WO2019104815A1 - 木质素酚醛树脂胶黏剂的制备方法 - Google Patents

木质素酚醛树脂胶黏剂的制备方法 Download PDF

Info

Publication number
WO2019104815A1
WO2019104815A1 PCT/CN2018/000045 CN2018000045W WO2019104815A1 WO 2019104815 A1 WO2019104815 A1 WO 2019104815A1 CN 2018000045 W CN2018000045 W CN 2018000045W WO 2019104815 A1 WO2019104815 A1 WO 2019104815A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
lignin
ratio
resin adhesive
quartz
Prior art date
Application number
PCT/CN2018/000045
Other languages
English (en)
French (fr)
Inventor
黄宇
Original Assignee
黄宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄宇 filed Critical 黄宇
Publication of WO2019104815A1 publication Critical patent/WO2019104815A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C09J161/14Modified phenol-aldehyde condensates

Definitions

  • the invention belongs to the technical field of preparation of chemical polymer materials, and particularly relates to a preparation method of a lignin phenolic resin adhesive.
  • Lignin is the second largest renewable resource in the world after cellulose and the most abundant aromatic compound in nature. Lignin is a three-dimensional network structure natural aromatic compound which is a structural unit of phenylpropane and highly crosslinked by a carbon-carbon bond and an ether bond. Because of its reactive functional groups such as alcoholic hydroxyl group and phenolic hydroxyl group, lignin can partially replace phenol to prepare lignin modified phenolic resin adhesive, which can reduce cost and achieve efficient use of biomass resources. Moreover, the prepared lignin-modified phenolic resin adhesive has low toxic residue such as free phenol, and has environmental protection significance.
  • the invention patent CN201310246863.2 the method for preparing phenolic resin adhesive by using organic lignin instead of phenol, mainly solves the technical problem of using a large amount of non-renewable and highly toxic petrochemical raw materials in the preparation process of the existing phenolic resin adhesive, and adopting organic lignin instead
  • the use of phenol for the preparation of phenolic resin adhesives greatly reduces the amount of phenol used in the non-renewable toxicity of phenolic resin synthesis, which not only greatly reduces the cost of producing phenolic resin, but also can be used by the use of organic lignin. Improve the performance of phenolic resin, obtain phenolic resin adhesive with higher bonding strength, lower formaldehyde emission and more stable performance.
  • Invention patent CN201410018573.7 a preparation method of lignin-based environmentally friendly phenolic resin adhesive, comprising: step 1, quantitative analysis of hydroxyl groups of lignin raw materials by quantitative phosphorus spectrum nuclear magnetic resonance technology, and number of phenolic hydroxyl groups and alcoholic hydroxyl groups Calculate the number of active sites in the unit mass lignin raw material in the reaction with formaldehyde; in step 2, mix the lignin raw material and phenol to form a raw material mixture, and mix the mass ratio of the lignin raw material to the phenol at 1:9-8 Step 2: Calculate the total amount of formaldehyde; Step 4, the raw material mixture obtained in Step 2 is mixed with formaldehyde and an alkali solution to prepare a lignin-based environmentally friendly phenolic resin adhesive.
  • the invention solves the problem of high cost and formaldehyde pollution of the traditional lignin-based phenolic resin adhesive product, and the lignin of the biomass refining by-product is
  • Invention patent CN201510352326.5 a method for preparing lignin phenolic resin adhesive by using microwave-CuO treatment papermaking waste liquid, treating papermaking waste liquid with microwave and CuO, filtering, adjusting pH with hydrochloric acid to about 2 ⁇ 3, placing The oven is allowed to stand at the set temperature for a period of time, filtered while hot, washed to neutral, and dried to obtain acid lignin for use; the dried lignin is partially substituted for phenol, phenolated, methylolated, and phenolic
  • the lignin-phenolic resin adhesive is prepared by the reaction; the invention improves the substitution rate of lignin to phenol, reduces the cost, reduces the pollution to the environment, and has the high bonding strength of the adhesive and the low free formaldehyde content.
  • the performance of the item is in line with national standards.
  • Phenolic resin adhesives have the disadvantages of low wear resistance, high cost, high curing temperature and long hot pressing time.
  • the raw materials are non-renewable petrochemical energy products, which are not environmentally friendly, and the presence of formaldehyde leads to phenolic resin. The security is low.
  • the present invention provides a method for preparing a lignin phenolic resin adhesive.
  • a preparation method of a lignin phenolic resin adhesive is prepared by the following steps:
  • Ball milling control the solid-liquid ratio (2 ⁇ 5): 1, select the ceramic ball with a ball-to-batch ratio of (3 ⁇ 5): 1, sequentially add O.3% dispersant and 0.1% defoamer, the rotation speed is 70 rpm, ball milling time is 3.0-4.0 h, preparing a powdered quartz slurry, then adding hydroxyethyl cellulose to prevent sedimentation of the powdered quartz slurry, and obtaining a powdered quartz slurry;
  • the parts by weight take 20-30 parts of activated lignin, 24-40 parts of quartz-negative ion composite powder, 1 ⁇ 5 parts of hyperbranched polyester solid, 15-20 parts of phenol, and 1-5 parts of sodium hydroxide. 20 to 25 parts of formaldehyde, 20 to 50 parts of water, uniformly mixed into the reactor, heated to 80 to 100 ° C, and reacted at a constant temperature for 1 to 2 hours to obtain a lignin phenolic resin adhesive.
  • Solid-fermented reed slag of Pseudomonas aeruginosa and Pleurotus ostreatus can effectively decompose cellulose and lignin in reed slag; rhamnolipid produced by Pseudomonas aeruginosa can promote the secretion of laccase from reed prion
  • the decomposition and activation of lignin increase the content of methylol, phenolic hydroxyl and alcoholic hydroxyl groups on the lignin molecule, thereby increasing the degree of polymerization of lignin and phenolic resin.
  • the main component of quartz is silica, which has porous properties, can load more negative oxygen ions, adsorb free formaldehyde and phenol, and at the same time, the negative ion powder contacts with moisture or oxygen in the air, releases negative oxygen ions after ionization, and improves air quality;
  • the porous structure of quartz can combine a large number of hyperbranched polyesters to further increase the degree of polymerization of the phenolic resin adhesive.
  • the amount of negative ions added is between 4 and 8%, the purification rate of formaldehyde is between 91 and 94%. After more than 8%, the purification rate changes slightly, but the binding rate of negative ion powder to quartz powder increases with the addition of negative ion powder. It is reduced, so 4 to 8% is the best.
  • Hyperbranched polyester has a highly branched molecular structure, many kinds of groups, high solubility and low viscosity, which can effectively increase the polymerization speed of phenolic resin and increase the strength of resin glue. At the same time, it has more characteristics of various groups and can be more The combination of free phenol and formaldehyde reduces the release of phenol and formaldehyde to improve environmental safety; on the other hand, phenolic resin affects the gelation performance due to the addition of lignin and silica fume complex, which can be eliminated by using hyperbranched polyester. influences.
