of the wiring conductor 6 via a bonding wire 13.
[0034]
The wiring conductor 6 is made of a metal having a high melting point such as tungsten or molybdenum. A metal paste obtained by adding a suitable organic binder or solvent to a metal powder such as tungsten or molybdenum is mixed into a ceramic green sheet to be the insulating frame 5. By printing and applying a predetermined pattern in advance by a screen printing method or the like, the insulating base body 1 and the heat dissipating component 5 are attached and formed from the periphery of the mounting portion inside the concave portion 5 a to the outer surface of the insulating frame 5.
[0035]
When the wiring conductor 6 is coated with a metal having excellent corrosion resistance such as nickel and gold and excellent bonding properties of the bonding wire 13 to a thickness of 1 to 20 μm on the exposed surface by plating, the wiring conductor 6 Can be effectively prevented, and the connection of the bonding wire 13 to the wiring conductor 6 can be strengthened. Therefore, it is desirable that the wiring conductor 6 be coated with a metal having excellent corrosion resistance and excellent bonding properties such as nickel and gold to a thickness of 1 to 20 μm on the exposed surface.
[0036]
The heat dissipating member 1 has a function of absorbing heat generated by the operation of the semiconductor element 11 and dissipating it into the atmosphere, or conducting the heat to an external heat sink. For example, tungsten powder or molybdenum powder having an average particle size of 5 to 40 μm is press-formed in a frame shape and sintered in an atmosphere of 1300 to 1600 ° C. to impregnate 10 to 50% by mass of copper. After that, a frame-shaped hole for forming the penetrating metal body 3 is formed from the upper surface to the lower surface of the central portion of the base 2. A predetermined amount of diamond particles and silver-copper alloy powder is filled in a frame shape formed from the upper surface to the lower surface of the mounting portion of the semiconductor element 11, and this is fired and sintered at a temperature of 800 to 1000 ° C. in a vacuum atmosphere. By doing so, a frame-shaped substrate 2 having a single through conductor and made of a matrix of tungsten or molybdenum and copper, and a through-hole made of diamond and silver-copper alloy buried from the upper surface to the lower surface of the central portion of the substrate 2 The heat radiating member 1 composed of the metal body 3 and the copper layer 4a joined to cover the upper surfaces of the base 2 and the penetrating metal body 3 and the copper layer 4b joined to the lower surfaces of the base 2 and the penetrating metal body 3 is formed. .
[0037]
Here, as for the diamond and the silver-copper alloy constituting the penetrating metal body 3, it is preferable that the composition ratio of the diamond and the silver-copper alloy is 60 to 40% by mass of the diamond and 40 to 60% by mass of the silver-copper alloy. If the composition ratio of diamond is more than 60% by mass, the silver-copper alloy component that fills the gap between the diamond particles is insufficient, and a portion of the penetrating metal body 3 where the bonding between the diamond and the silver-copper alloy is insufficient is insufficient. As a result, a sufficiently dense body cannot be obtained, and as a result, it tends to be difficult to efficiently transfer the heat generated in the semiconductor element 11 to the inside of the penetrating metal body 3. Further, when the diamond composition ratio is less than 40% by mass, a sufficiently dense body can be obtained inside the penetrating metal body 3, but the thermal conductivity of the penetrating metal body 3 is larger than that of the silver-copper alloy. As a result, it tends to be difficult to efficiently transfer the heat generated in the semiconductor element 11 to the inside of the through conductor 3.
[0038]
In the heat radiation member 1 of the present invention, after measuring a predetermined amount of diamond and silver-copper alloy in the above composition ratio, a powder obtained by mixing them is filled into a frame-shaped substrate 2 made of a matrix of tungsten or molybdenum and copper. It is obtained by sandwiching the upper and lower surfaces of the substrate 2 between the copper layers 4a and 4b and sintering at a temperature of 780 ° C. to 900 ° C. in a reducing atmosphere. At this time, the heat dissipating member 1 has a dense structure in which the periphery of the diamond is buried with a silver-copper alloy as a matrix, and can be used while efficiently exhibiting the high thermal conductivity of the diamond. Since the thermal conductivity of the semiconductor element 11 is sufficiently high, the heat generated in the semiconductor element 11 can be efficiently radiated to the atmosphere.
