WO2019104655A1 - 分子筛催化剂改性装置及方法 - Google Patents

分子筛催化剂改性装置及方法 Download PDF

Info

Publication number
WO2019104655A1
WO2019104655A1 PCT/CN2017/113984 CN2017113984W WO2019104655A1 WO 2019104655 A1 WO2019104655 A1 WO 2019104655A1 CN 2017113984 W CN2017113984 W CN 2017113984W WO 2019104655 A1 WO2019104655 A1 WO 2019104655A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
molecular sieve
sieve catalyst
catalyst
modification
Prior art date
Application number
PCT/CN2017/113984
Other languages
English (en)
French (fr)
Inventor
张涛
叶茂
刘中民
张今令
唐海龙
贾金明
王贤高
张骋
李华
赵银峰
李承功
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to KR1020207016343A priority Critical patent/KR102443025B1/ko
Priority to EP17933606.0A priority patent/EP3718623A4/en
Priority to SG11202004970XA priority patent/SG11202004970XA/en
Priority to US16/767,238 priority patent/US11712675B2/en
Priority to JP2020526941A priority patent/JP7038820B2/ja
Priority to RU2020121739A priority patent/RU2752947C1/ru
Priority to PCT/CN2017/113984 priority patent/WO2019104655A1/zh
Publication of WO2019104655A1 publication Critical patent/WO2019104655A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/002Feeding of the particles in the reactor; Evacuation of the particles out of the reactor with a moving instrument
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/085Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/087Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • B01J8/125Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow with multiple sections one above the other separated by distribution aids, e.g. reaction and regeneration sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00398Controlling the temperature using electric heating or cooling elements inside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof

