WO2015184600A1 - 一种高选择性制备对二甲苯联产丙烯的方法 - Google Patents

一种高选择性制备对二甲苯联产丙烯的方法 Download PDF

Info

Publication number
WO2015184600A1
WO2015184600A1 PCT/CN2014/079144 CN2014079144W WO2015184600A1 WO 2015184600 A1 WO2015184600 A1 WO 2015184600A1 CN 2014079144 W CN2014079144 W CN 2014079144W WO 2015184600 A1 WO2015184600 A1 WO 2015184600A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction zone
reaction
catalyst
product
methanol
Prior art date
Application number
PCT/CN2014/079144
Other languages
English (en)
French (fr)
Inventor
许磊
刘中民
张新志
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to SG11201610150PA priority Critical patent/SG11201610150PA/en
Priority to US15/315,603 priority patent/US10099973B2/en
Priority to MYPI2016704499A priority patent/MY188942A/en
Priority to EP14894165.1A priority patent/EP3153490B1/en
Priority to PCT/CN2014/079144 priority patent/WO2015184600A1/zh
Priority to JP2016571213A priority patent/JP6408612B2/ja
Priority to KR1020177000245A priority patent/KR101912398B1/ko
Publication of WO2015184600A1 publication Critical patent/WO2015184600A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/865Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an ether
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/88Growth and elimination reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/025Silicon compounds without C-silicon linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/80Mixtures of different zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a method for co-producing propylene by using p-toluene with high selectivity of toluene and methanol and/or dimethyl ether, and belongs to the field of chemistry and chemical engineering. Background technique
  • Para-xylene (referred to as PX) and propylene are important basic chemical raw materials.
  • p-xylene is mainly obtained by an aromatics unit.
  • the naphtha is firstly reformed to produce an aromatic-containing reforming oil, which is then subjected to aromatics extraction, aromatic fractionation, disproportionation and sulfhydryl transfer, and xylene isomerization. Units such as chemistry and adsorption separation maximize the availability of PX products. Since the content of p-xylene in the three isomers is thermodynamically controlled, p-xylene only accounts for about 23% of the ⁇ 8 mixed aromatics, so the material recycling process is large during the entire PX production process, the equipment is large, and the operation cost is high.
  • the three isomers of xylene have a small difference in boiling point, and high-purity p-xylene cannot be obtained by the usual distillation technique, and an expensive adsorption separation process must be employed.
  • Propylene is mainly produced from petroleum refineries and naphtha steam cracking to produce ethylene as a by-product, or from the production of propane as a raw material.
  • Para-xylene is mainly used in the production of polyester.
  • Propylene is mainly used in the preparation of polypropylene, acrylonitrile and 1,3-propanediol required for the production of polyester.
  • USP 3,965,207 discloses the use of ZSM-5 molecular sieves as catalyst toluene methylation reaction with a maximum selectivity to para-xylene of about 90% at a reaction temperature of 600 ° C; USP 3,965,208 uses a VA element modified ZSM-5 molecular sieve as a catalyst, The formation of meta-xylene is inhibited, mainly producing para-xylene and ortho-xylene.
  • the highest selectivity for p-xylene at a reaction temperature of 600 ° C is about 90%; USP 4,250,345 is a ZSM-modified with phosphorus and magnesium. 5 molecular sieves as catalysts, the optimal selectivity of p-xylene at a reaction temperature of 450 ° C reached 98%; USP 4,670,616 using borosilicate molecular sieves and silica or alumina to prepare a catalyst, p-xylene selectivity of 50 -60%; USP 4,276,438, 4,278,827 uses a special structure of molecular sieves 0 2 / ⁇ 1 2 0 3 ⁇ 12) and is modified with copper, silver, gold or antimony, tin, lead, etc.
  • USP 4,444,989 uses crystalline pure silica molecular sieves to modify arsenic, phosphorus, magnesium, boron and cerium compounds to improve para-xylene selectivity; USP 4,491,678
  • the use of crystalline borosilicates with lanthanum and cerium elements and silicon and phosphorus as common components can greatly increase the selectivity of para-xylene and increase the life of the catalyst.
  • USP 5,034,362 ZSM-5 and ZSM-11 using Si0 2 /Al 2 0 3 ⁇ 12 as catalysts and calcination above 650 ° C can improve the selectivity to dimercaptobenzene.
  • USP 5,563,310 The use of acidic molecular sieves containing IVB elements and modification of the catalyst with VIB metal can increase the selectivity of p-diphenylbenzene for the alkylation of toluene methanol; USP 6,504,072 uses a mesoporous molecular sieve, preferably ZSM-5, and is high. Treatment with water vapor at 950 ° C, and then modified with phosphorus oxide, proposed the effect of the diffusion effect of the catalyst micropores on the selectivity of p-xylene; USP 6,613,708 modification of the catalyst using organometallic compounds can greatly Improve the selectivity to dimercaptobenzene.
  • CN102464549 A discloses a process for the production of propylene and para-xylene which is a process for the reversalization of ethylene and a carbon tetrahydrocarbon to produce propylene, which does not involve the process of ethylene and methanol/dimethyl ether thiolation to propylene.
  • CN102464550 A discloses a method for co-production of lower olefins and para-xylene, which comprises introducing carbon tetracarbons and carbon five hydrocarbons into a first reaction zone to produce olefins, which is a C 4 or liquefied gas cracking olefins process, wherein Nor does it involve the process of propylene formation from ethylene and methanol/dimethyl ether.
  • the present invention provides a method for the high selectivity of co-production of para-xylene to produce propylene, including The following steps:
  • the catalyst-modified zeolite molecular sieve catalyst is obtained by hydrothermal treatment of ZSM-5 and/or ZSM-11 zeolite molecular sieves and surface modification of a siloxane-based compound. More preferably, in the modified zeolite molecular sieve catalyst, the amount of Si supported by the siloxane-based compound is 1 - 10% by weight based on the total weight of the modified zeolite molecular sieve catalyst.
  • the reaction system includes a first reaction zone and a second reaction zone, and the method comprises the following steps:
  • the raw material containing toluene and methanol and/or dimethyl ether is first contacted with the catalyst I through the first reaction zone, and then enters the second reaction zone to contact with the catalyst II; the second reaction zone is rich in ethylene.
  • the c 2 -component is returned to the second reaction zone, and methanol and/or dimethyl ether in the second reaction zone is continuously reacted on the catalyst II to produce propylene;
  • the reaction system comprises a first reaction zone and a second reaction zone
  • the process comprises the steps of: a) passing the feedstock containing toluene with methanol and/or dimethyl ether first through the first
  • the reaction zone is contacted with the catalyst I to obtain the product A, and then reacted with the catalyst II through the second reaction zone to obtain the product B; the ethylene-rich C component in the product A and the product B enters the second reaction.
  • a zone reacting with methanol and/or dimethyl ether in the second reaction zone on the catalyst II to produce propylene;
  • the C 3 component in the product A and the product B is further separated to obtain a product propylene.
  • the catalyst I and the catalyst II are the same or different modified zeolite molecular sieve catalysts.