[0039]
When the arithmetic average roughness Ra of the upper surface of the copper layer 4a on the upper surface side of the heat radiation member 1 serving as the mounting portion of the semiconductor element 11 is Ra> 30 (μm), the semiconductor element 11 is made of glass. When bonding and fixing via the adhesive 12 such as a resin or a brazing material, voids may be generated in the adhesive 12, and the voids generated in the adhesive 12 may cause a gap between the semiconductor element 11 and the heat radiation member 1. In addition to lowering the bonding strength, heat transfer between the semiconductor element 11 and the heat radiating member 1 may be hindered, and the heat dissipation of the semiconductor element housing package 8 and the semiconductor device 14 may be reduced.
[0040]
Therefore, the copper layer 4a on the upper surface of the base 2 which is a mounting portion of the semiconductor element 11 preferably has an arithmetic average roughness Ra ≦ 30 (μm) and a smooth surface.
[0041]
As shown in a plan view of the base 2 when the heat radiating member 1 is viewed from the mounting portion side in FIG. 2, the through metal body 3 has an outer periphery that is larger than the outer periphery of the semiconductor element 11 by the thickness T of the base 2, that is, the semiconductor element 11. Is formed so as to have an outer periphery separated by a distance of the thickness T of the substrate 2 from the outer periphery to the entire periphery thereof. Generally, in the case of an isotropic material, heat is transmitted equally in both the planar direction and the vertical direction, and as a result, the heat is transmitted with a spread of about 45 degrees. Therefore, in order to secure an angle 15 between the penetrating metal body 3 and the region of the mounting portion of the semiconductor element 11 of about 45 degrees, the penetrating metal body 3 has an outer periphery larger than the outer periphery of the semiconductor element 11 by the thickness T of the base 2. It is desirable to have
[0042]
On the other hand, the arithmetic mean roughness Ra of the lower surface of the copper layer 4b bonded to the lower surface of the base 2 and the through metal body 3 opposite to the upper surface on which the semiconductor element 11 is mounted is Ra ≦ 30 (μm). Is preferred. The first semiconductor element housing package 8 of the present invention is formed by screwing a conductor such as aluminum or copper or a support substrate made of a ceramic body having high thermal conductivity, or by using a molten metal or brazing material such as solder. May be connected. At this time, if the arithmetic average roughness Ra of the lower surface of the copper layer 4b is Ra> 30 (μm), it becomes difficult to sufficiently adhere the semiconductor element housing package 8 to the support substrate, and the As a result, voids and voids may be generated, and as a result, heat generated in the semiconductor element 7 may not be efficiently transmitted from the semiconductor element housing package 8 to the support substrate. Therefore, it is desirable that the lower surface, which is the outer surface of the lower copper layer 4b, has a smooth arithmetic average roughness Ra ≦ 30 (μm) so that good adhesion to the support substrate can be obtained.
[0043]
If the thickness of each of the copper layers 4 (4a and 4b) is more than 800 μm, the stress generated due to the difference in thermal expansion between the base 2 and the copper layers 4 (4a and 4b) tends to increase, and sufficient bonding strength tends not to be obtained. For this reason, it is desirable to set the thickness to 800 μm or less. If the thickness of the copper layer 4 (4a, 4b) is 50 μm or more, the heat generated by the operation of the semiconductor element 11 spreads sufficiently in the plane direction of the copper layer 4 (4a, 4b). The heat dissipation is good.
[0044]
The material of the copper layer 4 (4a, 4b) joined to the upper and lower surfaces of the base 2 and the penetrating metal body 3 of the heat radiating member 1 is not limited to pure copper, but has good thermal conductivity and is made of tungsten or molybdenum. Various copper alloys containing copper as a main component may be used as long as sufficient bonding strength can be obtained with the base 2 which is a matrix with copper and the penetrating metal body 3 made of copper.
