WO2019106783A1 - 温度調節計及び通信変換器 - Google Patents

温度調節計及び通信変換器 Download PDF

Info

Publication number
WO2019106783A1
WO2019106783A1 PCT/JP2017/043006 JP2017043006W WO2019106783A1 WO 2019106783 A1 WO2019106783 A1 WO 2019106783A1 JP 2017043006 W JP2017043006 W JP 2017043006W WO 2019106783 A1 WO2019106783 A1 WO 2019106783A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
temperature controller
slave
master
operate
Prior art date
Application number
PCT/JP2017/043006
Other languages
English (en)
French (fr)
Inventor
俊 池田
井上 祐樹
智英 金井
強 妻神
章浩 石渡
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to JP2019556478A priority Critical patent/JP6888204B2/ja
Priority to PCT/JP2017/043006 priority patent/WO2019106783A1/ja
Publication of WO2019106783A1 publication Critical patent/WO2019106783A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks

Definitions

  • the present invention relates to a temperature controller capable of communicating with an external device, and a communication converter.
  • the temperature controllers are connected to a programmable logic controller (PLC) by programless communication.
  • PLC programmable logic controller
  • the programless communication is a method in which the temperature controller is the upper-level device with respect to the PLC, and a plurality of temperature controllers communicate in order while passing the communication right.
  • the monitor information of the device is written in the memory on the PLC, and the setting of the device is read out from the memory of the PLC.
  • the device of the decided node address becomes the master, performs the first communication, and manages the communication start timing of the other node.
  • such a control system is comprised by several temperature controller and PLC which have a communication function.
  • a plurality of temperature controllers can be connected to the lower level, and data of the plurality of temperature controllers may be collected, and may be configured using a communication converter, which is a device for collectively communicating with the PLC.
  • a communication converter which is a device for collectively communicating with the PLC.
  • Patent Document 1 discloses a method of displaying an update time of a control device in a temperature controller connected to a PLC, but does not describe a method of automatically setting a master / slave or the like.
  • Patent Document 2 discloses a method of newly setting a non-failed device as a master when a device already set as a master fails in a control system to which a plurality of temperature controllers are connected. ing.
  • the master device is not set up, such as when the initial operation of the control system is performed or the operation where the temperature controller (the product line corresponding to it) set as the master is not used is performed, the patent does not The method disclosed in Document 2 can not be used.
  • a temperature controller, A communication unit and a processing unit The communication unit is configured to communicate with an external device and another temperature controller, The processing unit monitors communication with the external device and another temperature controller during a communication standby time set in advance; If it is set to operate as a slave and communication does not exist in that period, a signal to set itself as a master is transmitted to the external device, and set to operate as a master. And If it is set to operate as a slave and communication is present during that period, it is set to continue to operate as a slave, A temperature controller, wherein the value of the communication waiting time of its own is configured not to overlap with the other temperature controller.
  • (Configuration 2) The processing unit monitors the communication during the communication standby time, and when the communication does not exist in the period, and when the self is set to operate as a slave, a signal for setting the self as a master Sent to the external device, The temperature control according to Configuration 1, which continues to operate as a slave when a normal response is not obtained from the external device, and transmits a signal to the external device to transfer a communication right to the other temperature controller. Total.
  • the processing unit monitors the communication during the communication standby time, and when the communication does not exist in the period, and when the self is set to operate as a slave, a signal for setting the self as a master Sent to the external device, The communication conversion according to Configuration 5, further operating as a slave when a normal response is not obtained from the external device, and transmitting a signal for passing the communication right to the other communication converter to the external device. vessel.
  • (Configuration 8) Communication converter according to any of the configurations 5 to 7, wherein the external device is a PLC.
  • the temperature controller and communication converter of the present invention it is possible to automatically complete the setting of the master / slave even in the situation where the master device is not set.
  • FIG. 1 is a schematic block diagram showing a portion related to the present invention of a temperature controller according to an embodiment of the present invention.
  • the temperature controller 100 is a device that controls the temperature of a heater or the like (not shown) and controls the temperature of a control target by various control methods such as PID control, and performs communication with the PLC 200 through a common communication line or the like.
  • the processing unit 120 includes a processing unit 120 configured to set itself as a master / slave based on the determination of the communication status and the like and the determination of the response from the PLC described later.
  • the temperature controllers 100 to 102 have node addresses which are not overlapping with each other and communication waiting times which will be described later which are not overlapping.
  • the communication standby time in this embodiment is 0.5 seconds, 0.6 seconds, and 0.7 seconds for the temperature controllers 100 to 102, respectively.
  • three temperature controllers 100 to 102 connected to the PLC 200 are provided, and the configurations of the temperature controllers 101 and 102 are the same as the temperature controller 100. Therefore, only the temperature controller 100 will be described below.
  • FIG. 3 is a schematic diagram showing an operation outline of the conventional method in Patent Document 2 in the case where all devices are slaves (hereinafter also referred to as “the case where no master exists”).
  • the conventional method when there is no master, there is a problem that communication with PLC does not succeed and the control system does not operate.
  • start when there is no master, for example, when the device set as the master at the start of operation of the control system, that is, when the power is turned on (hereinafter also referred to as start) fails.
  • start when the power is not set to ON, the conventional method can not be used.
  • FIG. 4 is a schematic diagram showing an operation outline of the temperature controller 100 of the present embodiment when there is no master.
  • the temperature controller 100 of this embodiment is configured to stand up as a slave when the power is turned on.
  • the temperature controllers 100 to 102 are set with non-overlapping node addresses and communication standby times set in advance, and are 0.5 seconds, 0.6 seconds, and 0.7 seconds, respectively, as described above.
  • the temperature controller 100 is started up, it is set as a slave (no master exists), and monitors the communication status of the communication line until 0.5 seconds which is the communication standby time elapses, If it is determined that the master does not exist, communication with the PLC 200 is started.
  • a signal for registering the own address in the PLC 200 is transmitted, and thereafter, a read request signal for the own address is transmitted to the PLC 200. Then, if the own address matches the address transmitted from PLC 200 (hereinafter also referred to as a “normal response”), it is determined that itself is a master, and a signal to set itself as a master is sent to PLC 200. It transmits and transmits to PLC 200 a signal for transferring the communication right to the next slave (hereinafter, such an operation is also referred to as “operating as a master”).
  • the remaining temperature controllers remain slaves and wait for the communication start signal from the PLC 200 (hereinafter, such an operation is performed as "slave”). Called).
  • the "next slave” is determined based on the order of each temperature controller set in advance. In the present embodiment, the order is determined by the node address of each temperature controller.
  • FIG. 5 shows the temperature controller 100 when the power source of the temperature controller 100 is turned off, that is, when the production line or the like corresponding to the temperature controller 100 is not operating or when the temperature controller 100 breaks down.