  • the modified zeolite molecular sieve catalyst is obtained by hydrothermal treatment of a ZSM-5 and/or ZSM-11 zeolite molecular sieve and modification of a siloxane-based compound.
  • the amount of Si supported by the siloxane-based compound is l-10wt of the total weight of the modified zeolite molecular sieve catalyst.
  • the hydrothermal treatment conditions are carried out at 500 to 700 ° C for 3 to 6 hours under a saturated steam atmosphere.
  • the structural formula of the siloxane-based compound used for the modification of the siloxane-based compound is as follows:
  • R 2 , R 3 and R 4 are each independently a CWQ fluorenyl group.
  • the siloxane based compound is ethyl orthosilicate.
  • the reaction zone comprises one reactor or a plurality of reactors connected by series and/or parallel; and preferably, the reactor is selected from the group consisting of a fixed bed, a fluidized bed and a moving bed One or more of the reactors.
  • the first reaction zone and the second reaction zone are in the same reactor; and preferably, the reactor is selected from the group consisting of a fixed bed, a fluidized bed, and a moving bed reactor. One or more.
  • the first reaction zone comprises one reactor or a plurality of reactors connected by series and/or parallel;
  • the second reaction zone comprises one reactor or a plurality of reactors and/or a reactor connected in parallel;
  • the first reaction zone and the second reaction zone are connected by series or parallel; and
  • the reactor is selected from a fixed bed, a fluidized bed, and a moving bed reaction One or more of the devices.
  • the present invention provides a novel process for producing propylene in parallel with p-xylene in a highly selective reaction with toluene and methanol and/or dimethyl ether.
  • the ethylene-rich c 2 -component in the resulting product is returned to the reaction system for thiolation with methanol and/or dimethyl ether by using a specific modified molecular sieve catalyst.
  • FIG. 1 is a flow chart of a method in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method in accordance with another embodiment of the present invention.
  • FIG. 3 is a flow chart of a method in accordance with another embodiment of the present invention.
  • reaction reaction of toluene with methanol and/or dimethyl ether the reaction of ethylene with methanol and/or dimethyl ether, and the reaction process are coupled with high selectivity.
  • Toluene and propylene the reaction scheme of the method of the present invention is as shown in FIG. 1.
  • the raw material toluene is contacted with methanol and/or dimethyl ether in a reaction system with a catalyst (the catalyst is present in the reactor), and the resulting product enters a separation system (for example, Separation column, etc.) separation; after separation by separation system, C 6 + component, C 4 - C 5 component (hydrocarbons having carbon numbers 4 and 5), C 3 component and ethylene-rich C 2 _ are obtained.
  • a separation system for example, Separation column, etc.
  • the components are separated by further separation (for example, a rectification column or the like) to obtain propylene, and a small amount of c 4 -c 5 components and
  • the reaction system may be a single reaction zone, or a combination of two or more reaction zones, the plurality of reaction zones may be in the same reactor, or may be multiple reactors connected in series or in parallel.
  • the reactor is any one or any of a fixed bed, a fluidized bed or a moving bed.
  • the raw material contains toluene with methanol and/or dimethyl ether
  • the raw material may be a mixture of toluene, methanol and dimethyl ether, or a mixture of toluene and methanol or a mixture of toluene and dimethyl ether.
  • a reaction scheme for the method according to the invention is shown in FIG. In Fig.
  • the reaction system consists of a reactor having two reaction zones, wherein the main reaction in the first reaction zone is the reaction of toluene with methanol and/or dimethyl ether, and the main reaction of the second reaction zone is Ethylene (a by-product of the first reaction zone) is thiolated with methanol and/or dimethyl ether.
  • the raw material toluene and methanol and/or dimethyl ether are first passed through the first reaction zone and contacted with the catalyst I therein, and then passed through the second reaction zone and contacted with the catalyst II therein, and the resulting product is separated into the separation system; After system separation, a C 6 + component, a C 4 -C 5 component, a C 3 component and a c 2 -component, and a 3 ⁇ 40 are obtained, wherein the ethylene-rich c 2 -component is returned to the second reaction zone and enters the The methanol and/or dimethyl ether in the second reaction zone is contacted with the catalyst II therein; the C 6 + component is separated by further separation to obtain p-xylene, and the C 3 component is further separated to obtain propylene.
  • a reaction scheme for the method according to the invention is shown in FIG.
  • the reaction system consists of two parallel reaction zones.
  • the main reaction in the first reaction zone is toluene with methanol and/or dimethyl ether
  • the main reaction in the second reaction zone is ethylene (first
  • the by-product of the reaction zone is reacted with methanol and/or dimethyl ether.
  • toluene is contacted with methanol and/or dimethyl ether in the first reaction zone with the catalyst I therein to form product A, and product A is separated into the separation system; the c 2 -component rich in ethylene from the separation system is returned to the first
  • the second reaction zone is reacted with the raw material methanol and/or dimethyl ether directly entering the second reaction zone to form the product B, and the product B and the product A are separated into the separation system for separation; after separation by the separation system , wherein the C component rich in ethylene is returned to the second reaction zone, and the C 6 + component obtained by separating the product A and the product B by the separation system is further separated to obtain p-xylene, and the C 3 component is further The propylene is separated at a time.
  • a reaction scheme for the method according to the invention is illustrated in Figure 4.
  • the reaction system consists of two reaction zones in the same reactor, the reaction process is the same as that described above with respect to Fig. 3, and will not be described again here.
  • Such a reaction system can be multi-staged. Material realization.
  • the catalyst used contains ZSM-5 and/or ZSM-11 zeolite molecular sieves, more preferably ZSM-5 and/or ZSM-11 zeolite molecular sieves are hydrothermally treated, siloxane-based compounds are modified for surface acidity and pores. Structured modified ZSM-5 and/or ZSM-11 zeolite molecular sieves. Most preferably, after the modification with the siloxane-based compound, the supported amount of Si is from 1 to 10% by weight based on the total weight of the catalyst.
  • the catalyst I and the catalyst II respectively present therein may be Think of the same or different catalysts.
  • the catalyst I and the catalyst II are the same catalyst or the same catalyst.
  • the catalyst used in the process of the invention is prepared as follows:
  • the above acidic zeolite molecular sieve is subjected to hydrothermal treatment to obtain a modified zeolite molecular sieve.
  • the hydrothermal treatment condition is treated at 500-700 ° C for 3-6 hours under a saturated steam atmosphere;
  • siloxane based compound used in the present invention is as follows:
  • R 2 , R 3 and R 4 are each independently C wo fluorenyl, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl, and isomer forms thereof.
  • the silicone-based compound used is tetraethyl orthosilicate.
