WO2019102998A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2019102998A1
WO2019102998A1 PCT/JP2018/042846 JP2018042846W WO2019102998A1 WO 2019102998 A1 WO2019102998 A1 WO 2019102998A1 JP 2018042846 W JP2018042846 W JP 2018042846W WO 2019102998 A1 WO2019102998 A1 WO 2019102998A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
motor
wheel
pair
sensor
Prior art date
Application number
PCT/JP2018/042846
Other languages
English (en)
French (fr)
Inventor
雅男 平松
Original Assignee
大同メタル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同メタル工業株式会社 filed Critical 大同メタル工業株式会社
Priority to US16/765,321 priority Critical patent/US20200354018A1/en
Priority to CN201880074888.XA priority patent/CN111356628A/zh
Priority to EP18882047.6A priority patent/EP3696068A4/en
Publication of WO2019102998A1 publication Critical patent/WO2019102998A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/13Arrangements of batteries for propulsion on rider-propelled cycles with additional electric propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/412Speed sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4151Inclination sensors for sensing lateral inclination of the cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/05Tricycles characterised by a single rear wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/08Cycles with handlebars, equipped with three or more main road wheels with steering devices acting on two or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L1/00Brakes; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/02Brake-actuating mechanisms; Arrangements thereof for control by a hand lever
    • B62L3/023Brake-actuating mechanisms; Arrangements thereof for control by a hand lever acting on fluid pressure systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/08Mechanisms specially adapted for braking more than one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/60Rider propelled cycles with auxiliary electric motor power-driven at axle parts
    • B62M6/65Rider propelled cycles with auxiliary electric motor power-driven at axle parts with axle and driving shaft arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/34Stabilising upright position of vehicles, e.g. of single axle vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/02Brake-actuating mechanisms; Arrangements thereof for control by a hand lever
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle that can be propelled by the operating force of a driver, which performs posture control in accordance with the traveling state at the time of deceleration or the like.
  • a vehicle that has three or more wheels and can be propelled by rotating the wheels by the actuating force of the driver such as a bicycle where at least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels
  • Vehicles with front wheel parts consisting of a pair of wheels are called “front wheel two-wheeled vehicles” and vehicles with rear wheel parts consisting of a pair of wheels are called “rear wheel two-wheeled vehicles”
  • front wheel two-wheeled vehicles vehicles with rear wheel parts consisting of a pair of wheels
  • rear wheel two-wheeled vehicles Compared with conventional two-wheeled bicycles, which are arranged one by one, they are generally stable against tilting and swaying because they have three or more wheels, but they are appropriate when decelerating or turning on curves etc. It is difficult to control attitude.
  • Patent Document 1 discloses a three-wheel front wheel two-wheeled vehicle in which the entire link mechanism moves left and right in conjunction with steering of the steering wheel.
  • Link movement of the link mechanism uses a link angle control device.
  • the link angle control device is attached to the fixed part attached to the stem part and the link mechanism part, and the opening of the electric (electromagnetic) servo valve controlled via the ECU from the vehicle speed sensor of the wheel It is disclosed that the movement of the link is set in a tendency to be fixed, the movement resistance of the link is removed in the middle and high speed range, and the attitude of the vehicle body is controlled by controlling the movement of the link angle of the link mechanism. It is done.
  • a three-wheel two-wheeled three-wheeled vehicle in which the right wheel and the left wheel in the front wheel have the same rotational force as in Patent Document 1 improves the stability against posture change when turning on a curve. it can.
  • a front wheel two-wheeled vehicle or a rear wheel two-wheeled vehicle including a three-wheeled front wheel two-wheeled vehicle as disclosed in Patent Document 1 has many contact points due to multiple wheels, and therefore is affected by a stepped surface or an inclined surface. It tends to be inclined.
  • the object of the present invention is to control the rotational forces of each of the left and right pair of wheels independently of each other on at least one of the front wheel portion and the rear wheel portion, and to further apply the same braking force to each of the left and right pair of wheels.
  • a vehicle capable of rotating and promoting the wheels by the actuating force of the driver, performing posture control according to the traveling state at the time of deceleration etc., and ensuring stability against posture change It is to be.
  • a vehicle wherein at least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels, which can be propelled by the driver's operating force.
  • a state of the vehicle is detected, and in response to the detection, the rotational force of each of the pair of wheels can be controlled independently of each other, and a braking force that is synchronous and uniform is applied to each of the pair of wheels. It can be generated.
  • a vehicle includes: a battery; a motor connected to the battery for controlling a rotational force of one of the pair of wheels; and a rotational force of the other of the pair of wheels
  • a pair of motors composed of a motor for control, detection of a state, a sensor for transmitting a state signal based on the detection, and a control signal for controlling the pair of motors by arithmetic processing of the state signal
  • a motor controller for controlling the power supply between the battery and the pair of motors based on a control signal transmitted from the vehicle controller; and a pair of braking devices for braking each of the pair of wheels.
  • the output of each of the pair of motors is controlled independently of each other by the motor driver so that the rotational force of each of the pair of wheels can be controlled independently of each other.
  • the braking force operated device is a synchronous and uniform further comprising a braking mechanism for enabling generation for each of the pair of wheels.
  • the braking mechanism is hydraulic.
  • the senor in a vehicle, includes an inclination sensor for detecting an inclination relative to the vertical direction of the vehicle, and the vehicle controller calculates a state signal transmitted from the sensor to correct the state. It can be processed to transmit control signals.
  • the senor further comprises an actuation force sensor for detecting the actuation force by the driver of the vehicle, and the vehicle controller is transmitted from the sensor to correct the condition.
  • a signal can be arithmetically processed to transmit a control signal.
  • the senor further includes a speed sensor for detecting the speed of the vehicle, and the vehicle body controller processes the state signal transmitted from the sensor to correct the state. Control signal can be transmitted.
  • At least one of the pair of motors has the function of a generator, and at least one of the pair of motors applies reverse rotation torque to its wheel. And, by the function of the generator, it is possible to recover the traveling energy of the vehicle and supply power to the battery via the motor driver.
  • the motor is disposed on each of the pair of wheels, and the output of each pair of motors is controlled independently of each other to control the rotational force of each of the pair of wheels independently of each other.
  • the inclination of the vehicle by generating a braking force that is both synchronized and equal to each of the pair of wheels, thereby suppressing the fluctuation at the time of braking and the like and performing attitude control according to the traveling state. It can be carried out. Further, by detecting the state of the vehicle by the sensor and performing arithmetic processing based on the detection result, it is possible to generate mutually independent independent rotational forces for each of the pair of wheels.
  • the motor when attitude control is performed, the motor can be operated as a generator to recover the traveling energy of the vehicle, and power can be supplied to the battery. Then, since the output of each of the pair of motors can be controlled independently of each other, one of the motors supplies power from the battery to the motor in order to apply positive rotational torque to the wheel, while the other motor Can be operated as a generator to apply reverse torque to its wheels and to supply power from its motor to the battery.
  • FIG. 1 represents a flow chart of a method for controlling a vehicle according to an embodiment of the present invention.
  • FIGS. 1, 2A and 2B A vehicle 100 according to an embodiment of the present invention is shown in FIGS. 1, 2A and 2B.
  • vehicle refers to rotating at least one of the front and rear wheels by the driver's operating force, at least one of the front and rear wheels being composed of a pair of left and right wheels. It is a vehicle that can be driven to As such a vehicle, for example, there is a bicycle which can be propelled by rotating a wheel by providing a pedal with a pedal force which is a driver's operating force.
  • a bicycle is particularly shown among the vehicles in the following embodiments, the present invention can be applied to a vehicle that can be propelled by the operating force of a driver other than a bicycle.
  • Vehicle 100 is a front wheel two-wheeled bicycle in which the front wheel portion of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels, and the first vehicle located on the right side when viewed from the driver disposed on the front wheel portion.
  • a pair of left and right wheels having a wheel 101, a second wheel 102 positioned on the left side as viewed from the driver, and a third wheel 103 of one wheel disposed on the rear wheel portion are provided.
  • the rear wheel portion may be equipped with one or more wheels.
  • the first wheel 101 and the second wheel 102 may be connected by a link mechanism 113.
  • the vehicle 100 is disposed at the battery 109 and the hub of the first wheel 101, and is disposed at the hub of the first motor 104 for controlling the rotational force of the first wheel 101, and the hub of the second wheel 102, It comprises a pair of motors constituted by a second motor 105 for controlling the rotational force of the second wheel 102.
  • the pair of motors 104 and 105 are connected to the battery 109.
  • the vehicle 100 shown in FIGS. 1, 2A and 2B is a front wheel two-wheeled three-wheeled bicycle in which the front wheel portion is composed of a pair of left and right wheels, but the rear wheel is composed of a pair of left and right wheels. It may be a two-wheeled vehicle.
  • rear-wheel two-wheeled vehicles for example, in the case of rear-wheel two-wheeled bicycles, by adopting differential gears (differential gears) in the rear wheels, the left and right wheels can be given a rotational difference, Place a motor on each hub of the wheels.
  • differential gears differential gears
  • the vehicle 100 comprises a first braking device 124 for braking the first wheel 101 and a second braking device 125 for braking the second wheel 102.
  • the first braking device 124 and the second braking device 125 can generate braking forces that are synchronized and equal (equal in size) to the first wheel 101 and the second wheel 102, respectively. It has become.
  • the vehicle 100 includes a braking mechanism 123. When the driver of the vehicle 100 pulls the brake lever 122 attached to the steering wheel 112, the braking mechanism 123 is generated to the first wheel 101 by the first braking device 124.
  • the braking force that is being controlled and the braking force that is generated by the second braking device 125 on the second wheel 102 are controlled to be synchronized and even.
  • the outputs of the first motor 104 and the second motor 105 are controlled independently of each other to control the rotational force of each of the first wheel 101 and the second wheel 102 independently of each other, and further the first
  • the braking mechanism 123 may include a hydraulic tank. Thereby, the braking mechanism 123 can control the first braking device 124 and the second braking device 125 hydraulically.
  • Vehicle 100 also includes a sensor group that detects the state of vehicle 100 and transmits a state signal based on the detection.
  • the state of the vehicle 100 includes, for example, the inclination of the vehicle 100 with respect to the vertical direction, the operating force by the driver of the vehicle 100, the speed of the vehicle 100, etc. It is detected by the sensor 107, the speed sensor 108 and the like.
  • a pair of right and left wheels having at least one of the front wheel portion and the rear wheel portion is a first wheel 101 on the right side and a second wheel 102 on the left side.
  • the control apparatus 117 used for the comprised vehicle 100 is shown.
  • the control device 117 is connected to the battery 109 and the battery 109, and controls the rotational force of the right wheel as the first wheel 101, and the rotational force of the left wheel as the second wheel 102.
  • a tilt sensor 106 an actuating force sensor 107, and a speed sensor 108 to detect the state of the vehicle 100, and to detect a state signal based on the detection (tilt And a sensor group for transmitting the signal 118, the actuation force signal 119, the velocity signal 120), and the status signals 118 to 120 for arithmetic processing to control the outputs of the first motor 104 and the second motor 105.
  • the vehicle controller 114 Based on the vehicle controller 114 transmitting the control signal 121 and the control signal 121 transmitted from the vehicle controller 114, the battery 109 and the first
  • the first motor driver 115 for controlling the supply of power between the motor 104, and a second motor driver 116 for controlling the supply of power between the battery 109 and the second motor 105.
  • the first motor driver 115 and the second motor driver 116 which receive the control signal 121 respectively supply power from the battery 109 to the first motor 104 and the second motor 105 at a certain timing.
  • the first motor driver 115 and the second motor driver 116 may be an integrated motor driver, and further, the vehicle controller 114, the first motor driver 115, and the second motor driver 116 may be integrated. It may be an integrated controller. In addition, the vehicle body controller 114, the first motor driver 115, and the second motor driver 116 may be disposed on the handle 112 which is a grip portion of the driver of the vehicle 100, and when the vehicle 100 is a bicycle, It may be disposed under the saddle 111. In FIG. 3 and FIG.
  • the control signal 121 is transmitted from the vehicle body controller 114 to the first motor driver 115 and the second motor driver 116 by one signal line, but the control signal is By providing an authentication code for each of the first motor driver 115 and the second motor driver 116 to 121, it may be transmitted by one signal line, and even if it is wired, it may be wireless. It may be a formula.
  • the inclination sensor 106 of the sensor group is operated by the power from the battery 109 and detects the inclination of the vehicle 100 with respect to the vertical direction. By including the inclination sensor 106, it is possible to detect a wobble that is alternately inclined with respect to the left and right due to deceleration of the vehicle or the like.
  • the tilt sensor 106 may be, for example, a tilt angle sensor, a gyro sensor, or the like.
  • an inclination sensor, a gyro sensor, etc. may be disposed under the saddle 111. As shown in FIG.
  • the inclination angle sensor detects the inclination angle ⁇
  • the gyro sensor detects the angular velocity with respect to the inclination angle ⁇
  • the inclination of the vehicle 100 is detected.
  • the inclination sensor 106 there is, for example, a torque sensor, and a torque sensor is disposed on each of the first wheel 101 and the second wheel 102, and the torque difference of each wheel detected from each torque sensor