  • the Pseudomonas aeruginosa described in the step (1) is preceded by a flask containing 20% of the activation medium, and the inoculum is 5%, and the culture is activated at 37° C. and 200 rpm. 12 to 16h.
  • the activation medium is prepared from the following components: rapeseed oil 30 g/L, corn syrup dry powder 6 g/L, NaNO 3 6 g/L, K 2 HPO 4 0.9 g/L. , NaH 2 PO 4 0.6 g / L, MgSO 4 0.3 g / L, CaCl 2 0.05 g / L, NaCl 1.5 g / L, pH can be adjusted to 6.5 ⁇ 7.0.
  • the average yield of rhamnolipid obtained by fermentation of Pseudomonas aeruginosa was 30.41 ⁇ 34.52g/L.
  • the fineness of the powder quartzite described in the step (1) is 200 to 300 mesh.
  • the particle size of the powdered quartz determines its dispersion and adsorption properties. The smaller the particle size, the better the dispersion but the lower the adsorption capacity. Therefore, in order to better disperse and simultaneously adsorb the negative ion powder, it is best to use 200 to 300 mesh quartz powder.
  • the molar ratio of 2,2-bis[4-(2-hydroxyethoxy)phenyl]propane to trimesic acid described in the third step is (2 to 4):1.
  • the molar ratio of the two monomers affects the molecular weight of the hyperbranched polyester and the hyperbranched polymer of the terminal group, the molar of 2,2-bis[4-(2-hydroxyethoxy)phenyl]propane and trimesic acid
  • the ratio is 2:1, a polyester having a large terminal group dispersibility can be obtained, and more binding sites (groups) are obtained, thereby promoting the reaction polymerization rate of the resin and the strength and abrasion resistance of the resin.
  • the ratio of the quartz-negative ion composite powder to the hyperbranched polyester solid in the fourth step is (8-15):1.
  • the content of hyperbranched polyester affects the overall curing conversion rate of the resin.
  • the content of the resin is low.
  • the curing conversion rate of the resin is low.
  • the low content of the resin has low bonding strength and wear resistance.
  • the content of the hyperbranched polyester is 5 to 15%, the curing of the phenolic resin The rate is 95 to 98%, and the change rate of wear resistance and bonding strength is small, which has little effect on the performance of the overall resin.
  • the preparation process of the invention has low requirements, does not require high-cost equipment and raw materials, and has good economic benefits;
  • the phenolic resin adhesive prepared by the invention is safe and reliable, has low formaldehyde emission, and can release beneficial negative oxygen ions, has low environmental pollution and meets the demand for environmentally friendly materials;
  • the phenolic resin adhesive prepared by the invention has high anti-wear performance, fast curing speed, low hot pressing temperature, high bonding strength and excellent water and weather resistance.
  • the Pseudomonas aeruginosa is in a conical flask containing 20% of the activation medium, and the inoculation amount is 5%, and the culture is activated for 12 hours at 37° C. and 200 rpm;
  • the activation medium is composed of the following components.
  • the material was prepared: rapeseed oil 30g/L, corn syrup dry powder 6g/L, NaNO 3 6g/L, K 2 HPO 4 0.9g/L, NaH 2 PO 4 0.6g/L, MgSO 4 0.3g/L, CaCl 2 0.05g / L, NaCl 1.5g / L, adjust the pH to 6.5;
  • lignin phenolic resin adhesive According to the parts by weight, take 20 parts of activated lignin, 24 parts of quartz-negative ion composite powder, 3 parts of hyperbranched polyester solid, 15 parts of phenol, 1 part of sodium hydroxide, 20 parts of formaldehyde, 20 parts of water, and evenly mixed. Adding to the reactor, heating to 80 ° C, constant temperature reaction for 1 h can obtain lignin phenolic resin adhesive;
  • the Pseudomonas aeruginosa is in a conical flask containing 20% of the activation medium, and the inoculum is 5%, and the culture is activated for 16 hours at 37° C. and 200 rpm; the activation medium is composed of the following components.
  • the material was prepared: rapeseed oil 30g/L, corn syrup dry powder 6g/L, NaNO 3 6g/L, K 2 HPO 4 0.9g/L, NaH 2 PO 4 0.6g/L, MgSO 4 0.3g/L, CaCl 2 0.05g / L, NaCl 1.5g / L, adjust the pH to 7.0
  • the parts by weight take 30 parts of activated lignin, 30 parts of quartz-negative ion composite powder, 2 parts of hyperbranched polyester solid, 20 parts of phenol, 5 parts of sodium hydroxide, 25 parts of formaldehyde, 50 parts of water, and evenly mixed.
  • the catalyst is added to the reactor, heated to 100 ° C, and reacted at a constant temperature for 2 hours to obtain a lignin phenolic resin adhesive.
  • the Pseudomonas aeruginosa is in a conical flask containing 20% of the activation medium, and the inoculation amount is 5%, and the culture is activated for 14 hours at 37° C. and 200 rpm; the activation medium is composed of the following components.
  • the material was prepared: rapeseed oil 30g/L, corn syrup dry powder 6g/L, NaNO 3 6g/L, K 2 HPO 4 0.9g/L, NaH 2 PO 4 0.6g/L, MgSO 4 0.3g/L, CaCl 2 0.05g / L, NaCl 1.5g / L, adjust the pH to 6.5 ⁇ 7.0
  • the parts by weight take 25 parts of activated lignin, 40 parts of quartz-negative ion composite powder, 5 parts of hyperbranched polyester solid, 17 parts of phenol, 5 parts of sodium hydroxide, 23 parts of formaldehyde, 45 parts of water, and evenly mixed.
  • the catalyst is added to the reactor, heated to 90 ° C, and reacted at a constant temperature for 1.5 h to obtain a lignin phenolic resin adhesive.
  • the Pseudomonas aeruginosa is in a conical flask containing 20% of the activation medium, and the inoculation amount is 5%, and the culture is activated for 12 hours at 37° C. and 200 rpm; the activation medium is composed of the following components.
  • the material was prepared: rapeseed oil 30g/L, corn syrup dry powder 6g/L, NaNO 3 6g/L, K 2 HPO 4 0.9g/L, NaH 2 PO 4 0.6g/L, MgSO 4 0.3g/L, CaCl 2 0.05g / L, NaCl 1.5g / L, adjust the pH to 6.5 ⁇ 7.0
  • the parts by weight take 30 parts of activated lignin, 40 parts of quartz-negative ion composite powder, 4 parts of hyperbranched polyester solid, 20 parts of phenol, 6 parts of sodium hydroxide, 25 parts of formaldehyde, 30 parts of water, and evenly mixed.
  • the catalyst is added to the reactor, heated to 90 ° C, and reacted at a constant temperature for 1.5 h to obtain a lignin phenolic resin adhesive.
  • the Pseudomonas aeruginosa is in a conical flask containing 20% of the activation medium, and the inoculation amount is 5%, and the culture is activated for 12 hours at 37° C. and 200 rpm;
  • the activation medium is composed of the following components.
  • the material was prepared: rapeseed oil 30g/L, corn syrup dry powder 6g/L, NaNO 3 6g/L, K 2 HPO 4 0.9g/L, NaH 2 PO 4 0.6g/L, MgSO 4 0.3g/L, CaCl 2 0.05g / L, NaCl 1.5g / L, adjust the pH to 6.5;
  • lignin phenolic resin adhesive According to the parts by weight, take 30 parts of activated lignin, 30 parts of quartz-negative ion composite powder, 3 parts of hyperbranched polyester solid, 20 parts of phenol, 5 parts of sodium hydroxide, 25 parts of formaldehyde, 40 parts of water, and evenly mixed. Adding to the reactor, heating to 80 ° C, constant temperature reaction for 1 h can obtain lignin phenolic resin adhesive;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

