WO2019102928A1 - 光硬化性樹脂組成物、及び画像表示装置の製造方法 - Google Patents

光硬化性樹脂組成物、及び画像表示装置の製造方法 Download PDF

Info

Publication number
WO2019102928A1
WO2019102928A1 PCT/JP2018/042293 JP2018042293W WO2019102928A1 WO 2019102928 A1 WO2019102928 A1 WO 2019102928A1 JP 2018042293 W JP2018042293 W JP 2018042293W WO 2019102928 A1 WO2019102928 A1 WO 2019102928A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image display
photopolymerization initiator
resin composition
photocurable resin
Prior art date
Application number
PCT/JP2018/042293
Other languages
English (en)
French (fr)
Inventor
中村 司
原 大輔
久士 君島
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN202310009062.8A priority Critical patent/CN115894740A/zh
Priority to CN201880072351.XA priority patent/CN111344311B/zh
Priority claimed from JP2018214511A external-priority patent/JP2019094485A/ja
Publication of WO2019102928A1 publication Critical patent/WO2019102928A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present technology relates to a photocurable resin composition and a method of manufacturing an image display device.
  • This application is related to Japanese Patent Application No. Japanese Patent Application No. 2017-225706 filed on Nov. 24, 2017 in Japan, and Japanese Patent Application No. Japanese Patent Application No. 2012-225511 filed on November 15, 2018 in Japan. Claims the priority of which is incorporated by reference into the present application.
  • an image display device such as a liquid crystal display panel used in an information terminal such as a smartphone
  • a photocurable resin composition is disposed between an image display member such as a liquid crystal display panel or an organic EL panel and a front plate.
  • an image display member such as a liquid crystal display panel or an organic EL panel
  • a front plate To form a curable resin layer.
  • the curable resin layer is irradiated with light and cured to form a cured resin layer.
  • the image display apparatus is manufactured by bonding and laminating the image display member and the front plate.
  • an image display device for example, a step of irradiating a light to a photocurable resin composition applied to at least one of a front plate and an image display member to form a temporarily cured layer, and a temporarily cured layer
  • a method of bonding the front plate and the image display member and the step of irradiating the temporary curing layer with light to perform main curing after bonding (see Patent Document 1).
  • the photopolymerization initiator which is cleaved by long-wave ultraviolet light is very rapidly cleaved and hardly remains after temporary curing of the photocurable resin composition.
  • the present technology has been proposed in view of such conventional circumstances, and provides a photocurable resin composition capable of obtaining good adhesiveness after main curing.
  • the present inventors at the time of main curing of the temporary curing layer, use a photocurable resin composition containing a photopolymerization initiator that cleaves by long-wave ultraviolet light and an ultraviolet light absorber that absorbs long-wave ultraviolet light. It has been found that a long-wave UV-cleavable photopolymerization initiator can be left in the temporary cured layer, whereby good adhesion can be obtained after the main curing.
  • the present technology relates to a photocurable resin composition for the cured resin layer, which is used to manufacture an image display device in which an image display member and a front plate are joined via a cured resin layer
  • the photopolymerization initiator contains a reactive component, a photopolymerization initiator, and an ultraviolet light absorber, and the photopolymerization initiator has a molar absorption coefficient of 1.2 ⁇ 10 2 ml / (g ⁇ cm) or more for light with a wavelength of 365 nm. It is a certain photoinitiator,
  • the said ultraviolet absorber is an ultraviolet absorber which absorbs the light more than wavelength 365nm.
  • the present technology relates to a photocurable resin composition for the cured resin layer, which is used to manufacture an image display device in which an image display member and a front plate are joined via a cured resin layer
  • the photopolymerization initiator contains a reactive component, a photopolymerization initiator, and an ultraviolet light absorber
  • the photopolymerization initiator is a photopolymerization initiator having an absorption peak of light in a wavelength range of 350 to 400 nm
  • the ultraviolet light absorber Is a UV absorber having an absorption peak of light in the wavelength range of 340 to 400 nm.
  • the present technology is a method of manufacturing an image display device in which an image display member and a front plate are joined via a cured resin layer, and a photoradical curable component is formed on the surface of the image display member or the front plate.
  • a step of forming a curable resin layer comprising a photocurable resin composition containing a photopolymerization initiator and an ultraviolet light absorber, a step of irradiating the curable resin layer with light to form a temporary cured layer,
  • the photopolymerization initiator is a photopolymerization initiator having a molar absorption coefficient of 1.2 ⁇ 10 2 ml / (g ⁇ cm) or more for light with a wavelength of 365 nm, and the photocurable resin composition Absorber in the object absorbs light with a wavelength
  • the present technology is a method of manufacturing an image display device in which an image display member and a front plate are joined via a cured resin layer, and a photoradical curable component is formed on the surface of the image display member or the front plate.
  • a step of forming a curable resin layer comprising a photocurable resin composition containing a photopolymerization initiator and an ultraviolet light absorber, a step of irradiating the curable resin layer with light to form a temporary cured layer, A step of bonding the image display member and the front plate through the temporary curing layer, and a step of irradiating the temporary curing layer with light through the front plate to form the cured resin layer
  • the photopolymerization initiator has an absorption peak of light in a wavelength range of 350 to 400 nm
  • the ultraviolet light absorber has an absorption peak of light in a wavelength range of 340 to 400 nm. It is an ultraviolet absorber which it has.
  • FIG. 1 is a cross-sectional view showing an example of the image display device.
  • FIG. 2 is sectional drawing which shows an example of process (A) of the manufacturing method of an image display apparatus.
  • FIG. 3 is sectional drawing which shows an example of process (B) of the manufacturing method of an image display apparatus.
  • FIG. 4 is a cross-sectional view showing an example of the step (B) of the method for manufacturing an image display device.
  • FIG. 5 is a cross-sectional view showing an example of the step (C) of the method for manufacturing an image display device.
  • FIG. 6 is a cross-sectional view showing an example of the step (D) of the method for manufacturing an image display device.
  • FIG. 7 is a perspective view for explaining the method of dropping the photocurable resin composition onto the opening of the spacer on the glass plate in the production of a laminate for evaluation.
  • FIG. 8 is a perspective view for explaining a method of adjusting the thickness of the curable resin layer using a squeegee in the production of a laminate for evaluation.
  • FIG. 9 is a perspective view for explaining a method of temporarily curing a curable resin layer in the production of a laminate for evaluation.
  • FIG. 10 (A) is a perspective view for explaining a method of main curing the curable resin layer in the production of a laminate for evaluation, and
  • FIG. 10 (B) illustrates an adhesive strength test of the laminate.
  • FIG. 10 (C) is a plan view for explaining the adhesion strength test of the laminate.