  • the tilt of the vehicle 100 can also be detected by using it.
  • the inclination sensor 106 for example, there is a steering angle sensor, and the steering angle sensor is disposed on the steering wheel 112 which is a grip portion of the driver, and the vehicle is also used by using the steering angle detected from the steering angle sensor. An inclination of 100 can be detected.
  • the inclination sensor 106 is a road surface having an inclination of uphill and downhill. The inclination with respect to the vertical direction of the vehicle 100 can be detected.
  • the inclination sensor 106 generates a state signal (inclination signal 118) including the detected inclination and transmits it to the vehicle controller 114.
  • the vehicle controller 114 receives the status signal (tilt signal 118) to determine the direction of tilt of the vehicle 100, corrects the tilt of the vehicle 100, and returns the posture in the vertical direction to the status signal (tilt signal 118). Perform arithmetic processing.
  • the first motor driver 115 and the second motor driver 116 respectively select a position between the battery 109 and the first motor 104 and the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114. Control the power supply.
  • the output of the first motor 104 and the output of the second motor 105 are respectively controlled by the first motor driver 115 and the second motor driver 116 based on the control signal 121 transmitted from the vehicle body controller 114 to the battery 109.
  • the power supply between the and the first motor 104 and the second motor 105 is controlled so that they can be controlled independently of each other.
  • the output of the first motor 104 and the output of the second motor 105 which are controlled independently of each other, respectively control the rotational force of the first wheel 101 and the rotational force of the second wheel 102 independently of each other
  • the inclination of the vehicle 100 is corrected to return the posture in the vertical direction.
  • the first motor 104 and the second motor 105 can increase the rotational force of the wheel located on the same side of the inclination of the pair of wheels, or the opposite side to the inclination It is possible to reduce the rotational force of the wheels located at
  • the operating force sensor 107 of the sensor group is operated by the electric power from the battery 109 and detects an operating force for propelling the vehicle 100 by the driver of the vehicle 100.
  • the actuation force sensor 107 is a torque sensor.
  • a torque sensor is disposed on a shaft connecting a pair of left and right pedals 110, and the driver of the vehicle 100 detects the torque of the rotating shaft by stepping on the pedal 110, Detects the pedal force that is the power.
  • the operating force sensor 107 may be any sensor that can detect the operating force applied by the driver of the vehicle 100.
  • the actuating force sensor 107 generates a state signal (actuating force signal 119) including the detected actuating force and transmits it to the vehicle controller 114.
  • the vehicle controller 114 receives the state signal (tilt signal 118, actuation force signal 119), corrects the tilt of the vehicle 100, and returns the posture in the vertical direction (state signal 118, actuation force signal 119).
  • Process the The first motor driver 115 and the second motor driver 116 respectively select a position between the battery 109 and the first motor 104 and the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114.
  • the power supply is controlled and power is supplied from the battery 109 to the first motor 104 and the second motor 105, or power is supplied from the first motor 104 and the second motor 105 to the battery 109.
  • the output of the first motor 104 whose power supply is controlled and the output of the second motor 105 are controlled independently from each other as described above, and the rotational force of the first wheel 101 and that of the second wheel 102 are controlled.
  • the rotational forces are controlled independently of each other to correct the inclination of the vehicle 100 and return the posture in the vertical direction.
  • the speed sensor 108 of the sensor group is operated by the power from the battery 109, and is disposed on the third wheel 103 which is a rear wheel as shown in FIG. 1, and the speed of the vehicle 100 is calculated from the rotational speed of the third wheel 103.
  • the speed sensor 108 may be any sensor as long as it can detect the speed of the vehicle 100. Also, the speed sensor 108 may be disposed on either the first wheel 101 or the second wheel 102.
  • the speed sensor 108 generates a state signal (speed signal 120) including the detected speed and transmits it to the vehicle controller 114.
  • the vehicle controller 114 receives the status signals (the tilt signal 118, the actuation force signal 119, the velocity signal 120), corrects the tilt and returns the posture in the vertical direction, and the status signals (the tilt signal 118, the actuation force signal 119 , Speed signal 120).
  • the first motor driver 115 and the second motor driver 116 respectively select a position between the battery 109 and the first motor 104 and the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114.
  • the power supply is controlled and power is supplied from the battery 109 to the first motor 104 and the second motor 105, or power is supplied from the first motor 104 and the second motor 105 to the battery 109.
  • the output of the first motor 104 whose power supply is controlled and the output of the second motor 105 are controlled independently from each other as described above, and the rotational force of the first wheel 101 and that of the second wheel 102 are controlled.
  • the rotational forces are controlled independently of each other to correct the inclination of the vehicle 100 and return the posture in the vertical direction.
  • the vehicle body controller 114 can control at least one of the first motor 104 and the second motor 105.
  • the first motor driver 115 and the second motor driver 116 respectively operate the battery 109 based on the control signal 121 transmitted from the vehicle body controller 114.
  • the first motor 104 and the second motor 105 control the amount of torque required for the first wheel 101 and the second wheel 102 and the time for applying the torque, respectively.
  • the rotational torque can be applied to the wheel 101 and the second wheel 102 independently of each other.
  • “providing rotational torque” “providing positive rotational torque” refers to applying torque in the same direction to the rotation of the wheel in the direction of travel of the vehicle 100 to increase the rotational force of the wheel
  • “To apply reverse torque” means to apply torque in the direction opposite to the rotation of the wheel in the direction of travel of the vehicle 100 to reduce the torque of the wheel. Even when the rotational speed of the wheel is zero, the motor can apply rotational torque to the wheel.
  • the inclination sensor 106 detects that the vehicle 100 is inclined to the left Transmits the status signal (tilt signal 118) based on the detection (tilt on the left side), and the vehicle controller 114 processes the status signal (tilt signal 118) based on the tilt on the left side, and the second motor driver 116 Supplies power from the battery 109 to the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114, and the second motor 105 applies positive rotational torque to the second wheel 102 on the left side.
  • the first motor driver 115 is controlled based on the control signal 121 transmitted from the vehicle controller 114.
  • the first motor 104 applies a reverse rotation torque to the first wheel 101 on the right side to reduce the torque of the first wheel 101.
  • the rotational force of each of the first wheel 101 and the second wheel 102 is controlled independently of each other to correct the inclination to the left and return the posture in the vertical direction (inclination angle in the case of FIG. 2A) 0).
  • the first motor driver 115 operates the first motor 104 as a generator to generate the first wheel.
  • the electric power may be supplied from the first motor 104 to the battery 109 by regenerative braking 101.
  • the tilt sensor 106 detects that the vehicle 100 is tilted to the right, and the state signal (tilt signal 118) based on the detection (right tilt) Is transmitted from the battery 109 based on the control signal 121 transmitted from the vehicle controller 114 by the first motor driver 115 based on the control signal 121 transmitted from the vehicle controller 114.
  • the motor driver 116 supplies power from the battery 109 to the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114, and the second The rotation of each of the first wheel 101 and the second wheel 102 is achieved by the torque 105 applying reverse torque to the second wheel 102 on the left side to reduce the torque of the second wheel 102.
  • the forces are controlled independently of each other to correct the tilt to the right and return the attitude in the vertical direction.
  • the second motor 105 is operated as a generator by the second motor driver 116 to regenerate the second wheel 102.
  • the second motor 105 may supply power to the battery 109 by braking.
  • the motor may be operated as an electric motor if it is necessary to greatly reduce the rotational force of the wheel in a short time.
  • the inclination correction of the vehicle 100 can catch up even if the first motor 104 is operated as a generator to regeneratively brake the first wheel 101.
  • the first motor 104 is operated as a motor so that the first motor 104 can apply a large reverse rotational torque to the first wheel 101 to increase the rotational force of the first wheel 101. It may be reduced.
  • the motor is operated as a generator or a motor, or as a generator and then as a motor, etc. You can choose the method.
  • the first motor 104 may be determined according to the speed of the vehicle 100, since the range that can be assisted by the speed of the vehicle 100 may be determined by law. And the method of controlling the second motor 105 may be different.
  • a predetermined speed for example, 24 km / h
  • assist can not be performed.
  • the motor corrects its tilt by applying a counter-rotating torque to the wheel.
  • the inclination sensor 106 and the speed sensor 108 incline the vehicle 100 to the right. And detects that the vehicle 100 is at a predetermined speed or higher, and transmits a state signal (tilt signal 118, speed signal 120) based on the detection, and the vehicle controller 114 generates a state signal based on the right.
  • the second motor driver 116 processes the tilt signal 118) and the state signal (speed signal 120) based on the speed, and based on the control signal 121 transmitted from the vehicle body controller 114, the battery 109 to the second motor 105 Power is supplied, and the second motor 105 applies a reverse torque to the second wheel 102 on the left side to turn the torque of the second wheel 102.
  • the first motor 104 and the second motor 105 both apply reverse rotational torque to the first wheel 101 and the second wheel 102, respectively, the reverse rotational torque of the second motor 105
  • the inclination to the right may be corrected so as to be larger than the reverse rotation torque of the first motor 104.
  • the inclination sensor 106 and the speed sensor 108 detect that the vehicle 100 is inclined to the left and that the vehicle 100 is equal to or higher than a predetermined speed.
  • the first motor driver 115 supplies electric power from the battery 109 to the first motor 104 based on the control signal 121 transmitted from the vehicle body controller 114, and the first motor 104 is the first wheel on the right side.
  • first motor 104 and the second motor 105 both apply reverse rotational torque to the first wheel 101 and the second wheel 102, respectively, the reverse rotational torque of the first motor 104
  • the inclination to the right may be corrected so as to be larger than the reverse rotation torque of the second motor 105.
  • the inclination sensor 106 and the speed sensor 108 detect the front and back inclination of the vehicle 100 with respect to the vertical direction. , And when detecting that the speed of the vehicle 100 is decreasing or increasing, the vehicle controller 114 transmits a status signal (tilt signal 118, speed signal 120) based on the detection.
  • the first motor driver 115 and the second motor driver 116 respectively operate on the vehicle body by processing the state signal (tilt signal 118) based on the back and forth tilt and the state signal (speed signal 120) based on the speed to be increased or decreased.
  • the power supply between the battery 109 and the first motor 104 and the second motor 105 is based on the control signal 121 transmitted from the controller 114.
  • the first motor 104 and the second motor 105 respectively rotate forward torque to the first wheel 101 and the second wheel 102.
  • the rotational force can be increased to increase the speed of the vehicle 100, and when the speed of the vehicle 100 is increased, the first motor 104 and the second motor 105 can each be A reverse torque may be applied to one wheel 101 and the second wheel 102 to reduce the rotational force of the wheel 102 to reduce the speed of the vehicle 100.
  • the first motor 104 and the second motor 105 operate as electric motors, respectively, so that electric energy (electric power) supplied from the battery 109 can be converted into kinetic energy (traveling energy of the vehicle 100).
  • the first motor 104 and the second motor 105 can each operate as a generator.
  • the first motor 104 and the second motor 105 operating as a generator respectively generate the first wheel 101 and the second wheel by regeneratively braking the first wheel 101 and the second wheel 102, respectively.
  • kinetic energy traveling energy of the vehicle 100
  • electrical energy electrical energy
  • the second motor driver 116 performs the second based on the control signal 121 transmitted from the vehicle controller 114.
  • the second motor 105 applies reverse rotational torque to the second wheel 102 by regeneratively braking the second wheel 102 on the left side to rotate the second wheel 102.
  • the traveling energy of the vehicle 100 is converted into electric power, and a current flows from the second motor 105 to the battery 109 to return (supply) the power from the second motor 105 to the battery 109 It may be possible to recover the traveling energy of the vehicle 100.
  • the driver can assist when the driver of the vehicle 100 applies a pedal depression force that is an actuation force, so the first motor 104 according to the actuation force
  • the method of controlling the second motor 105 may be different.
  • assist can be performed.
  • the torque of the wheels located on the same side is controlled, and the inclination of the wheels is corrected by applying positive torque to the wheels.
  • the inclination sensor 106 and the actuation force sensor when the vehicle 100 is inclined to the right detect that the vehicle 100 is inclined to the right, that there is an actuating force by the driver, and that the vehicle 100 is less than a predetermined speed, and a status signal based on the detection (
  • the tilt signal 118, the actuation force signal 119, the velocity signal 120) is transmitted, and the vehicle body controller 114 generates a status signal based on the rightward tilt (tilt signal 118), an actuation force based status signal (actuation signal 119), and the velocity
  • the state signal (speed signal 120) is calculated based on the first motor driver 115 based on the control signal 121 transmitted from the vehicle controller 114.
  • the power supply between the battery 109 and the first motor 104 is controlled, and the first motor 104 applies a positive rotational torque to the first wheel 101 on the right side to increase the torque of the first wheel 101.
  • the inclination to the right is corrected to return the posture in the vertical direction.
  • the first motor 104 and the second motor 105 both give positive rotational torque to the first wheel 101 and the second wheel 102, respectively, the positive rotational torque of the first motor 104
  • the inclination to the right may be corrected so as to be larger than the positive rotation torque of the second motor 105.