[0045]
Thus, according to the first semiconductor element housing package 8 of the present invention, the semiconductor element 11 is bonded and fixed on the mounting portion of the heat radiating member 1 via the adhesive 12 made of glass, resin, brazing material, or the like. At the same time, each electrode of the semiconductor element 11 is electrically connected to a predetermined wiring conductor 6 via a bonding wire 13, and thereafter, a lid 10 is attached on the upper surface of the insulating frame 5 so as to cover the mounting portion. By sealing the semiconductor element 11 in the recess 5a by the above, the first semiconductor device 14 of the present invention as a product is obtained.
[0046]
Next, FIG. 3 is a cross-sectional view showing another embodiment of the semiconductor device housing package of the present invention using the heat dissipation member of the present invention and the semiconductor device of the present invention using the same. 2 illustrates an example of a second semiconductor element storage package and a semiconductor device. In FIG. 3, 21 is an insulating frame, 22 is a sealing resin, and 23 is a heat radiating member. The insulating frame 21, the sealing resin 22 and the heat radiating member 23 constitute a second semiconductor element housing package 28 of the present invention which houses the semiconductor element 27. After the semiconductor element 27 is mounted on the mounting portion of the heat radiating member 23, the semiconductor element 27 is sealed by injecting a sealing resin 22 such as epoxy into a recess formed by the insulating frame 21 and the heat radiating member 23. Thereby, the semiconductor device 34 of the present invention is configured.
[0047]
In the second semiconductor element storage package 28 and the second semiconductor device 33, the insulating frame 21, the heat radiating member 23, and the semiconductor element 27 are the same as the insulating frame 5, the heat radiating member 1, and the semiconductor element 11, respectively. Is the same as
[0048]
The insulating frame 21 is adhered and fixed to the heat dissipating member 23 via the brazing material 29. Further, the semiconductor element 27 is bonded and fixed to the heat dissipating member 23 via an adhesive 30 at a mounting portion at the center of the upper surface.
[0049]
A wiring conductor 31 is formed on the insulating frame 21 so as to extend from a concave portion 21 a formed by the insulating frame 21 and the heat radiating member 23 to the outer surface of the insulating frame 21. The electrodes of the semiconductor element 27 are electrically connected via bonding wires 32.
[0050]
The heat dissipating member 23 has a function of absorbing heat generated by the operation of the semiconductor element 27 and dissipating the heat to the atmosphere, and a penetrating metal body 25 is embedded in a base 24 made of a matrix of tungsten or molybdenum and copper. By bonding the copper layers 26 (26a and 26b) to the upper and lower surfaces, the heat dissipating member 23 in the second semiconductor element housing package 28 of the present invention is formed.
[0051]
Here, in the penetrating metal body 23 made of diamond and silver-copper alloy, it is preferable that the composition ratio of diamond and silver-copper alloy is 60 to 40% by mass of diamond and 40 to 60% by mass of silver-copper alloy. When the composition ratio of diamond is more than 60% by mass, the silver-copper alloy component that fills the gap between the diamond particles is insufficient, and a portion where the bonding between the diamond and the silver-copper alloy is insufficient inside the penetrating metal body 23. Therefore, a sufficiently dense body cannot be obtained, and it tends to be difficult to efficiently transfer heat generated in the semiconductor element 27 to the inside of the penetrating metal body 23. Further, when the diamond composition ratio is less than 40% by mass, a sufficiently dense body can be obtained inside the penetrating metal body 23, but the thermal conductivity of the penetrating metal body 23 is larger than that of the silver-copper alloy. As a result, it tends to be difficult to efficiently transfer the heat generated in the semiconductor element 27 to the inside of the through conductor 23.
[0052]
In the heat radiation member 1 of the present invention, after a predetermined amount of diamond and silver-copper alloy is weighed in the above-mentioned composition ratio, a powder obtained by mixing them is filled into a frame-shaped base 24 made of a matrix of tungsten or molybdenum and copper. The upper and lower surfaces of the substrate 24 are sandwiched between copper layers 26a and 26b, and sintered at a temperature of 780 ° C. to 900 ° C. in a reducing atmosphere. At this time, the heat dissipating member 1 has a dense structure in which the periphery of the diamond is buried with a silver-copper alloy as a matrix, and can be used by efficiently exhibiting the high thermal conductivity of the diamond. Has a sufficiently high thermal conductivity, the heat generated in the semiconductor element 27 can be efficiently radiated into the atmosphere.