Definitions

  • the present application relates to a molecular sieve catalyst modification device and a method for using the same, and belongs to the field of chemical engineering.
  • Ethylene and propylene are the cornerstones of the vast petrochemical industry, and most organic chemicals are derived from ethylene and propylene.
  • Para-xylene (PX) is a raw material for producing polyesters such as PET (polyethylene terephthalate), PBT (polybutylene terephthalate) and PTT (polytrimethylene terephthalate).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • the source of PX is mainly prepared by disproportionation, isomerization and separation by adsorption or cryogenic separation using toluene, C9 aromatic hydrocarbon and mixed xylene obtained by naphtha reforming.
  • the equipment investment is large and the operation cost is high.
  • p-xylene since the content of p-xylene in the product is thermodynamically controlled, p-xylene only accounts for about 20% of the xylene isomer, and the boiling points of the three xylene isomers are small, which cannot be obtained by ordinary distillation techniques. Purity p-xylene must use an expensive adsorption separation process.
  • the method uses toluene and methanol as raw materials, and the PX selectivity in the reaction product is high, which can avoid expensive use in the production process.
  • the adsorption separation technology can obtain high-purity p-xylene by simple crystallization separation, and the benzene content in the product is low.
  • USP 4,250,345 discloses the use of a phosphorus and magnesium modified ZSM-5 molecular sieve catalyst with an optimum selectivity for p-xylene in its isomer of about 98% at 450 °C.
  • the HZSM-5 molecular sieve catalyst modified by alkaline earth metal, non-metal, rare earth metal and siloxane-based compound has low toluene conversion rate.
  • the preparation process of the catalyst is complicated, and multiple modification and baking processes are required. Therefore, the development of a new catalyst preparation method and preparation apparatus for preparing p-xylene and olefin from methanol, benzene and/or toluene has very important significance and significant practical applicability.
  • a molecular sieve catalyst modification device capable of modifying a molecular sieve catalyst to obtain a modified catalyst capable of catalyzing two reactions of methanol conversion to olefin and methanol toluene alkylation to p-xylene
  • the device includes a feed unit 1, a modification unit 2, and a cooling unit 3 that are sequentially connected;
  • the feed unit comprises a catalyst feed unit 11 and a modifier feed unit 12, the catalyst feed unit and the modifier feed unit respectively introducing a catalyst and a modifier into the modified unit 2. Both of them are discharged from the reforming unit after the reforming unit is sufficiently reacted and enter the cooling unit 3 for cooling.
  • the catalyst feed unit 11 comprises a feed bin 111, a conveyor 112, and the conveyor 112 is connected to the reforming unit inlet 22 of the reforming unit 2;
  • the conveyor 112 is a screw conveyor
  • the modifier feeding unit 12 includes a modifier metering pump 121 and a preheater 122, and an outlet of the preheater 122 is connected to the reforming unit feed distributor 24 of the modifying unit 2;
  • an inert gas conduit 123 and an air conduit 124 are disposed between the modifier metering pump 121 and the preheater 122.
  • the modifying unit 2 comprises a modifying unit reactor 21, a modifying unit inlet 22, a modifying unit outlet 23, a reforming unit feed distributor 24, a heater 25 and an exhaust port 26;
  • the modified unit reactor 21 is a fluidized bed reactor, the modified unit An inlet 22 is disposed in a middle portion of the reforming unit reactor 21; the reforming unit outlet 23 is disposed at a bottom portion of a side wall of the reforming unit reactor 21; and the reforming unit feed distributor 24 is disposed at a bottom portion of the reforming unit reactor 21; the heater 25 is disposed inside the reforming unit reactor 21 and located below the reforming unit inlet 22; the exhaust port 26 is disposed in the The top of the reforming unit reactor 21, preferably, the exhaust port 26 is connected to the exhaust gas treatment device;
  • a modified unit gas-solid separation device 27 is disposed below the exhaust port 26 inside the reactor 21.
  • the cooling unit 3 includes a cooling unit reactor 31, a cooling unit inlet 32, a cooling unit outlet 33, a cooling unit feed distributor 34, a heat extractor 35, and a cooling unit exhaust port 36;
  • the cooling unit reactor is a fluidized bed reactor, the cooling unit inlet 32 is disposed at a middle portion of the cooling unit reactor 31; and the cooling unit outlet 33 is disposed at a side of the cooling unit reactor 31 a bottom portion of the wall; the reforming unit feed distributor 34 is disposed at a bottom of the cooling unit reactor 31; the heat extractor 35 is disposed inside the cooling unit reactor 31, and is located at the reforming unit Below the inlet 32; the cooling unit exhaust port 36 is disposed at the top of the cooling unit reactor 31, preferably, the exhaust port 36 is connected to the exhaust gas treatment device;
  • a cooling unit gas-solid separation device 37 is disposed below the cooling unit exhaust port 36 inside the cooling unit reactor 31.
  • the modified unit feed distributor 24 is selected from any one of a powder metallurgy sintered plate distributor, a multi-tube distributor, and a hood distributor.
  • the heater 25 is selected from at least one of an electric heater and a high temperature gas heater.
  • the modified unit gas-solid separator 27 is selected from at least one of a cyclone and a filter.
  • the cooling unit feed distributor 34 is selected from any one of a powder metallurgy sintered plate distributor, a multi-tube distributor, and a hood distributor.
  • the heat extractor 35 is selected from at least one of a cooling water heat extractor and a cooling air heat extractor.
  • the modified unit gas-solid separator 37 is selected from at least one of a cyclone and a filter.
  • a molecular sieve catalyst modification method which uses at least one of the molecular sieve catalyst modification devices provided by the present invention
  • the method comprises introducing a catalyst and a modifier into the modifying unit (2) respectively through the feeding unit (1), wherein the catalyst is modified by the modifier in the modifying unit (2), and then discharged to The cooling unit (3) is cooled in the cooling unit (3) until the temperature is lower than 50 ° C, and then the cooled modified catalyst is output to any storage device.
  • the introduced catalyst is subjected to an activation treatment in the modifying unit (2) before the modification, and the activation treatment specifically comprises:
  • the catalyst is activated at an activation treatment temperature for an activation time of 0.5 h to 3 h.
  • the air in the reforming unit (2) is replaced with an inert gas, and the replacement time is greater than 5 min;
  • the replacement is completed.
  • a modifier is introduced which is heated and vaporized prior to introduction and introduced into the modifying unit (2) by inert gas.
  • the modification is carried out under an inert gas atmosphere at a temperature of from 150 ° C to 600 ° C and a modification time of from 0 to 10 h.
  • the modified catalyst is first calcined and then discharged to a cooling unit.
  • the calcination is carried out under an air atmosphere at a calcination temperature of 400 to 700 ° C and a calcination time of 1 to 6 h.
  • the molecular sieve catalyst is selected from any one of HZSM-5 and HZSM-11 molecular sieve catalysts.
  • the modifier is at least one selected from the group consisting of a phosphorus reagent, a silylating agent, and toluene.
  • the phosphorus reagent is selected from at least one of the compounds having the formula of formula I:
  • R 1 , R 2 and R 3 are independently selected from a C 1 - C 10 alkyl group or a C 1 - C 10 alkoxy group.
  • At least one of R 1 , R 2 and R 3 in the formula I is selected from a C 1 -C 10 alkoxy group;