  • the inclination sensor 106, the operating force sensor 107, and the speed sensor 108 indicate that the vehicle 100 is inclined to the left, and the operating force by the driver is present. And detects that the vehicle 100 is below the predetermined speed, and transmits a state signal (tilt signal 118, actuation force signal 119, speed signal 120) based on the detection, and the vehicle controller 114 determines the state based on the left side tilt
  • the second motor driver 116 is transmitted from the vehicle controller 114 by processing the signal (inclination signal 118), the operating force-based status signal (operating force signal 119), and the velocity-based status signal (speed signal 120).
  • the power supply between the battery 109 and the second motor 105 is controlled based on the control signal 121, and the second motor 105 is the second wheel on the left side.
  • the second motor 105 is the second wheel on the left side.
  • the vehicle body controller 114 is used to increase the rotational force of the first wheel 101 on the right side.
  • the first motor driver 115 causes the battery 109 to increase the rotational force of the first wheel 101, that is, a current flows to the first motor 104, and the first motor driver 115 Power to the first motor 104 so as to apply a positive rotational torque to the first wheel 101.
  • the speed sensor 108 When the speed of the vehicle 100 is less than the predetermined speed by the speed sensor 108, assist can not be performed when the actuating force is not detected by the actuating force sensor 107, and therefore the inclination detected by the inclination sensor 106 is A motor that controls the rotational force of the oppositely located wheel corrects its inclination by applying a reverse rotational torque to the wheel.
  • a specific method of inclination correction is the same as the method in the case where the speed of the vehicle 100 is equal to or higher than a predetermined speed.
  • a motor that applies a reverse rotation torque to the wheels is operated as a generator to regeneratively brake the wheels, whereby the running energy of the vehicle 100 is recovered by the motor and sent to the battery 109. Power may be returned (supplied).
  • the second motor driver 116 transmits the control signal transmitted from the vehicle body controller 114. 121.
  • the motor that decreases the rotational force of the second wheel 102 on the left side that is, the travel energy of the vehicle 100 by operating the second motor 105 as a generator and regeneratively braking the second wheel.
  • the second motor 105 operates as a generator while allowing current to flow from the second motor 105 to the battery 109 to return (supply) power from the second motor 105 to the battery 109. 105 may apply reverse torque to the second wheel 102.
  • the speed of the vehicle 100 detected by the speed sensor 108 is less than a predetermined speed and the actuating force by the actuating force sensor 107 is Since the vehicle controller 114 can assist when detected, the vehicle controller 114 performs arithmetic processing of the state signals (the inclination signal 118, the actuation force signal 119, the velocity signal 120), and the first motor driver 115 and the second motor driver 115
  • the motor driver 116 controls the power supplied from the battery 109 based on the control signal 121 transmitted from the vehicle body controller 114, and supplies power to the first motor 104 and the second motor 105, respectively.
  • the first motor 104 and the second motor 105 In controlling the output of the first motor 104 and the output of the second motor 105 independently of each other Thus, the first motor 104 and the second motor 105 give positive rotational torque to the first wheel 101 and the second wheel 102, respectively, and the first wheel 101 and the second The rotational force of the wheel 102 is increased.
  • the first motor 104 and the second motor 105 minutely apply rotational torque to the first wheel 101 and the second wheel 102, respectively.
  • the posture of the vehicle 100 may be stabilized. In this case, it is determined whether the driving start time of the vehicle 100 is started by using the actuating force sensor 107 and the speed sensor 108, and if the inclination is detected by the inclination sensor 106, the detection is performed.
  • the first motor 104 and the second motor 105 may minutely apply rotational torque to the first wheel 101 and the second wheel 102, respectively.
  • the inclination sensor 106, the operating force sensor 107, and the vehicle 100 are inclined to the right.
  • the speed sensor 108 detects that the vehicle 100 is inclined to the right, that there is no actuating force by the driver, and that the vehicle 100 is stopped, and the state signal (inclination signal 118 based on the detection).
  • An actuating force signal 119, a velocity signal 120), and the vehicle body controller 114 generates a condition signal based on the right inclination (inclination signal 118), an actuating force based condition signal (actuating force signal 119),
  • the signal (speed signal 120) is arithmetically processed to determine that it is at the start of driving of the vehicle 100, and the first motor driver 115 and the second motor driver 116 Respectively, based on the control signal 121 transmitted from the vehicle body controller 114 controls the electric power supplied from the battery 109 supplies power to the first motor 104, and the second motor 105.
  • the first motor 104 that controls the rotational force of the first wheel 101 on the right side gives positive rotation torque minutely to the first wheel 101, and the first wheel 101 is the same as the traveling direction of the vehicle 100.
  • the second motor 105 which slightly rotates with respect to the direction and controls the rotational force of the left second wheel 102, minutely applies reverse rotational torque to the second wheel 102, and the second wheel 102 is rotated.
  • the inclination to the right is corrected to return the posture in the vertical direction.
  • which of the first motor 104 and the second motor 102 applies a small amount of positive rotation torque to the first wheel 101 or the second wheel 102, whichever, Either control may be used.
  • the inclination sensor 106, the actuating force sensor 107, and the speed sensor 108 indicate that the vehicle 100 is inclined to the left, and there is no actuating force by the driver. And detects that the vehicle 100 has stopped, and transmits a state signal (inclination signal 118, actuation force signal 119, speed signal 120) based on the detection, and the vehicle controller 114 performs a state based on the left inclination.
  • the signal (tilt signal 118), the operating force-based status signal (operating force signal 119), and the speed-based status signal (speed signal 120) are arithmetically processed to determine that it is at the start of driving of the vehicle 100,
  • the first motor driver 115 and the second motor driver 116 respectively operate the battery 10 based on the control signal 121 transmitted from the vehicle body controller 114.
  • the second motor 105 for controlling the rotational force of the left second wheel 102 minutely imparts a positive rotational torque to the second wheel 102 to make the second wheel 102 the same as the traveling direction of the vehicle 100.
  • the first motor 104 that slightly rotates in the direction and controls the torque of the first right wheel 101 applies minute reverse torque to the first wheel 101 to control the first wheel 101.
  • the inclination to the left is corrected to return the posture in the vertical direction.
  • which of the second motor 105 gives a slight positive rotational torque to the second wheel 102 or the first motor 104 gives a slight reverse rotational torque to the first wheel 101 Either control may be used.
  • a sensor such as a load cell is further installed under the saddle 111, and it is determined whether the driver gets in the vehicle 100 based on detection of a load by the sensor such as the load cell, ie If it is determined whether or not the vehicle 100 starts driving, and if the inclination is detected by the inclination sensor 106, the first motor 104 and the second motor 105 each perform the first operation as described above. A small amount of rotational torque may be given to one wheel 101 and the second wheel 102.
  • the driver is constituted by a pair of wheels having at least one of the front wheel portion and the rear wheel portion is a first wheel 101 on the right side and a second wheel 102 on the left side.
  • a method of controlling the vehicle 100 that can be propelled by the actuation force of the vehicle will be described.
  • the method includes the steps of detecting the state of the vehicle 100 and controlling the rotational forces of the pair of wheels 101 and 102 independently of each other in response to the detection.
  • a method of controlling a vehicle 100 comprising a pair of motors, comprising a first motor 104 on the right and a second motor 105 on the left, arranged on each of a pair of wheels is shown in FIG. This will be described in detail using a flowchart.
  • STEP 100 the detection results of the inclination sensor 106, the actuating force sensor 107, and the speed sensor 108 provided in the vehicle 100 are read.
  • STEP 101 the presence or absence of the inclination of the vehicle 100 is determined based on the detection result from the inclination sensor 106.
  • step 102 it is determined in STEP 102 whether the speed of the vehicle 100 is higher or lower than a predetermined speed based on the detection result from the speed sensor 108. If it is determined that the speed is low, then in STEP 103, the presence or absence of the actuating force by the driver is determined from the detection result from the actuating force sensor 107. If it is determined that there is an operating force, in STEP 104, the right motor and the left motor respectively apply positive rotational torque to the right wheel and the left wheel.
  • STEP 101 If it is determined in STEP 101 that there is a slope, it is determined in STEP 105 whether the vehicle 100 is at the start of driving. Whether or not to start driving may be determined based on the detection results of the actuating force sensor 107 and the speed sensor 108.
  • the inclination direction of the vehicle 100 is determined in STEP 106. Even when the vehicle 100 turns left or right, the vehicle 100 inclines with respect to the vertical direction, but if it is determined that it is not a flutter but a left or right turn, steps 107 to 116 shown later will be performed. Steps are set to not take place.
  • the inclination to the left is corrected to return the posture in the vertical direction, but the motor on the right side and the motor on the left side are The control method of the motor is different.
  • STEP 107 it is determined whether the speed of the vehicle 100 is higher or lower than a predetermined speed according to the detection result from the speed sensor 108. If it is determined that the speed is higher, in STEP 108, the right motor is the right wheel. On the other hand, the inclination to the left is corrected by applying a reverse rotation torque to reduce the torque of the right wheel.
  • the reverse rotation torque of the right motor is higher than the reverse rotation torque of the left motor.
  • the inclination to the left may be corrected by increasing the size.
  • the motor may be operated as a generator to regeneratively brake the wheels. If it is determined in STEP 107 that the speed is low, then in STEP 109, the presence or absence of the actuating force by the driver is determined based on the detection result from the actuating force sensor 107. If it is determined that there is no operating force, the right motor corrects the inclination to the left by reducing torque of the right wheel by applying reverse torque to the right wheel in STEP 110. .
  • the reverse rotation torque of the right motor is higher than the reverse rotation torque of the left motor.
  • the inclination to the left may be corrected by increasing the size.
  • the motor may be operated as a generator to regeneratively brake the wheels.
  • the left motor may minutely apply positive rotational torque to the left wheel to slightly increase the rotational force of the left wheel.
  • the motor on the left applies positive rotational torque to the wheel on the left to increase the torque of the wheel on the left, Correct the tilt.
  • the positive rotational torque of the left motor is higher than the positive rotational torque of the right motor.
  • the inclination to the left may be corrected by increasing the size.
  • the inclination to the right is corrected to return the attitude in the vertical direction, but the motor on the right and the left are The control method of the motor is different.
  • STEP 112 it is determined from the detection result from the speed sensor 108 whether the speed of the vehicle 100 is higher or lower than a predetermined speed, and if it is determined that the speed is higher, in STEP 113, the left motor is the left wheel.
  • the rightward tilt is corrected by applying a reverse torque to reduce the torque of the left wheel. In this case, although the right motor and the left motor both apply reverse rotation torque to the right wheel and the left wheel, respectively, the reverse rotation torque of the left motor is higher than the reverse rotation torque of the right motor.
  • the inclination to the right may be corrected by increasing the size.
  • the motor may be operated as a generator to regeneratively brake the wheels.
  • the presence or absence of the actuating force by the driver is determined based on the detection result from the actuating force sensor 107. If it is determined that there is no operating force, the motor on the left side applies reverse torque to the wheel on the left side in STEP 115 to reduce the torque of the wheel on the left side, thereby correcting inclination to the right side. .
  • the reverse rotation torque of the left motor is higher than the reverse rotation torque of the right motor.
  • the inclination to the right may be corrected by increasing the size.
  • the motor may be operated as a generator to regeneratively brake the wheels.
  • the motor on the right side may minutely apply positive rotational torque to the wheel on the right side to minutely increase the rotational force on the wheel on the right side.
  • the motor on the right applies positive torque to the wheels on the right to increase the torque of the wheels on the right. Correct the tilt.
  • the right motor and the left motor both apply positive rotation torque to the right wheel and the left wheel, respectively, the positive rotation torque of the right motor is higher than the positive rotation torque of the left motor.
  • the inclination to the right may be corrected by increasing the size.
  • the inclination direction of the vehicle 100 is determined.
  • the motor on the right applies minutely reverse torque to the wheels on the right, and the wheels on the right are reverse to the traveling direction of the vehicle 100.
  • the motor on the left is slightly rotated with respect to the direction, and / or the motor on the left is slightly applied positive torque to the wheel on the left to rotate the wheel on the left in the same direction as the traveling direction of the vehicle 100 By doing this, the inclination to the left is corrected and the attitude is returned in the vertical direction.
  • the motor on the left applies minutely reverse torque to the wheels on the left, and the wheels on the left are the traveling direction of the vehicle 100.
  • the motor on the right is slightly rotated in the reverse direction, and / or the motor on the right applies a small amount of positive torque to the wheel on the right, and the wheel on the right is minute on the same direction as the traveling direction of the vehicle 100
  • the inclination to the right is corrected to return the posture in the vertical direction.
  • a vehicle in which at least one of the front wheel portion and the rear wheel portion is constituted by a pair of left and right wheels and which can be promoted by rotating the wheels by the driver's operating force Wheelchairs, handcarts, etc. are included.
  • Reference Signs List 100 vehicle 101 first wheel 102 second wheel 103 third wheel 104 first motor 105 second motor 106 inclination sensor 107 actuation force sensor 108 speed sensor 109 battery 110 pedal 111 saddle 112 handle 113 suspension mechanism 114 vehicle body Controller 115 first motor driver 116 second motor driver 117 controller 118 inclination signal 119 actuation force signal 120 speed signal 121 control signal 122 brake lever 123 braking mechanism 124 first braking device 125 second braking device 126 braking wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Automatic Cycles, And Cycles In General (AREA)