提供了一种糠醛改性木质素基酚醛树脂胶黏剂的制备方法,通过以微生物发酵制备活化木质素与苯酚反应部分取代苯酚,以超支化聚酯为媒介,利用多孔材料石英粉负载负离子粉与木质素取代苯酚和甲醛反应制备而得;该方法制备的酚醛树脂胶黏剂抗磨性能高,固化速度快,胶合强度高,同时有害物质甲醛的释放量极少,与空气接触能释放负氧离子,具有很好的空气净化能力,属于环保型高分子材料,具备优秀的发展潜力。

Description

木质素酚醛树脂胶黏剂的制备方法 技术领域
本发明属于化学高分子材料制备技术领域,特别涉及一种木质素酚醛树脂胶黏剂的制备方法。
背景技术
现代工业生产中,苯酚是酚醛树脂合成过程中大量使用的不可再生毒性较大的石化原料。因此,寻求一种环保型可替代苯酚的化工原料是学者们研究的热点。木质素是自然界中仅次于纤维素的第二大可再生资源,同时也是天然产量最大的芳香族化合物。木质素是以苯基丙烷为结构单元,通过碳一碳键和醚键高度交联的三维网状结构天然芳香族化合物。由于分子上具有醇羟基和酚羟基等活性官能团,与酚醛树脂结构相似,木质素可部分替代苯酚制备木质素改性酚醛树脂胶黏剂,既可降低成本、达到生物质资源高效利用的目的,并且制备的木质素改性酚醛树脂胶黏剂游离酚等有毒残余较低,具有环保意义。
发明专利CN201310246863.2,有机法木质素代替苯酚制备酚醛树脂胶粘剂的方法,主要解决现有酚醛树脂胶粘剂制备过程中大量使用不可再生的毒性较大的石化原料的技术问题,利用有机法木质素替代苯酚用于酚醛树脂胶粘剂的制备,大大减少了酚醛树脂合成过程中不可再生毒性较大的石化原料-苯酚的使用量,不仅使生产酚醛树脂成本大大降低,还可以通过有机法木质素的使用来改善酚醛树脂的性能,获取胶合强度更高、甲醛释放更低、性能更稳定的酚醛树脂胶粘剂。
发明专利CN201410018573.7,一种木质素基环保酚醛树脂胶黏剂的制备方法,包括:步骤1,利用定量磷谱核磁共振技术对木质素原料的羟基进行定量分析,通过酚羟基及醇羟基数目计算得到在与甲醛反应时单位质量木质素原料中的活性位点数;步骤2,混合木质素原料和苯酚,形成原料混合物,混合时使木质素原料与苯酚的物质量比在1∶9~8∶2;步骤3,计算甲醛总量;步骤4,步骤2中得到的原料混合物与甲醛、碱溶液混合反应,制备木质素基环保酚醛树脂胶黏剂。本发明在解决传统木质素基酚醛树脂胶黏剂产品昂贵且甲醛污染问题的基础上使生物质炼制副产物木质素得到了高值化利用,具有极大的经济及社会意义。
发明专利CN201510352326.5,一种利用微波-CuO处理造纸废液制备木素酚醛树脂胶黏剂的方法,用微波和CuO处理造纸废液后过滤,用盐酸调节pH=2~3左右,置于烘箱于设定温度下静置一段时间,趁热过滤,洗涤至中性,干燥得酸析木质素备用;取用干燥后的木质素部分替代苯酚,经过酚化,羟甲基化、以及酚醛化反应制备木素-酚醛树脂胶黏剂;该发明提高了木质素对苯酚的替代率,降低了成本,减小对环境的污染,并且胶黏剂的胶合强度大, 游离甲醛含量低,各项性能符合国家标准。
酚醛树脂胶黏剂存在耐磨低、成本高、固化温度高和热压时间长等缺点,另一方面,制备原料是不可再生石化能源产物,不具有环保性,甲醛的存在更是导致酚醛树脂的安全性低。
发明内容
针对现有技术中制备的酚醛树脂胶黏剂存在的不足,本发明提供一种木质素酚醛树脂胶黏剂的制备方法。
本发明是通过以下技术方案实现的:
一种木质素酚醛树脂胶黏剂的制备方法,由以下步骤制备而得:
一、制备活化木质素
(1)取芦苇茎叶,粉碎成芦苇渣,洒水对其进行湿润至含水量为60~70%,添加芦苇渣质量0.05~0.15%的吐温-80,混合均匀后装袋,接种铜绿假单胞菌进行无菌固态培养2~3天后,得到栽培基质,然后于栽培基质上接种凤尾菇菌,持续培养12~16天,培养温度保持在37~45℃;
(2)取培养成熟并摘除凤尾菇后的栽培基质,磨碎成粉,加入醋酸至pH为3~3.5,常温下反应45~60min,然后过滤除去固体残渣,得到活化木质素;
二、制备石英-负离子复合粉体
(1)按重量份数比将40~50份水、0.5~0.7份分散剂5040、0.2~0.3份消泡剂A10混合,先分散搅拌混匀,再加入粉石英矿至瓷衬球磨机中进行球磨,控制固液比为(2~5)∶1,选取球料比为(3~5)∶1的陶瓷球,依次加入O.3%的分散剂和0.1%的消泡剂,转速为70转/分钟、球磨时间为3.0~4.0h,制备出粉石英浆体,然后加入羟乙基纤维素,防止粉石英浆体的沉降,得到的粉石英浆体;
(2)按重量份数比取40~50份水、5~10份羟乙基纤维溶液混合,将负离子粉按照固液比为1∶1的比例加入,然后转入立式搅拌磨,球料比为(3~5)∶1的陶瓷球,依次加入0.3%的分散剂5040和0.1%的消泡剂A10,球磨1~2h,得到负离子剂浆体;
(3)将粉石英浆体和负离子浆体按照质量比为(12~25)∶1混合,加入到砂磨机,球料比为(3~5)∶1的锆球湿法研磨30~60min,装入离心管中,用去离子水洗涤3~4次,常温下风干,得到石英-负离子复合粉体;
三、制备超支化聚酯
按质量份数比,取2,2-双[4-(2-羟乙氧基)苯基]丙烷20~30份,于210℃油浴中恒温熔融,加入均苯三甲酸,与0.1~0.5份辛酸亚锡;加热搅拌3.0~5.0h后,抽真空并保持强力搅 拌反应1.0~2.0h,反应结束后趁热倒入甲醇中沉淀,过滤后溶于四氢呋喃再次于甲醇中沉淀,于100℃下烘干40~60h,得到超支化聚酯固体;
四、制备木质素酚醛树脂胶黏剂
按重量份数比,取活化木质素20~30份,石英-负离子复合粉体24~40份,超支化聚酯固体1~5份,苯酚15~20份,氢氧化钠1~5份,甲醛20~25份,水20~50份,混合均匀加入反应器中,升温至80~100℃,恒温反应1~2h即可得到木质素酚醛树脂胶黏剂。