  • FIG. 10 is a schematic view showing the operation of ⁇ 102. Even when the temperature controller 100 is not present, it is understood that the temperature controller 101 is set as a master by operating in the same manner as in FIG. 4.
  • the process proceeds to S220 (S210: NO ⁇ S220), and the processing unit 120 transmits its own node address to the PLC 200 after the communication standby time has elapsed, Further, the signal for setting the own node address as the master device is transferred to S230.
  • the node address of its own and the signal for setting its own node address as a master device are collectively referred to as "signal for setting itself as a master”.
  • the process proceeds to S270, the processing unit 120 waits until receiving an operation signal, and operates as a slave. (S230: NO ⁇ S270).
  • S230 when there is a normal response from the PLC 200 in S230, the process proceeds to S240 (S230: YES ⁇ S240).
  • S240 the processing unit 120 transmits, to the PLC 200, a signal requesting transmission of the master address written in the PLC to the temperature controller 100, and proceeds to S250.
  • step S250 the processing unit 120 determines whether the master address transmitted from the PLC 200 matches the node address of its own. If the master address does not match, the processing unit 120 waits until receiving an operation signal, and operates as a slave. (S250: NO ⁇ S270).
  • the temperature controller 100 transmits a signal to the effect that it operates as a master to the PLC 200, and transmits a signal to the next slave to the PLC 200. , And operates as a master (S250: YES ⁇ END).
  • step S200 If the temperature controller 100 operates as a slave, the process proceeds to step S200. That is, while the temperature controller 100 is in operation, the determination logic of S200 to S250 is always scanning. By operating in this manner, the temperature controller 100 of the present embodiment can automatically complete the setting of the master / slave even when there is no master.
  • the signal (telegram) for transferring the communication right from the master to the slave is configured to describe the address of the master and the address of the slave to which the communication right is to be transferred. Further, the telegram for returning the communication right from the slave to the master is configured such that an identification command for the slave (a value that can not overlap with the value of the node address) and the address of the slave itself are described. Note that the message for passing the communication right is configured to be distinguishable from a normal message such as a special message length. Moreover, the telegram in the case of first communicating as a master after the above-mentioned communication standby time has elapsed is configured as, for example, “own address” or “own address”.
  • the processing unit 120 writes the contents to the PLC 200, and when there is a response of “own address” and “own address” in response to the address read request to the PLC 200, the processing unit 120 operates as the master. If there is a response “node address other than self” and “self address” in response to the read request, as described above, it becomes a telegram to hand over the communication right from the already existing master.
  • FIG. 6 shows a schematic operation when there is no normal response from the PLC at S230 in FIG.
  • the case where the temperature controllers 100 and 101 simultaneously start communication with the PLC 200 is taken as an example.
  • the temperature controller 100 is turned on by 0.1 second due to the relationship of energization and the like, the communication standby time of the temperature controller 101 will be 0.6 seconds.
  • both the temperature controllers 100 and 101 simultaneously attempt to communicate with the PLC 200, so the PLC 200 sends a signal indicating that the communication has failed (S230: NO in FIG. 2). Therefore, the temperature controller 100 and the temperature controller 101 operate as slaves, and the temperature controller 102 that has successfully communicated with the PLC 200 operates as a master.
  • the temperature controller 100 includes the processing unit 120 and is configured to perform the process of determining the master and the slave.
  • the control system using the communication converter May be configured.
  • FIG. 7 is a configuration example of a control system when the communication converter 150 is used.
  • the communication converters 150 to 152 are provided with processing units 120 to 122 and communication units 110 to 112 capable of executing the same processing as the processing in FIG. 2.
  • FIG. 7 an example in which three temperature controllers are connected to one communication converter is described.
  • the communication converters 150 to 152 directly communicate with the temperature controller 100 described above, except that they collect data from the temperature controllers connected to them and communicate with the PLCs collectively.
  • the communication converter it is possible to communicate more data at one time than when each temperature controller directly communicates with the PLC.
  • the communication converter is set in advance with each temperature controller. Communicate in the order in which they were
  • the processing unit 120 calculates the value of the communication standby time of its own and the other temperature controllers to which the node address is connected. It is configured not to overlap, and when there is no communication during the communication standby time, it is configured to transmit to the external device a signal that sets its own node address and itself as a master, and operate as a master. Therefore, even when the master device is not set, the setting of the master / slave can be automatically completed.
  • processing unit 120 is configured to always perform the above determination processing, setting of the master / slave is performed even when the master fails or a new temperature controller is newly added. Can be completed automatically.
  • the processing unit 120 when the processing unit 120 operates as a slave and there is no communication during the communication standby time, the processing unit 120 transmits, to the PLC 200, a signal for setting its own node address and itself as a master, and a plurality of communication simultaneously. If the normal response can not be obtained from PLC 200 because the start is overlapped, it is configured to continue to operate as a slave, so even if the communication start of multiple temperature controllers has been hit, It is possible to complete the setting of the master / slave automatically.
  • the processing unit 120 is configured to operate as a slave when powering on the temperature controller 100, even if the temperature controller 100 breaks down, communication with other temperature controllers is not interrupted. Therefore, it is possible to easily add equipment and the like.
  • the communication standby time of each temperature controller in the present embodiment is set as 0.5 seconds, 0.6 seconds, and 0.7 seconds, but any non-overlapping time may be set. However, if the difference between the shortest time and the longest time becomes long, the time until the master is determined will be extended, so it is preferable that it is the minimum time that can reliably detect a break in communication as in this embodiment It is. Further, as the value of the minimum communication standby time, it is preferable to provide a margin that can be determined as abnormal (no master) reliably with respect to the timeout time (for example, 0.1 second) in normal communication. In addition, it is preferable that an interval of each communication standby time is a time sufficient for completing one transmission / reception to / from the PLC 200. These values vary depending on the communication speed of the communication unit 110, the processing speed of the processing unit 120, and the like.
  • the temperature controller 100 operating as a master performs communication for giving the right of communication to each slave, but if the slave is not responding, it may be configured to extend the communication search cycle to that node. . In that case, it is possible to suppress the extension of the communication cycle of each node.
  • the temperature controller 100 of the present embodiment is configured to operate as a slave when the power is turned on, but may be configured to be switched by an operation of storing the setting of the master / slave and a switch or the like.
  • the communication destination of the temperature controller 100 is described as the PLC, the memory in the device by the communication function such as a PC incorporating a dedicated software, a display with a communication function, etc. It is sufficient if the device can write and read.
  • Each configuration in each of the above-described embodiments may be configured as hardware by a dedicated circuit or the like, or may be implemented as software on a general-purpose circuit such as a microcomputer. Good.