  • FIG. 11 is a graph showing the transmittance of the polycarbonate plate used in the laminate for evaluation to light with a wavelength of 300 to 500 nm.
  • FIG. 12 is a graph showing the light
  • the photocurable resin composition according to the present embodiment is a composition for a cured resin, which is used to manufacture an image display device in which an image display member and a front plate are joined via a cured resin layer.
  • the photocurable resin composition contains a photoradical reactive component, a photopolymerization initiator, and an ultraviolet absorber.
  • the photopolymerization initiator is a photopolymerization initiator having a molar absorption coefficient of 1.2 ⁇ 10 2 ml / (g ⁇ cm) or more for light with a wavelength of 365 nm (hereinafter, “long-wave ultraviolet-cleavable photopolymerization initiator” Containing).
  • the ultraviolet absorber contains an ultraviolet absorber that absorbs light having a wavelength of 365 nm or more (hereinafter, referred to as “ultraviolet absorber that absorbs long-wave ultraviolet light.) Further, the photocurable resin composition according to the present embodiment. Contains a photopolymerization initiator having an absorption peak of light in a wavelength range of 350 to 400 nm as a photopolymerization initiator, and an ultraviolet absorber having an absorption peak of light in a wavelength range of 340 to 400 nm as an ultraviolet absorber Do.
  • the molar absorption coefficient ⁇ (ml / (g ⁇ cm)) of the photopolymerization initiator is dissolved in methanol or acetonitrile, and the absorption spectrum is measured using a UV-visible spectrophotometer, and the obtained absorption spectrum The value calculated using the absorbance at
  • the photoradical reactive component includes, for example, photoradically polymerizable poly (meth) acrylate and photoradically polymerizable (meth) acrylate monomer.
  • photoradically polymerizable poly (meth) acrylate As the photoradically polymerizable poly (meth) acrylate, (meth) acrylate having isoprene, urethane, isobutene, butadiene or the like in its skeleton can be used. In the present specification, (meth) acrylate includes both acrylate and methacrylate.
  • (meth) acrylate having a urethane bond is preferably an oligomer (urethane (meth) acrylate oligomer).
  • the urethane (meth) acrylate oligomer preferably has, for example, 1 to 4 (meth) acrylic groups, and more preferably 2 to 3 (meth) acrylic groups.
  • (meth) acrylate which has a urethane bond for example, purple light (registered trademark) UV-2000B, UV-2750B, UV-3000B, UV-3200B, UV-3210EA, UV-3300B, UV-3310B, UV -3500BA, UV-3520EA, UV-3700B, UV-6640B (above, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), Art resin UN-6200, UN-6202, UN-6300, UN-6301, UN-7600, UN-7700 (As mentioned above, Negami Industrial Co., Ltd. make) etc. are mentioned.
  • polyisobutylene examples include Oppanol B10SFN, Oppanol B11 SFN, Oppanol B12 SFN, Oppanol B13 SFN, Oppanol B14 SFN and the like manufactured by BASF.
  • the weight average molecular weight of the photoradically polymerizable poly (meth) acrylate is not particularly limited, and is, for example, 2000 to 80,000.
  • the content of the photoradically polymerizable poly (meth) acrylate in the photocurable resin composition is preferably 5 to 50% by mass, and more preferably 5 to 30% by mass.
  • the radical photopolymerizable poly (meth) acrylate may be used alone or in combination of two or more. When using 2 or more types of photo radically polymerizable poly (meth) acrylates together, it is preferable that the total amount satisfy
  • the photoradically polymerizable (meth) acrylate monomer is used, for example, as a reactive diluent for imparting sufficient reactivity and coatability to the photocurable resin composition in the production process of the image display device.
  • the photo radical polymerizable (meth) acrylate monomer is not particularly limited, but from the viewpoint of compatibility with other components, a (meth) acrylate monomer having a cyclic structure and an alkyl (meth) acrylate monomer having 5 to 20 carbon atoms It is preferable to use
  • an acrylic monomer having a heterocycle such as a morpholine ring, a furan ring, or a dioxolane ring, or an acrylic monomer having an alicyclic hydrocarbon group
  • the cyclic structure may be saturated or unsaturated.
  • the cyclic structure may have a substituent. Specific examples thereof include acryloyl morpholine, tetrahydrofurfuryl (meth) acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, isobornyl (meth) acrylate and the like. .
  • alkyl (meth) acrylate monomer having 5 to 20 carbon atoms lauryl (meth) acrylate, isodecyl (meth) acrylate, stearyl (meth) acrylate and the like can be mentioned.
  • the content of the photoradically polymerizable (meth) acrylate monomer can be 10 to 80% by mass, and can also be 20 to 50% by mass.
  • the radical photopolymerizable (meth) acrylate monomers may be used alone or in combination of two or more. When using 2 or more types of monomers together, it is preferable that the total amount satisfy
  • the photopolymerization initiator used in the present embodiment is one that is cleaved by long-wave ultraviolet light, and is a component that can be activated by light irradiation with a wavelength of, for example, 365 nm or more and can cure the above-described photoradical reactive component. Further, the photopolymerization initiator has an absorption peak of light in the wavelength range of 350 to 400 nm.
  • an acylphosphine-based photopolymerization initiator is preferable, and as a specific example, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, And bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide.
  • the content of the photopolymerization initiator in the photocurable resin composition is preferably 0.1 to 5 parts by mass, and 0.2 to 3 parts by mass with respect to 100 parts by mass in total of the above-mentioned photo radical reactive components. More preferable. With such a range, it is possible to more effectively prevent insufficient curing at the time of light irradiation and to more effectively prevent an increase in outgassing due to cleavage.
  • the content of the photopolymerization initiator is preferably, for example, 0.5 to 5% by mass.
  • a photoinitiator may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types of photoinitiators together, it is preferable that the total amount satisfy
  • the photocurable resin composition according to the present embodiment contains an ultraviolet absorber that absorbs light with a wavelength of 365 nm or more (long-wave ultraviolet light), and in particular, an ultraviolet light having a transmittance of 5% or less for light with a wavelength of 365 nm. It is preferred to contain an absorbent. In addition, the ultraviolet absorber has an absorption peak of light in the wavelength range of 340 to 400 nm.
  • a member transmitting only long-wave ultraviolet light is used as a front plate in the method of manufacturing an image display device described later by using an ultraviolet light absorber that absorbs such long-wave ultraviolet light
  • the main surface of the temporary curing layer At the time of curing, a photopolymerization initiator which is cleaved by long-wave ultraviolet rays can be left in the temporary curing layer, and good adhesiveness can be obtained after the main curing.
  • an ultraviolet absorber which absorbs long-wave ultraviolet rays a benzotriazole type ultraviolet absorber is preferable, and an ultraviolet absorber represented by the following general formula is more preferable.