铜绿假单胞菌和凤尾菇固态发酵芦苇渣,能有效分解芦苇渣中的纤维素和木质素;铜绿假单胞菌发酵产生的鼠李糖脂能促进凤尾菇分泌漆酶对芦苇渣木质素的分解,活化提高木质素分子上羟甲基、酚羟基、醇羟基含量,从而提高木质素与酚醛树脂聚合度。
石英主要成分为二氧化硅,具有多孔性能,能负载更多的负氧离子,吸附游离甲醛和苯酚,同时负离子粉与空气中水分或者氧气接触,发生电离后释放负氧离子,提高空气质量;石英的多孔结构能很多的结合超支化聚酯,进一步提高酚醛树脂胶黏剂的聚合度。负离子加入量为4~8%之间时,甲醛净化率在91~94%之间,超过8%后净化率变化微小,但是负离子粉与石英粉的结合率随着负离子粉加入量的增大而减小,因此以4~8%为最好。
超支化聚酯具有高度支化的分子结构,基团种类多,溶解度高粘度低,能有效的提高酚醛树脂的聚合速度,提高树脂胶的强度;同时其基团种类多的特点,能更多的结合游离的苯酚和甲醛,降低苯酚和甲醛的释放从而提高环境安全;另一方面,酚醛树脂由于木质素和硅粉复合体的加入,影响成胶性能,利用超支化聚酯能消除这种影响。
作为本发明的进一步改进,步骤一(1)所述的铜绿假单胞菌先于活化培养基装液量为20%的锥形瓶中,接种量为5%,37℃、200rpm下活化培养12~16h。
作为本发明的进一步改进,所述活化培养基由以下浓度组分物质制备而成:菜籽油30g/L,玉米浆干粉6g/L,NaNO 3 6g/L,K 2HPO 4 0.9g/L,NaH 2PO 4 0.6g/L,MgSO 4 0.3g/L,CaCl 2 0.05g/L,NaCl 1.5g/L,调节pH至6.5~7.0即可。
最优培养基中,铜绿假单胞菌发酵得到的鼠李糖脂平均产量为30.41~34.52g/L。
作为本发明的进一步改进,步骤二(1)所述的粉石英矿细度为200~300目。
粉石英的粒度大小决定其分散性能和吸附性能,粒度越小分散越好但是吸附能力低,因此为了更好的分散同时吸附负离子粉,使用200~300目的石英粉最好。
作为本发明的进一步改进,步骤三所述的2,2-双[4-(2-羟乙氧基)苯基]丙烷与均苯三甲酸的摩尔比为(2~4)∶1。
两种单体的摩尔配比影响超支化聚酯分子量和末端基的超支化聚合物,2,2-双[4-(2- 羟乙氧基)苯基]丙烷与均苯三甲酸的摩尔比为2∶1时能获得末端基分散性大的聚酯,具有更多的结合位点(基团),从而促进树脂反应聚合速度和树脂的强度、耐磨性能。
作为本发明的进一步改进,步骤四所述的石英-负离子复合粉体与超支化聚酯固体用量比为(8~15)∶1。
超支化聚酯的含量影响树脂整体固化转化率,含量高树脂固化转化率低,含量低树脂结合强度和耐磨性能低,当超支化聚酯含量为5~15%时,酚醛树脂的固化转化率为95~98%,耐磨性能和结合强度变化率小,对整体树脂性能影响不大。
本发明的有益效果:
1、本发明制备工艺要求低,不需要高成本设备和原料,具有很好的经济效益;
2、本发明制备得的酚醛树脂胶黏剂安全可靠,甲醛释放量低,同时还能释放有益的负氧离子,对环境污染低,符合人们对环保材料的需求;
3、本发明制备的酚醛树脂胶黏剂抗磨性能高,固化速度快,所需的热压温度低,胶合强度高,具有优异的耐水耐气候性能。
具体实施方式
下面结合实施例对本发明进一步说明。
实施例1
一、制备活化木质素
(1)取芦苇茎叶,粉碎成芦苇渣,洒水对其进行湿润至含水量为60%,添加芦苇渣质量0.05%的吐温-80,混合均匀后装袋,接种铜绿假单胞菌进行无菌固态培养2天后,得到栽培基质,然后于栽培基质上接种凤尾菇菌,持续培养12天,培养温度保持在37℃;
所述的铜绿假单胞菌先于活化培养基装液量为20%的锥形瓶中,接种量为5%,37℃、200rpm下活化培养12h;所述活化培养基由以下浓度组分物质制备而成:菜籽油30g/L,玉米浆干粉6g/L,NaNO 3 6g/L,K 2HPO 4 0.9g/L,NaH 2PO 4 0.6g/L,MgSO 4 0.3g/L,CaCl 2 0.05g/L,NaCl 1.5g/L,调节pH至6.5;
(2)取培养成熟并摘除凤尾菇后的栽培基质,磨碎成粉,加入醋酸至pH为3,常温下反应45min,然后过滤除去固体残渣,得到活化木质素;
二、制备石英-负离子复合粉体
(1)按重量份数比将40份水、0.5份分散剂5040、0.2份消泡剂A10混合,先分散搅拌混匀,再加入细度为200目的粉石英矿至瓷衬球磨机中进行球磨,控制固液比为2∶1,选取球料比为3∶1的陶瓷球,依次加入0.3%的分散剂和0.1%的消泡剂,转速为70转/分钟、球磨 时间为3.0h,制备出粉石英浆体,然后加入羟乙基纤维素,防止粉石英浆体的沉降,得到的粉石英浆体;
(2)按重量份数比取40份水、5份羟乙基纤维溶液混合,将负离子粉按照固液比为1∶1的比例加入,然后转入立式搅拌磨,球料比为3∶1的陶瓷球,依次加入0.3%的分散剂5040和0.1%的消泡剂A10,球磨1h,得到负离子剂浆体;
(3)将粉石英浆体和负离子浆体按照质量比为12∶1混合,加入到砂磨机,球料比为3∶1的锆球湿法研磨30min,装入离心管中,用去离子水洗涤3~4次,常温下风干,得到石英-负离子复合粉体;
三、制备超支化聚酯
按质量份数比,取2,2-双[4-(2-羟乙氧基)苯基]丙烷20份,于210℃油浴中恒温熔融,加入均苯三甲酸(2,2-双[4-(2-羟乙氧基)苯基]丙烷与均苯三甲酸的摩尔比为2∶1),与0.1份辛酸亚锡;加热搅拌3.0h后,抽真空并保持强力搅拌反应1.0h,反应结束后趁热倒入甲醇中沉淀,过滤后溶于四氢呋喃再次于甲醇中沉淀,于100℃下烘干40h,得到超支化聚酯固体;
四、制备木质素酚醛树脂胶黏剂