[0053]
In the heat dissipating member 23 as well, the center of the upper surface of the copper layer 26 (26a) on which the semiconductor element 27 is mounted is such that the arithmetic average roughness Ra is 0.05 ≦ Ra ≦ 30 (μm). For example, the semiconductor element 27 is polished so that the bonding strength between the copper layer 26a and the sealing resin 22 is good, and the semiconductor element housing package 28 and the support substrate are sufficiently adhered to each other, so that the heat generated in the semiconductor element 27 is increased. Can be efficiently transmitted from the semiconductor element storage package 28 to the support substrate.
[0054]
As shown in a plan view of the base 24 when the heat radiating member 23 is viewed from the mounting portion side in FIG. 4, the penetrating metal body 25 also has an outer periphery that is larger than the outer periphery of the semiconductor element 27 by the thickness T of the base 24 of the heat radiating member 23. That is, it is formed so as to have an outer periphery separated by a distance of the thickness T of the heat radiating member 23 from the outer periphery of the semiconductor element 27 to the entire periphery thereof.
[0055]
The thickness of the copper layer 26 (26a / 26b) is desirably 800 μm or less so that sufficient bonding strength between the matrix 24 and the copper layer 26 (26a / 26b) can be obtained. If the thickness of the copper layer 26a is 50 μm or more, the heat generated by the operation of the semiconductor element 27 spreads sufficiently in the plane direction of the copper layer 26a, so that the heat dissipation of the heat radiating member 23 is further improved.
[0056]
The material of the copper layers 26 (26a and 26b) joined to the upper and lower surfaces of the heat dissipating member 23 is not limited to pure copper, and the base material 24 having good thermal conductivity and made of a matrix of tungsten or molybdenum and copper. Various copper alloys containing copper as a main component may be used as long as sufficient bonding strength can be obtained.
[0057]
Further, the copper layers 26 (26a and 26b) joined to the upper and lower surfaces of the heat radiating member 23 are also connected to at least the upper and lower surfaces of the portion where the penetrating metal body 25 is embedded, for example, the mounting portion of the semiconductor element 27 and the external heat radiating plate. It is sufficient if it is formed at the joint, and it is not always necessary to cover the entire upper and lower surfaces of the heat radiating member 23.
[0058]
Thus, according to the second semiconductor element storage package 28 of the present invention, the semiconductor element 27 is bonded and fixed on the mounting portion of the heat radiating member 23 via the adhesive 30 made of glass, resin, brazing material, or the like. Each electrode of the semiconductor element 27 is connected to a predetermined wiring conductor 31 via a bonding wire 32, and is electrically connected to an external lead terminal 33 attached to the wiring conductor 31 as necessary, and then led out. The semiconductor element 27 is sealed by injecting the sealing resin 22 into the concave portion 21a formed by the heat radiating member 23 and the insulating frame 21, and the semiconductor element 27 is accommodated in the concave portion 21a. This is the second semiconductor device 34 of the present invention.
[0059]
It should be noted that the present invention is not limited to the above embodiments, and various changes can be made without departing from the scope of the present invention. For example, in order to efficiently dissipate the heat generated by the semiconductor elements 11 and 27 from the heat dissipating members 1 and 23 to the atmosphere, the heat dissipating members 1 and 23 are joined to the bases 2 and 24 and the lower surfaces of the through metal members 3 and 25. Heat radiation fins may be connected to the copper layers 4b and 26b, or the heat radiation fins may be joined by brazing or the like so that the heat radiation fins are integrated with the heat radiation members 1 and 23. Can be further improved by absorbing the heat generated by the operation by the heat dissipating members 1 and 23 and dissipating it into the atmosphere.