Abstract

温度調節計(100)は、通信部(110)および処理部(120)を備え、自身の通信待機時間の値及び、ノードアドレスが接続されている他の温度調節計と重複しないように構成され、立ち上げ時にはスレーブとして設定され、通信待機時間中に通信が存在しない場合は、自身のノードアドレス及び自身をマスタとして設定する信号をPLC(200)に送信し、マスタとして動作するように構成されているため、マスタ機器が設定されていない状況においてもマスタ/スレーブの設定を自動的に完了する事が可能である。

Description

温度調節計及び通信変換器
 この発明は、外部機器と通信可能な温度調節計、及び通信変換器に関するものである。
 複数の温度調節計が存在する制御系等において、温度調節計をPLC(Programmable Logic Controller)にプログラムレス通信により接続することが行われている。
 プログラムレス通信とは、PLCに対して温度調節計が上位機器となり、通信権を渡しながら複数の温度調節計が順に通信を行う方法である。この際に、PLC上のメモリに機器のモニタ情報を書き込み、機器の設定をPLCのメモリから読み出すように動作する。また、決まったノードアドレスの機器がマスタとなり、最初の通信を行って、他のノードの通信開始タイミングの管理を行っている。
 なお、このような制御系は、通信機能を有する複数の温度調節計とPLCによって構成されている。また、下位に複数の温度調節計が接続可能であり、複数の温度調節計のデータを収集して、まとめてPLCと通信を行う機器である、通信変換器を用いて構成されていてもよい。以下においては、通信機能を有する複数の温度調節計とPLCによって制御系が構成されている場合について説明する。
 このように複数の温度調節計(コントローラ)が接続された制御系においてPLCとプログラムレス通信を行うためには、どの温度調節計がマスタ/スレーブであるかを設定した上で、PLCとの通信を行う必要がある。
 複数の温度調節計が必要となる制御系、例えば、複数の製造ラインが存在するような制御系の場合、生産する製品の種類や受注状況により、いくつかのラインは日によって使用しないといった運用がなされる場合がある。
 上記のように使用しない製造ラインがある場合等には、製造ラインの稼働開始時に各温度調節計のマスタ/スレーブを都度設定しなおす必要があった。特に、既にマスタとして設定していた温度調節計に対応したラインが稼働しなくなった場合、新たにマスタを設定する必要があり、作業が煩雑となっていた。そのため、PLCとのプログラムレス通信により複数の温度調節計を制御する場合に、マスタ/スレーブを自動設定する手法が望まれていた。
 このような状況において、特許文献1には、PLCに接続した温度調節計における制御機器の更新時間表示方法が開示されているものの、マスタ/スレーブの自動設定方法等については記載がなされていない。
 また、特許文献2においては、複数の温度調節計が接続された制御系において、既にマスタとして設定された機器が故障した場合に、故障していない機器を新たにマスタとして設定する手法が開示されている。しかし、制御系の初期動作時や、マスタとして設定されていた温度調節計(に対応した製品ライン)を使用しないという運用がなされる場合のように、マスタ機器が設定されていない状況においては特許文献2に開示されている手法は使用することができない。
特開2013-210768号公報 特開2001-111579号公報
 本発明は、上記の点に鑑み、マスタ機器が設定されていない状況においても、マスタ/スレーブの設定を自動的に完了することができる温度調節計及び通信変換器を提供することを目的とする。
  (構成1)
 温度調節計であって、
 通信部と、処理部を備え、
 前記通信部は、外部機器及び他の温度調節計と通信を行うように構成され、
 前記処理部は、事前に設定された通信待機時間の間、前記外部機器及び他の温度調節計との通信を監視し、
  自身がスレーブとして動作するように設定されており、かつ、当該期間に通信が存在しない場合は、自身をマスタとして設定する信号を前記外部機器へと送信し、自身がマスタとして動作するように設定され、
  自身がスレーブとして動作するように設定されており、かつ、当該期間に通信が存在する場合は、自身が引き続きスレーブとして動作するように設定され、
 自身の前記通信待機時間の値が、前記他の温度調節計と重複しないように構成される、温度調節計。
  (構成2)
 前記処理部が、前記通信待機時間の間、前記通信を監視し、当該期間に通信が存在しない場合、かつ、自身がスレーブとして動作するように設定されている場合、自身をマスタとして設定する信号を前記外部機器へと送信し、
 前記外部機器から正常な応答を得られなかった場合、引き続きスレーブとして動作し、前記他の温度調節計に対して通信権を渡す信号を前記外部機器へと送信する、構成1に記載の温度調節計。
  (構成3)
 前記処理部が、前記温度調節計の電源投入時に、自身がスレーブとして動作するように設定する、構成1または2に記載の温度調節計。
  (構成4)
 前記外部機器がPLCである、構成1から3のいずれかに記載の温度調節計。
  (構成5)
 複数の温度調節計が接続可能な通信変換器であって、
 通信部と、処理部を備え、
 前記通信部は、外部機器及び他の通信変換器と通信を行うように構成され、