  • R 1 represents a substituent and R 2 represents a hydrogen atom or a substituent
  • R 1 is preferably an alkyl group or a phenyl group.
  • the alkyl group is preferably a linear alkyl group having 1 to 6 carbon atoms or a branched alkyl group having 3 to 6 carbon atoms.
  • R 2 represents a substituent, it is preferably an alkyl group.
  • the alkyl group is preferably a linear alkyl group having 1 to 6 carbon atoms or a branched alkyl group having 3 to 6 carbon atoms, and the branched alkyl group having 3 to 6 carbon atoms substituted with a phenyl group is preferred. More preferable.
  • benzotriazole type ultraviolet absorber 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (TINUVIN 900, manufactured by BASF AG) ), 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol (TINUVIN 928, BASF AG) And 2- (2-hydroxy-5-t-butylphenyl) -2H-benzotriazole (TINUVIN PS, manufactured by BASF) and the like.
  • the content of the ultraviolet absorber is preferably 0.5% by mass or more.
  • the upper limit of the content of the ultraviolet light absorber is not particularly limited, but is preferably 10% by mass or less. Thereby, at the time of temporary curing of the photocurable resin composition, it is possible to suppress the prevention of the cleavage of the photopolymerization initiator, and to suppress the insufficient curing more effectively.
  • the ultraviolet absorber may be used alone or in combination of two or more. When using 2 or more types of ultraviolet absorbers together, it is preferable that the total amount satisfy
  • the mass ratio (photopolymerization initiator / ultraviolet absorber) of the photopolymerization initiator which is cleaved by long-wave ultraviolet light to the ultraviolet absorber which absorbs long-wave ultraviolet light is 0.5 It is preferable to be -2.0. By setting it as such mass ratio, while being able to prevent effectively becoming insufficient at the time of temporary hardening of a photocurable resin composition, favorable adhesiveness is obtained at the time of this hardening of a temporary hardening layer.
  • the photocurable resin composition may further contain other components in addition to the components described above, as long as the effects of the present technology described above are not impaired.
  • a plasticizer, antioxidant, etc. are mentioned, for example.
  • the plasticizer for example, does not photocure itself by light irradiation, and gives flexibility to the cured resin layer after photocuring.
  • a plasticizer for example, a plasticizer having a weight average molecular weight of 2000 or more and derived from ethylene glycol and propylene glycol, a plasticizer having a weight average molecular weight of 2000 or more derived from only propylene glycol (a plasticizer comprising polypropylene glycol) Can be used.
  • the plasticizer preferably contains, for example, a compound represented by the following general formula. H - (- OC 2 H 4 -) n - (- OC 3 H 6) m -OH
  • m -OH is an integer of 25 to 138, preferably 35 to 100, more preferably 40 to 80, and still more preferably 50 to 55.
  • n is an integer of 8 to 50, preferably 10 to 30, and more preferably 15 to 20.
  • the weight average molecular weight of the plasticizer represented by the above general formula may be, for example, 3000 or more, 3500 or more, or 4000 or more. Further, the upper limit value of the weight average molecular weight of the plasticizer represented by the above general formula is not particularly limited, and may be, for example, 10000 or less, and may be 8000 or less, or may be 6000 or less.
  • solid tackifier and a liquid oil component can also be used besides what was mentioned above.
  • solid tackifiers include terpene resins such as terpene resins, terpene phenol resins, hydrogenated terpene resins, natural rosins, polymerized rosins, rosin esters, rosin resins such as hydrogenated rosins, and terpene hydrogenated resins.
  • non-reactive oligomers obtained by low molecular weight polymerizing the above-mentioned acrylic monomers in advance can also be used.
  • copolymers of butyl acrylate, 2-hexyl acrylate and acrylic acid, and cyclohexyl acrylate Copolymers of methacrylic acid may, for example, be mentioned.
  • the liquid oil component include polybutadiene type oils and polyisoprene type oils.
  • the total content of the plasticizer in the photocurable resin composition is preferably 40 to 85% by mass, and 40 to 60% by mass. Is more preferred.
  • the plasticizer may be used alone or in combination of two or more. When two or more plasticizers are used in combination, the total amount thereof preferably satisfies the above range.
  • the antioxidant is used, for example, for the purpose of preventing discoloration of the photocurable resin composition.
  • the antioxidant is not particularly limited, and known antioxidants can be used.
  • a compound having a hindered phenol structure, a compound having a hindered amine structure, a compound having a thioether structure, and the like can be mentioned.
  • IRGANOX1035" As a commercial item of the compound which has a hindered phenol structure which is an example of antioxidant, "IRGANOX1035", "IRGANOX1076”, “IRGANOX1098”, “IRGANOX1135", “IRGANOX1330”, “IRGANOX1726”, “IRGANOX1425WL”, “IRGANOX1520L”, “IRGANOX245", “IRGANOX2452”, And “IRGAMOD 295” (manufactured by BASF Corp.) and the like.
  • the total content of the antioxidant in the photocurable resin composition can be 0.1 to 10% by mass, and it can be 0.5 to 10%. It can also be 3% by mass.
  • An antioxidant may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types of antioxidants together, it is preferable that the total amount satisfy
  • the photocurable resin composition according to the present embodiment contains a photopolymerization initiator that is cleaved by long-wave ultraviolet light and an ultraviolet absorber that absorbs long-wave ultraviolet light.
  • the light transmittance of the cured product (cured resin layer) having a thickness of 150 ⁇ m at a wavelength of 365 nm is preferably 5% or less, and more preferably 2% or less.
  • the light transmittance at a wavelength of 405 nm of a cured product (cured resin layer) having a thickness of 150 ⁇ m is preferably 15% or more, and 80% or more. Is more preferably 90% or more.
  • the light transmittance at a wavelength of 550 nm of a cured product (cured resin layer) having a thickness of 150 ⁇ m is preferably 90% or more, and 99% or more. Is more preferred.
  • the light transmittance refers to a value measured at 25 ° C. using an ultraviolet-visible spectrophotometer (device name: UV-2450, manufactured by Shimadzu Corporation).
  • the photocurable resin composition is preferably liquid at normal temperature.
  • the photocurable resin composition preferably exhibits a viscosity of 0.01 to 100 Pa ⁇ s at 25 ° C. as measured by a B-type viscometer.
  • the photocurable resin composition can be prepared by uniformly mixing the components described above according to a known mixing method.
  • the image display device 1 includes an image display member 2, a cured resin layer 3, and a front plate 4 in this order.
  • the image display member 2 is, for example, an image display panel in which a polarizing plate is formed on the surface on the viewing side of the image display cell.
  • Examples of the image display cell include a liquid crystal cell and an organic EL cell.
  • a liquid crystal cell a reflection type liquid crystal cell, a transmission type liquid crystal cell etc. are mentioned, for example.