[0060]
【The invention's effect】
According to the heat dissipating member of the present invention, a through metal body made of diamond and a silver-copper alloy is buried from the upper surface to the lower surface of the central part of a frame-shaped substrate made of a matrix of tungsten or molybdenum and copper, Since the copper layers are bonded to cover the upper and lower surfaces of the penetrating metal body, respectively, compared to a conventional heat dissipating member formed only of a matrix of tungsten or molybdenum and copper, diamond and silver are provided below the semiconductor element. By arranging a high heat conducting portion made of a copper alloy, more heat generated in the semiconductor element can be transmitted in a direction perpendicular to the mounting surface of the semiconductor element, and as a result, the heat generated in the semiconductor element is transferred to the heat dissipating member. The heat can be satisfactorily dissipated into the atmosphere through the air.
[0061]
At this time, the penetrating metal body has an outer periphery that is larger than the outer periphery of the semiconductor element mounted on the heat dissipating member by the thickness of the base, so that heat generated in the semiconductor element can be mounted on the upper surface of the semiconductor element. In addition to being able to transmit more heat in the vertical direction from the part to the lower surface, even in the penetrating metal body, heat spread in the horizontal direction in a range larger than the size of the semiconductor element from the outer periphery to the outside by the thickness of the base. As a result, heat generated by the semiconductor element can be satisfactorily dissipated to the atmosphere or to an external heat radiating plate via the heat radiating member.
[0062]
Further, the upper and lower surfaces of a penetrating metal body made of diamond and a silver-copper alloy penetrating from the upper surface to the lower surface of the base and embedded in the center of the heat radiating member are joined to the upper and lower surfaces of the base and the penetrating metal body, respectively. Since it is directly bonded to the copper layer provided, the copper layer and the through conductor made of diamond and silver-copper alloy can make heat transfer in the heat radiation member extremely good.
[0063]
Further, the penetrating metal body has a large thermal expansion as its own material. However, the base of the portion other than the penetrating metal body constituting the heat radiating member is made of silicon, which is a material of the semiconductor element mounted on the heat radiating member. Since it is composed of a matrix of tungsten or molybdenum and copper having the same coefficient of thermal expansion as gallium arsenide or the like, the thermal expansion of the mounting portion of the semiconductor element is restricted by the thermal expansion of the surrounding frame-shaped base, and heat radiation Despite the large proportion of copper in the silver-copper alloy in the member, the thermal expansion of the mounting portion of the semiconductor element in the horizontal direction is suppressed. As a result, the semiconductor element mounted on the heat radiating member can be normally and stably mounted and operated for a long time.
[0064]
Further, according to the first semiconductor element housing package of the present invention, the heat radiating member of the present invention having the above-mentioned configuration, which has a mounting portion on which the semiconductor element is mounted at the center of the upper surface, An insulating frame having a plurality of wiring conductors extending from the periphery of the inner mounting portion to the outer surface, which is attached around the mounting portion on the upper surface, and is mounted on the upper surface of the insulating frame so as to cover the mounting portion. The heat generated by the semiconductor element is transmitted more in the direction perpendicular to the mounting surface of the semiconductor element by arranging a high heat conducting portion made of diamond and a silver-copper alloy below the semiconductor element because the lid has As a result, heat generated in the semiconductor element can be satisfactorily radiated to the atmosphere through the heat radiating member, and the semiconductor element can be normally and stably mounted and operated for a long period of time. It is possible.
[0065]
Further, according to the second package for housing a semiconductor element of the present invention, the heat radiating member of the present invention having the above-described configuration, which has a mounting portion in which a semiconductor element is mounted at the center of the upper surface, and An insulating frame having a plurality of wiring conductors extending from the periphery of the inner mounting portion to the outer surface attached to the upper surface so as to surround the mounting portion, wherein the semiconductor element is provided in a recess formed by the heat radiating member and the insulating frame. Since a sealing resin for sealing the semiconductor element is injected, a high heat conducting portion made of diamond and a silver-copper alloy is arranged under the semiconductor element, so that heat generated in the semiconductor element is perpendicular to the mounting surface of the semiconductor element. The heat generated in the semiconductor element can be radiated to the atmosphere through this heat radiating member, and the semiconductor element can be normally and stably transmitted over a long period of time. Mounting and it is possible to operate.