  • both the first reaction zone and the second reaction zone in the present invention may use a fixed bed reaction process, and may be combined with a regenerator to employ a fluidized bed or moving bed reaction process.
  • the first reaction zone and the second reaction zone may be realized by multiple stages of feeding in one reactor or in a plurality of identical or different reactors connected in series or in parallel, respectively.
  • the reaction temperature of the toluene with methanol and/or dimethyl ether, the reaction of ethylene with methanol and/or dimethyl ether thiolation is in the range of 300-600 ° C, and toluene with methanol and / or
  • the preferred reaction temperature for dimethyl ether oximation is from 400 to 500 ° C, and the reaction temperature of ethylene with methanol and/or dimethyl ether is preferably from 350 to 450 ° C.
  • the mass space velocity of the alkylation reaction of toluene with methanol and/or dimethyl ether is Ol-1Oh- 1 , preferably 1-5 h.
  • the molar ratio of toluene to methanol and/or dimethyl ether feed may be in the range of from 0.1 to 10, preferably from 0.2 to 5, in the reaction of toluene with methanol and/or dimethyl ether.
  • the molar ratio of ethylene to methanol and/or dimethyl ether can be It is in the range of 0.1 to 10, preferably 0.5 to 5.
  • the C 2 -component means a component having a carbon number of 2 or less in the formula, including ethylene and acetamidine, formazan, CO, C0 2 and 3 ⁇ 4, etc., and the gas is mainly acetamidine, A ⁇ , co, co 2 and 3 ⁇ 4.
  • the ⁇ 3 component means a compound having a carbon number of 3 in the formula, and includes propylene, propane or the like.
  • the 0 ⁇ 5 component refers to a component having a carbon number of 4 and 5 in the formula, including isobutane, isobutylene, butyl hydrazine, 1-butene, 2-butene, isovaleryl, new Pentamidine, pentamidine, 1-pentene, 2-pentene, and the like.
  • the C 6 + component means a component having a carbon number of 6 or more in the formula, including p-xylene and other aromatic hydrocarbons and derivatives thereof.
  • the invention is described in detail below by way of examples, but the invention is not limited to the examples.
  • the product composition was analyzed online by gas chromatography, and the analysis conditions were:
  • Carrier gas helium, 5ml/min
  • Oven temperature 60-220 °C, temperature programmed, 15 °C/min
  • Catalyst preparation Si-HZSM-5 zeolite molecular sieve catalyst and Si-HZSM-11 zeolite molecular sieve catalyst
  • HZSM-5 and HZSM-11 zeolite molecular sieves were modified by hydrothermal treatment respectively: HOOSM-5 and HZSM-11 molecular sieves were placed in a quartz reactor, and the temperature was raised to 650 °C, and the water flow rate was 5 ml/ Min, constant temperature treatment for 4 hours, obtained hydrothermally modified HZSM-5 zeolite molecular sieve, HZSM-11 zeolite molecular sieve.
  • hydrothermally modified HZSM-5 zeolite molecular sieve and the HZSM-11 zeolite molecular sieve were surface-modified by using tetraethyl silicate as a siloxane reagent, respectively, and the steps were as follows: hydrothermally modified HZSM-5 zeolite Molecular sieves, HZSM-11 zeolite molecular sieves were immersed in 150 g of tetraethyl silicate overnight, and the liquid was decanted, dried at 120 ° C, and calcined in air at 550 ° C for 4 hours to obtain modified Si-HZSM- 5 zeolite molecular sieve catalyst and Si-HZSM-11 zeolite molecular sieve catalyst, named as catalysts TMPC-06 and TMPC-07, respectively.
  • the HZSM-5/HZSM-11 zeolite molecular sieve was modified by hydrothermal treatment: 100 g of HZSM-5/HZSM-11 molecular sieve was placed in a quartz reactor, heated to 650 ° C, and then water was introduced, and the water flow rate was 5 ml/min. After thermostatic treatment for 4 hours, a hydrothermally modified HZSM-5/HZSM-11 zeolite molecular sieve was obtained.
  • the surface modification of the hydrothermally modified HZSM-5/HZSM-11 zeolite molecular sieve was carried out using the silicone reagent tetraethyl silicate. The steps were as follows: The hydrothermally modified HZSM-5/HZSM-11 zeolite molecular sieve was placed in 150 g. After immersing in tetraethyl silicate overnight, the liquid was decanted, dried at 120 ° C, and calcined in air at 550 ° C for 4 hours to obtain a modified Si-HZSM-5/HZSM-1l zeolite molecular sieve catalyst, which was named For the catalyst TMPC-08.
  • the catalysts TMPC-06, TMPC-07 and TMPC-08 catalyst samples prepared in Examples 1 and 2 were separately tableted and crushed into 40-60 mesh catalysts.
  • the catalysts were separately charged into two reaction zones of a fixed bed reactor (10 g each for each reaction zone).
  • the first reaction zone is subjected to a toluene methanol conversion reaction, wherein the molar ratio of toluene/methanol is shown in Table 1 below, and the second reaction zone is subjected to ethylene and methanol thiolation reaction.
  • the nitrogen gas is blown online.
  • the sweep was then switched to air to regenerate the catalyst at 550 ° C for 5 hours to recycle the catalyst.
  • the ethylene-rich c 2 - component of the toluene methanol thiolation reaction product distribution in the first reaction zone is co-introduced into the second reaction zone with methanol, wherein the ethylene/methanol molar ratio is 1/1.
  • Reaction conditions toluene space velocity of the first reaction zone mass 211-1, the reaction temperature was 480 ° C; a second reaction zone temperature of 420 ° C.
  • the gas chromatograph was used to analyze the composition of the mixed product in the reaction zone on-line.
  • the product distribution after removing the formed water is shown in Table 1, and the product distribution after removing the C 2 -component is shown in Table 2.
  • the TMPC-06 catalyst prepared in Example 1 was tableted and crushed into 40-60 mesh catalyst samples, and each of the catalysts was separately charged into a fixed bed reactor. Two reaction zones (10 g each). The first reaction zone was subjected to a toluene methanol conversion reaction in which the molar ratio of toluene/methanol was 4/1, 2/1, 1/1 and 1/2, respectively (see Table 3 below), and the second reaction zone was subjected to ethylene and methanol.
  • the first reaction zone and the second reaction zone are both purged with nitrogen gas, then switched to air to regenerate the catalyst at 550 Torr for 5 hours, nitrogen purged and cooled to the reaction temperature.
  • Other reaction conditions Toluene mass space velocity of the first reaction zone 211-1, a reaction temperature of 480 ° C; a second reaction zone temperature of 400 ° C.
  • the composition of the mixed product in the first reaction zone and the second reaction zone was analyzed online by gas chromatography, and the product distribution after removing the generated water is shown in Table 3.
  • the product distribution after removal of the C 2 -component is shown in Table 4.
  • the TMPC-06 catalyst prepared in Example 1 was tableted and crushed into 40-60 target catalyst samples, and 10 g of the catalyst was charged into the reactor for toluene methanol conversion reaction, and the toluene/methanol molar ratio was 4/ respectively. 1, 2/1, 1/1 and 1/2, when one of the ratios of the reaction is completed, a nitrogen purge is applied to the line, and then switched to air to regenerate the catalyst at 550 ° C for 5 hours, nitrogen purge And cooling to the reaction temperature for another ratio of toluene methanol conversion reaction.
  • Other reaction conditions were: toluene mass space velocity of 2 h - reaction temperature of 480 °C.
  • the product composition was analyzed online using a gas chromatograph, and the product distribution after removal of water was as shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