  • the image display member 2 is, for example, a liquid crystal display panel, an organic EL display panel, a touch panel or the like.
  • the touch panel means an image display / input panel in which a display element such as a liquid crystal display panel and a position input device such as a touch pad are combined.
  • the front plate 4 may have any light transmittance such that the image formed on the image display member 2 can be visually recognized.
  • the front plate 4 includes not only a member having a relatively simple structure as described above, but also a stack of various sheets or film materials such as a touch panel module.
  • a photopolymerization initiator that is cleaved by long-wave ultraviolet light is temporarily used during main curing of the temporary curing layer. It needs to remain in the hardened layer.
  • the photopolymerization initiator that is cleaved by long-wave ultraviolet light is very rapidly cleaved, hardly remains after temporary curing of the photocurable resin composition, and it is difficult to obtain good adhesiveness after main curing.
  • the temporary curing layer is formed by using the photocurable resin composition containing the photopolymerization initiator that is cleaved by long-wave ultraviolet light and the ultraviolet light absorber that absorbs long-wave ultraviolet light.
  • a photopolymerization initiator which is cleaved by long-wave ultraviolet light can be left in the temporary curing layer, and good adhesiveness can be obtained after the main curing.
  • a light shielding layer 5 may be provided on the periphery of the front plate 4 in order to improve the contrast of the image.
  • the light shielding layer 5 can be formed, for example, by applying a paint colored in black or the like by a screen printing method or the like, and drying and curing it.
  • the thickness of the light shielding layer 5 is usually 5 to 100 ⁇ m.
  • the cured resin layer 3 is a cured product of the above-described photocurable resin composition, and, for example, an average of the entire cured product obtained by photoradical polymerization of the photocurable resin composition by light irradiation in the air. It says what was hardened so that reaction rate (hardening rate) might be 90% or more (preferably 97% or more).
  • the reaction rate is defined as the ratio (consumption ratio) of the amount of (meth) acryloyl group after light irradiation to the amount of (meth) acryloyl group in the curable resin layer before light irradiation. It is a numerical value, and the larger the numerical value, the more the curing progresses.
  • reaction rate is the absorption peak height (X) from 1640 to 1620 cm -1 from the baseline in the FT-IR measurement chart of the curable resin layer before light irradiation, and the curable resin after light irradiation
  • the absorption peak height (Y) from 1640 to 1620 cm ⁇ 1 from the baseline in the FT-IR measurement chart of the layer (cured resin layer 3) can be calculated by substituting the following expression.
  • Reaction rate (%) [(X-Y) / X] x 100
  • the cured resin layer 3 preferably has a transmittance of 90% or more in the visible light region. By satisfying such a range, the visibility of the image formed on the image display member 2 can be further improved.
  • the refractive index of the cured resin layer 3 is preferably substantially equal to the refractive index of the image display member 2 or the front plate 4.
  • the refractive index of the cured resin layer 3 is preferably, for example, 1.45 or more and 1.55 or less. Thereby, the brightness
  • the thickness of the cured resin layer 3 can be, for example, about 25 to 200 ⁇ m.
  • a step (A) of forming a curable resin layer made of the above-described photocurable resin composition on the surface of a front plate, and irradiating the curable resin layer with light A step (B) of forming a temporarily cured layer, a step (C) of laminating the image display member and the front plate through the temporarily cured layer, and irradiating light through the front plate to the temporarily cured layer, And (d) forming a cured resin layer.
  • Step (A) At a process (A), as shown, for example in FIG. 2, the photocurable resin composition 6 is apply
  • the thickness of the curable resin layer 7 can be, for example, 25 to 350 ⁇ m.
  • the application of the photocurable resin composition 6 may be performed so as to obtain a necessary thickness, and may be performed once or plural times.
  • Step (B) In the step (B), as shown in FIG. 3, the curable resin layer 7 formed in the step (A1) is irradiated with light (for example, ultraviolet light) to form a temporary cured layer 8 as shown in FIG. .
  • the temporary curing of the curable resin layer 7 is performed in order to improve the handleability by preventing the photocurable resin composition from flowing from the liquid state so as not to flow remarkably and preventing it from flowing out even if it is reversed upside down.
  • the temporary curing of the curable resin layer 7 is preferably performed so that the reaction rate of the temporary cured layer 8 is 10 to 99%, and may be 40 to 95%.
  • the conditions for the light irradiation are not particularly limited as long as the reaction rate of the temporary curing layer 8 can be cured to be, for example, 10 to 99%.
  • UV-LED ultraviolet irradiation device
  • the residual ratio (%) of the photopolymerization initiator in the obtained temporary cured layer 8 is preferably 40% or more, more preferably 44% or more, and still more preferably 50% or more.
  • the measuring method of the residual ratio (%) of the photoinitiator in the temporary hardening layer 8 is the same as the measuring method in the below-mentioned Example.
  • Step (C) [Step (C), as shown in FIG. 5, the image display member 2 is disposed on the surface of the temporary curing layer 8, and the image display member 2 and the front plate 4 are bonded via the temporary curing layer 8.
  • the lamination can be performed, for example, by applying pressure at 10 to 80 ° C. using a known pressure bonding apparatus.
  • Step (D) In the step (D), as shown in FIG. 6, the temporary curing layer 8 is irradiated with light (for example, ultraviolet light) through the front plate 4 to perform main curing. Thereby, the image display apparatus 1 (refer FIG. 1) which the image display member 2 and the front plate 4 laminated
  • light for example, ultraviolet light
  • the main curing of the temporary curing layer 8 is preferably performed so that the reaction rate of the cured resin layer 6 is 90% or more, and more preferably 95% or more.
  • the conditions for the main curing are not particularly limited as long as the curing rate of the cured resin layer 6 can be 90% or more.
  • an ultraviolet irradiation device metal halide lamp
  • a photocurable resin composition containing a photopolymerization initiator that is cleaved by long-wave ultraviolet light and an ultraviolet light absorber that absorbs long-wave ultraviolet light By using 6, the photopolymerization initiator which is cleaved by long-wave ultraviolet rays can be left in the temporary curing layer 8 at the time of main curing of the temporary curing layer 8, and good adhesiveness can be obtained after the main curing. .
  • the photocurable resin composition 6 containing a photopolymerization initiator that is cleaved by long-wave ultraviolet light and an ultraviolet light absorber that absorbs long-wave ultraviolet light, a process margin for bonding after temporary curing Can be improved.
  • the front plate 4 which has the light shielding layer 5 was used was demonstrated in the manufacturing method of the image display apparatus mentioned above, it is not limited to this example.
  • the image display apparatus may be manufactured using a front plate that does not have the light shielding layer 5.