Abstract

減速時等の走行状態に応じた姿勢制御を行う車両を提供する。本発明の運転者の作動力によって推進することができるようになっている車両100は、前輪部と後輪部のうちの少なくとも一方が左右一対の車輪101、102から構成され、車両100の状態の検知を行い、その検知に応答して一対の車輪101、102の各々の回転力を互い独立に制御できるようになっており、一対の車輪101、102の各々に対して、同期且つ均等である制動力を発生できるようになっている。

Description

車両
 本発明は、減速時等の走行状態に応じた姿勢制御を行う、運転者の作動力によって推進することができる車両に関するものである。
 三輪以上を有し、前輪部と後輪部のうちの少なくとも一方が、左右一対の車輪により構成された自転車等の運転者の作動力によって車輪を回転させて推進することができる車両(以下、前輪部が一対の車輪により構成された車両を「前輪二輪式車両」、後輪部が一対の車輪により構成された車両を「後輪二輪式車両」という)は、前輪部及び後輪部に一輪ずつ配置された従来の二輪自転車と比較して、三輪以上の多輪のために通常は傾斜やふらつきに対して安定しているが、減速時や、カーブ等での旋回時において、適切な姿勢制御を行うことが難しい。
 このような問題より、特許文献1には、ハンドルの操舵に連動してリンク機構全体が左右に動く三輪の前輪二輪式車両が開示され、リンク機構のリンク可動具合は、リンク角制御装置を用いて調整され、ステム部とリンク機構部に取り付けられた留部にリンク角制御装置を取り付け、車輪の車体速度センサからECUを介して制御する電気式(電磁)サーボ弁の開度によって、低速域ではリンクの可動具合を固着させる傾向で設定し、中高速域ではリンクの可動抵抗を無くす傾向で設定し、リンク機構のリンク角の可動具合を制御することで車体の姿勢を制御することが開示されている。
特開2010-184508号公報
 特許文献1のような前輪部における右側の車輪と左側の車輪が同一の回転力を有する三輪の前輪二輪式車両は、カーブでの旋回時において、姿勢変化に対して安定性を向上させることができる。しかし、特許文献1のような三輪の前輪二輪式車両を含む前輪二輪式或いは後輪二輪式車両は、多輪により接地点が多いことから、段差面や傾斜面の影響を受けた場合には傾斜しやすい傾向にある。
 更に、特許文献1のような前輪二輪式車両において、ハンドルのブレーキレバーからワイヤを介して、前輪部における右側の車輪と左側の車輪を機械式による1系統で制動する場合、右側の車輪と左側の車輪の各々に対する制動力は走行条件によって不均一になり、また、右側の車輪と左側の車輪を均一に設定することは極めて難しく、それによって、右側の車輪と左側の車輪の各々に対する制動力が不均一になり、運転者が減速時においてハンドルを不意に取られて前輪二輪式車両の姿勢が不安定となって、走行安定性が損なわれる、という問題点がある。
 従って、本発明の目的は、前輪部と後輪部のうちの少なくとも一方に左右一対の車輪の各々の回転力を互いに独立に制御し、更に左右一対の車輪の各々に対して同一の制動力を発生するによって、減速時等の走行状態に応じた姿勢制御を行って、姿勢変化に対して安定性を確保する、運転者の作動力によって車輪を回転させて推進することができる車両を提供することである。
 本発明の1つの観点によれば、前輪部と後輪部のうちの少なくとも一方が左右一対の車輪から構成された、運転者の作動力によって推進することができるようになっている車両が、車両の状態の検知を行い、検知に応答して一対の車輪の各々の回転力を互いに独立に制御できるようになっており、一対の車輪の各々に対して、同期且つ均等である制動力を発生できるようになっている。
 本発明の一具体例によれば、車両は、バッテリと、バッテリに接続され、一対の車輪のうちの一方の回転力を制御するためのモータ、及び一対の車輪のうちの他方の回転力を制御するためのモータから構成された一対のモータと、状態の検知を行い、検知に基づく状態信号を送信するセンサと、状態信号を演算処理して一対のモータを制御するための制御信号を送信する車体コントローラと、車体コントローラから送信された制御信号に基づいてバッテリと一対のモータとの間の電力供給を制御するモータドライバと、一対の車輪の各々を制動するための一対の制動装置とを備え、モータドライバによって一対のモータの各々の出力を互いに独立に制御して、一対の車輪の各々の回転力を互いに独立に制御できるようになっており、一対の制動装置が同期且つ均等である制動力を一対の車輪の各々に対して発生できるようにするための制動機構を更に備える。
 本発明の一具体例によれば、車両において、制動機構は油圧式である。
 本発明の一具体例によれば、車両において、センサが、車両の鉛直方向に対する傾斜の検知を行う傾斜センサを含み、車体コントローラが、状態を補正するようにセンサから送信された状態信号を演算処理して制御信号を送信できるようになっている。
 本発明の一具体例によれば、車両において、センサが、車両の運転者による作動力の検知を行う作動力センサを更に含み、車体コントローラが、状態を補正するようにセンサから送信された状態信号を演算処理して制御信号を送信できるようになっている。
 本発明の一具体例によれば、車両において、センサが、車両の速度の検知を行う速度センサを更に含み、車体コントローラが、状態を補正するようにセンサから送信された状態信号を演算処理して制御信号を送信できるようになっている。
 本発明の一具体例によれば、車両において、一対のモータのうちの少なくとも一方を発電機の機能を有し、一対のモータのうちの少なくとも一方が、その車輪に対して逆回転トルクを与えることができ、且つ、発電機の機能により車両の走行エネルギーを回収してモータドライバを経由してバッテリに電力を供給することができるようになっている。
 本発明によれば、一対の車輪の各々にモータを配置し、一対のモータの各々の出力を互いに独立に制御して一対の車輪の各々の回転力を互いに独立に制御させることによって車両の傾斜を補正し、更に一対の車輪の各々に対して同期且つ均等である制動力を発生させることによって車両の傾斜を抑制することで、制動時等におけるふらつきを抑えて走行状態に応じた姿勢制御を行うことができる。また、センサによって車両の状態の検知を行い、その検知結果に基づいて演算処理することによって一対の車輪の各々に対して最適な互いに独立した回転力を発生させることができる。更に、姿勢制御を行う場合において、モータを発電機として作動させて車両の走行エネルギーを回収し、バッテリに対して電力を供給することができる。そして、一対のモータの各々の出力を互いに独立に制御できることから、一方のモータがその車輪に対して正回転トルクを与えるためにバッテリからそのモータに対して電力を供給する一方で、他方のモータを発電機として作動させてその車輪に対して逆回転トルクを与えるとともにそのモータからバッテリに対して電力を供給することもできる。
 なお、本発明の他の目的、特徴及び利点は、添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
本発明の一実施形態としての車両を側面から見た概略図である。 図1の車両を前面から見た概略図である。 図1の車両を運転者から見て左側に傾斜している場合の前面から見た概略図である。 本発明の一実施形態としての車両に使用される制御装置におけるモータを電動機として作動させた状態を表す図である。 本発明の一実施形態としての車両に使用される制御装置におけるモータを発電機として作動させた状態を表す図である。 本発明の一実施形態としての車両を制御するための方法のフローチャートを表す図である。
 以下、本発明の実施例について図面を参照して説明するが、本発明はこれらの実施例に限定されるものではない。
 図1、図2A、及び図2Bに本発明の一実施形態である車両100を示す。ここでいう車両とは、前輪部と後輪部のうち少なくとも一方が左右一対の車輪から構成された、その運転者の作動力によって前輪部と後輪部のうちの少なくとも一方にある車輪を回転させて推進することができるようになっている車両である。そのような車両として、例えば、運転者が作動力である踏力をペダルに与えることによって車輪を回転させて推進することができる自転車がある。以下の実施例では車両のうち、特に自転車について示すが、自転車以外の運転者の作動力によって推進することができる車両にも適用させることができる。車両100は、前輪部と後輪部のうちの前輪部が左右一対の車輪から構成された前輪二輪式自転車であって、前輪部に配置された運転者から見て右側に位置する第1の車輪101、及び運転者から見て左側に位置する第2の車輪102を有する左右一対の車輪と、後輪部に配置された一輪の第3の車輪103を備えている。この場合、後輪部に一輪以上の車輪を備えてもよい。第1の車輪101と第2の車輪102はリンク機構113によって接続されてもよい。
 車両100は、バッテリ109と、第1の車輪101のハブに配置され、第1の車輪101の回転力を制御するための第1のモータ104、及び第2の車輪102のハブに配置され、第2の車輪102の回転力を制御するための第2のモータ105から構成された一対のモータとを備えている。一対のモータ104、105は、バッテリ109に接続されている。なお、図1、図2A、及び図2Bの車両100は、前輪部が左右一対の車輪から構成された前輪二輪式三輪自転車であるが、後輪部が左右一対の車輪から構成された後輪二輪式車両であってもよい。後輪二輪式車両のうち、例えば後輪二輪式自転車の場合には、後輪においてディファレンシャル・ギヤ(差動歯車)を採用することによって左右の車輪に回転差を与えられるようにして、更に左右の車輪の各々のハブにモータを配置する。
 車両100は、第1の車輪101を制動するため第1の制動装置124と、第2の車輪102を制動するため第2の制動装置125とを備えている。第1の制動装置124、及び第2の制動装置125はそれぞれ、第1の車輪101、及び第2の車輪102に対して、同期且つ均等(大きさが同一)である制動力を発生できるようになっている。車両100は、制動機構123を備え、車両100の運転者がハンドル112に取り付けられたブレーキレバー122を引くと、制動機構123は、第1の制動装置124によって第1の車輪101に対して発生される制動力と第2の制動装置125によって第2の車輪102に対して発生される制動力とが同期且つ均等になるように制御している。第1のモータ104、及び第2のモータ105の出力を互いに独立に制御して、第1の車輪101、及び第2の車輪102の各々の回転力を互いに独立に制御させ、更に第1の車輪101、及び第2の車輪102に対して同期且つ均等である制動力を発生させることによって、車両100の減速時において応答性よく車両100の速度を制御し、車両100の姿勢を安定化して、車両100の安全性を高めることができる。制動機構123は、油圧タンクを含んでいてもよい。それによって、制動機構123は、油圧式によって第1の制動装置124、及び第2の制動装置125を制御することができる。車両100の運転者がハンドル112に取り付けられたブレーキレバー122を引くことによって、油圧が制動機構123からワイヤ126を介して第1の制動装置124、及び第2の制動装置125に伝達されて、第1の車輪101、及び第2の車輪102に対して同期且つ均一である制動力を発生させることができる。
 また車両100は、車両100の状態の検知を行い、その検知に基づく状態信号を送信するセンサ群を備えている。図1に示すように、車両100の状態としては、例えば、車両100の鉛直方向に対する傾斜、車両100の運転者による作動力、車両100の速度、等があり、それぞれが傾斜センサ106、作動力センサ107、速度センサ108、等によって検知される。
 図3、及び図4に、前輪部と後輪部のうちの少なくとも一方が、第1の車輪101である右側の車輪、及び第2の車輪102である左側の車輪を有する左右一対の車輪により構成された車両100に使用される制御装置117を示す。制御装置117は、バッテリ109、バッテリ109に接続され、第1の車輪101である右側の車輪の回転力を制御する第1のモータ104、及び第2の車輪102である左側の車輪の回転力を制御する第2のモータ105から構成された一対のモータと、傾斜センサ106、作動力センサ107、及び速度センサ108を含み、車両100の状態の検知を行い、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信するセンサ群と、状態信号118~120を受信して演算処理し、第1のモータ104と第2のモータ105の出力を制御するための制御信号121を送信する車体コントローラ114と、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104との間の電力供給を制御する第1のモータドライバ115、及びバッテリ109と第2のモータ105との間の電力供給を制御する第2のモータドライバ116を備えている。このようにして、制御信号121を受信した第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、あるタイミングではバッテリ109から第1のモータ104、及び第2のモータ105に電力を供給し、あるタイミングでは第1のモータ104、及び第2のモータ105からバッテリ109に電力を供給して、第1のモータ104の出力、及び第2のモータ105の出力を互いに独立に制御できるようになっている。