公开了一种高选择性制备对二甲苯联产丙烯的方法,首先使原料甲苯与甲醇和/或二甲醚在反应系统中与催化剂接触反应,生成的产物经分离系统分离后,其中富含乙烯的C2 -组分(碳数小于等于2的烃类及CO、CO2和H2)返回所述反应系统继续反应,C6 +组分(碳数大于等于6的芳烃)经进一步分离得到对二甲苯,C3组分(碳数等于3的丙烯和丙烷)经进一步分离得到丙烯。该方法通过在催化剂下将甲苯与甲醇和/或二甲醚的烷基化反应、乙烯与甲醇和/或二甲醚的烷基化反应的两个反应过程耦合,将甲苯与甲醇和/或二甲醚烷基化制备对二甲苯反应副产物中富含乙烯的C2 -组分回炼,与甲醇和/或二甲醚烷基化反应,高选择性地制得对二甲苯并联产丙烯。

Description

一种高选择性制备对二甲苯联产丙烯的方法 技术领域
本发明涉及一种以甲苯和甲醇和 /或二甲醚高选择性制对二甲苯联产 丙烯的方法, 属于化学化工领域。 背景技术
对二甲苯 (简称 PX)和丙烯均是重要的基本化工原料。 目前, 对二甲 苯主要经芳烃联合装置得到,首先将石脑油通过连续重整制得含芳烃的重 整生成油, 然后经芳烃抽提、 芳烃分馏、 歧化及垸基转移、 二甲苯异构化 以及吸附分离等单元最大限度地得到 PX产品。 由于对二甲苯在三个异构 体的含量受热力学控制, 对二甲苯在〇8混合芳烃中只占 23%左右, 所以 整个 PX生产工艺过程中物料循环处理量大, 设备庞大, 操作费用高。 特 别是二甲苯三个异构体的沸点相差很小,采用通常的蒸馏技术不能得到高 纯度对二甲苯, 而必须采用昂贵的吸附分离工艺。丙烯主要来源于石油炼 厂以及石脑油蒸汽裂解生产乙烯的副产品,或者以天然气加工制得的丙垸 为原料进行生产。对二甲苯主要用于生产聚酯,丙烯主要用于制备聚丙烯、 丙烯腈以及生产聚酯所需的 1,3-丙二醇, 随着全球经济的快速发展, 作为 化工基本原料的对二甲苯和丙烯的需求量也逐年递增。
近年来, 国内外许多专利公开了对二甲苯生产新途径, 其中甲苯甲基 化可以生产高选择性的对二甲苯。 USP 3,965,207 公开了使用 ZSM-5分子 筛做催化剂甲苯甲基化反应, 在 600°C反应温度下对二甲苯的最高选择性 约为 90%; USP 3,965,208使用 VA元素改性 ZSM-5分子筛做催化剂, 抑 制了间二甲苯的生成, 主要生成对二甲苯和邻二甲苯, 在 600°C反应温度 下对二甲苯的最高选择性约为 90%; USP 4,250,345使用磷和镁双元素改 性的 ZSM-5分子筛为催化剂,在 450°C反应温度下对二甲苯的最佳选择性 达到了 98%; USP 4,670,616 使用硼硅酸盐分子筛和氧化硅或氧化铝制备 成催化剂, 对二甲苯选择性为 50-60%; USP 4,276,438、 4,278,827使用特 殊结构的分子筛 02/Α1203 ^ 12)并用铜、 银、 金或锗、 锡、 铅等改性, 可获得高选择性的对二垸基苯; USP 4,444,989 使用结晶型的纯硅分子筛, 并使砷、 磷、 镁、 硼和碲的化合物进行改性, 提高了对二甲苯的选择性; USP 4,491,678 使用结晶型硼硅酸盐与 ΠΑ和 ΠΙΑ元素以及硅和磷为共同 组分可以大大提高对二甲苯的选择性并能提高催化剂的寿命。 USP 5,034,362 使用 Si02/Al203 ^ 12的 ZSM-5和 ZSM-11为催化剂, 并在高于 650°C条件下进行焙烧,可以提高对二垸基苯的选择性。 USP 5,563,310 使 用含 IVB元素的酸性分子筛并用 VIB的金属进行改性催化剂, 可以提高 甲苯甲醇烷基化反应的对二垸基苯的选择性; USP 6,504,072 使用中孔分 子筛优选 ZSM-5 , 并在高于 950°C的水蒸气下处理, 然后以磷氧化物进行 改性, 提出了催化剂微孔的扩散效应对对二甲苯选择性的影响; USP 6,613,708 使用有机金属化合物对催化剂进行改性, 可以大大提高对二垸 基苯的选择性。
中 国 专 利 ZL200610011662.4 , ZL200710176269.5 , ZL 200710176274.6, ZL 200710179408.X, ZL 200710179409.4 和 ZL 200710179410.7公开了一类甲苯甲醇制对二甲苯联产低碳烯烃的方法,指 出在一个催化剂上甲苯甲醇转化制备高选择性对二甲苯的同时可以联产 高选择性乙烯和丙烯, 产物中对二甲苯在二甲苯异构体选择性可以达到 99wt%以上, 乙烯和丙烯在 CrC5低碳烃中选择性可以达到 90wt%以上。 但是该方法的弊端是要获得高纯度的乙烯产品必须要通过深冷分离技术, 投资和能耗均较大, 直接影响了该过程的经济性。
CN102464549 A公开了一种生产丙烯和对二甲苯的方法,所述方法为 乙烯和碳四烃反歧化制丙烯, 其中不涉及乙烯和甲醇 /二甲醚垸基化制丙 烯的过程。 CN102464550 A公开了一种联产低碳烯烃和对二甲苯的方法, 所述方法为包括碳四、 碳五烃进入第一反应区制烯烃, 这是 C4或液化气 裂解制烯烃过程, 其中也不涉及乙烯和甲醇 /二甲醚垸基化制丙烯的过程。 发明内容
本发明的目的是提供一种以甲苯与甲醇和 /或二甲醚高选择性制备对 二甲苯联产丙烯的方法。
为此, 本发明提供一种高选择性制备对二甲苯联产丙烯的方法, 包括 以下歩骤:
a)将含有甲苯与甲醇和 /或二甲醚的原料在反应系统中与催化剂接触 反应, 从所述反应系统出来的富含乙烯的 c2-组分 (返回所述反应系统, 与所述原料在所述催化剂上继续反应以产生丙烯;
b) 从所述反应系统出来的 c6+组分, 经分离得到产物对二甲苯; 和 c) 从所述反应系统出来的 C3组分经分离得到产物丙烯。
优选地,所述催化剂改性沸石分子筛催化剂, 由 ZSM-5和 /或 ZSM-11 沸石分子筛经水热处理、硅氧垸基化合物表面修饰后得到。更优选地, 所 述改性沸石分子筛催化剂中, 由硅氧垸基化合物改性担载的 Si量, 为所 述改性沸石分子筛催化剂的总重量的 1 - 10wt%。
在一个优选实施方案中, 所述反应系统包括第一反应区和第二反应 区, 并且所述方法包括以下歩骤:
a)将含有甲苯与甲醇和 /或二甲醚的原料首先通过第一反应区与催化 剂 I接触反应, 然后进入第二反应区与催化剂 II接触反应; 由所述第二反 应区出来富含乙烯的 c2-组分返回所述第二反应区, 与所述第二反应区内 的甲醇和 /或二甲醚在所述催化剂 II上继续反应以产生丙烯;
b) 从所述第二反应区出来的 c6+组分经进一歩分离得到产物对二甲 苯; 和
c) 从所述第二反应区出来的 C3组分经进一歩分离得到丙烯。
在一个优选实施方案中, 所述反应系统包括第一反应区和第二反应 区, 并且所述方法包括以下歩骤: a)将含有甲苯与甲醇和 /或二甲醚的原料首先通过第一反应区与催化 剂 I接触反应, 得到生成物 A, 再通过第二反应区与催化剂 II接触反应, 得到生成物 B;生成物 A和生成物 B中的富含乙烯的 C 组分进入第二反 应区, 与第二反应区内的甲醇和 /或二甲醚在催化剂 II上继续反应以产生 丙烯;
b) 所述生成物 A和生成物 B中的 C6+组分经进一歩分离得到产品对 二甲苯; 和
c) 所述生成物 A和生成物 B中的 C3组分经进一歩分离得到产品丙 烯。 在一个优选实施方案中, 所述催化剂 I和催化剂 II 是相同或不同改 性沸石分子筛催化剂。
在一个优选实施方案中, 所述改性沸石分子筛催化剂是由 ZSM-5和 / 或 ZSM-11沸石分子筛经水热处理和硅氧垸基化合物改性而得到。
在一个优选实施方案中, 所述改性沸石分子筛催化剂中, 由硅氧垸基 化合物改性担载的 Si 量为所述改性沸石分子筛催化剂的总重量的 l-10wt
在一个优选实施方案中, 所述水热处理条件为在饱和水蒸汽气氛下, 在 500~700°C处理 3~6小时。
在一个优选实施方案中, 所述硅氧垸基化合物改性所采用的硅氧垸基 化合物的结构式如下式所示:
OR2
I
Figure imgf000006_0001
其中 、 R2、 R3和 R4各自独立地是 CWQ垸基。
在一个优选实施方案中, 所述硅氧垸基化合物为正硅酸乙酯。
在一个优选实施方案中,所述反应区包含一个反应器或多个通过串联 和 /或并联方式连接的反应器; 并且优选地, 所述反应器是选自固定床、 流化床和移动床反应器中的一种或多种。
在一个优选实施方案中,所述第一反应区和所述第二反应区在同一个 反应器内; 并且优选地, 所述反应器是选自固定床、 流化床和移动床反应 器中的一种或多种。