  • a so-called dam fill process may be adopted as another method of manufacturing an image display device.
  • the dam fill process for example, an application region of the fill material is formed on the surface of the image display member using a dam material, the fill material is applied to the application region, and the image display member and the light transmitting member are filled. It is a method of bonding via light, and irradiating a light to a fill material to form a cured resin layer.
  • UV-3700 B UV curable urethane acrylate, Nippon Sanso Chemical Co., Ltd.
  • Oppanol B12SFN polyisobutylene
  • BASF MEDOL-10 monofunctional monomer ((2-methyl-2-ethyl-1,3-dioxolane-4-yl) ) Methyl acrylate)
  • IBXA manufactured by Osaka Organic Chemical Industry Co., Ltd .
  • isobornyl acrylate manufactured by Osaka Organic Chemical Industry Co.
  • LA lauryl acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • EXCENOL 510 Polyether polyol (Mw: 4000), manufactured by Asahi Glass Co., Ltd.
  • IRGACURE 184 1-hydroxy-cyclohexyl-phenyl ketone, manufactured by BASF, absorption peak: around 240 nm, molar extinction coefficient to light of wavelength 365 nm: 8.864 ⁇ 10 1 ml / (g ⁇ cm) (using MeOH)
  • IRGACURE TPO 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by BASF, absorption peak: around 380 nm, molar extinction coefficient to light of wavelength 365 nm: 4.720 ⁇ 10 2 ml / (g ⁇ cm) (With MeOH), molar extinction coefficient to light with a wavelength of 405 nm: 1.650 ⁇ 10 2 ml / (g ⁇ cm) (with MeOH) IRGACURE 184: 1-hydroxy-cyclohexyl-phen
  • Example 1 20 parts by mass of UV curable urethane acrylate (UV-3700B), 30 parts by mass of monofunctional monomer (MEDOL-10), 1 part by mass of a photopolymerization initiator (IRGACURE TPO), 1 part by mass of an antioxidant (IRGANOX 1135), plastic
  • the photocurable resin composition which consists of 50 mass parts of agents (EXCENOL 510) and 1 mass part of ultraviolet absorbers (TINUVIN 928) was prepared.
  • Comparative Example 1 A photocurable resin composition was prepared in the same manner as in Example 1 except that the ultraviolet absorber (TINUVIN 928) was not blended.
  • Example 2 A photocurable resin composition was prepared in the same manner as in Example 1 except that the amount of the ultraviolet absorber (TINUVIN 928) was changed to 0.5 parts by mass.
  • Comparative Example 2 A photocurable resin composition was prepared in the same manner as Example 1, except that the amount of the ultraviolet absorber (TINUVIN 928) was changed to 0.4 parts by mass.
  • Comparative Example 3 A photocurable resin composition was prepared in the same manner as in Example 1 except that the amount of the ultraviolet absorber (TINUVIN 928) was changed to 0.3 parts by mass.
  • Comparative Example 4 A photocurable resin composition was prepared in the same manner as in Example 1, except that the amount of the ultraviolet light absorber (TINUVIN 928) was changed to 0.2 parts by mass.
  • Comparative Example 5 A photocurable resin composition was prepared in the same manner as in Example 1 except that the amount of the ultraviolet absorber (TINUVIN 928) was changed to 0.1 parts by mass.
  • Example 3 A photocurable resin composition was prepared in the same manner as in Example 1, except that the amount of the photopolymerization initiator (IRGACURE TPO) was changed to 0.5 parts by mass.
  • Example 4 A photocurable resin composition was prepared in the same manner as Example 1, except that the amount of the photopolymerization initiator (IRGACURE TPO) was changed to 5 parts by mass and the amount of the ultraviolet absorber (TINUVIN 928) was changed to 3 parts by mass. Prepared.
  • Example 5 A photocurable resin composition was prepared in the same manner as in Example 4 except that 10 parts by mass of TINUVIN PS was used as an ultraviolet absorber.
  • Example 6 A photocurable resin composition was prepared in the same manner as Example 1, except that the photopolymerization initiator (IRGACURE TPO) was changed to an equivalent amount of IRGACURE 819.
  • the photopolymerization initiator IRGACURE TPO
  • Example 7 A photocurable resin composition was prepared in the same manner as in Example 6, except that the amount of the photopolymerization initiator (IRGACURE 819) was changed to 0.5 parts by mass.
  • Example 8 A photocurable resin composition was prepared in the same manner as in Example 1 except that the ultraviolet absorber (TINUVIN 928) was changed to an equivalent amount of TINUVIN PS.
  • the ultraviolet absorber TINUVIN 9228
  • Example 9 A photocurable resin composition was prepared in the same manner as in Example 8, except that the amount of the ultraviolet absorber (TINUVIN 928) was changed to 0.5 parts by mass.
  • Comparative Example 6 A photocurable resin composition was prepared in the same manner as Comparative Example 1 except that the photopolymerization initiator (IRGACURE TPO) was changed to an equivalent amount of IRGACURE 184.
  • the photopolymerization initiator IRGACURE TPO
  • Example 10 A photocurable resin composition comprising 30 parts by mass of Oppanol B12SFN, 40 parts by mass of IBXA, 30 parts by mass of LA, 1 part by mass of a photopolymerization initiator (IRGACURE TPO), and 1 part by mass of an ultraviolet absorber (TINUVIN 928) Prepared.
  • the photocurable resin composition 6 on the spacer 10 was removed using a squeegee 11 so that the thickness of the curable resin layer 7 was adjusted to 150 ⁇ m. Thereafter, the spacer 10 was removed from the glass plate 9.
  • an integrated light quantity of 1000 mJ is obtained for the curable resin layer 7 using an ultraviolet irradiation device 12 (UV-LED, model: H-4MLH200-V1, manufactured by HOYA) shown in Table 1 below.
  • the temporary curing layer 8 was formed by irradiating an ultraviolet ray (light emission wavelength: 365 ⁇ 5 nm) having an intensity of 200 mW / cm 2 for 5 seconds so as to be 2 cm 2 / cm 2 .
  • the reaction rate of the temporarily cured layer 8 obtained in each Example and Comparative Example was in the range of 40 to 99%.
  • a glass plate 9 with a temporary curing layer 8 is bonded to the surface of a polycarbonate plate 13 (thickness 2.0 mm) via the temporary curing layer 8, and the temporary curing layer 8 is A laminate in which the glass plate 9 and the polycarbonate plate 13 were bonded to each other was obtained.
  • the temporary curing layer 8 of the obtained laminate is irradiated with ultraviolet light through the polycarbonate plate 13 using an ultraviolet irradiation device 14 (metal halide lamp) so that the integrated light quantity is 5000 mJ / cm 2, and temporary curing is performed.
  • the layer 8 was completely cured (main cure).