  • the phosphorus reagent is at least one selected from the group consisting of trimethoxyphosphine, triethoxyphosphine, tripropoxyphosphine, tributoxyphosphine, and methyldiethoxyphosphine.
  • the silylating agent is selected from the group consisting of at least one selected from the group consisting of compounds having the formula of formula II:
  • R 4 , R 5 , R 6 and R 7 are independently selected from a C1 to C10 alkyl group and a C1 to C10 alkoxy group.
  • At least one of R 4 , R 5 , R 6 and R 7 in the formula I is selected from a C1-C10 alkoxy group.
  • the silylating agent is at least one selected from the group consisting of tetramethyl silicate, tetraethyl silicate, tetrapropyl silicate, and tetrabutyl silicate.
  • the modifier has a phosphorus reagent content of from 1% to 10% by weight of the total mass of the mixture.
  • the modifier has a silylating agent content of from 1% to 40% by weight based on the total mass of the mixture.
  • the reforming reactor adopts a fluidized bed reactor, and thus the catalyst is in a state of full mixed flow, and the prepared catalyst has uniform performance and high activity;
  • the apparatus provided by the present application and the method of using the same can be used for industrial scale and continuous modification of p-xylene and olefin catalysts for methanol, benzene and/or toluene;
  • the catalyst obtained by the modification has high raw material conversion rate and high p-xylene selectivity, and the conversion ratio of benzene and/or toluene is more than 30 wt.%.
  • the methanol conversion is greater than 80 wt.%, the total selectivity of (ethylene + propylene + butene + para-xylene) is greater than 75 wt.%, and the selectivity of para-xylene in the xylene isomer is greater than 90 wt.%.
  • 1 is a schematic view showing the structure of a molecular sieve catalyst modification device of the present application.
  • Toluene is purchased from Sinopec Qilu Branch, a superior grade product.
  • Trimethoxy phosphine, triethoxy phosphine, tripropoxy phosphine, tributoxy phosphine and methyl diethoxy phosphine were purchased from Wuhan Zeshancheng Biomedical Technology Co., Ltd., purity: 99%.
  • Tetramethyl silicate, tetraethyl silicate, tetrapropyl silicate and tetrabutyl silicate were purchased from Shandong Wanda Silicone New Materials Co., Ltd., purity: 99%.
  • the reactor feed distributor is a powder metallurgy sintered plate distributor
  • the reactor heater is an electric heater
  • the reactor gas-solid separator is a cyclone separator
  • the cooler gas distributor is a powder metallurgy sintered plate distributor
  • the cooler heat extractor is a cooling water heat extractor
  • the cooler gas-solid separator is a cyclone separator
  • the catalyst was a HZSM-5 molecular sieve catalyst.
  • the modifier is a mixture of a phosphorus reagent, a silylating agent, and toluene.
  • the phosphorus reagent is trimethoxyphosphorus; and the silylating reagent is tetramethyl silicate.
  • the phosphorus reagent content of the modifier is 2% of the total mass of the mixture, and the silylation reagent content is 20% of the total mass of the mixture.
  • the activation temperature is 650 ° C
  • the activation time is 3 h
  • the modification temperature is 600 ° C
  • the modification time is 2 h
  • the calcination temperature is 700 ° C
  • the calcination time is 1 h.
  • the modified catalyst prepared in this example was named CAT-1.
  • the reactor feed distributor is a multi-tube distributor
  • the reactor heater is a high temperature gas heater
  • the reactor gas-solid separator is a filter.
  • the cooler gas distributor is a multi-tube distributor
  • the cooler heat collector is a cooling air heater
  • the cooler gas-solid separator is a filter
  • the catalyst is a HZSM-11 molecular sieve catalyst.
  • the modifier is a mixture of a phosphorus reagent, a silylating agent, and toluene.
  • the phosphorus reagent is trimethoxyphosphorus; and the silylating reagent is tetraethyl silicate.
  • the phosphorus reagent content of the modifier is 5% of the total mass of the mixture, and the silylation reagent content is 40% of the total mass of the mixture.
  • the activation temperature is 500 ° C
  • the activation time is 3 h
  • the modification temperature is 500 ° C
  • the modification time is 3 h
  • the calcination temperature is 600 ° C
  • the calcination time is 2 h.
  • the modified catalyst prepared in this example was named CAT-2.
  • the reactor feed distributor is a hood type distributor
  • the reactor heater is a high temperature gas heater
  • the reactor gas-solid separator is a filter.
  • the cooler gas distributor is a hood type distributor
  • the cooler heat extractor is a cooling water heat extractor
  • the cooler gas-solid separator is a filter.
  • the catalyst was a HZSM-5 molecular sieve catalyst.
  • the modifier is a mixture of a phosphorus reagent, a silylating agent, and toluene.
  • the phosphorus reagent is trimethoxyphosphorus; and the silylating reagent is tetramethyl silicate.
  • the phosphorus reagent content of the modifier is 5% of the total mass of the mixture, and the silylation reagent content is 40% of the total mass of the mixture.
  • the activation temperature is 400 ° C ° C
  • the activation time is 3 h
  • the modification temperature is 400 ° C
  • the modification time is 5 h
  • the calcination temperature is 400 ° C ° C
  • the calcination time is 6 h.
  • the modified catalyst prepared in this example was named CAT-3.
  • the reactor feed distributor is a powder metallurgy sintered plate distributor
  • the reactor heater is an electric heater
  • the reactor gas-solid separator is a cyclone separator
  • the cooler gas distributor is a powder metallurgy sintered plate distributor.
  • the cooler heat extractor is a cooling air heat extractor, and the cooler gas-solid separator is a cyclone separator.
  • the catalyst is a HZSM-11 molecular sieve catalyst.
  • the modifier is a mixture of a phosphorus reagent, a silylating agent, and toluene.
  • the phosphorus reagent is trimethoxyphosphorus; and the silylating reagent is tetraethyl silicate.
  • the phosphorus reagent content of the modifier is 1% of the total mass of the mixture, and the silylation reagent content is 10% of the total mass of the mixture.
  • the activation temperature is 500 ° C
  • the activation time is 0.5 h
  • the modification temperature is 300 ° C
  • the modification time is 8 h
  • the calcination temperature is 600 ° C
  • the calcination time is 2 h.
  • the modified catalyst prepared in this example was named CAT-4.
  • the methanol and benzene and/or toluene including three raw materials:
  • Methanol reacts with benzene, methanol reacts with toluene, and methanol reacts with benzene and toluene.
  • reaction results were tested under the following conditions: the raw materials were fed with a micro feed pump, the catalyst loading was 10 g, the reaction temperature was 500 ° C, and the reaction pressure was normal pressure.
  • the reaction product was analyzed by on-line Agilent 7890 gas chromatography, and the reaction was sampled at 10 min.
  • the reaction conditions and results are shown in Table 1.
  • Methanol conversion (mass of methanol in the feed - the mass of methanol in the reaction product) / mass of methanol in the feed
  • Benzene conversion (mass of benzene in the raw material - mass of benzene in the reaction product) / mass of benzene in the raw material
  • Toluene conversion (mass of toluene in the feed - mass of toluene in the reaction product) / mass of toluene in the feedstock
  • Total selectivity of (ethylene + propylene + butene + p-xylene) sum of masses of ethylene, propylene, butene and p-xylene in the reaction product / (total mass of reaction product - mass of methanol in reaction product - reaction product The mass of benzene - the mass of toluene in the reaction product - the mass of water in the reaction product)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本申请公开了一种分子筛催化剂改性装置,所述装置包括依次连接的进料单元1、改性单元2和冷却单元3;其中,所述进料单元包括催化剂进料单元11和改性剂进料单元12,所述催化剂进料单元和所述改性剂进料单元分别将催化剂和改性剂引入所述改性单元2,二者在改性单元充分反应后从所述改性单元排出并进入冷却单元3冷却。本申请还公开了所述的分子筛催化剂改性装置的使用方法,所述使用方法包括,通过进料单元1,将催化剂和改性剂分别引入改性单元2,在改性单元2中催化剂经改性剂改性后,排出至冷却单元3,在所述冷却单元3中降温至温度低于50℃后将冷却后的改性催化剂输出至任意储料装置。