在一个优选实施方案中,所述第一反应区包含一个反应器或多个通过 串联和 /或并联方式连接的反应器; 所述第二反应区包含一个反应器或多 个通过串联和 /或并联方式连接的反应器; 所述第一反应区和所述第二反 应区之间通过串联或并联方式连接; 并且优选地, 所述反应器任选自固定 床、 流化床和移动床反应器中的一种或多种。
本发明的有益效果包括但不限于以下方面:本发明提供了一种以甲苯 和甲醇和 /或二甲醚反应高选择性制备对二甲苯并联产丙烯的新方法。 在 本发明的方法中, 通过使用特定的改性分子筛催化剂, 将生成的产物中的 富含乙烯的 c2-组分返回反应系统中与甲醇和 /或二甲醚发生垸基化反应 而进一歩生成丙烯, 最终获得高选择性对二甲苯和丙烯, 这一方面避免了 乙烯产品分离的高昂费用,另一方面可以进一歩增产具有更大市场需求的 丙烯产品, 从而可以有效提高该技术的经济性。 附图说明
图 1是根据本发明一种实施方案的方法的流程图。
图 2是根据本发明另一种实施方案的方法的流程图。
图 3是根据本发明另一种实施方案的方法的流程图。
图 4是根据本发明另一种实施方案的方法的流程图。 具体实施方式
在本发明的方法中, 将甲苯与甲醇和 /或二甲醚垸基化反应、 乙烯与 甲醇和 /或二甲醚垸基化反应两个反应过程耦合, 同时高选择性地联产对 二甲苯和丙烯。 具体地, 本发明的方法反应流程如图 1所示, 首先原料甲 苯与甲醇和 /或二甲醚在反应系统中与催化剂 (催化剂存在于反应器中) 接触, 生成的产物进入分离系统(例如分馏塔等)分离; 经分离系统分离 后, 得到 C6+组分、 C4-C5组分 (碳数为 4和 5的烃类)、 C3组分和富含乙 烯的 C2_组分以及水 (¾0), 其中, 富含乙烯的 C2_组分返回反应系统, C6+组分经进一歩分离 (例如精馏塔、 结晶分离系统等) 得到对二甲苯, c3组分经进一歩分离 (例如精馏塔等) 得到丙烯, 而少量 c4-c5组分和
H20收集后用于其它目的。 其中所述反应系统可以为一个单独的反应区, 也可以为两个以上的反应区的组合, 多个反应区可以在同一个反应器中, 也可以是分别在多个串联或并联的反应器中。优选地, 所述反应器为固定 床、 流化床或移动床中的任意一种或任意几种。
在本发明中, 所述原料包含甲苯与甲醇和 /或二甲醚, 表示原料可以 为甲苯、 甲醇和二甲醚的混合物, 也可以为甲苯和甲醇的混合物或甲苯和 二甲醚的混合物。本领域技术人员可以根据实际生产的需要, 选择合适的 原料种类及组成比例。 在一个优选实施方式中,根据本发明的方法的一种反应流程如图 2所 示。在图 2中, 反应系统由具有两个反应区的一个反应器组成, 其中第一 反应区的主反应为甲苯与甲醇和 /或二甲醚垸基化反应, 第二反应区的主 反应为乙烯 (第一反应区的副产物) 与甲醇和 /或二甲醚垸基化反应。 原 料甲苯与甲醇和 /或二甲醚首先通过第一反应区并与其中的催化剂 I接触 反应, 然后通过第二反应区并与其中的催化剂 II接触反应, 生成的产物 进入分离系统分离; 经分离系统分离后, 得到 C6+组分、 C4-C5组分、 C3 组分和 c2-组分以及 ¾0, 其中富含乙烯的 c2-组分返回第二反应区和进 入该第二反应区的甲醇和 /或二甲醚与其中的催化剂 II接触反应; C6+组分 经进一歩分离得到对二甲苯, C3组分进一歩分离得到丙烯。
在一个优选实施方式中,根据本发明的方法的一种反应流程如图 3所 示。在图 3中, 反应系统由两个并联的反应区组成, 第一反应区的主反应 为甲苯与甲醇和 /或二甲醚垸基化反应, 第二反应区的主反应为乙烯 (第 一反应区的副产物) 与甲醇和 /或二甲醚垸基化反应。 首先甲苯与甲醇和 / 或二甲醚在第一反应区与其中的催化剂 I接触, 生成生成物 A, 生成物 A 进入分离系统分离;将来自分离系统富含乙烯的 c2-组分返回第二反应区, 与直接进入第二反应区的原料甲醇和 /或二甲醚在其中的催化剂 II上反应 生成生成物 B, 生成物 B与生成物 A共同进入分离系统分离; 经分离系 统分离后, 其中富含乙烯的 C 组分返回第二反应区, 所述生成物 A和生 成物 B经分离系统分离后得到的 C6+组分经进一歩分离得到对二甲苯, C3 组分进一歩分离得到丙烯。
在一个优选实施方式中,根据本发明的方法的一种反应流程如图 4所 示。 在图 4中, 除了反应系统由同一个反应器中的两个反应区组成之外, 其反应过程与上述关于图 3所描述的过程相同, 这里不再赘述, 这样的反 应系统可以通过多段进料实现。
在本发明中,所使用的催化剂含有 ZSM-5和 /或 ZSM-11沸石分子筛, 更优选是 ZSM-5和 /或 ZSM-11沸石分子筛经水热处理、 硅氧垸基化合物 修饰表面酸性和孔结构得到的改性 ZSM-5和 /或 ZSM-11沸石分子筛。 最 优选其中经硅氧垸基化合物修饰后, Si 的担载量为该催化剂总重量的 l-10wt%。 当反应区为两个时, 分别存在于其中的催化剂 I和催化剂 II可 以为组分相同或不同的催化剂。例如, 在一个优选实施方式中, 所述催化 剂 I和催化剂 II为同一种催化剂或相同的催化剂。
在一个优选实施方案中, 本发明使用的催化剂的制备过程如下:
( 1 ) 将 ZSM-5和 /或 ZSM-11沸石分子筛原粉经 N¾+离子交换、 焙 烧制备成酸性沸石分子筛;
(2) 将上述酸性沸石分子筛进行水热处理, 得到改性沸石分子筛。 优选地, 水热处理条件为饱和水蒸汽气氛下在 500-700°C处理 3-6小时;
(3 ) 使用硅氧垸基试剂对上述改性沸石分子筛进行表面修饰, 进一 歩调变分子筛外表面酸性和孔结构, 得到改性沸石分子筛催化剂。
优选地, 本发明中所使用的硅氧垸基化合物如下式所示:
OR2
I
Figure imgf000009_0001
其中 、 R2、 R3和 R4各自独立地是 Cwo垸基, 如甲基、 乙基、丙基、 丁基、 戊基、 己基、 庚基和辛基, 以及它们的异构体形式。
优选地, 所使用的硅氧垸基化合物为正硅酸四乙酯。
优选地,在本发明中的所述第一反应区和第二反应区均可使用固定床 反应工艺, 同时可以与再生器结合采用流化床或移动床反应工艺。所述第 一反应区和第二反应区可以分别为在一个反应器中或在多个串联或并联 的相同或不同反应器中, 通过多段进料实现。
在本发明方法中, 甲苯与甲醇和 /或二甲醚垸基化、 乙烯与甲醇和 /或 二甲醚垸基化的反应温度在 300-600°C范围内,并且甲苯与甲醇和 /或二甲 醚垸基化优选的反应温度为 400-500°C, 乙烯与甲醇和 /或二甲醚垸基化优 选反应温度为 350-450°C。 甲苯与甲醇和 /或二甲醚烷基化反应质量空速以 甲苯计为 O.l-lOh-1 , 优选为 l-5h 。
对于本发明的方法, 在甲苯与甲醇和 /或二甲醚垸基化反应中, 甲苯 与甲醇和 /或二甲醚进料摩尔比可以在 0.1-10范围内, 优选为 0.2-5; 在乙 烯与甲醇和 /或二甲醚垸基化反应中, 乙烯与甲醇和 /或二甲醚摩尔比可以 在 0.1-10范围内, 优选为 0.5-5。
另外, 在本发明方法中, 通过调变反应温度以及甲苯与甲醇和 /或二 甲醚进料比、 乙烯与甲醇和 /或二甲醚比等反应条件, 可以实现在一定范 围内控制产物中对二甲苯和丙烯的比例。
本发明中, 所述 C2—组分指分子式中碳原子数小于等于 2的组分, 包 括乙烯以及乙垸、 甲垸、 CO、 C02和 ¾等, 驰放气主要为乙垸、 甲垸、 co、 co2禾口 ¾等。
本发明中, 所述〇3组分指分子式中碳原子数等于 3的化合物, 包括 丙烯、 丙烷等。
本发明中, 所述 0^ 5组分指分子式中碳原子数等于 4和 5的组分, 包括异丁烷、 异丁烯、 丁垸、 1-丁烯、 2-丁烯、 异戊垸、 新戊垸、 戊垸、 1-戊烯、 2-戊稀等。
本发明中, 所述 C6+组分指分子式中碳原子数大于等于 6的组分, 包 括对二甲苯以及其他的芳烃及其衍生物等。 下面通过实施例详述本发明, 但本发明并不局限于这些实施例。 通过气相色谱仪在线分析产物组成, 分析条件为:
色谱型号: Varian CP3800
色谱柱: CP Wax 52 CB毛细管色谱柱
载气: 氦气, 5ml/min
柱箱温度: 60-220 °C, 程序升温, 15 °C/min
进样口温度: 260 °C
实施例 1
催化剂的制备: Si-HZSM-5沸石分子筛催化剂和 Si-HZSM-11沸石分 子筛催化剂
将 500g ZSM-5沸石分子筛原粉 (Si02/Al203=68) (抚顺石化公司催 化剂厂) 和 500g ZSM-ll沸石分子筛原粉 (SiO2/Al2O3=50) (南开大学催 化剂厂) 分别在 550°C下焙烧去除模板剂, 在 80°C水浴中用 0.5摩尔当 量硝酸铵溶液进行交换 4次, 交换后在 120°C空气中烘干, 550°C下焙烧 4小时, 分别得到 HZSM-5、 HZSM-11沸石分子筛。