 前記処理部は、事前に設定された通信待機時間の間、前記外部機器及び他の通信変換器との通信を監視し、
  自身がスレーブとして動作するように設定されており、かつ、当該期間に通信が存在しない場合は、自身をマスタとして設定する信号を前記外部機器へと送信し、自身がマスタとして動作するように設定され、
  自身がスレーブとして動作するように設定されており、かつ、当該期間に通信が存在する場合は、自身が引き続きスレーブとして動作するように設定され、
 自身の前記通信待機時間の値が、前記他の通信変換器と重複しないように構成される、通信変換器。
  (構成6)
 前記処理部が、前記通信待機時間の間、前記通信を監視し、当該期間に通信が存在しない場合、かつ、自身がスレーブとして動作するように設定されている場合、自身をマスタとして設定する信号を前記外部機器へと送信し、
 前記外部機器から正常な応答を得られなかった場合、引き続きスレーブとして動作し、前記他の通信変換器に対して通信権を渡す信号を前記外部機器へと送信する、構成5に記載の通信変換器。
  (構成7)
 前記処理部が、前記通信変換器の電源投入時に、自身がスレーブとして動作するように設定する、構成5または6に記載の通信変換器。
  (構成8)
 前記外部機器がPLCである、構成5から7のいずれかに記載の通信変換器。
 本発明の温度調節計及び通信変換器によれば、マスタ機器が設定されていない状況においてもマスタ/スレーブの設定を自動的に完了する事が可能である。
本発明に係る実施形態の制御系を示す概略構成図である。 本発明に係る実施形態の概略動作を説明したフローチャートである。 従来手法におけるマスタ機器の電源がOFFとなった場合の概要説明図である。 本発明に係る実施形態の温度調節計の初期設定時に全台電源がONである場合の概要説明図である。 本発明に係る実施形態の温度調節計の初期設定時に1台だけ電源がOFFである場合の概要説明図である。 本発明に係る実施形態の温度調節計の1台目および2台目の通信開始タイミングが同時になった場合の動作を示す概略構成図である。 本発明に係る実施形態の通信変換器により通信を行う場合の構成例を示す概略構成図である。
 以下、この発明を実施するための形態について、添付の図面にしたがって説明する。
<実施形態>
 図1はこの発明の実施形態による温度調節計の本発明に関する部分を示す概略構成図である。
 温度調節計100は、PID制御等の種々の制御方法により、ヒータ等(不図示)の温度を制御し制御対象の温度を制御する装置であり、共通の通信ライン等によりPLC200と通信を行う通信部110と、後述する通信状況等の判断やPLCからの応答の判断により、自身をマスタ/スレーブとして設定する処理等を行う処理部120を備える。
 また、温度調節計100~102はそれぞれが重複しないノードアドレスおよび重複しない後述する通信待機時間を備える。本実施形態における通信待機時間は、温度調節計100~102についてそれぞれ、0.5秒、0.6秒、0.7秒である。
 なお、本実施形態においてはPLC200と接続されている温度調節計を100~102の3台とし、温度調節計101および102の構成は温度調節計100と同一である。そのため、以降においては温度調節計100についてのみ説明を行う。
<従来手法の問題点>
 図3は、全ての機器がスレーブである場合(以後、「マスタが存在しない場合」とも称する)の特許文献2における従来手法の動作概要を示した概要図である。
 従来手法においては、マスタが存在しない場合には、PLCとの通信が成功せず、制御系が動作しないという問題があった。このように、マスタが存在しない場合、例えば、制御系の動作開始時、即ち、電源投入時等(以後、立ち上げ時とも称する)にマスタとして設定されていた機器が故障している場合や、電源をONにしない設定になっていた場合には、従来手法を用いることができない。
<マスタが存在しない場合の動作>
 図4は、マスタが存在しない場合の、本実施形態の温度調節計100の動作概要を示した概要図である。
 なお、本実施形態の温度調節計100は電源投入時にはスレーブとして立ち上がるように構成されている。
 温度調節計100~102は重複しないノードアドレスおよび、事前に設定された通信待機時間が設定されており、前述のとおり、それぞれ、0.5秒、0.6秒、0.7秒である。温度調節計100の立ち上げ時には、自身がスレーブとして設定されており(マスタは存在していない)、通信待機時間である0.5秒経過するまでの間、通信ラインの通信状況を監視し、マスタが存在していないと判断した場合は、PLC200との通信を開始する。その際に、自身のアドレスをPLC200に登録する信号を送信し、その後、PLC200に自身のアドレスの読出要求信号を送信する。そして、自身のアドレスとPLC200から送信されたアドレスとが一致した場合(以後、「正常な応答」とも称する)自身がマスタであると判断し、自身がマスタであると設定する信号をPLC200へと送信し、次のスレーブに通信権を渡す信号をPLC200に送信する(以後、このような動作を「マスタとして動作する」とも称する)。
 このようにマスタが決定された場合は残りの温度調節計については、スレーブのままとなり、PLC200からの通信開始信号を待機することとなる(以後、このような動作を「スレーブとして動作する」とも称する)。