Description

分子筛催化剂改性装置及方法 技术领域
本申请涉及一种分子筛催化剂改性装置及其使用方法,属于化工领域。
背景技术
乙烯和丙烯是庞大的石油化工产业的基石,绝大多数有机化工产品都是由乙烯和丙烯衍生而来。对二甲苯(PX)是生产PET(聚对苯二甲酸乙二醇酯),PBT(聚对苯二甲酸丁二醇酯)和PTT(聚对苯二甲酸丙二醇酯)等聚酯的原料。近年来聚酯在纺织服装、饮料包装等领域的大量应用带动了PTA(精对苯二甲酸)以及上游产品PX产量和消费量的快速增长。目前,PX来源是主要采用石脑油重整得到的甲苯、C9芳烃及混合二甲苯为原料通过歧化、异构化并通过吸附分离或深冷分离而制取,设备投资大,操作费用高。由于产物中对二甲苯的含量受热力学控制,对二甲苯在二甲苯异构体中只占20%左右,而三个二甲苯异构体的沸点相差很小,采用普通的蒸馏技术不能得到高纯度对二甲苯,必须采用昂贵的吸附分离工艺。
USP3911041,USP4049573和USP4100219等专利公开了使用磷、镁、硅等改性的HZSM-5催化剂上甲醇转化制取烯烃的反应;USP5367100和USP5573990公开了中科院大连化学物理研究所使用磷、镧改性的HZSM-5分子筛催化剂上由甲醇或二甲醚制取低碳烯烃的反应。自20世纪70年代以来,国内外相继开展了甲苯甲醇烷基化制对二甲苯技术的研究,该方法以甲苯、甲醇为原料,反应产物中PX选择性高,其生产过程中可避免使用昂贵的吸附分离技术,通过简单的结晶分离即可获得高纯度的对二甲苯,产物中苯含量低。USP4250345公开了使用磷和镁改性的ZSM-5分子筛催化剂,在450℃条件下对二甲苯在其异构体中的最佳选择性约为98%。上述报道表明,在HZSM-5分子筛催化剂上,既可实现甲醇转化制取低碳烯烃反应,也可实现甲醇甲苯烷基化制对二甲苯反应。然而,由于两个反应过程 不同,其催化剂物化性质也存在较大差异。因此,采用适宜的改性方法制备一种催化剂可同时满足甲醇转化制烯烃和甲醇甲苯烷基化制对二甲苯两个反应的要求,就可实现使用同一个催化剂同时生产烯烃(乙烯、丙烯、丁烯)和对二甲苯。采用碱土金属、非金属、稀土金属以及硅氧烷基化合物修饰的HZSM-5分子筛催化剂,甲苯转化率较低;另外,该催化剂制备过程复杂,需要进行多次改性、焙烧过程。因此,发展新的由甲醇、苯和/或甲苯制取对二甲苯和烯烃的催化剂的制备方法和制备装置具有非常重要的意义和显著的实际应用性。
发明内容
根据本申请的一个方面,提供一种分子筛催化剂改性装置,该装置能够对分子筛催化剂进行改性,得到能够催化甲醇转化制烯烃和甲醇甲苯烷基化制对二甲苯两个反应的改性催化剂,所述装置包括依次连接的进料单元1、改性单元2和冷却单元3;
其中,所述进料单元包括催化剂进料单元11和改性剂进料单元12,所述催化剂进料单元和所述改性剂进料单元分别将催化剂和改性剂引入所述改性单元2,二者在改性单元充分反应后从所述改性单元排出并进入冷却单元3冷却。
优选地,所述催化剂进料单元11包括进料仓111、输送器112,所述输送器112与所述改性单元2的改性单元入口22连接;
优选地,输送器112为螺旋输送器;
所述改性剂进料单元12包括改性剂计量泵121和预热器122,所述预热器122的出口与所述改性单元2的改性单元进料分布器24连接;
优选地,所述改性剂计量泵121和所述预热器122之间设有惰性气体管道123和空气管道124。
优选地,所述改性单元2包括改性单元反应器21、改性单元入口22、改性单元出口23、改性单元进料分布器24、加热器25和排气口26;
其中,所述改性单元反应器21是流化床反应器,所述改性单元 入口22设置在所述改性单元反应器21的中部;所述改性单元出口23设置在所述改性单元反应器21的侧壁底部;所述改性单元进料分布器24设置在所述改性单元反应器21的底部;所述加热器25设置在所述改性单元反应器21的内部,并且位于所述改性单元入口22的下方;所述排气口26设置在所述改性单元反应器21的顶部,优选地,排气口26与废气处理装置相连;
优选地,所述反应器21内部的排气口26下方设有改性单元气固分离装置27。
优选地,所述冷却单元3包括冷却单元反应器31、冷却单元入口32、冷却单元出口33、冷却单元进料分布器34、取热器35和冷却单元排气口36;
其中,所述冷却单元反应器是流化床反应器,所述冷却单元入口32设置在所述冷却单元反应器31的中部;所述冷却单元出口33设置在所述冷却单元反应器31的侧壁底部;所述改性单元进料分布器34设置在所述冷却单元反应器31的底部;所述取热器35设置在所述冷却单元反应器31的内部,并且位于所述改性单元入口32的下方;所述冷却单元排气口36设置在所述冷却单元反应器31的顶部,优选地,排气口36与废气处理装置相连;
优选地,所述冷却单元反应器31内部的冷却单元排气口36下方设有冷却单元气固分离装置37。
优选地,所述改性单元进料分布器24选自粉末冶金烧结板分布器、多管式分布器、风帽式分布器中的任意一种。