通过水热处理分别对 HZSM-5、 HZSM-11 沸石分子筛进行改性: 分 别取 HZSM-5、 HZSM-11分子筛 lOOg置于石英反应器中, 升温至 650°C 后通入水,水流量为 5ml/min,恒温处理 4小时,得到水热改性的 HZSM-5 沸石分子筛、 HZSM-11 沸石分子筛。 使用作为硅氧垸试剂的硅酸四乙酯 分别对水热改性的 HZSM-5沸石分子筛、 HZSM-11沸石分子筛进行表面 修饰, 其歩骤为: 分别将水热改性的 HZSM-5沸石分子筛、 HZSM-11沸 石分子筛放入 150克硅酸四乙酯中浸渍过夜, 倾出液体后在 120°C烘干, 在 550°C空气中焙烧 4小时, 分别得到修饰后的 Si-HZSM-5沸石分子筛 催化剂和 Si-HZSM-11 沸石分子筛催化剂, 分别命名为催化剂 TMPC-06 和 TMPC-07。 实施例 2
催化剂的制备: Si-HZSM-5和 Si-HZSM-11沸石分子筛混合催化剂 将 200g ZSM-5沸石分子筛原粉 (Si02/Al203=61 ) (抚顺催化剂厂) 和 300g ZSM-11沸石分子筛原粉 (SiO2/Al2O3=50) 在 550° C下焙烧去除 模板剂, 在 80° C水浴中用 0.5摩尔当量硝酸铵溶液进行交换 4次, 交换 后在 120° C空气中烘干, 550° C下焙烧 4小时, 得到 HZSM-5/HZSM-11 沸石分子筛。
通过水热处理对 HZSM-5/HZSM-11 沸石分子筛进行改性: 取 HZSM-5/HZSM-11分子筛 lOOg置于石英反应器中,升温至 650° C后通入 水,水流量为 5ml/min,恒温处理 4小时,得到水热改性 HZSM-5/HZSM-11 沸石分子筛。
使用硅氧烷试剂硅酸四乙酯对水热改性 HZSM-5/HZSM-11沸石分子 筛进行表面修饰, 歩骤为: 将水热改性 HZSM-5/HZSM-11沸石分子筛放 入 150克硅酸四乙酯中浸渍过夜, 倾出液体后在 120° C烘干, 在 550° C 空气中焙烧 4小时,得到修饰后 Si-HZSM-5/HZSM-l l沸石分子筛催化剂, 将其命名为催化剂 TMPC-08。 实施例 3
以甲苯和甲醇反应制对二甲苯并联产丙烯
根据图 2所示的反应流程,将实施例 1和 2中制备的催化剂 TMPC-06、 TMPC-07和 TMPC-08催化剂样品分别压片成型并破碎筛分为 40-60目的 催化剂, 将各个所述催化剂分别装入固定床反应器的两个反应区(各反应 区均为 10克)。 第一反应区进行甲苯甲醇转化反应, 其中甲苯 /甲醇的摩 尔比见下表 1, 第二反应区进行乙烯和甲醇垸基化反应, 当其中的一个比 例的反应完成后, 在线通入氮气吹扫, 然后切换为空气使催化剂在 550°C 条件下再生 5小时以循环利用催化剂。其中第一反应区的甲苯甲醇垸基化 反应产物分布中富含乙烯的 c2- 组分与甲醇共同进入第二反应区反应,其 中乙烯 /甲醇摩尔比均为 1/1。
反应条件: 第一反应区甲苯质量空速为 211—1, 反应温度为 480°C ; 第 二反应区反应温度为 420°C。采用气相色谱仪在线分析反应区混合产物组 成, 去除生成水后的产物分布如表 1所示, 再去除 C2—组分后产品分布如 表 2所示。
从表 2的数据可以看出, 在 TMPC-06、 TMPC-07和 TMPC-08催化 剂上, 当进料甲苯 /甲醇摩尔比分别为 2/1、 1/1、 1/2时, 总产物中丙烯选 择性分别为 26.19wt%、 31.75wt%、 41.28wt% , 对二甲苯选择性分别为 62.38wt% 56.66wt%、 45.45wt% ; 丙烯和对二甲苯总选择性分别为 88.57wt%、 88.41wt%、 86.73wt%。 对二甲苯在二甲苯异构体中的选择性 分别为 98.34wt%、 98.15wt%、 97.63wt%。
表 1
Figure imgf000013_0001
* wt%, 产物重量百分比组成, 下同。
表 2
Figure imgf000014_0001
实施例 4
以甲苯和甲醇反应制对二甲苯并联产丙烯
根据图 3或 4所示的反应流程, 将实施例 1中制备的 TMPC-06催化 剂压片成型并破碎筛分为 40-60目的催化剂样品,将各个所述催化剂分别 装入固定床反应器的两个反应区(各反应区均为 10克)。第一反应区进行 甲苯甲醇转化反应, 其中甲苯 /甲醇的摩尔比分别为 4/1、 2/1、 1/1 和 1/2 (见下表 3 ), 第二反应区进行乙烯和甲醇垸基化反应, 其中第一反应区 的甲苯甲醇垸基化反应产物分布中富含乙烯的 c2-组分与甲醇共同进入第 二反应区反应, 其中乙烯 /甲醇摩尔比均为 1/1。
当其中的一个比例的反应完成后,第一反应区和第二反应区均在线通 入氮气吹扫, 然后切换为空气使催化剂在 550Ό条件下再生 5小时, 氮气 吹扫并降温至反应温度进行另一比例的甲苯甲醇转化反应和乙烯甲醇垸 基化反应。 其他反应条件: 第一反应区甲苯质量空速为 211—1, 反应温度为 480 °C ; 第二反应区反应温度为 400 °C。 采用气相色谱仪在线分析第一反 应区和第二反应区混合产物组成, 去除生成水后的产物分布如表 3所示, 再去除 C2—组分后产品分布如表 4所示。
从表 4可以看出, 当进料甲苯 /甲醇摩尔比分别为 4/1、 2/1、 1/1和 1/2 时, 总产物中丙烯选择性分别为 24.32wt%、 27.64wt%、 33.32wt%、 43.12wt% , 对二甲苯选择性分别为 67.18wt%、 64.26wt%、 58.51wt%、 47.35wt% ; 丙烯和对二甲苯总选择性分别为 91.50wt%、 91.90wt%、 91.83wt% 90.47wt%。 对二甲苯在二甲苯异构体中的选择性分别为 99.31wt%、 99.26wt%、 99.21wt%、 99.14wt%。 表 3
Figure imgf000015_0001
表 4
Figure imgf000016_0001
对比例 1
以甲苯和甲醇反应制对二甲苯并联产乙烯丙烯, 无 C 组分返回的进 一歩反应
将实施例 1 中制备的 TMPC-06催化剂压片成型并破碎筛分为 40-60 目的催化剂样品, 取 10克催化剂装入反应器中进行甲苯甲醇转化反应, 甲苯 /甲醇摩尔比分别为 4/1、 2/1、 1/1和 1/2, 当其中的一个比例的反应完 成后, 在线通入氮气吹扫, 然后切换为空气使催化剂在 550°C条件下再生 5小时, 氮气吹扫并降温至反应温度进行另一比例的甲苯甲醇转化反应。 其他反应条件为: 甲苯质量空速为 2h— 反应温度为 480°C。 采用气相色 谱仪在线分析产物组成, 去除生成水后的产物分布如表 5所示。
当进料甲苯 /甲醇摩尔比分别为 4/1、 2/1、 1/1和 1/2时, 产物中丙烯 的选择性分别为 2.93wt%、 4.66 wt%、 7.89 wt%、 13.17 wt%。 催化剂 TMPC-06
进料时间 (小时) 1 1 1 1
第一反应器
4/1 2/1 1/1 1/2
甲苯 /甲醇 (摩尔比)
甲醇转化率 (%) 100 100 94.36 90.23
甲苯转化率 (%) 14.04 23.47 31.74 36.21
对二甲苯在二甲苯异
99.35 99.46 99.23 99.16
构体中选择性 (wt%)
产物分布 (wt%;)
C 0.11 0.18 0.30 0.49
C2H4 4.92 6.58 10.34 17.52
C2H6 0.01 0.01 0.02 0.02
c3¾ 2.93 4.66 7.89 13.17
c3¾ 0.04 0.07 0.11 0.15
C4 0.39 0.65 1.07 2.06
C5 0.25 0.27 0.43 0.64
苯 0.19 0.09 0.04 0.15
乙苯 0.17 0.16 0.14 0.13
对二甲苯 83.54 81.21 73.92 60.13
间二甲苯 0.02 0.02 0.05 0.06
邻二甲苯 0.52 0.42 0.52 0.45
≥C9 6.91 5.69 5.16 5.03
合计 100.00 100.00 100.00 100.00 以上已对本发明进行了详细描述,但本发明并不局限于本文所描述具 体实施方式。本领域技术人员理解, 在不背离本发明范围的情况下, 可以 作出其他更改和变形。 本发明的范围由所附权利要求限定。