 なお、第1のモータドライバ115、第2のモータドライバ116は、一体化されたモータドライバであってもよいし、更に、車体コントローラ114、第1のモータドライバ115、第2のモータドライバ116は、一体化されたコントローラであってもよい。また、車体コントローラ114、第1のモータドライバ115、第2のモータドライバ116は、車両100の運転者の把持部分であるハンドル112に配置されてもよいし、車両100が自転車の場合には、サドル111の下に配置されてもよい。図3、及び図4においては、制御信号121は、車体コントローラ114から第1のモータドライバ115、及び第2のモータドライバ116に対してそれぞれ1本の信号線で送信されているが、制御信号121に第1のモータドライバ115、及び第2のモータドライバ116の各々のための認証コードを持たせることによって、1本の信号線で送信されてもよく、また、有線式であっても無線式であってもよい。
 センサ群の傾斜センサ106は、バッテリ109からの電力により作動し、車両100の鉛直方向に対する傾斜を検知する。傾斜センサ106を含むことにより、車両の減速時等による左右に対して交互に傾斜するふらつきを検知することができる。傾斜センサ106としては、例えば、傾斜角センサ、ジャイロセンサ、等がある。図1に示すように車両100が自転車である場合には、傾斜角センサ、ジャイロセンサ、等は、サドル111の下に配置されてもよい。図2Bに示すように、車両100が鉛直方向に対して運転者から見て左側に傾斜すると、傾斜角センサによって傾斜角θが検知され、或いは、ジャイロセンサによって傾斜角θに対する角速度が検知されることによって、車両100の傾斜を検知する。また、傾斜センサ106としては、例えば、トルクセンサがあり、第1の車輪101、及び第2の車輪102の各々にトルクセンサを配置し、各トルクセンサから検知される各車輪のトルクの差を使用することによっても車両100の傾斜を検知することができる。また、傾斜センサ106としては、例えば、操舵角センサがあり、運運転者の把持部分であるハンドル112に操舵角センサを配置し、操舵角センサから検知される操舵角を使用することによっても車両100の傾斜を検知することができる。なお、傾斜センサ106は、車両100が走行している路面が、図1、図2A、図2Bのような水平な路面であっても、上り坂や下り坂という傾きがある路面であっても、車両100の鉛直方向に対する傾斜を検知することができるようになっている。
 傾斜センサ106は、検知された傾斜を含む状態信号(傾斜信号118)を生成して車体コントローラ114に送信する。車体コントローラ114は、状態信号(傾斜信号118)を受信して車両100の傾斜の方向を判定し、車両100の傾斜を補正して鉛直方向に姿勢を戻すように状態信号(傾斜信号118)を演算処理する。第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御する。第1のモータ104の出力、及び第2のモータ105の出力はそれぞれ、第1のモータドライバ115、及び第2のモータドライバ116によって、車体コントローラ114から送信された制御信号121に基づいてバッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御されて、互いに独立に制御されることができるようになっている。互いに独立に制御された第1のモータ104の出力、及び第2のモータ105の出力がそれぞれ、第1の車輪101の回転力、及び第2の車輪102の回転力を互いに独立に制御することによって、車両100の傾斜を補正して鉛直方向に姿勢を戻す。この場合、第1のモータ104、及び第2のモータ105は、一対の車輪のうちのその傾斜に対して同じ側に位置する車輪の回転力を増加でき、或いは、その傾斜に対して反対側に位置する車輪の回転力を減少できるようになっている。
 センサ群の作動力センサ107は、バッテリ109からの電力により作動し、車両100の運転者による車両100を推進させるための作動力を検知する。車両100が自転車である場合には、作動力センサ107として、トルクセンサがある。図1に示すようにトルクセンサを左右一対のペダル110を接続しているシャフトに配置し、車両100の運転者がペダル110を踏むことによって回転するシャフトのトルクを検知して、運転者による作動力であるペダル踏力を検知する。なお、作動力センサ107は、車両100の運転者によって掛けられている作動力を検知できるものであればどのようなセンサであってもよい。
 作動力センサ107は、検知された作動力を含む状態信号(作動力信号119)を生成して車体コントローラ114に送信する。車体コントローラ114は、状態信号(傾斜信号118、作動力信号119)を受信して、車両100の傾斜を補正して鉛直方向に姿勢を戻すように状態信号(傾斜信号118、作動力信号119)を演算処理する。第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御し、バッテリ109から第1のモータ104、及び第2のモータ105に電力を供給し、或いは、第1のモータ104、及び第2のモータ105からバッテリ109に電力を供給する。電力供給を制御された第1のモータ104の出力、及び第2のモータ105の出力は、上記と同様に互いに独立に制御され、第1の車輪101の回転力、及び第2の車輪102の回転力を互いに独立に制御して、車両100の傾斜を補正して鉛直方向に姿勢を戻す。
 センサ群の速度センサ108は、バッテリ109からの電力により作動し、図1に示すように後輪である第3の車輪103に配置され、第3の車輪103の回転速度から車両100の速度を検知する。なお、速度センサ108は、車両100の速度を検知できるものであればどのようなセンサであってもよい。また、速度センサ108は、第1の車輪101、第2の車輪102のいずれかに配置されてもよい。
 速度センサ108は、検知された速度を含む状態信号(速度信号120)を生成して車体コントローラ114に送信する。車体コントローラ114は、状態信号(傾斜信号118、作動力信号119、速度信号120)を受信して、傾斜を補正して鉛直方向に姿勢を戻すように状態信号(傾斜信号118、作動力信号119、速度信号120)を演算処理する。第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御し、バッテリ109から第1のモータ104、及び第2のモータ105に電力を供給し、或いは、第1のモータ104、及び第2のモータ105からバッテリ109に電力を供給する。電力供給を制御された第1のモータ104の出力、及び第2のモータ105の出力は、上記と同様に互いに独立に制御され、第1の車輪101の回転力、及び第2の車輪102の回転力を互いに独立に制御して、車両100の傾斜を補正して鉛直方向に姿勢を戻す。
 詳細に説明すると、車両100がふらついて、傾斜センサ106によって傾斜が検知されている場合、車体コントローラ114が、第1のモータ104、及び第2のモータ105のうちの少なくとも1つを制御できるように、傾斜に基づく状態信号(傾斜信号118)を演算処理し、第1のモータドライバ115、及び第2のモータドライバ116がそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御して、バッテリ109から第1のモータ104、及び第2のモータ105に電力を供給することによって、又は、第1のモータ104、及び第2のモータ105からバッテリ109に電力を供給することによって、傾斜を補正して鉛直方向に姿勢を戻すようにする。なお、第1のモータ104、及び第2のモータ105はそれぞれ、第1の車輪101、及び第2の車輪102に必要とされるトルク量やトルクを掛ける時間を制御するようにして、第1の車輪101、及び第2の車輪102に互い独立に回転トルクを与えることできる。「回転トルクを与える」ことのうちの「正回転トルクを与える」とは、車両100の進行方向への車輪の回転に対して同じ方向にトルクを与えて車輪の回転力を増加させることであって、「逆回転トルクを与える」とは、車両100の進行方向への車輪の回転に対して逆の方向にトルクを与えて車輪の回転力を減少させることである。車輪の回転速度が0であってもモータは車輪に対して回転トルクを与えることができる。
 具体的には、図2Bのように運転者から見て左側に傾斜した場合には(図2Bの場合の傾斜角θ)、傾斜センサ106は、車両100が左側に傾斜していることを検知し、その検知(左側の傾斜)に基づく状態信号(傾斜信号118)を送信し、車体コントローラ114が、左側の傾斜に基づく状態信号(傾斜信号118)を演算処理し、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第2のモータ105に電力を供給し、第2のモータ105が左側の第2の車輪102に対して正回転トルクを与えて第2の車輪102の回転力を増加させることによって、或いは、第1のモータドライバ115が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第1のモータ104に電力を供給し、第1のモータ104が右側の第1の車輪101に対して逆回転トルクを与えて第1の車輪101の回転力を減少させることによって、第1の車輪101、及び第2の車輪102の各々の回転力を互いに独立に制御して、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする(図2Aの場合の傾斜角0)。なお、第1の車輪101に逆回転トルクを与えてその回転力を減少させる場合には、第1のモータドライバ115によって第1のモータ104を発電機(ジェネレータ)として作動させて第1の車輪101を回生制動させることによって、第1のモータ104からバッテリ109に電力を供給できるようにしてもよい。また、運転者から見て右側に傾斜した場合には、傾斜センサ106は、車両100が右側に傾斜していることを検知し、その検知(右側の傾斜)に基づく状態信号(傾斜信号118)を送信し、車体コントローラ114が、右側の傾斜に基づく状態信号(傾斜信号118)を演算処理し、第1のモータドライバ115が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第1のモータ104に電力を供給し、第1のモータ104が右側の第1の車輪101に対して正回転トルクを与えて第1の車輪の回転力を増加させることによって、或いは、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第2のモータ105に電力を供給し、第2のモータ105が左側の第2の車輪102に対して逆回転トルクを与えて第2の車輪102の回転力を減少させることによって、第1の車輪101、及び第2の車輪102の各々の回転力を互いに独立に制御して、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。なお、第2の車輪102に逆回転トルクを与えてその回転力を減少させる場合には、第2のモータドライバ116によって第2のモータ105を発電機として作動させて第2の車輪102を回生制動させることによって、第2のモータ105からバッテリ109に電力を供給できるようにしてもよい。
 車輪に逆回転トルクを与える場合において、短時間に車輪の回転力を大きく減少させる必要がある場合には、そのモータを電動機として作動させてもよい。例えば、車両100が左側に傾斜している場合の車両100の傾斜補正において、第1のモータ104を発電機として作動させて第1の車輪101を回生制動させても車両100の傾斜補正が追いつかない場合には、第1のモータ104を電動機として作動させて第1のモータ104が第1の車輪101に対して大きな逆回転トルクを与えられるようにして第1の車輪101の回転力を大きく減少させてもよい。このように車輪に逆回転トルクを与える場合には、モータを、発電機或いは電動機として作動させる、発電機として作動させた後に電動機として作動させる、等、モータに対して必要に応じた最適の作動方法を選択することができる。