按重量份数比,取活化木质素20份,石英-负离子复合粉体24份,超支化聚酯固体3份,苯酚15份,氢氧化钠1份,甲醛20份,水20份,混合均匀加入反应器中,升温至80℃,恒温反应1h即可得到木质素酚醛树脂胶黏剂;
实施例2
一、制备活化木质素
(1)取芦苇茎叶,粉碎成芦苇渣,洒水对其进行湿润至含水量为70%,添加芦苇渣质量0.15%的吐温-80,混合均匀后装袋,接种铜绿假单胞菌进行无菌固态培养3天后,得到栽培基质,然后于栽培基质上接种凤尾菇菌,持续培养16天,培养温度保持在45℃;
所述的铜绿假单胞菌先于活化培养基装液量为20%的锥形瓶中,接种量为5%,37℃、200rpm下活化培养16h;所述活化培养基由以下浓度组分物质制备而成:菜籽油30g/L,玉米浆干粉6g/L,NaNO 3 6g/L,K 2HPO 4 0.9g/L,NaH 2PO 4 0.6g/L,MgSO 4 0.3g/L,CaCl 2 0.05g/L,NaCl 1.5g/L,调节pH至7.0即可
(2)取培养成熟并摘除凤尾菇后的栽培基质,磨碎成粉,加入醋酸至pH为3.5,常温下反应60min,然后过滤除去固体残渣,得到活化木质素;
二、制备石英-负离子复合粉体
(1)按重量份数比将50份水、0.7份分散剂5040、0.3份消泡剂A10混合,先分散搅 拌混匀,再加入细度为300目的粉石英矿至瓷衬球磨机中进行球磨,控制固液比为5∶1,选取球料比为5∶1的陶瓷球,依次加入0.3%的分散剂和0.1%的消泡剂,转速为70转/分钟、球磨时间为4.0h,制备出粉石英浆体,然后加入羟乙基纤维素,防止粉石英浆体的沉降,得到的粉石英浆体;
(2)按重量份数比取50份水、10份羟乙基纤维溶液混合,将负离子粉按照固液比为1∶1的比例加入,然后转入立式搅拌磨,球料比为5∶1的陶瓷球,依次加入0.3%的分散剂5040和0.1%的消泡剂A10,球磨2h,得到负离子剂浆体;
(3)将粉石英浆体和负离子浆体按照质量比为25∶1混合,加入到砂磨机,球料比为5∶1的锆球湿法研磨60min,装入离心管中,用去离子水洗涤3~4次,常温下风干,得到石英-负离子复合粉体;
三、制备超支化聚酯
按质量份数比,取2,2-双[4-(2-羟乙氧基)苯基]丙烷30份,于210℃油浴中恒温熔融,加入均苯三甲酸(2,2-双[4-(2-羟乙氧基)苯基]丙烷与均苯三甲酸的摩尔比为2∶1),与0.5份辛酸亚锡;加热搅拌5.0h后,抽真空并保持强力搅拌反应2.0h,反应结束后趁热倒入甲醇中沉淀,过滤后溶于四氢呋喃再次于甲醇中沉淀,于100℃下烘干60h,得到超支化聚酯固体;
四、制备木质素酚醛树脂胶黏剂
按重量份数比,取活化木质素30份,石英-负离子复合粉体30份,超支化聚酯固体2份,苯酚20份,氢氧化钠5份,甲醛25份,水50份,混合均匀加入反应器中,升温至100℃,恒温反应2h即可得到木质素酚醛树脂胶黏剂。
实施例3
一、制备活化木质素
(1)取芦苇茎叶,粉碎成芦苇渣,洒水对其进行湿润至含水量为65%,添加芦苇渣质量0.1%的吐温-80,混合均匀后装袋,接种铜绿假单胞菌进行无菌固态培养3天后,得到栽培基质,然后于栽培基质上接种凤尾菇菌,持续培养14天,培养温度保持在40℃;
所述的铜绿假单胞菌先于活化培养基装液量为20%的锥形瓶中,接种量为5%,37℃、200rpm下活化培养14h;所述活化培养基由以下浓度组分物质制备而成:菜籽油30g/L,玉米浆干粉6g/L,NaNO 3 6g/L,K 2HPO 4 0.9g/L,NaH 2PO 4 0.6g/L,MgSO 4 0.3g/L,CaCl 2 0.05g/L,NaCl 1.5g/L,调节pH至6.5~7.0即可
(2)取培养成熟并摘除凤尾菇后的栽培基质,磨碎成粉,加入醋酸至pH为3.3,常温下反应50min,然后过滤除去固体残渣,得到活化木质素;
二、制备石英-负离子复合粉体
(1)按重量份数比将45份水、0.6份分散剂5040、0.25份消泡剂A10混合,先分散搅拌混匀,再加入细度为220目的粉石英矿至瓷衬球磨机中进行球磨,控制固液比为3∶1,选取球料比为4∶1的陶瓷球,依次加入0.3%的分散剂和0.1%的消泡剂,转速为70转/分钟、球磨时间为3.5h,制备出粉石英浆体,然后加入羟乙基纤维素,防止粉石英浆体的沉降,得到的粉石英浆体;
(2)按重量份数比取45份水、8份羟乙基纤维溶液混合,将负离子粉按照固液比为1∶1的比例加入,然后转入立式搅拌磨,球料比为4∶1的陶瓷球,依次加入0.3%的分散剂5040和0.1%的消泡剂A10,球磨1.5h,得到负离子剂浆体;
(3)将粉石英浆体和负离子浆体按照质量比为20∶1混合,加入到砂磨机,球料比为4∶1的锆球湿法研磨50min,装入离心管中,用去离子水洗涤3~4次,常温下风干,得到石英-负离子复合粉体;
三、制备超支化聚酯
按质量份数比,取2,2-双[4-(2-羟乙氧基)苯基]丙烷25份,于210℃油浴中恒温熔融,加入均苯三甲酸(2,2-双[4-(2-羟乙氧基)苯基]丙烷与均苯三甲酸的摩尔比为2∶1),与0.4份辛酸亚锡;加热搅拌4.0h后,抽真空并保持强力搅拌反应1.5h,反应结束后趁热倒入甲醇中沉淀,过滤后溶于四氢呋喃再次于甲醇中沉淀,于100℃下烘干50h,得到超支化聚酯固体;
四、制备木质素酚醛树脂胶黏剂
按重量份数比,取活化木质素25份,石英-负离子复合粉体40份,超支化聚酯固体5份,苯酚17份,氢氧化钠5份,甲醛23份,水45份,混合均匀加入反应器中,升温至90℃,恒温反应1.5h即可得到木质素酚醛树脂胶黏剂。
实施例4
一、制备活化木质素