 なお、「次のスレーブ」とは、事前に設定された各温度調節計の順序に基づき決定されている。本実施形態においては、各温度調節計のノードアドレスの若さにより順序が決定されている。
<1台電源OFFの場合>
 図5は、温度調節計100の電源をOFFとした場合、即ち、温度調節計100に対応する製造ライン等が稼働していない場合や、温度調節計100が故障した場合等の温度調節計100~102の動作を示す概要図である。
 温度調節計100が存在しない場合であっても、図4と同様に動作することにより温度調節計101がマスタとして設定されることがわかる。
<動作>
 次に、図2のフローチャートを参照しつつ、実施形態の温度調節計100の本発明に関する処理動作について説明する。
 まず、S200において、電源投入もしくは最後のデータ受信から温度調節計100に設定された通信待機時間である0.5秒間通信を待機する。
 そして、処理部120は、待機している間通信ライン上の通信を監視し、そこに流れている電文が、事前に設定された時間以上途切れたかどうかにより、マスタが既に設定されている状態かどうかを判断する。本実施形態では、事前に設定された時間を0.5秒とする。
 既にマスタが存在する場合、処理部120はPLC200から動作信号を通信部110を介して受信するまで待機し、スレーブとして動作する(S210:YES→S270)。以後、PLC200と温度調節計100との通信については通信部110により実施されるものとして、記載を省略する。
 一方、S210においてマスタが設定されていないと判断された場合、S220へと移行し(S210:NO→S220)、処理部120は通信待機時間経過後PLC200に対して自身のノードアドレスを送信し、さらに自身のノードアドレスをマスタ機器として設定する信号をS230に移行する。このように自身のノードアドレス及び、自身のノードアドレスをマスタ機器として設定する信号をまとめて、「自身をマスタとして設定するための信号」とも称する。
 そして、S230においてPLC200から正常な応答が返ってこなかった場合、S270へと移行し、処理部120は、動作信号を受信するまで待機し、スレーブとして動作する。(S230:NO→S270)。
 一方、S230においてPLC200から正常な応答があった場合、S240に移行する(S230:YES→S240)。
 S240において、処理部120は、PLCに書き込まれたマスタアドレスの温度調節計100への送信を要求する信号をPLC200に送信し、S250に移行する。
 S250において、処理部120は、PLC200から送信されたマスタアドレスが自身のノードアドレスと一致するか判断し、一致しない場合は動作信号を受信するまで待機し、スレーブとして動作する。(S250:NO→S270)。
 一方、S250においてPLC200から送信されたマスタアドレスが自身のノードアドレスと一致する場合、温度調節計100がマスタとして動作する旨の信号をPLC200に送信し、次のスレーブに通信権を渡す信号をPLC200に送信し、マスタとして動作する(S250:YES→END)。
 なおS270に移行し、温度調節計100がスレーブとして動作することとなった場合は、S200へと移行する。すなわち、温度調節計100が動作している間は、常に上記S200から250の判断ロジックが走査していることとなる。
 このように動作することで、本実施形態の温度調節計100は、マスタが存在しない場合であっても、マスタ/スレーブの設定を自動的に完了する事が可能である。
<通信権を渡す電文について>
 本実施形態においては、マスタからスレーブに通信権を渡す信号(電文)は、マスタのアドレス及び通信権を渡す先のスレーブのアドレスが記載されるように構成されている。
 また、スレーブからマスタに通信権を返すための電文は、スレーブ用の識別コマンド(ノードアドレスの値と重複し得ない値)及びスレーブ自身のアドレスが記載されるように構成されている。なお、通信権を渡すための電文は、特別な電文長など、通常の電文と区別できるように構成されている。
 また、上述の通信待機時間経過後に最初にマスタとして通信する場合の電文は、例えば、「自身のアドレス」「自身のアドレス」のように構成される。
 そして処理部120は、当該内容をPLC200に書き込み、PLC200へのアドレス読出要求に対して「自身のアドレス」「自身のアドレス」と応答があった場合に、自身がマスタであるものとして動作する。もし、読出要求に対して、「自身以外のノードアドレス」「自身のアドレス」と応答があった場合は、上述の通り、既に存在するマスタからの通信権を渡す電文となる。
<2台の温度調節計が同時に通信開始した場合>
 図6は、図2におけるS230におけるPLCから正常な応答がなかった場合の概略動作を示している。ここでは、温度調節計100および101が同時にPLC200に通信を開始した場合を例としている。
 例えば、温度調節計100の電源ONが、通電の関係等から0.1秒ずれてしまった場合、温度調節計101の通信待機時間である0.6秒とぶつかってしまう。このような状況になった場合は、温度調節計100および101ともにPLC200に同時に通信をしようとするため、PLC200から通信に失敗した旨の信号が送信される(図2におけるS230:NO)。そのため、温度調節計100および温度調節計101はスレーブとして動作することになり、PLC200と通信が成功した温度調節計102がマスタとして動作することとなる。