  • a laminate for evaluation in which the polycarbonate 13 plate and the glass plate 9 were joined via the cured resin layer 3 having a diameter of 6 mm and a thickness of 150 ⁇ m was obtained.
  • the residual percentage (%) of the photopolymerization initiator in the temporary cured layer 8 was measured by the following method. In preparation of the laminate for evaluation mentioned above, the photocurable resin composition 6 before temporary curing and the temporary curing layer 8 are weighed in the same amount, and each is brought into contact with a predetermined solvent at room temperature for a predetermined time.
  • the photopolymerization initiator contained in each inside is extracted, and the extract obtained is subjected to an ultra high performance liquid chromatograph (product name: Nexera X2 manufactured by Shimadzu Corporation), and the height of the peak derived from the photopolymerization initiator
  • the ratio (H2 / H1) to (1) was calculated, and the residual ratio (%) of the photopolymerization initiator was calculated from the formula of the ratio (H2 / H1) ⁇ 100.
  • the residual rate of the photopolymerization initiator is desirably 40% or more. The results are shown in Table 2.
  • the glass plate 9 positioned below the laminate is fixed to the laminate for evaluation obtained in the preparation of the laminate for evaluation described above, and cured.
  • the polycarbonate plate 13 positioned on the upper side was lifted in the vertical direction at a speed of 5 mm / min, and the adhesion state was evaluated based on the following criteria.
  • AGS-X manufactured by Shimadzu Corporation was used for measurement of adhesive strength.
  • the adhesive strength (N / cm 2 ) was calculated by measuring the stress required to separate the glass plate 9 and the polycarbonate plate 13 at 25 ° C. and dividing the stress by the unit area of the cured resin layer 3 .
  • the adhesive strength is preferably 10 N / cm 2 or more. The results are shown in Table 2.
  • FIG. 11 is a graph showing the transmittance of the polycarbonate plate 13 used in the laminate for evaluation to light with a wavelength of 300 to 500 nm. From this result, it can be seen that the polycarbonate plate 13 transmits only long-wave ultraviolet light (light with a wavelength of 380 nm or more).
  • FIG. 12 is a graph showing the light transmittance of a cured resin layer made of a photocurable resin composition containing an ultraviolet absorber measured at 25 ° C.
  • FIGS. 12A to 12D are the results of the cured resin layer in the laminate for evaluation, which was produced using the photocurable resin compositions of Examples 1, 2, 8 and 9. is there.

Abstract

本硬化後に良好な接着性が得られる光硬化性樹脂組成物を提供する。 硬化樹脂層3を介して画像表示部材2と前面板4とが接合された画像表示装置1を製造するために用いられる、硬化樹脂層3用の光硬化性樹脂組成物であって、光ラジカル反応性成分と、光重合開始剤と、紫外線吸収剤とを含有し、光重合開始剤は、波長365nmの光に対するモル吸光係数が1.2×10ml/(g・cm)以上である光重合開始剤であり、紫外線吸収剤は、波長365nm以上の光を吸収する紫外線吸収剤である。

Description

光硬化性樹脂組成物、及び画像表示装置の製造方法
 本技術は、光硬化性樹脂組成物、及び画像表示装置の製造方法に関する。本出願は、日本国において2017年11月24日に出願された日本特許出願番号特願2017-225706、及び日本国において2018年11月15日に出願された日本特許出願番号特願2018-214511を基礎として優先権を主張するものであり、これらの出願は参照されることにより、本出願に援用される。
 スマートフォン等の情報端末に用いられている液晶表示パネル等の画像表示装置は、まず、液晶表示パネルや有機ELパネル等の画像表示部材と前面板との間に、光硬化性樹脂組成物を配して、硬化性樹脂層を形成する。その後、硬化性樹脂層に光を照射して硬化させて硬化樹脂層とする。このように、画像表示装置は、画像表示部材と前面板とを接着・積層することにより製造されている。
 画像表示装置の製造方法として、例えば、前面板及び画像表示部材の少なくとも一方に塗布された光硬化性樹脂組成物に光を照射して仮硬化層を形成する工程と、仮硬化層を介して前面板と画像表示部材とを貼合わせる工程と、貼合わせ後に、仮硬化層に光を照射して本硬化させる工程とを含む方法が提案されている(特許文献1参照)。
特開2017-30274号公報