优选地,所述加热器25选自电加热器和高温气体加热器中的至少一种。
优选地,所述改性单元气固分离器27选自旋风分离器和过滤器中的至少一种。
优选地,所述冷却单元进料分布器34选自粉末冶金烧结板分布器、多管式分布器、风帽式分布器中的任意一种。
优选地,所述取热器35选自冷却水取热器和冷却风取热器中的至少一种。
优选地,所述改性单元气固分离器37选自旋风分离器和过滤器中的至少一种。
根据本发明的又一个方面,提供一种分子筛催化剂改性方法,所述方法使用本发明提供的分子筛催化剂改性装置中的至少一种;
优选地,所述方法包括,通过进料单元(1),将催化剂和改性剂分别引入改性单元(2),在改性单元(2)中催化剂经改性剂改性后,排出至冷却单元(3),在所述冷却单元(3)中降温至温度低于50℃后将冷却后的改性催化剂输出至任意储料装置。
优选地,在进行改性前,在改性单元(2)中对引入的催化剂进行活化处理,所述活化处理具体包括:
a)通过改性剂进料单元,将空气引入改性单元;
b)将催化剂加热至活化处理温度,其中所述活化处理温度为400℃-650℃;
c)在活化处理温度下,对催化剂进行活化处理,活化时间为0.5h-3h。
优选地,活化完成后,将改性单元(2)内的空气置换为惰性气体,置换的时间大于5min;
优选地,当气相氧浓度小于1vol.%时,置换完成。
优选地,所述置换完成后,引入改性剂,改性剂在引入前被加热气化并由惰性气体携带引入所述改性单元(2)。
优选地,所述改性在惰性气体氛围下进行,温度为150℃-600℃,改性时间为0-10h。
优选地,所述改性完成后,先对改性后的催化剂进行焙烧,再将其排出至冷却单元。
优选地,所述焙烧在空气氛围下进行,焙烧温度为400-700℃,焙烧时间为1-6h。
优选地,所述分子筛催化剂选自HZSM-5和HZSM-11分子筛催化剂中的任意一种。
优选地,所述改性剂选自磷试剂、硅烷化试剂和甲苯中的至少一种。
优选地,所述所述磷试剂选自具有式I所示化学式的化合物中的至少一种:
Figure PCTCN2017113984-appb-000001
式I,其中,
R1,R2,R3独立地选自C1~C10的烷基或C1~C10的烷氧基。
优选地,所述式I中R1、R2、R3中至少有一个选自C1~C10的烷氧基;
优选地,所述磷试剂选自三甲氧基膦、三乙氧基膦、三丙氧基膦、三丁氧基膦、甲基二乙氧基膦中的至少一种。
优选地,所述硅烷化试剂选自硅烷化试剂选自具有式II所示化学式的化合物中的至少一种:
Figure PCTCN2017113984-appb-000002
式II,
其中,R4,R5,R6,R7独立地选自C1~C10的烷基、C1~C10的烷氧基。
优选地,所述式I中R4,R5,R6,R7中至少有一个选自C1~C10的烷氧基。
优选地,所述硅烷化试剂选自硅酸四甲酯、硅酸四乙酯、硅酸四丙酯、硅酸四丁酯中的至少一种。
优选地,所述改性剂中磷试剂含量为混合物总质量的1%-10%。
优选地,所述改性剂中硅烷化试剂含量为混合物总质量的1%-40%。
本申请能产生的有益效果包括:
1)本发明的装置结构和连接方式较为简单,使用方便;
2)本发明的一个优选实施方式中,改性反应器采用流化床反应器,因而催化剂处于全混流状态,所制备的催化剂性能均一,活性高;
3)本申请所提供的装置及其使用方法可以用于甲醇、苯和/或甲苯制取对二甲苯和烯烃催化剂的工业化规模、连续化改性;
4)采用本申请所提供的装置及其使用方法改性获得的催化剂,同时具有较高的原料转化率和较高的对二甲苯选择性,苯和/或甲苯的转化率大于30wt.%,甲醇转化率大于80wt.%,(乙烯+丙烯+丁烯+对二甲苯)的总选择性大于75wt.%,对二甲苯在二甲苯异构体中的选择性大于90wt.%。
附图说明
图1为本申请的分子筛催化剂改性装置的结构示意图。
部件和附图标记列表:
1-进料单元             2-改性单元           3-冷却单元
11-催化剂进料单元      12-改性剂进料单元    111-进料仓
112-输送器             121-计量泵           122-预热器
123-惰性气体管道       124-空气管道         21-改型单元反应器
22-改性单元入口        23-改性单元出口      24-改性单元进料分布器
25-加热器              26-改性单元排气口    27-改性单元气固分离装置
31-冷却单元反应器      32-冷却单元入口      33-冷却单元出口
34-冷却单元进料分布器  35-取热器            36-冷却单元排气口
37-冷却单元气固分离装置
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料和催化剂均通过商业途径购买,其中:
HZSM-5分子筛催化剂和HZSM-11分子筛催化剂采购于南开大学催化剂厂,产品粒径分布20-150μm,D50=100μm。