[0066]
Further, according to the semiconductor element housing package of the present invention, in the first or second semiconductor element housing package of the present invention having the above-described structure, the penetrating metal body is separated from the outer periphery of the semiconductor element by the thickness of the base of the heat dissipation member. When the semiconductor device has a large outer periphery, the heat generated in the semiconductor element is transmitted to the mounting surface in a plane direction as well as to the mounting surface, so that the amount of heat transmitted increases. In addition, the heat radiation property of the heat radiation member is improved, and the semiconductor element can be normally and stably mounted and operated for a long period of time.
[0067]
Further, according to the first semiconductor device of the present invention, the semiconductor element is mounted on the mounting portion of the first semiconductor element housing package of the present invention having the above configuration, and the electrodes and the wiring conductor of the semiconductor element are electrically connected. And a lid attached to the upper surface of the insulating frame so as to cover the mounting portion. Therefore, the semiconductor device having the above-described features of the first semiconductor device housing package of the present invention is provided. The semiconductor device can be provided which has a strong bonding to the heat radiating member, has extremely good heat radiation characteristics, and can operate the semiconductor element stably for a long period of time.
[0068]
Further, according to the second semiconductor device of the present invention, the semiconductor element is mounted on the mounting portion of the second semiconductor element housing package of the present invention having the above-mentioned configuration, and the electrodes and the wiring conductor of the semiconductor element are electrically connected. The above-described features of the second semiconductor element housing package of the present invention, as described above, are obtained by injecting a sealing resin so as to cover the mounting portion in the recess formed by the heat radiating member and the insulating frame body. It is possible to provide a semiconductor device that has a strong bonding of the semiconductor element to the heat radiating member, has extremely good heat radiation characteristics, and can operate the semiconductor element stably for a long time.
[0069]
As described above, according to the present invention, the heat generated by the semiconductor element can be satisfactorily radiated to the outside or the atmosphere by using the semiconductor element in the package for housing the semiconductor element, and the semiconductor element is firmly adhered to the heat dissipation member. It is possible to provide a heat dissipating member capable of being used, a semiconductor element housing package using the heat dissipating member, and a semiconductor device using the same.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a semiconductor element housing package of the present invention and a semiconductor device of the present invention using the same.
FIG. 2 is a plan view of a base 2 when the heat radiating member 1 of the present invention is viewed from a mounting portion side.
FIG. 3 is a sectional view showing another example of the embodiment of the semiconductor device housing package of the present invention and the semiconductor device of the present invention using the same.
FIG. 4 is a plan view of a base 24 when the heat radiating member 23 of the present invention is viewed from the mounting portion side.
[Explanation of symbols]
1, 23 ... heat dissipating member
2, 24 ... Base