 車両100が電動アシスト付き自転車である場合においては、車両100の速度によってアシストすることができる範囲が法定等により決められていることがあるため、車両100の速度に応じて第1のモータ104、及び第2のモータ105を制御する方法は相違してもよい。速度センサ108によって検知された車両100の速度が所定の速度(例えば、24km/h)以上である場合においては、アシストすることができないため、傾斜センサ106によって検知された傾斜に対して反対側に位置する車輪の回転力を減少させるために、その車輪に対してそのモータが逆回転トルクを与えることによってその傾斜を補正する。
 具体的には、車両100の速度が所定の速度以上である場合において、車両100が右側に傾斜している場合には、傾斜センサ106、及び速度センサ108が、車両100が右側に傾斜していること、及び車両100が所定の速度以上であることを検知し、その検知に基づく状態信号(傾斜信号118、速度信号120)を送信し、車体コントローラ114が、右側の傾斜に基づく状態信号(傾斜信号118)、及び速度に基づく状態信号(速度信号120)を演算処理し、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第2のモータ105に電力を供給し、第2のモータ105が左側の第2の車輪102に対して逆回転トルクを与えて第2の車輪102の回転力を減少させることによって、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104、及び第2のモータ105が共にそれぞれ第1の車輪101、及び第2の車輪102に対して逆回転トルクを与えるが、第2のモータ105の逆回転トルクを第1のモータ104の逆回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。また、車両100が左側に傾斜している場合には、傾斜センサ106、及び速度センサ108が、車両100が左側に傾斜していること、及び車両100が所定の速度以上であることを検知し、その検知に基づく状態信号(傾斜信号118、速度信号120)を送信し、車体コントローラ114が、左側の傾斜に基づく状態信号(傾斜信号118)、及び速度に基づく状態信号(速度信号120)を演算処理し、第1のモータドライバ115が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第1のモータ104に電力を供給し、第1のモータ104が右側の第1の車輪101に対して逆回転トルクを与えて第1の車輪101の回転力を減少させることによって、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104、及び第2のモータ105が共にそれぞれ第1の車輪101、及び第2の車輪102に対して逆回転トルクを与えるが、第1のモータ104の逆回転トルクを第2のモータ105の逆回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。
 また、車両100が上り坂を上っている場合又は下り坂を下っている場合のように、傾斜センサ106、及び速度センサ108が、車両100の鉛直方向に対する前後の傾斜を検知していること、及び車両100の速度が減少していること又は増加していることを検知している場合には、その検知に基づく状態信号(傾斜信号118、速度信号120)を送信し、車体コントローラ114が、前後の傾斜に基づく状態信号(傾斜信号118)、及び増減する速度に基づく状態信号(速度信号120)を演算処理し、第1のモータドライバ115、及び第2のモータドライバ116がそれぞれ、車体コントローラ114から送信された制御信号121に基づいてバッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御し、車両100の速度が減少している場合には第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して正回転トルクを与えてその回転力を増加させて車両100の速度を増加させることができ、また、車両100の速度が増加している場合には第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して逆回転トルクを与えてその車輪102の回転力を減少させて車両100の速度を減少させることができてもよい。
 通常、第1のモータ104、及び第2のモータ105は、それぞれ電動機として作動して、バッテリ109から供給された電気エネルギー(電力)を運動エネルギー(車両100の走行エネルギー)に変換できるようにして、第1の車輪101、及び第2の車輪102を制御するが、第1のモータ104、及び第2のモータ105はそれぞれ発電機として作動することもできる。発電機として作動する第1のモータ104、及び第2のモータ105はそれぞれ、第1の車輪101、及び第2の車輪102を回生制動させることによって、第1の車輪101、及び第2の車輪102に逆回転トルクを与えてその回転力を減少させる一方で、運動エネルギー(車両100の走行エネルギー)を電気エネルギー(電力)に変換してバッテリ109に回収することができる。例えば、傾斜方向が右側であって、車両100の速度が所定値以上であると判定された場合には、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいて第2のモータ105を発電機として作動させ、第2のモータ105は、左側の第2の車輪102を回生制動させることによって、第2の車輪102に逆回転トルクを与えて第2の車輪102の回転力を減少させる一方で、車両100の走行エネルギーを電力に変換し、第2のモータ105からバッテリ109に電流が流れて第2のモータ105からバッテリ109に対して電力を戻す(供給する)ようにして車両100の走行エネルギーを回収できるようにしてもよい。
 車両100が電動アシスト付き自転車である場合においては、車両100の運転者が作動力であるペダル踏力を掛けている場合にアシストすることができるため、作動力に応じて第1のモータ104、及び第2のモータ105を制御する方法は相違してもよい。速度センサ108によって車両100の速度が所定の速度未満である場合において、作動力センサ107によって作動力が検知されている場合にはアシストすることができるため、傾斜センサ106によって検知された傾斜に対して同じ側に位置する車輪の回転力を制御し、その車輪に対してそのモータが正回転トルクを与えることよってその傾斜を補正する。
 具体的には、車両100の速度が所定の速度未満である場合であって作動力が検知されている場合において、車両100が右側に傾斜している場合には、傾斜センサ106、作動力センサ107、及び速度センサ108が、車両100が右側に傾斜していること、運転者による作動力があること、及び車両100が所定の速度未満であることを検知し、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信し、車体コントローラ114が、右側の傾斜に基づく状態信号(傾斜信号118)、作動力に基づく状態信号(作動力信号119)、及び速度に基づく状態信号(速度信号120)を演算処理し、第1のモータドライバ115が車体コントローラ114から送信された制御信号121に基づいてバッテリ109と第1のモータ104との間の電力供給を制御し、第1のモータ104が右側の第1の車輪101に対して正回転トルクを与えて第1の車輪101の回転力を増加させることによって、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104、及び第2のモータ105が共にそれぞれ第1の車輪101、及び第2の車輪102に対して正回転トルクを与えるが、第1のモータ104の正回転トルクを第2のモータ105の正回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。また、車両100が左側に傾斜している場合には、傾斜センサ106、作動力センサ107、及び速度センサ108が、車両100が左側に傾斜していること、運転者による作動力があること、及び車両100が所定の速度未満であることを検知し、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信し、車体コントローラ114が、左側の傾斜に基づく状態信号(傾斜信号118)、作動力に基づく状態信号(作動力信号119)、及び速度に基づく状態信号(速度信号120)を演算処理し、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいてバッテリ109と第2のモータ105との間の電力供給を制御し、第2のモータ105が左側の第2の車輪102に対して正回転トルクを与えて第2の車輪102の回転力を増加させることによって、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104、及び第2のモータ105が共にそれぞれ第1の車輪101、及び第2の車輪102に対して正回転トルクを与えるが、第2のモータ105の正回転トルクを第1のモータ104の正回転トルクよりも大きくなるようにして、左側への傾斜を補正してもよい。
 なお、この場合、正回転トルクを与えているモータに対してバッテリ109から電力が供給される。例えば、傾斜方向が右側であって、車両100の速度が所定値未満であって、作動力ありの場合には、右側の第1の車輪101の回転力を増加させるために、車体コントローラ114から送信された制御信号121に基づいて第1のモータドライバ115によって、バッテリ109から第1の車輪101の回転力を増加させるモータ、すなわち、第1のモータ104に電流が流れてバッテリ109から第1のモータ104に対して電力を供給して、第1のモータ104が第1の車輪101に対して正回転トルクを与えるようにする。
 速度センサ108によって車両100の速度が所定の速度未満である場合において、作動力センサ107によって作動力が検知されていない場合にはアシストすることができないため、傾斜センサ106によって検知された傾斜に対して反対側に位置する車輪の回転力を制御するモータがその車輪に対して逆回転トルクを与えることによってその傾斜を補正する。具体的な傾斜の補正の方法は、上記の車両100の速度が所定の速度以上である場合における方法と同様である。
 なお、この場合、車輪に対して逆回転トルクを与えているモータを発電機として作動させてその車輪を回生制動させることによって、そのモータにより車両100の走行エネルギーを回収してバッテリ109に対して電力を戻す(供給する)ようにしてもよい。例えば、傾斜方向が右側であって、車両100の速度が所定値未満であって、作動力なしと判定された場合には、第2のモータドライバ116が、車体コントローラ114から送信された制御信号121に基づいて、左側の第2の車輪102の回転力を減少させるモータ、すなわち、第2のモータ105を発電機として作動させて第2の車輪を回生制動させることによって、車両100の走行エネルギーを回収し、第2のモータ105からバッテリ109に電流が流れて第2のモータ105からバッテリ109に対して電力を戻す(供給する)ようにする一方で、発電機として作動する第2のモータ105が第2の車輪102に対して逆回転トルクを与えてもよい。
 また、傾斜センサ106によって傾斜が検知されておらず、車両100がふらついていない場合、速度センサ108によって検知された車両100の速度が所定の速度未満であって、作動力センサ107によって作動力が検知されている場合にはアシストすることができるため、車体コントローラ114は状態信号(傾斜信号118、作動力信号119、速度信号120)を演算処理し、第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109から供給される電力を制御し、第1のモータ104、及び第2のモータ105に電力を供給して、第1のモータ104の出力、及び第2のモータ105の出力を互いに独立に制御することによって、第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して正回転トルクを与えて、第1の車輪101、及び第2の車輪102の回転力を増加させるようにする。
 運転者が車両100の運転を開始する際も、車両100の姿勢は不安定になりやすい。そこで、運転者による車両100の運転開始時において、第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して微小に回転トルクを与えて車両100の姿勢を安定化させるようにしてもよい。この場合、作動力センサ107、及び速度センサ108を使用することによって車両100の運転開始時であるか否かの判定を行い、傾斜センサ106によって傾斜が検知された場合には、その検知に応じて第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して微小に回転トルクを与えてもよい。