Claims

权 利 要 求
1. 一种高选择性制备对二甲苯联产丙烯的方法, 所述方法包括以下 歩骤:
a) 将含有甲苯与甲醇和 /或二甲醚的原料在反应系统中与催化剂接触 反应; 从所述反应系统出来的富含乙烯的 c2-组分返回所述反应系统, 并 与所述原料在所述催化剂上继续反应以产生丙烯;
从所述反应系统出来的 C6+组分, 经分离得到产物对二甲苯; 和 c) 从所述反应系统出来的 C3组分经分离得到产物丙烯。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述反应系统包括笫 一反应区和第二反应区, 并且所述方法包括以下歩骤:
a) 将含有甲苯与甲醇和 /或二甲醚的原料首先通过所述第一反应区与 催化剂 I接触反应, 然后进入所述第二反应区与催化剂 II接触反应; 从所 述第二反应区出来的富含乙烯的 c2-组分返回所述第二反应区, 并与所述 第二反应区内的甲醇和 /或二甲醚在所述催化剂 II 上继续反应以产生丙 烯;
b) 从所述第二反应区出来的 c6+组分经进一歩分离得到产物对二甲 苯; 和
c) 从所述第二反应区出来的 C3组分经进一歩分离得到丙烯。
3. 根据权利要求 1 所述的方法, 其特征在于, 所述反应系统包括第 一反应区和第二反应区, 并且所述方法包括以下歩骤:
a) 将含有甲苯与甲醇和 /或二甲醚的原料首先通过所述第一反应区与 催化剂 I接触反应, 得到生成物 A, 再通过所述第二反应区与催化剂 II 接触反应, 得到生成物 B; 所述生成物 A和生成物 B中的富含乙烯的 CV 组分进入所述第二反应区, 与所述第二反应区内的甲醇和 /或二甲醚在所 述催化剂 II上继续反应以产生丙烯;
b) 所述生成物 A和生成物 B中的 C6+组分经进一歩分离得到产品对 二甲苯; 和
c) 所述生成物 A和生成物 B中的 C3组分经进一歩分离得到产品丙 烯。
4. 根据权利要求 1、 2或 3所述的方法, 其特征在于, 所述催化剂、 所述催化剂 I和所述催化剂 II含有相同或不同的改性沸石分子筛催化剂。
5. 根据权利要求 4所述的方法, 其特征在于, 所述改性沸石分子筛 催化剂是由 ZSM-5和 /或 ZSM-11沸石分子筛经水热处理和硅氧垸基化合 物改性而获得。
6. 根据权利要求 5所述的方法, 其特征在于, 所述硅氧垸基化合物 改性所采用的硅氧垸基化合物的结构式如下所示:
OR2
I
Figure imgf000019_0001
其中 、 R2、 R3和 R4各自独立地是 CWQ垸基。
7. 根据权利要求 1 所述的方法, 其特征在于, 所述反应系统包括一 个反应器, 或多个通过串联和 /或并联方式连接的反应器。
8. 根据权利要求 2或 3所述的方法, 其特征在于, 所述第一反应区 和所述第二反应区在同一个反应器内。
9. 根据权利要求 2或 3所述的方法, 其特征在于, 所述第一反应区 包含一个反应器或多个通过串联和 /或并联方式连接的反应器; 所述第二 反应区包含一个反应器或多个通过串联和 /或并联方式连接的反应器; 并 且所述第一反应区和所述第二反应区之间通过串联或并联方式连接。
10. 根据权利要求 7、 8或 9所述的方法, 其特征在于, 所述反应器 是选自固定床、 流化床和移动床反应器中的一种或多种。
PCT/CN2014/079144 2014-06-04 2014-06-04 一种高选择性制备对二甲苯联产丙烯的方法 WO2015184600A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11201610150PA SG11201610150PA (en) 2014-06-04 2014-06-04 Method for preparing p-xylene and co-producing propylene with high selectivity
US15/315,603 US10099973B2 (en) 2014-06-04 2014-06-04 Method for preparing p-xylene and co-producing propylene with high selectivity
MYPI2016704499A MY188942A (en) 2014-06-04 2014-06-04 Method for preparing p-xylene and co-producing propylene with high selectivity
EP14894165.1A EP3153490B1 (en) 2014-06-04 2014-06-04 Method for preparing paraxylene with co-production of propylene with high selectivity
PCT/CN2014/079144 WO2015184600A1 (zh) 2014-06-04 2014-06-04 一种高选择性制备对二甲苯联产丙烯的方法
JP2016571213A JP6408612B2 (ja) 2014-06-04 2014-06-04 高選択率でp−キシレンを製造してプロピレンを併産する方法
KR1020177000245A KR101912398B1 (ko) 2014-06-04 2014-06-04 선택도가 높은 파라자일렌을 제조하고 프로필렌을 공동 생성하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079144 WO2015184600A1 (zh) 2014-06-04 2014-06-04 一种高选择性制备对二甲苯联产丙烯的方法

Publications (1)

Publication Number Publication Date
WO2015184600A1 true WO2015184600A1 (zh) 2015-12-10

Family

ID=54765941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079144 WO2015184600A1 (zh) 2014-06-04 2014-06-04 一种高选择性制备对二甲苯联产丙烯的方法

Country Status (7)