甲苯采购于中石化齐鲁分公司,优级品。
三甲氧基膦、三乙氧基膦、三丙氧基膦、三丁氧基膦和甲基二乙氧基膦采购于武汉泽山成生物医药技术有限公司,纯度:99%。
硅酸四甲酯、硅酸四乙酯、硅酸四丙酯和硅酸四丁酯采购于山东万达有机硅新材料有限公司,纯度:99%。
实施例1
采用图1所示的装置。
本实施例中,所述反应器进料分布器为粉末冶金烧结板分布器,所述反应器加热器为电加热器,所述反应器气固分离器为旋风分离器。
本实施例中,所述冷却器气体分布器为粉末冶金烧结板分布器,所述冷却器取热器为冷却水取热器,所述冷却器气固分离器为旋风分离器。
本实施例中,催化剂是HZSM-5分子筛催化剂。
本实施例中,改性剂是磷试剂、硅烷化试剂和甲苯的混合物。
本实施例中,磷试剂为三甲氧基磷;所述硅烷化试剂为硅酸四甲酯。
本实施例中,改性剂中磷试剂含量为混合物总质量的2%,硅烷化试剂含量为混合物总质量的20%。
本实施例中,活化温度为650℃,活化时间为3h,改性温度为600℃,改性时间为2h,焙烧温度为700℃,焙烧时间为1h。
本实施例制备的改性催化剂被命名为CAT-1。
实施例2
采用图1所示的装置。
本实施例中,所述反应器进料分布器为多管式分布器,所述反应器加热器为高温气体加热器,所述反应器气固分离器为过滤器。
本实施例中,所述冷却器气体分布器为多管式分布器,所述冷却器取热器为冷却风取热器,所述冷却器气固分离器为过滤器。
本实施例中,催化剂是HZSM-11分子筛催化剂。
本实施例中,改性剂是磷试剂、硅烷化试剂和甲苯的混合物。
本实施例中,磷试剂为三甲氧基磷;所述硅烷化试剂为硅酸四乙酯。
本实施例中,改性剂中磷试剂含量为混合物总质量的5%,硅烷化试剂含量为混合物总质量的40%。
本实施例中,活化温度为500℃,活化时间为3h,改性温度为500℃,改性时间为3h,焙烧温度为600℃,焙烧时间为2h。
本实施例制备的改性催化剂被命名为CAT-2。
实施例3
采用图1所示的装置。
本实施例中,所述反应器进料分布器为风帽式分布器,所述反应器加热器为高温气体加热器,所述反应器气固分离器为过滤器。
本实施例中,所述冷却器气体分布器为风帽式分布器,所述冷却器取热器为冷却水取热器,所述冷却器气固分离器为过滤器。
本实施例中,催化剂是HZSM-5分子筛催化剂。
本实施例中,改性剂是磷试剂、硅烷化试剂和甲苯的混合物。
本实施例中,磷试剂为三甲氧基磷;所述硅烷化试剂为硅酸四甲酯。
本实施例中,改性剂中磷试剂含量为混合物总质量的5%,硅烷化试剂含量为混合物总质量的40%。
本实施例中,活化温度为400℃℃,活化时间为3h,改性温度为400℃,改性时间为5h,焙烧温度为400℃℃,焙烧时间为6h。
本实施例制备的改性催化剂被命名为CAT-3。
实施例4
采用图1所示的装置。
本实施例中,所述反应器进料分布器为粉末冶金烧结板分布器,所述反应器加热器为电加热器,所述反应器气固分离器为旋风分离器。
本实施例中,所述冷却器气体分布器为粉末冶金烧结板分布器。所述冷却器取热器为冷却风取热器,所述冷却器气固分离器为旋风分离器。
本实施例中,催化剂是HZSM-11分子筛催化剂。
本实施例中,改性剂是磷试剂、硅烷化试剂和甲苯的混合物。
本实施例中,磷试剂为三甲氧基磷;所述硅烷化试剂为硅酸四乙酯。
本实施例中,改性剂中磷试剂含量为混合物总质量的1%,硅烷化试剂含量为混合物总质量的10%。
本实施例中,活化温度为500℃,活化时间为0.5h,改性温度为300℃,改性时间为8h,焙烧温度为600℃,焙烧时间为2h。
本实施例制备的改性催化剂被命名为CAT-4。
实施例5
使用实施例1-4中制备的改性催化剂催化由甲醇与苯和/或甲苯制备对二甲苯和烯烃的反应。
本申请中,所述甲醇与苯和/或甲苯,包括三种原料情况:
甲醇与苯反应、甲醇与甲苯反应、甲醇与苯和甲苯反应。
对反应结果进行检测,反应条件为:原料用微量进料泵进料,催化剂装载量为10g,反应温度为500℃,反应压力为常压。反应产物通过在线Agilent7890气相色谱进行分析,反应10min时取样分析。反应条件和结果如表1所示。
甲醇转化率=(原料中甲醇的质量-反应产物中甲醇的质量)/原料中甲醇的质量
苯转化率=(原料中苯的质量-反应产物中苯的质量)/原料中苯的质量
甲苯转化率=(原料中甲苯的质量-反应产物中甲苯的质量)/原料中甲苯的质量
(乙烯+丙烯+丁烯+对二甲苯)的总选择性=反应产物中乙烯、丙烯、丁烯和对二甲苯的质量之和/(反应产物总质量-反应产物中甲醇的质量-反应产物中苯的质量-反应产物中甲苯的质量-反应产物中水的质量)
对二甲苯在二甲苯异构体中的选择性=反应产物中对二甲苯的质量/反应产物中二甲苯的质量
表1
Figure PCTCN2017113984-appb-000003
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (30)