 本願発明者らが検討したところ、前面板として、例えば長波(例えば波長320~400nm)の紫外線のみを透過する部材を使用すると、従来の光硬化性樹脂組成物では、十分な密着性を得ることが困難であることが分かった。
 具体的に、前面板として、長波の紫外線のみを透過する部材の使用を検討すると、仮硬化層の本硬化時には、長波の紫外線で開裂する光重合開始剤が仮硬化層中に残存する必要がある。しかし、長波の紫外線で開裂する光重合開始剤は、開裂が非常に速く、光硬化性樹脂組成物の仮硬化後には残存し難い。
 本技術は、このような従来の実情に鑑みて提案されたものであり、本硬化後に良好な接着性が得られる光硬化性樹脂組成物を提供する。
 本件発明者らは、長波の紫外線で開裂する光重合開始剤と、長波の紫外線を吸収する紫外線吸収剤とを含有する光硬化性樹脂組成物を用いることにより、仮硬化層の本硬化時に、長波の紫外線で開裂する光重合開始剤を仮硬化層中に残存させることができ、これにより、本硬化後に良好な接着性を得ることができることを見出した。
 本技術は、硬化樹脂層を介して画像表示部材と前面板とが接合された画像表示装置を製造するために用いられる、上記硬化樹脂層用の光硬化性樹脂組成物であって、光ラジカル反応性成分と、光重合開始剤と、紫外線吸収剤とを含有し、上記光重合開始剤は、波長365nmの光に対するモル吸光係数が1.2×10ml/(g・cm)以上である光重合開始剤であり、上記紫外線吸収剤は、波長365nm以上の光を吸収する紫外線吸収剤である。
 本技術は、硬化樹脂層を介して画像表示部材と前面板とが接合された画像表示装置を製造するために用いられる、上記硬化樹脂層用の光硬化性樹脂組成物であって、光ラジカル反応性成分と、光重合開始剤と、紫外線吸収剤とを含有し、上記光重合開始剤は、波長350~400nmの範囲に光の吸収ピークを有する光重合開始剤であり、上記紫外線吸収剤は、波長340~400nmの範囲に光の吸収ピークを有する紫外線吸収剤である。
 本技術は、硬化樹脂層を介して画像表示部材と前面板とが接合された画像表示装置の製造方法であって、上記画像表示部材又は上記前面板の表面に、光ラジカル硬化性成分と、光重合開始剤と、紫外線吸収剤とを含有する光硬化性樹脂組成物からなる硬化性樹脂層を形成する工程と、上記硬化性樹脂層に光を照射して仮硬化層を形成する工程と、上記仮硬化層を介して、上記画像表示部材と上記前面板とを貼り合わせる工程と、上記仮硬化層に対して、上記前面板を介して光照射し、上記硬化樹脂層を形成する工程とを有し、上記光重合開始剤は、波長365nmの光に対するモル吸光係数が1.2×10ml/(g・cm)以上である光重合開始剤であり、上記光硬化性樹脂組成物中の紫外線吸収剤は、波長365nm以上の光を吸収する紫外線吸収剤である。
 本技術は、硬化樹脂層を介して画像表示部材と前面板とが接合された画像表示装置の製造方法であって、上記画像表示部材又は上記前面板の表面に、光ラジカル硬化性成分と、光重合開始剤と、紫外線吸収剤とを含有する光硬化性樹脂組成物からなる硬化性樹脂層を形成する工程と、上記硬化性樹脂層に光を照射して仮硬化層を形成する工程と、上記仮硬化層を介して、上記画像表示部材と上記前面板とを貼り合わせる工程と、上記仮硬化層に対して、上記前面板を介して光照射し、上記硬化樹脂層を形成する工程とを有し、上記光重合開始剤は、波長350~400nmの範囲に光の吸収ピークを有する光重合開始剤であり、上記紫外線吸収剤は、波長340~400nmの範囲に光の吸収ピークを有する紫外線吸収剤である。
 本技術によれば、本硬化後に良好な接着性が得られる光硬化性樹脂組成物を提供することができる。
図1は、画像表示装置の一例を示す断面図である。 図2は、画像表示装置の製造方法の工程(A)の一例を示す断面図である。 図3は、画像表示装置の製造方法の工程(B)の一例を示す断面図である。 図4は、画像表示装置の製造方法の工程(B)の一例を示す断面図である。 図5は、画像表示装置の製造方法の工程(C)の一例を示す断面図である。 図6は、画像表示装置の製造方法の工程(D)の一例を示す断面図である。 図7は、評価用の積層体の作製において、ガラス板上のスペーサの開口部に光硬化性樹脂組成物を滴下する方法を説明するための斜視図である。 図8は、評価用の積層体の作製において、スキージーを用いて、硬化性樹脂層の厚さを調整する方法を説明するための斜視図である。 図9は、評価用の積層体の作製において、硬化性樹脂層を仮硬化する方法を説明するための斜視図である。 図10(A)は、評価用の積層体の作製において硬化性樹脂層を本硬化する方法を説明するための斜視図であり、図10(B)は、積層体の接着強度試験を説明するための断面図であり、図10(C)は、積層体の接着強度試験を説明するための平面図である。 図11は、評価用の積層体に用いたポリカーボネート板の波長300~500nmの光に対する透過率を示すグラフである。 図12は、硬化樹脂層の光透過率を示すグラフである。
 <光硬化性樹脂組成物>
 本実施の形態に係る光硬化性樹脂組成物は、硬化樹脂層を介して画像表示部材と前面板とが接合された画像表示装置を製造するために用いられる、硬化樹脂用の組成物である。光硬化性樹脂組成物は、光ラジカル反応性成分と、光重合開始剤と、紫外線吸収剤とを含有する。光重合開始剤は、波長365nmの光に対するモル吸光係数が1.2×10ml/(g・cm)以上である光重合開始剤(以下、「長波の紫外線で開裂する光重合開始剤」という)を含有する。紫外線吸収剤は、波長365nm以上の光を吸収する紫外線吸収剤(以下、「長波の紫外線を吸収する紫外線吸収剤)という)を含有する。また、本実施の形態に係る光硬化性樹脂組成物は、光重合開始剤として波長350~400nmの範囲に光の吸収ピークを有する光重合開始剤を含有し、紫外線吸収剤として波長340~400nmの範囲に光の吸収ピークを有する紫外線吸収剤を含有する。
 ここで、光重合開始剤のモル吸光係数ε(ml/(g・cm))とは、メタノール又はアセトニトリルに溶解させ、紫外可視分光光度計を用いて吸収スペクトルを測定し、得られた吸収スペクトルにおける吸光度を用いて算出した値をいう。
 [光ラジカル反応性成分]
 光ラジカル反応性成分は、例えば、光ラジカル重合性ポリ(メタ)アクリレートと光ラジカル重合性(メタ)アクリレートモノマーとを含む。
 [光ラジカル重合性ポリ(メタ)アクリレート]
 光ラジカル重合性ポリ(メタ)アクリレートは、イソプレン、ウレタン、イソブテン、ブタジエン等を骨格に有する(メタ)アクリレートを用いることができる。なお、本明細書中、(メタ)アクリレートは、アクリレートとメタクリレートの両方を包含する。
 例えば、ウレタン結合を有する(メタ)アクリレートは、オリゴマー(ウレタン(メタ)アクリレートオリゴマー)が好ましい。ウレタン(メタ)アクリレートオリゴマーは、例えば(メタ)アクリル基を1~4個有することが好ましく、より好ましくは(メタ)アクリル基を2~3個有するものである。ウレタン結合を有する(メタ)アクリレートの市販品としては、例えば、紫光(登録商標)UV-2000B、UV-2750B、UV-3000B、UV-3200B、UV-3210EA、UV-3300B、UV-3310B、UV-3500BA、UV-3520EA、UV-3700B、UV-6640B(以上、日本合成化学工業社製)、アートレジンUN-6200、UN-6202、UN-6300、UN-6301、UN-7600、UN-7700(以上、根上工業社製)等が挙げられる。
 また、ポリイソブチレンの市販品としては、BASF社製のOppanol B10SFN、Oppanol B11SFN、Oppanol B12SFN、Oppanol B13SFN、OppanolB14SFN等が挙げられる。
 光ラジカル重合性ポリ(メタ)アクリレートの重量平均分子量は、特に限定されず、例えば2000~80000である。