 具体的には、車両100が停止しており、また、運転者は作動力を掛けていない場合において、車両100が右側に傾斜している場合には、傾斜センサ106、作動力センサ107、及び速度センサ108が、車両100が右側に傾斜していること、運転者による作動力がないこと、及び車両100が停止していることの検知を行って、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信し、車体コントローラ114が、右側の傾斜に基づく状態信号(傾斜信号118)、作動力に基づく状態信号(作動力信号119)、及び速度に基づく状態信号(速度信号120)を演算処理して車両100の運転開始時であることを判定し、第1のモータドライバ115、及び第2のモータドライバ116がそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109から供給される電力を制御して、第1のモータ104、及び第2のモータ105に電力を供給する。そして、右側の第1の車輪101の回転力を制御する第1のモータ104が第1の車輪101に対して微小に正回転トルクを与えて第1の車輪101を車両100の進行方向と同じ方向に対して微小に回転させ、左側の第2の車輪102の回転力を制御する第2のモータ105が第2の車輪102に対して微小に逆回転トルクを与えて第2の車輪102を車両100の進行方向と逆の方向に対して微小に回転させることによって、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104が第1の車輪101に対して微小に正回転トルクを与えるか、第2のモータ105が第2の車輪102に対して微小に逆回転トルクを与えるか、どちらか一方の制御でもよい。また、車両100が左側に傾斜している場合には、傾斜センサ106、作動力センサ107、及び速度センサ108が、車両100が左側に傾斜していること、運転者による作動力がないこと、及び車両100が停止していることの検知を行って、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信し、車体コントローラ114が、左側の傾斜に基づく状態信号(傾斜信号118)、作動力に基づく状態信号(作動力信号119)、及び速度に基づく状態信号(速度信号120)を演算処理して車両100の運転開始時であることを判定し、第1のモータドライバ115、及び第2のモータドライバ116がそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109から供給される電力を制御して、第1のモータ104、及び第2のモータ105に電力を供給する。そして、左側の第2の車輪102の回転力を制御する第2のモータ105が第2の車輪102に対して微小に正回転トルクを与えて第2の車輪102を車両100の進行方向と同じ方向に対して微小に回転させ、右側の第1の車輪101の回転力を制御する第1のモータ104が第1の車輪101に対して微小に逆回転トルクを与えて第1の車輪101を車両100の進行方向と逆の方向に対して微小に回転させることによって、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第2のモータ105が第2の車輪102に対して微小に正回転トルクを与えるか、第1のモータ104が第1の車輪101に対して微小に逆回転トルクを与えるか、どちらか一方の制御でもよい。なお、車両100が自転車である場合には、サドル111の下にロードセル等のセンサを更に設置し、ロードセル等のセンサによる荷重の検知に基づいて運転者が車両100に乗車したか否か、すなわち、車両100の運転開始時であるか否かの判定を行い、傾斜センサ106によって傾斜が検知された場合には、上記のように第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して微小に回転トルクを与えてもよい。
 続いて、前輪部と後輪部のうちの少なくとも一方が、第1の車輪101である右側の車輪、及び第2の車輪102である左側の車輪を有する一対の車輪から構成された、運転者の作動力によって推進することができる車両100を制御する方法について説明する。その方法は、車両100の状態の検知を行うステップと、その検知に応答して一対の車輪101、102の回転力を互い独立に制御するステップとを含む。
 一対の車輪の各々に配置された、右側にある第1のモータ104と左側にある第2のモータ105から構成された一対のモータを備えている車両100を制御する方法を、図5に示すフローチャートを用いて詳細に説明する。STEP100において、車両100が備える傾斜センサ106、作動力センサ107、速度センサ108による検知結果を読み込む。次にSTEP101において、傾斜センサ106からの検知結果により車両100の傾斜の有無を判定する。傾斜なしと判定された場合には、STEP102において、速度センサ108からの検知結果により車両100の速度が所定の速度より高速か低速かを判定する。低速であると判定された場合には、STEP103において、作動力センサ107からの検知結果により運転者による作動力の有無を判定する。作動力ありと判定された場合には、STEP104において、右側のモータ、及び左側のモータがそれぞれ、右側の車輪、及び左側の車輪に対して正回転トルクを付与する。
 STEP101において、傾斜ありと判定された場合には、STEP105において、車両100が運転開始時か否かを判定する。運転開始時か否かは、作動力センサ107、及び速度センサ108による検知結果に基づいて判定してもよい。
 STEP105において、運転開始時でないと判定された場合には、STEP106において、車両100の傾斜方向を判定する。なお、車両100の左折・右折時においても車両100は鉛直方向に対して傾斜するが、ふらつき時ではなく左折・右折時であると判定された場合には、以降に示されるSTEP107~116までのステップは行われないように設定されている。
 STEP106において、傾斜が左側であると判定された場合には、左側への傾斜を補正して鉛直方向に姿勢を戻すようにするが、車両100の速度、作動力によって右側のモータ、及び左側のモータの制御方法は相違する。STEP107において、速度センサ108からの検知結果により車両100の速度が所定の速度より高速か低速かを判定し、高速であると判定された場合には、STEP108において、右側のモータが右側の車輪に対して逆回転トルクを付与して右側の車輪の回転力を減少させることによって、左側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して逆回転トルクを付与するが、右側のモータの逆回転トルクを左側のモータの逆回転トルクよりも大きくなるようにして、左側への傾斜を補正してもよい。なお逆回転トルクを付与する場合にはモータを発電機として作動させてその車輪を回生制動させてもよい。STEP107において、低速であると判定された場合には、STEP109において、作動力センサ107からの検知結果により運転者による作動力の有無を判定する。作動力なしと判定された場合には、STEP110において、右側のモータが右側の車輪に対して逆回転トルクを付与して右側の車輪の回転力を減少させることによって、左側への傾斜を補正する。この場合、右側のモータ、及び左側のモータは共にそれぞれ右側の車輪、及び左側の車輪に対して逆回転トルクを付与するが、右側のモータの逆回転トルクを左側のモータの逆回転トルクよりも大きくなるようにして、左側への傾斜を補正してもよい。なお逆回転トルクを付与する場合にはモータを発電機として作動させてその車輪を回生制動させてもよい。また、左側のモータが左側の車輪に対して微小に正回転トルクを付与して、左側の車輪の回転力を微小に増加させてもよい。STEP109において、作動力ありと判定された場合には、STEP111において、左側のモータが左側の車輪に対して正回転トルクを付与して左側の車輪の回転力を増加させることによって、その左側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して正回転トルクを付与するが、左側のモータの正回転トルクを右側のモータの正回転トルクよりも大きくなるようにして、左側への傾斜を補正してもよい。
 STEP106において、傾斜が右側であると判定された場合には、右側への傾斜を補正して鉛直方向に姿勢を戻すようにするが、車両100の速度、作動力によって右側のモータ、及び左側のモータの制御方法は相違する。STEP112において、速度センサ108からの検知結果により車両100の速度が所定の速度より高速か低速かを判定し、高速であると判定された場合には、STEP113において、左側のモータが左側の車輪に対して逆回転トルクを付与して左側の車輪の回転力を減少させることによって、右側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して逆回転トルクを付与するが、左側のモータの逆回転トルクを右側のモータの逆回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。なお逆回転トルクを付与する場合にはモータを発電機として作動させてその車輪を回生制動させてもよい。STEP112において、低速であると判定された場合には、STEP114において、作動力センサ107からの検知結果により運転者による作動力の有無を判定する。作動力なしと判定された場合には、STEP115において、左側のモータが左側の車輪に対して逆回転トルクを付与して左側の車輪の回転力を減少させることによって、右側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して逆回転トルクを付与するが、左側のモータの逆回転トルクを右側のモータの逆回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。なお逆回転トルクを付与する場合にはモータを発電機として作動させてその車輪を回生制動させてもよい。また、右側のモータが右側の車輪に対して微小に正回転トルクを付与して、右側の車輪の回転力を微小に増加させてもよい。STEP114において、作動力ありと判定された場合には、STEP116において、右側のモータが右側の車輪に対して正回転トルクを付与して右側の車輪の回転力を増加させることによって、その右側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して正回転トルクを付与するが、右側のモータの正回転トルクを左側のモータの正回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。
 STEP105において、車両100が運転開始時であると判定された場合には、STEP117において、車両100の傾斜方向を判定する。STEP117において、傾斜が左側であると判定された場合には、STEP118において、右側のモータが右側の車輪に対して微小に逆回転トルクを付与して右側の車輪を車両100の進行方向と逆の方向に対して微小に回転させ、及び/又は、左側のモータが左側の車輪に対して微小に正回転トルクを付与して左側の車輪を車両100の進行方向と同じ方向に対して微小に回転させることによって、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする。また、STEP117において、傾斜が右側であると判定された場合には、STEP119において、左側のモータが左側の車輪に対して微小に逆回転トルクを付与して左側の車輪を車両100の進行方向と逆の方向に対して微小に回転させ、及び/又は、右側のモータが右側の車輪に対して微小に正回転トルクを付与して右側の車輪を車両100の進行方向と同じ方向に対して微小に回転させることによって、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。
 前輪部と後輪部のうちの少なくとも一方が左右一対の車輪から構成された、運転者の作動力によって車輪を回転させて推進することができる車両には、3輪以上の自転車の他に、車椅子、手押し車、等が含まれる。
 上記記載は特定の実施例についてなされたが、本発明はそれに限らず、本発明の原理と添付の特許請求の範囲の範囲内で種々の変更及び修正をすることができることは当業者に明らかである。
 100 車両
 101 第1の車輪
 102 第2の車輪
 103 第3の車輪
 104 第1のモータ
 105 第2のモータ
 106 傾斜センサ
 107 作動力センサ
 108 速度センサ
 109 バッテリ
 110 ペダル
 111 サドル
 112 ハンドル
 113 懸架機構
 114 車体コントローラ
 115 第1のモータドライバ
 116 第2のモータドライバ
 117 制御装置
 118 傾斜信号
 119 作動力信号
 120 速度信号
 121 制御信号
 122 ブレーキレバー
 123 制動機構
 124 第1の制動装置
 125 第2の制動装置
 126 ブレーキワイヤ
 