  1. 一种分子筛催化剂改性装置,其特征在于,所述装置包括依次连接的进料单元(1)、改性单元(2)和冷却单元(3);
    其中,所述进料单元包括催化剂进料单元(11)和改性剂进料单元(12),所述催化剂进料单元和所述改性剂进料单元分别将催化剂和改性剂引入所述改性单元(2),二者在改性单元充分反应后从所述改性单元排出并进入冷却单元(3)冷却。
  2. 根据权利要求1所述的分子筛催化剂改性装置,其特征在于,所述催化剂进料单元(11)包括进料仓(111)、输送器(112),所述输送器(112)与所述改性单元(2)的改性单元入口(22)连接;
    所述改性剂进料单元(12)包括改性剂计量泵(121)和预热器(122),所述预热器(122)的出口与所述改性单元(2)的改性单元进料分布器(24)连接。
  3. 根据权利要求2所述的分子筛催化剂改性装置,其特征在于,所述改性剂计量泵(121)和所述预热器(122)之间设有惰性气体管道(123)和空气管道(124)。
  4. 根据权利要求1所述的分子筛催化剂改性装置,其特征在于,所述改性单元(2)包括改性单元反应器(21)、改性单元入口(22)、改性单元出口(23)、改性单元进料分布器(24)、加热器(25)和改性单元排气口(26);
    其中,所述改性单元反应器(21)是流化床反应器,所述改性单元入口(22)设置在所述改性单元反应器(21)的中部;所述改性单元出口(23)设置在所述改性单元反应器(21)的侧壁底部;所述改性单元进料分布器(24)设置在所述改性单元反应器(21)的底部;所述加热器(25)设置在所述改性单元反应器(21)的内部,并且位于所述改性单元入口(22)的下方;所述排气口(26)设置在所述改 性单元反应器(21)的顶部。
  5. 根据权利要求4所述的分子筛催化剂改性装置,其特征在于,所述反应器(21)内部的排气口(26)下方设有改性单元气固分离装置(27)。
  6. 根据权利要求1所述的分子筛催化剂改性装置,其特征在于,所述冷却单元(3)包括冷却单元反应器(31)、冷却单元入口(32)、冷却单元出口(33)、冷却单元进料分布器(34)、取热器(35)和冷却单元排气口(36);
    其中,所述冷却单元反应器是流化床反应器,所述冷却单元入口(32)设置在所述冷却单元反应器(31)的中部;所述冷却单元出口(33)设置在所述冷却单元反应器(31)的侧壁底部;所述改性单元进料分布器(34)设置在所述冷却单元反应器(31)的底部;所述取热器(35)设置在所述冷却单元反应器(31)的内部,并且位于所述改性单元入口(32)的下方;所述冷却单元排气口(36)设置在所述冷却单元反应器(31)的顶部。
  7. 根据权利要求6所述的分子筛催化剂改性装置,其特征在于,所述冷却单元反应器(31)内部的冷却单元排气口(36)下方设有冷却单元气固分离装置(37)。
  8. 根据权利要求4所述的分子筛催化剂改性装置,其特征在于,所述改性单元进料分布器(24)选自粉末冶金烧结板分布器、多管式分布器、风帽式分布器中的任意一种。
  9. 根据权利要求4所述的分子筛催化剂改性装置,其特征在于,所述加热器(25)选自电加热器和高温气体加热器中的至少一种。
  10. 根据权利要求5所述的分子筛催化剂改性装置,其特征在于, 所述改性单元气固分离器(27)选自旋风分离器和过滤器中的至少一种。
  11. 根据权利要求6所述的分子筛催化剂改性装置,其特征在于,所述冷却单元进料分布器(34)选自粉末冶金烧结板分布器、多管式分布器、风帽式分布器中的任意一种。
  12. 根据权利要求6所述的分子筛催化剂改性装置,其特征在于,所述取热器(35)选自冷却水取热器和冷却风取热器中的至少一种。
  13. 根据权利要求7所述的分子筛催化剂改性装置,其特征在于,所述改性单元气固分离器(37)选自旋风分离器和过滤器中的至少一种。
  14. 一种分子筛催化剂改性方法,其特征在于,使用权利要求1至13中任意一项所述分子筛催化剂改性装置中的至少一种;
    所述方法包括,通过进料单元(1),将催化剂和改性剂分别引入改性单元(2),在改性单元(2)中催化剂经改性剂改性后,排出至冷却单元(3),在所述冷却单元(3)中降温至温度低于50℃后将冷却后的改性催化剂输出至任意储料装置。
  15. 根据权利要求14所述的分子筛催化剂改性方法,其特征在于,在进行改性前,在改性单元(2)中对引入的催化剂进行活化处理,所述活化处理具体包括:
    a)通过改性剂进料单元,将空气引入改性单元;
    b)将催化剂加热至活化处理温度,其中所述活化处理温度为400℃-650℃;
    c)在活化处理温度下,对催化剂进行活化处理,活化时间为0.5h-3h。
  16. 根据权利要求15所述的分子筛催化剂改性方法,其特征在于,活化完成后,将改性单元(2)内的空气置换为惰性气体,置换的时间大于5min;
    优选地,当气相氧浓度小于1vol.%时,置换完成。
  17. 根据权利要求16所述的分子筛催化剂改性方法,其特征在于,所述置换完成后,引入改性剂,改性剂在引入前被加热气化并由惰性气体携带引入所述改性单元(2)。
  18. 根据权利要求14所述的分子筛催化剂改性方法,其特征在于,所述改性在惰性气体氛围下进行,温度为150℃-600℃,改性时间为0-10h。
  19. 根据权利要求14所述的分子筛催化剂改性方法,其特征在于,所述改性完成后,先对改性后的催化剂进行焙烧,再将其排出至冷却单元。
  20. 根据权利要求19所述的分子筛催化剂改性方法,其特征在于,所述焙烧在空气氛围下进行,焙烧温度为400-700℃,焙烧时间为1-6h。
  21. 根据权利要求14至20中任意一项所述的分子筛催化剂改性方法,其特征在于,所述分子筛催化剂选自HZSM-5和HZSM-11分子筛催化剂中的任意一种。
  22. 根据权利要求14所述的分子筛催化剂改性方法,其特征在于,所述改性剂选自磷试剂、硅烷化试剂和甲苯中的至少一种。
  23. 根据权利要求22所述的分子筛催化剂改性方法,其特征在于,所述所述磷试剂选自具有式I所示化学式的化合物中的至少一种:
    Figure PCTCN2017113984-appb-100001
    其中,
    R1,R2,R3独立地选自C1~C10的烷基或C1~C10的烷氧基。
  24. 根据权利要求23所述的分子筛催化剂改性方法,其特征在于,所述式I中R1、R2、R3中至少有一个选自C1~C10的烷氧基。
  25. 根据权利要求23所述的分子筛催化剂改性方法,其特征在于,所述磷试剂选自三甲氧基膦、三乙氧基膦、三丙氧基膦、三丁氧基膦、甲基二乙氧基膦中的至少一种。
  26. 根据权利要求22所述的分子筛催化剂改性方法,其特征在于,所述硅烷化试剂选自硅烷化试剂选自具有式II所示化学式的化合物中的至少一种:
    Figure PCTCN2017113984-appb-100002
    其中,R4,R5,R6,R7独立地选自C1~C10的烷基、C1~C10的烷氧基。
  27. 根据权利要求26所述的分子筛催化剂改性方法,其特征在于,所述式I中R4,R5,R6,R7中至少有一个选自C1~C10的烷氧基。
  28. 根据权利要求22所述的分子筛催化剂改性方法,其特征在于,所述硅烷化试剂选自硅酸四甲酯、硅酸四乙酯、硅酸四丙酯、硅 酸四丁酯中的至少一种。
  29. 根据权利要求22所述的分子筛催化剂改性方法,其特征在于,所述改性剂中磷试剂含量为混合物总质量的1%-10%。
  30. 根据权利要求22所述的分子筛催化剂改性方法,其特征在于,所述改性剂中硅烷化试剂含量为混合物总质量的1%-40%。
PCT/CN2017/113984 2017-11-30 2017-11-30 分子筛催化剂改性装置及方法 WO2019104655A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207016343A KR102443025B1 (ko) 2017-11-30 2017-11-30 분자체 촉매 개질 장치 및 방법
EP17933606.0A EP3718623A4 (en) 2017-11-30 2017-11-30 APPARATUS AND METHOD FOR MODIFYING A MOLECULAR SCREEN-BASED CATALYST
SG11202004970XA SG11202004970XA (en) 2017-11-30 2017-11-30 Molecular sieve-based catalyst modification apparatus, and method
US16/767,238 US11712675B2 (en) 2017-11-30 2017-11-30 Molecular sieve-based catalyst modification apparatus, and method
JP2020526941A JP7038820B2 (ja) 2017-11-30 2017-11-30 分子篩触媒改質装置及び方法
RU2020121739A RU2752947C1 (ru) 2017-11-30 2017-11-30 Устройство для модификации катализатора на основе молекулярного сита и способ
PCT/CN2017/113984 WO2019104655A1 (zh) 2017-11-30 2017-11-30 分子筛催化剂改性装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113984 WO2019104655A1 (zh) 2017-11-30 2017-11-30 分子筛催化剂改性装置及方法