3, 25 ... penetrating metal body
4, 4a, 4b, 26, 26a, 26b ... copper layer
5, 21, .... Insulating frame
5a, 21a ... recess
6, 31, .... Wiring conductor
7, 33 ... lead terminal
8, 28 ····· Semiconductor element storage package
9, 29 ... brazing material
10 Lid
11, 27 ... Semiconductor element
12, 30 .... adhesive
13, 32 ... bonding wire
14, 34... Semiconductor device
15 ······ Angle between the penetrating metal body and the area of the mounting portion of the semiconductor element
22 ... Seal resin

Claims (6)

タングステンまたはモリブデンと銅とのマトリクスから成る枠状の基体の中央部の上面から下面にかけてダイヤモンドおよび銀銅合金から成る貫通金属体が埋設されているとともに、前記基体および前記貫通金属体の上下面を覆ってそれぞれ銅層が接合されていることを特徴とする放熱部材。A penetrating metal body made of diamond and a silver-copper alloy is buried from the upper surface to the lower surface of a central portion of a frame-shaped substrate made of a matrix of tungsten or molybdenum and copper, and the upper and lower surfaces of the substrate and the penetrating metal body are A heat dissipating member, wherein a copper layer is bonded to cover each other. 上面の中央部に半導体素子が搭載される搭載部を有する平板状の請求項1記載の放熱部材と、該放熱部材の上面に前記搭載部を取り囲んで取着された、内側の前記搭載部周辺から外表面に導出する複数の配線導体を有する絶縁枠体と、該絶縁枠体の上面に前記搭載部を覆うように取着される蓋体とから成ることを特徴とする半導体素子収納用パッケージ。2. The heat dissipating member according to claim 1, wherein the heat dissipating member is a flat plate having a mounting portion on which a semiconductor element is mounted on a central portion of the upper surface, and the inner mounting portion surrounding the mounting portion on the upper surface of the heat dissipating member. Characterized by comprising an insulating frame having a plurality of wiring conductors led out to the outer surface thereof, and a lid attached to the upper surface of the insulating frame so as to cover the mounting portion. . 上面の中央部に半導体素子が搭載される搭載部を有する平板状の請求項1記載の放熱部材と、該放熱部材の上面に前記搭載部を取り囲んで取着された、内側の前記搭載部周辺から外表面に導出する複数の配線導体を有する絶縁枠体とを具備し、前記放熱部材と前記絶縁枠体とからなる凹部に前記半導体素子を封止する封止樹脂が注入されることを特徴とする半導体素子収納用パッケージ。2. The heat dissipating member according to claim 1, wherein the heat dissipating member is a flat plate having a mounting portion on which a semiconductor element is mounted on a central portion of the upper surface, and the inner mounting portion surrounding the mounting portion on the upper surface of the heat dissipating member. An insulating frame having a plurality of wiring conductors led out to the outer surface of the semiconductor device, and a sealing resin for sealing the semiconductor element is injected into a recess formed by the heat radiating member and the insulating frame. Semiconductor device package. 前記貫通金属体は、前記半導体素子の外周より前記基体の厚み分大きい外周を有していることを特徴とする請求項2または請求項3記載の半導体素子収納用パッケージ。4. The semiconductor element storage package according to claim 2, wherein the through metal body has an outer periphery that is larger than an outer periphery of the semiconductor element by a thickness of the base. 請求項2または請求項4記載の半導体素子収納用パッケージの前記搭載部に半導体素子を搭載するとともに該半導体素子の電極と前記配線導体とを電気的に接続し、前記絶縁枠体の上面に前記搭載部を覆うように前記蓋体を取着して成ることを特徴とする半導体装置。A semiconductor element is mounted on the mounting portion of the package for housing a semiconductor element according to claim 2, and an electrode of the semiconductor element and the wiring conductor are electrically connected to each other. A semiconductor device comprising the lid attached so as to cover a mounting portion. 請求項3または請求項4記載の半導体素子収納用パッケージの前記搭載部に半導体素子を搭載するとともに該半導体素子の電極と前記配線導体とを電気的に接続し、前記放熱部材と前記絶縁枠体とからなる前記凹部に前記搭載部を覆うように前記封止樹脂を注入して成ることを特徴とする半導体装置。5. The heat-dissipating member and the insulating frame body, wherein a semiconductor element is mounted on the mounting portion of the package for housing a semiconductor element according to claim 3 and an electrode of the semiconductor element is electrically connected to the wiring conductor. Wherein the sealing resin is injected into the concave portion to cover the mounting portion.