<マスタが途中から存在しなくなった場合>
 上述のとおり、温度調節計100~102において、図2におけるS270のように、判断処理が常に実行されている。そのため、マスタの故障等により、マスタが途中から存在しなくなってしまった場合、図2のS210においてS220に移行するため、次のスレーブが新たにマスタとして動作することが可能である。
<通信変換器>
 なお、本実施形態においては、温度調節計100が処理部120を備え、マスタ及びスレーブを決定する処理を実施するように構成されていたが、上述のように、通信変換器を用いて制御系が構成されていてもよい。
 図7は、通信変換器150を用いる場合の制御系の構成例である。図7に示すように、通信変換器150から152は図2における処理と同等の処理を実行可能な処理部120から122、通信部110から112及を備えている。ここでは、1つの通信変換器に対してそれぞれ3台の温度調節計が接続されている例について記載している。
 通信変換器150から152は、それぞれに接続された温度調節計のデータを収集して、まとめてPLCと通信を行う点以外は、これまでに説明した温度調節計100とPLC200が直接通信する場合と同等である。通信変換器を用いることにより、温度調節計1台ずつが直接PLCと通信する場合よりも、多くのデータを一度に通信する事が可能となる。なお、この場合の通信変換器150(151、152)と温度調節計100~102(103~105、106~108)との間の通信は、通信変換器がそれぞれの温度調節計と事前に設定された順番に通信を行う。
<効果>
 以上のように、本実施形態の温度調節計100及び通信変換器150によれば、処理部120が、自身の通信待機時間の値及び、ノードアドレスが、接続されている他の温度調節計と重複しないように構成され、通信待機時間中に通信が存在しない場合は、前記外部機器へと自身のノードアドレス及び自身をマスタとして設定する信号を送信し、マスタとして動作するように構成されているため、マスタ機器が設定されていない状況においてもマスタ/スレーブの設定を自動的に完了する事が可能である。
 また、処理部120が常に上記の判断処理を行うように構成されているため、マスタが故障してしまった場合や、新たに新しい温度調節計を追加した場合などにも、マスタ/スレーブの設定を自動的に完了する事が可能である。
 また、処理部120が、自身がスレーブとして動作し、通信待機時間中に通信が存在しない場合は、PLC200へと自身のノードアドレス及び自身をマスタとして設定する信号を送信し、同時に複数台の通信開始が重なってしまったため、PLC200から正常な応答を得られなかった場合、引き続きスレーブとして動作するように構成されているため、複数台の温度調節計の通信開始がぶつかってしまった場合にも、マスタ/スレーブの設定を自動的に完了する事が可能である。
 また、処理部120が、温度調節計100の電源立ち上げ時にはスレーブとして動作するように構成されているため、温度調節計100が故障した場合等でも、他の温度調節計の通信の邪魔をしないため、容易に機器の追加等が可能である。
 本実施形態における各温度調節計の通信待機時間は、0.5秒、0.6秒、0.7秒として設定されていたが、重複しない任意の時間を設定してもよい。ただし、最も短い時間と最も長い時間の差が長くなると、マスタが確定するまでの時間が延びてしまうため、本実施形態のように確実に通信の途切れを検出出来る最小の時間であることが好適である。また、最小の通信待機時間の値については、通常通信時のタイムアウト時間(例えば0.1秒)に対して確実に異常(マスタなし)と判断できる余裕を持たせた値が好適である。また、各通信待機時間の間隔は、通信1回のPLC200への送受信が完了するのに十分な時間であることが好適である。これらの値は、通信部110の通信速度や処理部120の処理速度等により変動する。
 マスタとして動作している温度調節計100は、各スレーブに対し通信権を与える通信を行うが、スレーブが無応答の場合は、そのノードへの通信探査周期を伸ばすように構成されていてもよい。その場合、各ノードの通信周期が延びることを抑制することができる。
 本実施形態の温度調節計100は、電源立ち上げ時にはスレーブとして動作するように構成されていたが、マスタ/スレーブの設定を記憶する動作と、スイッチ等により切換えられるように構成されていてもよい。
 また、本実施形態おいては、温度調節計100の通信先をPLCであるものとして記載したが、専用のソフトを組み込んだPCや、通信機能付の表示器等、通信機能により機器内部のメモリの書き込み、読み出し可能な機器で有ればよい。
 なお、上記各実施形態における各構成は、それぞれ専用回路等でハード的に構成されるものであってもよいし、マイコン等の汎用的な回路上でソフトウェア的に実現されるものであってもよい。
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成及び動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解しうる様々な変更を行うことができる。
100~108…温度調節計
110~112…通信部
120~122…処理部
150~152…通信変換器
200…PLC