Publications (1)

Publication Number Publication Date
WO2019104655A1 true WO2019104655A1 (zh) 2019-06-06

Family

ID=66664680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113984 WO2019104655A1 (zh) 2017-11-30 2017-11-30 分子筛催化剂改性装置及方法

Country Status (7)

Country Link
US (1) US11712675B2 (zh)
EP (1) EP3718623A4 (zh)
JP (1) JP7038820B2 (zh)
KR (1) KR102443025B1 (zh)
RU (1) RU2752947C1 (zh)
SG (1) SG11202004970XA (zh)
WO (1) WO2019104655A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115072734B (zh) * 2022-06-30 2023-11-03 江西宝安新材料科技有限公司 一种分子筛的改性方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911041A (en) 1974-09-23 1975-10-07 Mobil Oil Corp Conversion of methanol and dimethyl ether
US4049573A (en) 1976-02-05 1977-09-20 Mobil Oil Corporation Zeolite catalyst containing oxide of boron or magnesium
US4100219A (en) 1976-03-31 1978-07-11 Mobil Oil Corporation Silica-modified zeolite catalyst and conversion therewith
US4250345A (en) 1978-01-10 1981-02-10 Mobil Oil Corporation Selective production of para-xylene
US5367100A (en) 1992-05-03 1994-11-22 Dalian Institute Of Chemical Physics Process for the conversion of methanol to light olefins and catalyst used for such process
CN1880288A (zh) * 2006-05-12 2006-12-20 中国科学院山西煤炭化学研究所 甲醇转化制芳烃工艺及催化剂和催化剂制备方法
CN101602013A (zh) * 2008-06-12 2009-12-16 中国石油化工股份有限公司 Ts-1钛硅分子筛催化剂的改性方法
CN105312080A (zh) * 2015-11-03 2016-02-10 中国科学院上海高等研究院 一种用于氧化亚氮催化分解的分子筛催化剂改性的方法
CN105524300A (zh) * 2016-01-12 2016-04-27 宁波大学 一种改性纳米二氧化硅及其制备方法
CN106238094A (zh) * 2016-08-04 2016-12-21 大连理工大学 一种挤条成型钛硅分子筛改性的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402867A (en) * 1981-12-22 1983-09-06 Mobil Oil Corporation Silica-modified zeolite catalysts
US4950835A (en) * 1989-10-24 1990-08-21 Taiwan Styrene Monomer Corporation Novel silicon-modified catalyst Si/HZSM-5, it's preparation, and a process for synthesizing high purity p-dialkyl benzene from monoalkyl benzene by using said catalyst
US5488194A (en) * 1994-05-16 1996-01-30 Mobil Oil Corp. Selective production of para-dialkyl substituted benzenes and catalyst therefor
US5898089A (en) * 1997-07-09 1999-04-27 Phillips Petroleum Company Hydrocarbon aromatization process using a zeolite
US6005123A (en) 1998-04-16 1999-12-21 Arco Chemical Technology, L.P. Epoxidation process
US6380328B1 (en) * 1999-12-10 2002-04-30 Univation Technologies, Llc Catalyst systems and their use in a polymerization process
US7098161B2 (en) 2000-10-20 2006-08-29 Abb Lummus Global Inc. Method of treating zeolite
US20040064007A1 (en) * 2002-09-30 2004-04-01 Beech James H. Method and system for regenerating catalyst from a plurality of hydrocarbon conversion apparatuses
CN101550051B (zh) * 2009-04-23 2012-11-07 天脊煤化工集团股份有限公司 一种提高甲醇芳构化制取芳烃选择性的工艺及其催化剂的制备方法
US9227181B2 (en) 2011-09-13 2016-01-05 Basf Corporation Catalyst to increase propylene yields from a fluid catalytic cracking unit
US8821800B2 (en) * 2012-10-18 2014-09-02 Chevron Phillips Chemical Company Lp System and method for catalyst preparation
WO2014154429A1 (de) 2013-03-27 2014-10-02 Basf Se Passivierung eines zeolith-katalysators in einer wirbelschicht
US9718743B2 (en) * 2013-12-03 2017-08-01 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing a light olefin using an oxygen-containing compound, and device for use thereof
WO2015184600A1 (zh) 2014-06-04 2015-12-10 中国科学院大连化学物理研究所 一种高选择性制备对二甲苯联产丙烯的方法
CN106841506B (zh) * 2015-12-07 2019-07-05 中国石油天然气股份有限公司 一种催化剂水热老化装置及老化方法
CN106829994B (zh) 2017-03-09 2019-05-28 金华市欣生沸石开发有限公司 沸石粉生产线及生产工艺

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911041A (en) 1974-09-23 1975-10-07 Mobil Oil Corp Conversion of methanol and dimethyl ether
US4049573A (en) 1976-02-05 1977-09-20 Mobil Oil Corporation Zeolite catalyst containing oxide of boron or magnesium
US4100219A (en) 1976-03-31 1978-07-11 Mobil Oil Corporation Silica-modified zeolite catalyst and conversion therewith
US4250345A (en) 1978-01-10 1981-02-10 Mobil Oil Corporation Selective production of para-xylene
US5367100A (en) 1992-05-03 1994-11-22 Dalian Institute Of Chemical Physics Process for the conversion of methanol to light olefins and catalyst used for such process
US5573990A (en) 1992-05-03 1996-11-12 Dalian Institute Of Chemical Physics Process for the conversion of methanol to light olefins and catalyst for such process
CN1880288A (zh) * 2006-05-12 2006-12-20 中国科学院山西煤炭化学研究所 甲醇转化制芳烃工艺及催化剂和催化剂制备方法
CN101602013A (zh) * 2008-06-12 2009-12-16 中国石油化工股份有限公司 Ts-1钛硅分子筛催化剂的改性方法
CN105312080A (zh) * 2015-11-03 2016-02-10 中国科学院上海高等研究院 一种用于氧化亚氮催化分解的分子筛催化剂改性的方法
CN105524300A (zh) * 2016-01-12 2016-04-27 宁波大学 一种改性纳米二氧化硅及其制备方法
CN106238094A (zh) * 2016-08-04 2016-12-21 大连理工大学 一种挤条成型钛硅分子筛改性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3718623A4

Also Published As

Publication number Publication date
JP2021504101A (ja) 2021-02-15
US11712675B2 (en) 2023-08-01
SG11202004970XA (en) 2020-06-29
RU2752947C1 (ru) 2021-08-11
US20200406214A1 (en) 2020-12-31
KR102443025B1 (ko) 2022-09-13
KR20200085312A (ko) 2020-07-14
JP7038820B2 (ja) 2022-03-18
EP3718623A4 (en) 2020-12-02
EP3718623A1 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP6894530B2 (ja) トルエン、p−キシレン及び軽質オレフィンのうちの少なくとも1種を製造するための触媒のインサイチュ製造方法及び反応プロセス
US11311852B2 (en) Device and method for preparing para-xylene and co-producing light olefins from methanol and/or dimethyl ether and toluene
AU2013407180B2 (en) Method for preparing a light olefin using an oxygen-containing compound
CN111548247B (zh) 通过苯与甲醇烷基化反应制备甲苯和对二甲苯的方法
WO2018196364A1 (zh) 甲醇和/或二甲醚与苯制对二甲苯联产低碳烯烃的装置及方法
US11180431B2 (en) Fluidized bed device and method for preparing para-xylene and co-producing light olefins from methanol and/or dimethyl ether and toluene
TW201531457A (zh) 經加壓粗製芳香族羧酸進料混合技術
US11161085B2 (en) Fluidized bed device and method for preparing para-xylene and co-producing light olefins from methanol and/or dimethyl ether and benzene
WO2019104655A1 (zh) 分子筛催化剂改性装置及方法
CN109847792B (zh) 分子筛催化剂改性装置及方法
CN108794288A (zh) 一种制低碳烯烃联产对二甲苯的方法
JP2023014129A (ja) 酸化亜鉛修飾mfi型ゼオライト及びそれを用いた芳香族化合物の製造方法
CN112844457A (zh) 一种催化剂的制备及其在甲苯甲醇烷基化反应中的应用
CN109647292B (zh) 一种采用流化床由合成气制备低碳烯烃的方法
CN112694907A (zh) 一种甲烷制备烃类化合物的方法
CN110156552B (zh) 固定床反应器合成1,9-癸二烯的方法
CN102690163A (zh) 双戊烯制备对伞花烃的连续生产方法及其装置
CN108786906B (zh) 一种苯、甲醇制甲苯联产对二甲苯和低碳烯烃的催化剂的原位制备方法
CN108786904B (zh) 一种制低碳烯烃联产对二甲苯的催化剂的原位制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207016343

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017933606

Country of ref document: EP

Effective date: 20200630