Country Link
US (1) US10099973B2 (zh)
EP (1) EP3153490B1 (zh)
JP (1) JP6408612B2 (zh)
KR (1) KR101912398B1 (zh)
MY (1) MY188942A (zh)
SG (1) SG11201610150PA (zh)
WO (1) WO2015184600A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187134A (zh) * 2018-11-15 2020-05-22 中国科学院大连化学物理研究所 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法
JP2020517427A (ja) * 2017-04-27 2020-06-18 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences トルエン、p−キシレン及び軽質オレフィンのうちの少なくとも1種を製造するための触媒のインサイチュ製造方法及び反応プロセス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202004970XA (en) * 2017-11-30 2020-06-29 Dalian Inst Chemical Physics Cas Molecular sieve-based catalyst modification apparatus, and method
CN110743607A (zh) * 2019-09-24 2020-02-04 陕西煤化工技术工程中心有限公司 一种粗苯直接烷基化制对二甲苯催化剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161620A1 (en) * 2006-12-29 2008-07-03 Bozzano Andrea G Aromatics Co-Production in a Methanol-To-Propylene Unit
CN101239867A (zh) * 2007-02-07 2008-08-13 中国石油化工股份有限公司 提高丙烯收率的方法
CN101456784A (zh) * 2007-12-12 2009-06-17 中国科学院大连化学物理研究所 甲苯与甲基化试剂制对二甲苯联产低碳烯烃的方法
CN101607858A (zh) * 2009-07-24 2009-12-23 中国海洋石油总公司 一种甲醇/二甲醚制备芳烃联产丙烯的方法
CN102464549A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 生产丙烯和对二甲苯的方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965208A (en) 1975-01-06 1976-06-22 Mobil Oil Corporation Methylation of toluene
US3965207A (en) 1975-01-06 1976-06-22 Mobil Oil Corporation Selective production of para-xylene
US4250345A (en) 1978-01-10 1981-02-10 Mobil Oil Corporation Selective production of para-xylene
US5034362A (en) 1979-01-31 1991-07-23 Mobil Oil Corporation Zeolitic catalyst composition of improved shape selectivity
US4444989A (en) 1979-04-20 1984-04-24 E. I. Du Pont De Nemours And Company Methylation of toluene to para-xylene catalyzed by crystalline silica
US4276438A (en) 1980-05-27 1981-06-30 Mobil Oil Corporation Shape selective reactions with group IB modified zeolite catalysts
US4278827A (en) 1980-04-07 1981-07-14 Mobil Oil Corporation Shape selective reactions with zeolite catalyst modified with group IVB metal
JPS59216833A (ja) * 1983-05-26 1984-12-06 Idemitsu Kosan Co Ltd エチレンの製造方法
US4491678A (en) 1982-10-19 1985-01-01 Idemitsu Kosan Company Limited Process for the production of para-xylene
US4670616A (en) 1985-11-25 1987-06-02 Amoco Corporation AMS-1B crystalline borosilicate molecular sieve-based catalyst compositions and process for toluene methylation
US5563310A (en) 1993-09-14 1996-10-08 Mobil Oil Corporation Toluene alkylation with methanol
US6423879B1 (en) 1997-10-02 2002-07-23 Exxonmobil Oil Corporation Selective para-xylene production by toluene methylation
KR100598270B1 (ko) * 1999-01-11 2006-07-07 카살레 케미칼스 에스.에이. 유동층 반응기에서 메탄올로부터 경질 올레핀 제조방법
US6613708B1 (en) 1999-06-07 2003-09-02 Exxonmobil Chemical Patents Inc. Catalyst selectivation
CN100391915C (zh) 2006-04-13 2008-06-04 中国科学院大连化学物理研究所 一种甲苯甲基化制对二甲苯催化剂的在线修饰方法
CN101417235B (zh) 2007-10-24 2011-05-04 中国科学院大连化学物理研究所 一种甲苯甲醇烷基化制对二甲苯和低碳烯烃移动床催化剂
CN101417236B (zh) 2007-10-24 2012-03-28 中国科学院大连化学物理研究所 一种甲苯甲醇烷基化制对二甲苯和低碳烯烃流化床催化剂
CN101456785B (zh) * 2007-12-12 2012-05-23 中国科学院大连化学物理研究所 一种高选择性制对二甲苯联产低碳烯烃的方法
CN101456786B (zh) 2007-12-12 2011-12-07 中国科学院大连化学物理研究所 甲苯与甲基化试剂制对二甲苯联产低碳烯烃的方法
CN101602643B (zh) * 2009-07-24 2013-07-24 中国海洋石油总公司 一种甲醇/二甲醚转化制取乙烯丙烯联产对二甲苯的方法
CN102190546B (zh) * 2010-03-03 2013-09-18 中国石油化工股份有限公司 甲醇转化制丙烯和芳烃的方法
CN102464550B (zh) 2010-11-17 2014-03-05 中国石油化工股份有限公司 联产低碳烯烃和对二甲苯的方法
US9844770B2 (en) * 2011-12-19 2017-12-19 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Catalyst used in the production of ethylene and propylene from methanol and/or dimethyl ether, method for preparing the same and method for using the same
MY168285A (en) * 2011-12-19 2018-10-22 Dalian Inst Chem & Physics Cas Catalyst for preparing paraxylene by mutual conversion of methyl alcohol and/or dimethyl ether and c4 liquefied gas, and preparation method and application therefor
WO2014058609A1 (en) * 2012-10-09 2014-04-17 Exxonmobil Chemical Patents Inc. Recovery of olefins from para-xylene process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161620A1 (en) * 2006-12-29 2008-07-03 Bozzano Andrea G Aromatics Co-Production in a Methanol-To-Propylene Unit
CN101239867A (zh) * 2007-02-07 2008-08-13 中国石油化工股份有限公司 提高丙烯收率的方法
CN101456784A (zh) * 2007-12-12 2009-06-17 中国科学院大连化学物理研究所 甲苯与甲基化试剂制对二甲苯联产低碳烯烃的方法
CN101607858A (zh) * 2009-07-24 2009-12-23 中国海洋石油总公司 一种甲醇/二甲醚制备芳烃联产丙烯的方法
CN102464549A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 生产丙烯和对二甲苯的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517427A (ja) * 2017-04-27 2020-06-18 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences トルエン、p−キシレン及び軽質オレフィンのうちの少なくとも1種を製造するための触媒のインサイチュ製造方法及び反応プロセス
CN111187134A (zh) * 2018-11-15 2020-05-22 中国科学院大连化学物理研究所 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法

Also Published As

Publication number Publication date
MY188942A (en) 2022-01-13
EP3153490B1 (en) 2019-11-27
JP2017518995A (ja) 2017-07-13
JP6408612B2 (ja) 2018-10-17
KR101912398B1 (ko) 2018-10-26
KR20170013988A (ko) 2017-02-07
US10099973B2 (en) 2018-10-16
EP3153490A1 (en) 2017-04-12
SG11201610150PA (en) 2017-01-27
EP3153490A4 (en) 2018-02-07
US20170152197A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
KR101217915B1 (ko) 에탄올로부터의 올레핀의 제조 방법
JP5873570B2 (ja) メタノール及び/又はジメチルエーテルとc4液化ガスの混合転換によりパラキシレンを製造するための触媒及びその製造方法と使用
CN101980991B (zh) 对-取代芳香族碳化氢的制造方法
WO2018195865A1 (zh) 制甲苯、对二甲苯、低碳烯烃中至少一种的催化剂的原位制备方法及反应工艺
CN110072831B (zh) 用于以混合催化剂体系实现将碳高度转化为所需产物的转化的方法和系统
WO2015184598A1 (zh) 一种甲醇和/或二甲醚制备对二甲苯和丙烯的方法
TWI461241B (zh) 用於烴轉換之觸媒及方法
WO2015184600A1 (zh) 一种高选择性制备对二甲苯联产丙烯的方法
CN104710265B (zh) 一种制备对二甲苯和丙烯的方法
WO2016140900A1 (en) High meso-surface area pentasil zeolite for use in xylene conversion
US10336665B2 (en) Yields in xylene isomerization using layer MFI zeolites
CN106215970A (zh) Hzsm‑5分子筛催化剂的改性处理方法及应用
CN110913986A (zh) 用于将重质重整产物转化成二甲苯的沸石复合催化剂
JP2023545175A (ja) 炭化水素含有混合物を処理するための方法およびシステム
TW201221512A (en) Method for producing cumene
CN105294374B (zh) 一种甲醇和/或二甲醚制备对二甲苯和丙烯的方法
CN114787323A (zh) 用于将重质重整产物转化成二甲苯的复合分层沸石催化剂
CN105272798B (zh) 一种高选择性制备对二甲苯联产丙烯的方法
CN112573986B (zh) 由c8芳烃生产对二甲苯的方法
KR102443025B1 (ko) 분자체 촉매 개질 장치 및 방법
CN112299941A (zh) 一种均四甲苯的制备方法
Tangestanifard et al. Methylation of toluene with methanol in sub/supercritical toluene using H-beta zeolite as catalyst
WO2022083725A1 (zh) 一种汽油组分的处理方法和系统
KR100652514B1 (ko) 방향족을 선택적으로 불균등화 반응시키는 방법
CN101668723A (zh) 具有提高的转化率的芳族化合物选择性歧化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15315603

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016571213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014894165

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014894165

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020177000245

Country of ref document: KR