JP2003086195A 2003-01-15 2003-03-26 Heat radiating member, package for storing semiconductor element, and semiconductor device Pending JP2004296726A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003086195A JP2004296726A (en) 2003-03-26 2003-03-26 Heat radiating member, package for storing semiconductor element, and semiconductor device
US10/758,302 US6921971B2 (en) 2003-01-15 2004-01-15 Heat releasing member, package for accommodating semiconductor element and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086195A JP2004296726A (en) 2003-03-26 2003-03-26 Heat radiating member, package for storing semiconductor element, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004296726A true JP2004296726A (en) 2004-10-21

Family

ID=33400920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086195A Pending JP2004296726A (en) 2003-01-15 2003-03-26 Heat radiating member, package for storing semiconductor element, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004296726A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123482A (en) * 2005-10-27 2007-05-17 Kyocera Corp LIGHT EMITTING DEVICE WIRING BOARD, LIGHT EMITTING DEVICE, AND LIGHT EMITTING DEVICE WIRING BOARD MANUFACTURING METHOD
JP2008109126A (en) * 2006-09-28 2008-05-08 Kyocera Corp Heat dissipation member, electronic component storage package and electronic device using the same
WO2010084955A1 (en) * 2009-01-22 2010-07-29 京セラ株式会社 Board for mounting component, and package for holding component using same
US7772692B2 (en) 2006-08-29 2010-08-10 Kabushiki Kaisha Toshiba Semiconductor device with cooling member
WO2014185369A1 (en) * 2013-05-15 2014-11-20 コニカミノルタ株式会社 Inkjet head and method for producing inkjet head
WO2015104834A1 (en) * 2014-01-10 2015-07-16 三菱電機株式会社 Power semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123482A (en) * 2005-10-27 2007-05-17 Kyocera Corp LIGHT EMITTING DEVICE WIRING BOARD, LIGHT EMITTING DEVICE, AND LIGHT EMITTING DEVICE WIRING BOARD MANUFACTURING METHOD
US7772692B2 (en) 2006-08-29 2010-08-10 Kabushiki Kaisha Toshiba Semiconductor device with cooling member
JP2008109126A (en) * 2006-09-28 2008-05-08 Kyocera Corp Heat dissipation member, electronic component storage package and electronic device using the same
WO2010084955A1 (en) * 2009-01-22 2010-07-29 京セラ株式会社 Board for mounting component, and package for holding component using same
US8837164B2 (en) 2009-01-22 2014-09-16 Kyocera Corporation Substrate for mounting device and package for housing device employing the same
WO2014185369A1 (en) * 2013-05-15 2014-11-20 コニカミノルタ株式会社 Inkjet head and method for producing inkjet head
WO2015104834A1 (en) * 2014-01-10 2015-07-16 三菱電機株式会社 Power semiconductor device
US9627302B2 (en) 2014-01-10 2017-04-18 Mitsubishi Electric Corporation Power semiconductor device

Similar Documents

Publication Publication Date Title
JP4610414B2 (en) Electronic component storage package, electronic device, and electronic device mounting structure
JP2004296726A (en) Heat radiating member, package for storing semiconductor element, and semiconductor device
JP2004247514A (en) Semiconductor element housing package, and semiconductor device
JP2006013420A (en) Electronic component storage package and electronic device
JP4459031B2 (en) Electronic component storage package and electronic device
JP4514598B2 (en) Electronic component storage package and electronic device
JP2003068954A (en) Package for storing semiconductor elements
JP2002353356A (en) Package for storing semiconductor elements
JP2004228414A (en) Semiconductor element storage package and semiconductor device
JP3325477B2 (en) Package for storing semiconductor elements
JP2000183253A (en) Package for storing semiconductor elements
JP2004228415A (en) Semiconductor element storage package and semiconductor device
JP2004221328A (en) Semiconductor element storage package and semiconductor device
JP2006303467A (en) Heat dissipation member, electronic component mounting board, electronic component storage package, and electronic device
JP2004296723A (en) Semiconductor element storage package and semiconductor device
JP2005277382A (en) Electronic component storage package and electronic device
JP3554304B2 (en) Semiconductor element storage package and semiconductor device
JP2004235365A (en) Semiconductor element storage package and semiconductor device
JP4485893B2 (en) Electronic component storage package and electronic device
JP2005340560A (en) Electronic component storage package and electronic device
JP2004063561A (en) Package for storing semiconductor elements
JP2006310807A (en) Heat dissipation member, electronic component mounting board, electronic component storage package, and electronic device
JP4574071B2 (en) Package for housing heat dissipation member and semiconductor element
JP2004221478A (en) Semiconductor element storage package and semiconductor device
JP2006041287A (en) Electronic component storage package and electronic device