(1)取芦苇茎叶,粉碎成芦苇渣,洒水对其进行湿润至含水量为62%,添加芦苇渣质量0.15%的吐温-80,混合均匀后装袋,接种铜绿假单胞菌进行无菌固态培养2天后,得到栽培基质,然后于栽培基质上接种凤尾菇菌,持续培养16天,培养温度保持在40℃;
所述的铜绿假单胞菌先于活化培养基装液量为20%的锥形瓶中,接种量为5%,37℃、200rpm下活化培养12h;所述活化培养基由以下浓度组分物质制备而成:菜籽油30g/L,玉米浆干粉6g/L,NaNO 3 6g/L,K 2HPO 4 0.9g/L,NaH 2PO 4 0.6g/L,MgSO 4 0.3g/L,CaCl 2 0.05g/L,NaCl 1.5g/L,调节pH至6.5~7.0即可
(2)取培养成熟并摘除凤尾菇后的栽培基质,磨碎成粉,加入醋酸至pH为3.3,常温下反应50min,然后过滤除去固体残渣,得到活化木质素;
二、制备石英-负离子复合粉体
(1)按重量份数比将42份水、0.5份分散剂5040、0.3份消泡剂A10混合,先分散搅拌混匀,再加入细度为220目的粉石英矿至瓷衬球磨机中进行球磨,控制固液比为2∶1,选取球料比为5∶1的陶瓷球,依次加入0.3%的分散剂和0.1%的消泡剂,转速为70转/分钟、球磨时间为3.0h,制备出粉石英浆体,然后加入羟乙基纤维素,防止粉石英浆体的沉降,得到的粉石英浆体;
(2)按重量份数比取40份水、10份羟乙基纤维溶液混合,将负离子粉按照固液比为1∶1的比例加入,然后转入立式搅拌磨,球料比为5∶1的陶瓷球,依次加入0.3%的分散剂5040和0.1%的消泡剂A10,球磨2.0h,得到负离子剂浆体;
(3)将粉石英浆体和负离子浆体按照质量比为15∶1混合,加入到砂磨机,球料比为5∶1的锆球湿法研磨60min,装入离心管中,用去离子水洗涤3~4次,常温下风干,得到石英-负离子复合粉体;
三、制备超支化聚酯
按质量份数比,取2,2-双[4-(2-羟乙氧基)苯基]丙烷25份,于210℃油浴中恒温熔融,加入均苯三甲酸(2,2-双[4-(2-羟乙氧基)苯基]丙烷与均苯三甲酸的摩尔比为2∶1),与0.4份辛酸亚锡;加热搅拌5.0h后,抽真空并保持强力搅拌反应1.0h,反应结束后趁热倒入甲醇中沉淀,过滤后溶于四氢呋喃再次于甲醇中沉淀,于100℃下烘干40h,得到超支化聚酯固体;
四、制备木质素酚醛树脂胶黏剂
按重量份数比,取活化木质素30份,石英-负离子复合粉体40份,超支化聚酯固体4份,苯酚20份,氢氧化钠6份,甲醛25份,水30份,混合均匀加入反应器中,升温至90℃,恒温反应1.5h即可得到木质素酚醛树脂胶黏剂。
实施例5
一、制备活化木质素
(1)取芦苇茎叶,粉碎成芦苇渣,洒水对其进行湿润至含水量为65%,添加芦苇渣质量0.15%的吐温-80,混合均匀后装袋,接种铜绿假单胞菌进行无菌固态培养3天后,得到栽培基质,然后于栽培基质上接种凤尾菇菌,持续培养16天,培养温度保持在40℃;
所述的铜绿假单胞菌先于活化培养基装液量为20%的锥形瓶中,接种量为5%,37℃、200rpm下活化培养12h;所述活化培养基由以下浓度组分物质制备而成:菜籽油30g/L,玉 米浆干粉6g/L,NaNO 3 6g/L,K 2HPO 4 0.9g/L,NaH 2PO 4 0.6g/L,MgSO 4 0.3g/L,CaCl 2 0.05g/L,NaCl 1.5g/L,调节pH至6.5;
(2)取培养成熟并摘除凤尾菇后的栽培基质,磨碎成粉,加入醋酸至pH为3.5,常温下反应60min,然后过滤除去固体残渣,得到活化木质素;
二、制备石英-负离子复合粉体
(1)按重量份数比将45份水、0.7份分散剂5040、0.3份消泡剂A10混合,先分散搅拌混匀,再加入细度为300目的粉石英矿至瓷衬球磨机中进行球磨,控制固液比为4∶1,选取球料比为4∶1的陶瓷球,依次加入0.3%的分散剂和0.1%的消泡剂,转速为70转/分钟、球磨时间为4.0h,制备出粉石英浆体,然后加入羟乙基纤维素,防止粉石英浆体的沉降,得到的粉石英浆体;
(2)按重量份数比取45份水、10份羟乙基纤维溶液混合,将负离子粉按照固液比为1∶1的比例加入,然后转入立式搅拌磨,球料比为5∶1的陶瓷球,依次加入0.3%的分散剂5040和0.1%的消泡剂A10,球磨2h,得到负离子剂浆体;
(3)将粉石英浆体和负离子浆体按照质量比为15∶1混合,加入到砂磨机,球料比为3∶1的锆球湿法研磨50min,装入离心管中,用去离子水洗涤3~4次,常温下风干,得到石英-负离子复合粉体;
三、制备超支化聚酯
按质量份数比,取2,2-双[4-(2-羟乙氧基)苯基]丙烷30份,于210℃油浴中恒温熔融,加入均苯三甲酸(2,2-双[4-(2-羟乙氧基)苯基]丙烷与均苯三甲酸的摩尔比为2∶1),与0.5份辛酸亚锡;加热搅拌4.0h后,抽真空并保持强力搅拌反应2.0h,反应结束后趁热倒入甲醇中沉淀,过滤后溶于四氢呋喃再次于甲醇中沉淀,于100℃下烘干48h,得到超支化聚酯固体;
四、制备木质素酚醛树脂胶黏剂
按重量份数比,取活化木质素30份,石英-负离子复合粉体30份,超支化聚酯固体3份,苯酚20份,氢氧化钠5份,甲醛25份,水40份,混合均匀加入反应器中,升温至80℃,恒温反应1h即可得到木质素酚醛树脂胶黏剂;
由实施例1~5制备得到的木质素酚醛树脂胶黏剂性能如表1。
表1 实施例酚醛树脂胶黏剂性能
Figure PCTCN2018000045-appb-000001
Figure PCTCN2018000045-appb-000002
由表1数据可知,本发明制得的木质素酚醛树脂胶黏剂甲醛释放量和游离苯酚符合国家标准,胶合强度满足国家I类和II类板要求,有优异的耐磨性能、防水和耐气候性能。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (6)