Claims (7)

  1.  前輪部と後輪部のうちの少なくとも一方が左右一対の車輪から構成された、運転者の作動力によって推進することができるようになっている車両であって、
     前記車両の状態の検知を行い、前記検知に応答して前記一対の車輪の各々の回転力を互いに独立に制御できるようになっており、
     前記一対の車輪の各々に対して、同期且つ均等である制動力を発生できるようになっている、車両。
  2.  バッテリと、
     前記バッテリに接続され、前記一対の車輪のうちの一方の回転力を制御するためのモータ、及び前記一対の車輪のうちの他方の回転力を制御するためのモータから構成された一対のモータと、
     前記状態の検知を行い、前記検知に基づく状態信号を送信するセンサと、
     前記状態信号を演算処理して前記一対のモータを制御するための制御信号を送信する車体コントローラと、
     前記車体コントローラから送信された前記制御信号に基づいて前記バッテリと前記一対のモータとの間の電力供給を制御するモータドライバと、
     前記一対の車輪の各々を制動するための一対の制動装置と
    を備え、
     前記モータドライバによって前記一対のモータの各々の出力を互いに独立に制御して、前記一対の車輪の各々の回転力を互いに独立に制御できるようになっており、
     前記一対の制動装置が同期且つ均等である制動力を前記一対の車輪の各々に対して発生できるようにするための制動機構を更に備える、請求項1に記載の車両。
  3.  前記制動機構は油圧式である、請求項2に記載の車両。
  4.  前記センサが、前記車両の鉛直方向に対する傾斜の検知を行う傾斜センサを含み、前記車体コントローラが、前記状態を補正するように前記センサから送信された前記状態信号を演算処理して前記制御信号を送信できるようになっている、請求項2又は3に記載の車両。
  5.  前記センサが、前記車両の運転者による作動力の検知を行う作動力センサを更に含み、前記車体コントローラが、前記状態を補正するように前記センサから送信された前記状態信号を演算処理して前記制御信号を送信できるようになっている、請求項4に記載の車両。
  6.  前記センサが、前記車両の速度の検知を行う速度センサを更に含み、前記車体コントローラが、前記状態を補正するように前記センサから送信された前記状態信号を演算処理して前記制御信号を送信できるようになっている、請求項4又は5に記載の車両。
  7.  前記一対のモータのうちの少なくとも一方が発電機の機能を有し、前記一対のモータのうちの少なくとも一方が、その車輪に対して逆回転トルクを与えることができ、且つ、発電機の機能により前記車両の走行エネルギーを回収して前記モータドライバを経由して前記バッテリに電力を供給することができるようになっている、請求項2~6の何れか一項に記載の車両。
     
PCT/JP2018/042846 2017-11-21 2018-11-20 車両 WO2019102998A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/765,321 US20200354018A1 (en) 2017-11-21 2018-11-20 Vehicle
CN201880074888.XA CN111356628A (zh) 2017-11-21 2018-11-20 车辆
EP18882047.6A EP3696068A4 (en) 2017-11-21 2018-11-20 VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017223874A JP6833667B2 (ja) 2017-11-21 2017-11-21 車両
JP2017-223874 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019102998A1 true WO2019102998A1 (ja) 2019-05-31

Family

ID=66631907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042846 WO2019102998A1 (ja) 2017-11-21 2018-11-20 車両

Country Status (6)

Country Link
US (1) US20200354018A1 (ja)
EP (1) EP3696068A4 (ja)
JP (1) JP6833667B2 (ja)
CN (1) CN111356628A (ja)
TW (1) TWI735815B (ja)
WO (1) WO2019102998A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220048588A1 (en) * 2019-03-05 2022-02-17 Qooder S.A. System and method for controlling vehicle attitude and vehicle equipped with said system
US11230197B2 (en) * 2019-08-07 2022-01-25 Toyota Motor Engineering & Manufacturing North America, Inc. Methods and systems for integrating a hub motor with a vehicle
CN111252176B (zh) * 2020-01-19 2021-05-18 宿州海翔环保科技有限公司 一种高稳定性的人力三轮车
CN111791979A (zh) * 2020-07-22 2020-10-20 仙居夏朗新能源科技有限公司 一种电动车动力辅助装置
KR102376537B1 (ko) * 2020-08-25 2022-03-17 서정철 전동 운반 장치
DE102022204132B3 (de) 2022-04-28 2023-05-25 Zf Friedrichshafen Ag Antriebssystem für ein Muskel-Elektro-Hybridfahrzeug
DE102022207700A1 (de) 2022-07-27 2024-01-04 Zf Friedrichshafen Ag Mit Muskelkraft betreibbares Mehrspurfahrzeug mit einem elektrischen Leistungsübertragungspfad

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080068U (ja) * 2001-03-07 2001-09-14 美珠 藍 動力付きキックボードの駆動制御装置
JP2005022631A (ja) * 2003-06-10 2005-01-27 Yaskawa Electric Corp 電動スク−タの駆動制御装置
JP2007106265A (ja) * 2005-10-13 2007-04-26 Sony Corp 走行装置及びその制御方法
JP2009255840A (ja) * 2008-04-18 2009-11-05 Kanzaki Kokyukoki Mfg Co Ltd 電動対地作業車両
JP2010184508A (ja) 2009-02-10 2010-08-26 Hiroshi Morise 前輪二輪式三輪車
WO2013051194A1 (ja) * 2011-10-06 2013-04-11 ヤマハ発動機株式会社 電動車両
JP2013086773A (ja) * 2011-10-21 2013-05-13 Toyota Motor Corp 車両の制動制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117149A1 (en) * 2006-04-10 2007-10-18 Ziad Badarneh All wheel drive cycle
JP5576855B2 (ja) * 2009-03-13 2014-08-20 ヤマハモーターエンジニアリング株式会社 電動車両
AT12641U1 (de) * 2011-04-05 2012-09-15 Rohr Friedrich Kippsicheres fahrrad
EP3205564B1 (de) * 2016-01-21 2019-06-19 Herbert Weber Lasten-fahrrad
CN106005173B (zh) * 2016-04-01 2019-05-21 上海易吉动力科技有限公司 采用双轮关联平衡系统的三轮车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080068U (ja) * 2001-03-07 2001-09-14 美珠 藍 動力付きキックボードの駆動制御装置
JP2005022631A (ja) * 2003-06-10 2005-01-27 Yaskawa Electric Corp 電動スク−タの駆動制御装置
JP2007106265A (ja) * 2005-10-13 2007-04-26 Sony Corp 走行装置及びその制御方法
JP2009255840A (ja) * 2008-04-18 2009-11-05 Kanzaki Kokyukoki Mfg Co Ltd 電動対地作業車両
JP2010184508A (ja) 2009-02-10 2010-08-26 Hiroshi Morise 前輪二輪式三輪車
WO2013051194A1 (ja) * 2011-10-06 2013-04-11 ヤマハ発動機株式会社 電動車両
JP2013086773A (ja) * 2011-10-21 2013-05-13 Toyota Motor Corp 車両の制動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3696068A4

Also Published As

Publication number Publication date
TW201924965A (zh) 2019-07-01
US20200354018A1 (en) 2020-11-12
TWI735815B (zh) 2021-08-11
EP3696068A4 (en) 2021-07-28
JP6833667B2 (ja) 2021-02-24
CN111356628A (zh) 2020-06-30
EP3696068A1 (en) 2020-08-19
JP2019093851A (ja) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2019102998A1 (ja) 車両
JP3650714B2 (ja) 車両用操舵装置
JP6307695B2 (ja) 車両
CN107042740A (zh) 用于三轮车辆的转向和控制系统
JP4519439B2 (ja) 車両挙動検出装置、及び車両挙動検出装置を用いた車両挙動制御装置
JP5273020B2 (ja) 車両
JP2013514930A (ja) ブレーキ操作時の操舵トルクの低減方法
JP2008114831A (ja) 車両のヨーモーメント制御装置
JP4725431B2 (ja) 電動車両の駆動力推定装置、自動車および電動車両の駆動力推定方法
JP2006187047A (ja) 4輪独立駆動車の駆動力制御装置
JP6833666B2 (ja) 車両
JP6748211B2 (ja) 車両
JP6573239B2 (ja) 自動二輪車
JP2017178188A (ja) 車両
JP3571289B2 (ja) 電気自動車用操舵装置
JP2009126388A (ja) 車両用運動制御装置
JP2010030440A (ja) 同軸二輪車及びその制御方法
WO2016143471A1 (ja) 車両
JP2006182050A (ja) 4輪独立駆動車の制駆動力制御装置
WO2017082240A1 (ja) 二輪車
JP6981936B2 (ja) 人力駆動車用制御装置および推進力調整システム
WO2024048529A1 (ja) リーン車両
WO2024048534A1 (ja) リーン車両
WO2024048532A1 (ja) リーン車両
JP2008168839A (ja) 車両のヨーモーメント制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018882047

Country of ref document: EP

Effective date: 20200514

NENP Non-entry into the national phase

Ref country code: DE