Claims (8)

  1.  温度調節計であって、
     通信部と、処理部を備え、
     前記通信部は、外部機器及び他の温度調節計と通信を行うように構成され、
     前記処理部は、事前に設定された通信待機時間の間、前記外部機器及び他の温度調節計との通信を監視し、
      自身がスレーブとして動作するように設定されており、かつ、当該期間に通信が存在しない場合は、自身をマスタとして設定する信号を前記外部機器へと送信し、自身がマスタとして動作するように設定され、
      自身がスレーブとして動作するように設定されており、かつ、当該期間に通信が存在する場合は、自身が引き続きスレーブとして動作するように設定され、
     自身の前記通信待機時間の値が、前記他の温度調節計と重複しないように構成される、温度調節計。
  2.  前記処理部が、前記通信待機時間の間、前記通信を監視し、当該期間に通信が存在しない場合、かつ、自身がスレーブとして動作するように設定されている場合、自身をマスタとして設定する信号を前記外部機器へと送信し、
     前記外部機器から正常な応答を得られなかった場合、引き続きスレーブとして動作し、前記他の温度調節計に対して通信権を渡す信号を前記外部機器へと送信する、請求項1に記載の温度調節計。
  3.  前記処理部が、前記温度調節計の電源投入時に、自身がスレーブとして動作するように設定する、請求項1または2に記載の温度調節計。
  4.  前記外部機器がPLCである、請求項1から3のいずれかに記載の温度調節計。
  5.  複数の温度調節計が接続可能な通信変換器であって、
     通信部と、処理部を備え、
     前記通信部は、外部機器及び他の通信変換器と通信を行うように構成され、
     前記処理部は、事前に設定された通信待機時間の間、前記外部機器及び他の通信変換器との通信を監視し、
      自身がスレーブとして動作するように設定されており、かつ、当該期間に通信が存在しない場合は、自身をマスタとして設定する信号を前記外部機器へと送信し、自身がマスタとして動作するように設定され、
      自身がスレーブとして動作するように設定されており、かつ、当該期間に通信が存在する場合は、自身が引き続きスレーブとして動作するように設定され、
     自身の前記通信待機時間の値が、前記他の通信変換器と重複しないように構成される、通信変換器。
  6.  前記処理部が、前記通信待機時間の間、前記通信を監視し、当該期間に通信が存在しない場合、かつ、自身がスレーブとして動作するように設定されている場合、自身をマスタとして設定する信号を前記外部機器へと送信し、
     前記外部機器から正常な応答を得られなかった場合、引き続きスレーブとして動作し、前記他の通信変換器に対して通信権を渡す信号を前記外部機器へと送信する、請求項5に記載の通信変換器。
  7.  前記処理部が、前記通信変換器の電源投入時に、自身がスレーブとして動作するように設定する、請求項5または6に記載の通信変換器。
  8.  前記外部機器がPLCである、請求項5から7のいずれかに記載の通信変換器。
PCT/JP2017/043006 2017-11-30 2017-11-30 温度調節計及び通信変換器 WO2019106783A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019556478A JP6888204B2 (ja) 2017-11-30 2017-11-30 温度調節計及び通信変換器
PCT/JP2017/043006 WO2019106783A1 (ja) 2017-11-30 2017-11-30 温度調節計及び通信変換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043006 WO2019106783A1 (ja) 2017-11-30 2017-11-30 温度調節計及び通信変換器