  1. 一种木质素酚醛树脂胶黏剂的制备方法,其特征在于,由以下步骤制备而得:
    一、制备活化木质素
    (1)取芦苇茎叶,粉碎成芦苇渣,洒水对其进行湿润至含水量为60~70%,添加芦苇渣质量0.05~0.15%的吐温-80,混合均匀后装袋,接种铜绿假单胞菌进行无菌固态培养2~3天后,得到栽培基质,然后于栽培基质上接种凤尾菇菌,持续培养12~16天,培养温度保持在37~45℃;
    (2)取培养成熟并摘除凤尾菇后的栽培基质,磨碎成粉,加入醋酸至pH为3~3.5,常温下反应45~60min,然后过滤除去固体残渣,得到活化木质素;
    二、制备石英-负离子复合粉体
    (1)按重量份数比将40~50份水、0.5~0.7份分散剂5040、0.2~0.3份消泡剂A10混合,先分散搅拌混匀,再加入粉石英矿至瓷衬球磨机中进行球磨,控制固液比为(2~5)∶1,选取球料比为(3~5)∶1的陶瓷球,依次加入0.3%的分散剂和0.1%的消泡剂,转速为70转/分钟、球磨时间为3.0~4.0h,制备出粉石英浆体,然后加入羟乙基纤维素,防止粉石英浆体的沉降,得到的粉石英浆体;
    (2)按重量份数比取40~50份水、5~10份羟乙基纤维溶液混合,将负离子粉按照固液比为1∶1的比例加入,然后转入立式搅拌磨,球料比为(3~5)∶1的陶瓷球,依次加入0.3%的分散剂5040和0.1%的消泡剂A10,球磨1~2h,得到负离子剂浆体;
    (3)将粉石英浆体和负离子浆体按照质量比为(12~25)∶1混合,加入到砂磨机,球料比为(3~5)∶1的锆球湿法研磨30~60min,装入离心管中,用去离子水洗涤3~4次,常温下风干,得到石英-负离子复合粉体;
    三、制备超支化聚酯
    按质量份数比,取2,2-双[4-(2-羟乙氧基)苯基]丙烷20~30份,于210℃油浴中恒温熔融,加入均苯三甲酸,与0.1~0.5份辛酸亚锡;加热搅拌3.0~5.0h后,抽真空并保持强力搅拌反应1.0~2.0h,反应结束后趁热倒入甲醇中沉淀,过滤后溶于四氢呋喃再次于甲醇中沉淀,于100℃下烘干40~60h,得到超支化聚酯固体;
    四、制备木质素酚醛树脂胶黏剂
    按重量份数比,取活化木质素20~30份,石英-负离子复合粉体24~40份,超支化聚酯固体1~5份,苯酚15~20份,氢氧化钠1~5份,甲醛20~25份,水20~50份,混合均匀加入反应器中,升温至80~100℃,恒温反应1~2h即可得到木质素酚醛树脂胶黏剂。
  2. 根据权利要求1所述的木质素酚醛树脂胶黏剂的制备方法,其特征在于:步骤一(1)所述的铜绿假单胞菌先于活化培养基装液量为20%的锥形瓶中,接种量为5%,37℃、200rpm 下活化培养12~16h。
  3. 根据权利要求1所述的木质素酚醛树脂胶黏剂的制备方法,其特征在于:步骤二(1)所述的粉石英矿细度为200~300目。
  4. 根据权利要求1所述的木质素酚醛树脂胶黏剂的制备方法,其特征在于:步骤三所述的2,2-双[4-(2-羟乙氧基)苯基]丙烷与均苯三甲酸的摩尔比为(2~4)∶1。
  5. 根据权利要求1所述的木质素酚醛树脂胶黏剂的制备方法,其特征在于:步骤四所述的石英-负离子复合粉体与超支化聚酯固体用量比为(8~15)∶1。
  6. 根据权利要求2所述的木质素酚醛树脂胶黏剂的制备方法,其特征在于:所述活化培养基由以下浓度组分物质制备而成:菜籽油30g/L,玉米浆干粉6g/L,NaNO 36g/L,K 2HPO 40.9g/L,NaH 2PO 40.6g/L,MgSO 40.3g/L,CaCl 20.05g/L,NaCl 1.5g/L,调节pH至6.5~7.0即可。
PCT/CN2018/000045 2017-11-28 2018-01-25 木质素酚醛树脂胶黏剂的制备方法 WO2019104815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711212549.7 2017-11-28
CN201711212549.7A CN107841270B (zh) 2017-11-28 2017-11-28 木质素酚醛树脂胶黏剂的制备方法

Publications (1)

Publication Number Publication Date
WO2019104815A1 true WO2019104815A1 (zh) 2019-06-06

Family

ID=61680600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000045 WO2019104815A1 (zh) 2017-11-28 2018-01-25 木质素酚醛树脂胶黏剂的制备方法

Country Status (2)

Country Link
CN (1) CN107841270B (zh)
WO (1) WO2019104815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521910A (zh) * 2020-12-10 2021-03-19 合肥学院 一种海绵用高强度生物基粘合剂的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109181612B (zh) * 2018-09-14 2021-02-02 齐鲁工业大学 一种耐水性生物基胶黏剂及其制备方法
CN111909646B (zh) * 2020-08-07 2021-12-17 湖南福湘木业有限责任公司 一种大豆基胶粘剂防霉改性的方法
CN114919032B (zh) * 2022-04-07 2023-01-10 江苏苏林木业有限公司 采用木质素胶黏剂生产密度板的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106854264A (zh) * 2016-12-02 2017-06-16 江南大学 一种稻壳基木质素改性酚醛树脂胶黏剂制备方法
CN107337774A (zh) * 2017-08-14 2017-11-10 吉林大学 一种糠醛改性木质素基酚醛树脂胶黏剂的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865803A (en) * 1972-05-25 1975-02-11 Westvaco Corp Modified lignin surfactants
WO2005021714A2 (en) * 2003-08-11 2005-03-10 Diversa Corporation Laccases, nucleic acids encoding them and methods for making and using them
CN101138576B (zh) * 2007-08-15 2013-04-10 李红玉 一种党参发酵液及其应用
CN104140508B (zh) * 2013-05-09 2016-08-03 东北林业大学 一种酶解木质素基酚醛树脂的制备方法
CN103361013B (zh) * 2013-08-08 2014-07-23 周广胜 一种复合酚醛胶组合物及其应用方法
CN104817666A (zh) * 2015-05-07 2015-08-05 江苏乾翔新材料科技有限公司 一种利用胰岛素碱木质素制作酚醛泡沫的工艺
CN105949955A (zh) * 2016-06-08 2016-09-21 合肥市燕美粉末涂料有限公司 一种暖气片表面用粉末涂料及其制备方法
CN106589799A (zh) * 2016-12-16 2017-04-26 沙县宏盛塑料有限公司 一种木质素改性的酚醛树脂基复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106854264A (zh) * 2016-12-02 2017-06-16 江南大学 一种稻壳基木质素改性酚醛树脂胶黏剂制备方法
CN107337774A (zh) * 2017-08-14 2017-11-10 吉林大学 一种糠醛改性木质素基酚醛树脂胶黏剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANNEGRET HAARS: "Room-Temperature Curing Adhesives Based on Lignin and Phenoloxidases", ACS SYMPOSIUM SERIES- AMERICAN CHEMICAL SOCIETY, 31 December 1989 (1989-12-31), pages 126 - 134, XP055616492 *
OUYANG, XINPING ET AL.: "Preparation of Lignin-modified Phenol-Formaldehyde Resin Adhesive", JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY, vol. 39, no. 11, 15 November 2011 (2011-11-15), pages 22 - 26, 39 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521910A (zh) * 2020-12-10 2021-03-19 合肥学院 一种海绵用高强度生物基粘合剂的制备方法
CN112521910B (zh) * 2020-12-10 2022-07-12 合肥学院 一种海绵用高强度生物基粘合剂的制备方法

Also Published As

Publication number Publication date
CN107841270B (zh) 2020-02-25
CN107841270A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2019104815A1 (zh) 木质素酚醛树脂胶黏剂的制备方法
CN108623833B (zh) 一种多功能复合气凝胶材料的制备方法
WO2019104817A1 (zh) 一种木质素酚醛树脂泡沫材料的制备方法
CN104961368A (zh) 一种工艺简单的改性粉煤灰的方法
CN111944065B (zh) 一种生物质板材及其制备方法
CN110283284A (zh) 一种高导热的改性环氧树脂及其制备方法
CN108751770B (zh) 一种水泥助磨剂及其制备方法
CN102649573A (zh) 改善凹凸棒黏土纳米材料团聚的制备方法
CN107674465B (zh) 一种增强环保硅藻泥涂料的制备方法
CN102995496A (zh) 一种汽油滤清器用滤纸及其制备方法
CN110003494B (zh) 一种木质素粉末及其制备方法
CN106046924B (zh) 一种耐磨型uv固化油墨组合物的制备方法
CN102604453B (zh) 一种木器纳米复合专用封闭漆及其制备方法
WO2023061354A1 (zh) 一种高分子复合材料添加剂及其应用
CN111187448A (zh) 一种油页岩半焦基复合阻燃剂及其制备方法和在高分子材料中的应用
CN103555236B (zh) 一种高粘结性酚醛复合胶粘剂及其制备方法
CN112876827B (zh) 一种具备抗菌和电磁屏蔽性能的高强度聚乳酸功能复合材料及其制备方法
CN113248206B (zh) 一种水泥基聚氨酯复合保温板及其制备方法
CN112144316B (zh) 一种纳米纤维素改性丙烯酸树脂及其制备方法和装饰纸
CN113025073B (zh) 一种木质素/二氧化钛杂化复合纳米材料及其制备方法与应用
CN111925561A (zh) 一种生物质橡胶防老剂及其制备方法与应用
CN114369289B (zh) 一种石墨烯-碳酸钙纳米复合粉体及其制备方法
CN104293288A (zh) 木质素耐高温纤维板胶黏剂及其生产方法
CN113855856B (zh) 一种改性纤维素纳米纤维增质pdms-bg骨修复材料的制备方法
CN116333549B (zh) 一种基于功能化MXene的聚合物水泥防腐涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884542

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18884542

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 21.07.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18884542

Country of ref document: EP

Kind code of ref document: A1