Publications (1)

Publication Number Publication Date
WO2019106783A1 true WO2019106783A1 (ja) 2019-06-06

Family

ID=66663878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043006 WO2019106783A1 (ja) 2017-11-30 2017-11-30 温度調節計及び通信変換器

Country Status (2)

Country Link
JP (1) JP6888204B2 (ja)
WO (1) WO2019106783A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031657A (ja) * 1996-07-17 1998-02-03 Shimadzu Corp 分散形制御装置
JPH10326259A (ja) * 1997-05-09 1998-12-08 I O Controls Corp 分散された制御ネットワークにおけるバックアップ制御装置および方法
JP2009064284A (ja) * 2007-09-07 2009-03-26 Yokogawa Electric Corp デジタル指示調節計
JP2013210768A (ja) * 2012-03-30 2013-10-10 Omron Corp 制御機器および制御機器の更新時間表示方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031657A (ja) * 1996-07-17 1998-02-03 Shimadzu Corp 分散形制御装置
JPH10326259A (ja) * 1997-05-09 1998-12-08 I O Controls Corp 分散された制御ネットワークにおけるバックアップ制御装置および方法
JP2009064284A (ja) * 2007-09-07 2009-03-26 Yokogawa Electric Corp デジタル指示調節計
JP2013210768A (ja) * 2012-03-30 2013-10-10 Omron Corp 制御機器および制御機器の更新時間表示方法

Also Published As

Publication number Publication date
JP6888204B2 (ja) 2021-06-16
JPWO2019106783A1 (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
CN101609421B (zh) 运算处理装置的多重控制系统及多重控制方法
US10579031B2 (en) Controller
JP2006244416A (ja) マスターノード及びスレーブノードを有する電子装置システム
WO2013121568A1 (ja) ノード同期方法、ネットワーク伝送システム、及びノード装置
TWI706257B (zh) 匯流排系統
TW202004510A (zh) 匯流排系統
JP6301752B2 (ja) 情報サービス表示システムおよび時刻同期方法
JP6894043B2 (ja) Dsiプロトコルに基づいて自動車両におけるセンサ装置を動作させるための方法
JP2016103114A (ja) インバータ装置及びインバータ装置におけるファームウェアプログラムの更新方法。
WO2019106783A1 (ja) 温度調節計及び通信変換器
JP6460807B2 (ja) 機器id割り付けシステム
JP6797312B2 (ja) 通信システム、マスタ装置及びスレーブ装置
JP6762546B1 (ja) シリアル通信方法及びシリアル通信システム
JP2011234171A (ja) Modbus制御システム
US10524219B2 (en) Communication apparatus, communication system and communication method
JP4442613B2 (ja) ユニット増設システム
JP5107153B2 (ja) プログラマブルコントローラシステム
JP2006277733A (ja) プログラマブル・コントローラ・システム
JP2003081546A (ja) エレベータの情報伝送制御装置
JP6356736B2 (ja) コントローラシステムおよび制御方法
WO2000072099A1 (fr) Dispositif peripherique de controleur programmable
JP6286259B2 (ja) ネットワーク機器、ネットワーク機器の制御プログラム
JP2008211536A (ja) リモートio伝送システム
JPWO2020089964A1 (ja) 通信システム、通信装置、及びプログラム
JP6232276B2 (ja) 自動アドレス設定システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933499

Country of ref document: EP

Kind code of ref document: A1