 光硬化性樹脂組成物中、光ラジカル重合性ポリ(メタ)アクリレートの含有量は、5~50質量%が好ましく、5~30質量%がより好ましい。光ラジカル重合性ポリ(メタ)アクリレートは、1種単独で用いてもよく、2種以上を併用してもよい。2種以上の光ラジカル重合性ポリ(メタ)アクリレートを併用する場合、その合計量が上記含有量の範囲を満たすことが好ましい。
 [光ラジカル重合性(メタ)アクリレートモノマー]
 光ラジカル重合性(メタ)アクリレートモノマーは、例えば、画像表示装置の製造工程において、光硬化性樹脂組成物に十分な反応性及び塗布性等を付与するための反応性希釈剤として用いられる。光ラジカル重合性(メタ)アクリレートモノマーは、特に限定されないが、他の成分との相溶性の観点から、環状構造を有する(メタ)アクリレートモノマーや、炭素数5~20のアルキル(メタ)アクリレートモノマーを用いることが好ましい。
 環状構造を有する(メタ)アクリレートモノマーとしては、モルホリン環、フラン環、ジオキソラン環等のヘテロ環を有するアクリル系モノマー、脂環式炭化水素基を有するアクリル系モノマーを用いることができる。環状構造は、飽和であっても不飽和であってもよい。環状構造は、置換基を有していてもよい。具体例としては、アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。また、炭素数5~20のアルキル(メタ)アクリレートモノマーとしては、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。
 光硬化性樹脂組成物中、光ラジカル重合性(メタ)アクリレートモノマーの含有量は、10~80質量%とすることができ、20~50質量%とすることもできる。光ラジカル重合性(メタ)アクリレートモノマーは、1種単独で用いてもよく、2種以上を併用してもよい。2種以上のモノマーを併用する場合、その合計量が上記含有量の範囲を満たすことが好ましい。
 [光重合開始剤]
 本実施の形態で用いる光重合開始剤は、長波の紫外線で開裂するものであり、例えば波長365nm以上の光照射によって活性化され、上述した光ラジカル反応性成分を硬化させ得る成分である。また、光重合開始剤は、波長350~400nmの範囲に光の吸収ピークを有する。
 このような長波の紫外線で開裂する光重合開始剤としては、例えば、アシルフォスフィン系の光重合開始剤が好ましく、具体例としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられる。
 光硬化性樹脂組成物中、光重合開始剤の含有量は、上述した光ラジカル反応性成分の合計100質量部に対し、0.1~5質量部が好ましく、0.2~3質量部がより好ましい。このような範囲にすることにより、光照射時に硬化不足となるのをより効果的に防ぐとともに、開裂によるアウトガスの増加をより効果的に防ぐことができる。また、光硬化性樹脂組成物中、光重合開始剤の含有量は、例えば0.5~5質量%とすることが好ましい。光重合開始剤は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上の光重合開始剤を併用する場合、その合計量が上記範囲を満たすことが好ましい。
 [紫外線吸収剤]
 本実施の形態に係る光硬化性樹脂組成物は、波長365nm以上の光(長波の紫外線)を吸収する紫外線吸収剤を含有し、特に、波長365nmの光の透過率が5%以下である紫外線吸収剤を含有することが好ましい。また、紫外線吸収剤は、波長340~400nmの範囲に光の吸収ピークを有する。このような長波の紫外線を吸収する紫外線吸収剤を用いることにより、後述する画像表示装置の製造方法において、前面板として、長波の紫外線のみを透過する部材を使用した場合に、仮硬化層の本硬化時に、長波の紫外線で開裂する光重合開始剤を仮硬化層中に残存させることができ、本硬化後に良好な接着性が得られる。
 長波の紫外線を吸収する紫外線吸収剤としては、ベンゾトリアゾール系の紫外線吸収剤が好ましく、下記一般式で表される紫外線吸収剤がより好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは置換基を表し、Rは、水素原子又は置換基を表す。)
 Rは、アルキル基又はフェニル基であることが好ましい。アルキル基は、炭素数1~6の直鎖状のアルキル基、又は炭素数3~6の分岐状のアルキル基が好ましい。Rが置換基を表す場合、アルキル基であることが好ましい。アルキル基は、炭素数1~6の直鎖状のアルキル基、又は炭素数3~6の分岐状のアルキル基が好ましく、フェニル基で置換された炭素数3~6の分岐状のアルキル基がより好ましい。
 ベンゾトリアゾール系の紫外線吸収剤の好ましい具体例としては、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(TINUVIN 900、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール(TINUVIN 928、BASF社製)、2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール(TINUVIN PS、BASF社製)等が挙げられる。
 光硬化性樹脂組成物中、紫外線吸収剤の含有量は、0.5質量%以上であることが好ましい。紫外線吸収剤の含有量を0.5質量%以上とすることにより、仮硬化層の本硬化時に、長波の紫外線で開裂する光重合開始剤を仮硬化層中により確実に残存させることができ、本硬化後に良好な接着性が得られる。また、紫外線吸収剤の含有量の上限は、特に限定されないが、10質量%以下とすることが好ましい。これにより、光硬化性樹脂組成物の仮硬化時に、光重合開始剤の開裂を妨げることを抑制し、より効果的に硬化不足となるのを抑制できる。紫外線吸収剤は、1種単独で用いてもよく、2種以上を併用してもよい。2種以上の紫外線吸収剤を併用する場合、その合計量が上記含有量の範囲を満たすことが好ましい。
 また、光硬化性樹脂組成物中、長波の紫外線で開裂する光重合開始剤と、長波の紫外線を吸収する紫外線吸収剤との質量比(光重合開始剤/紫外線吸収剤)は、0.5~2.0であることが好ましい。このような質量比とすることにより、光硬化性樹脂組成物の仮硬化時に効果不足となるのを効果的に防ぐとともに、仮硬化層の本硬化時に良好な接着性が得られる。
 光硬化性樹脂組成物は、上述した本技術の効果を損なわない範囲で、上述した成分以外の他の成分をさらに含有していてもよい。他の成分としては、例えば、可塑剤、酸化防止剤等が挙げられる。
 [可塑剤]
 可塑剤は、例えば光照射によりそれ自身が光硬化をせず、光硬化後の硬化樹脂層に柔軟性を与えるものである。可塑剤としては、例えば、重量平均分子量が2000以上でありエチレングリコール及びプロピレングリコールに由来する可塑剤や、重量平均分子量が2000以上でありプロピレングリコールのみに由来する可塑剤(ポリプロピレングリコールからなる可塑剤)を用いることができる。
 可塑剤は、例えば、下記一般式で表される化合物を含有することが好ましい。
H-(-OC2H4-)n-(-OC3H6)m-OH
 式中、mは25~138の整数であり、35~100が好ましく、40~80がより好ましく、50~55がさらに好ましい。nは8~50の整数であり、10~30が好ましく、15~20がより好ましい。
 上記一般式で表される可塑剤の重量平均分子量は、例えば3000以上であってもよく、3500以上であってもよく、4000以上であってもよい。また、上記一般式で表される可塑剤の重量平均分子量の上限値は特に限定されず、例えば、10000以下とすることができ、8000以下であってもよく、6000以下であってもよい。上記一般式で表される可塑剤の市販品としては、例えば、旭硝子社製のEXCENOL 510(Mw=4000)を用いることができる。
 また、可塑剤としては、上述したもの以外に、固体の粘着付与剤や、液状オイル成分を用いることもできる。固体の粘着付与剤としては、テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等のテルペン系樹脂、天然ロジン、重合ロジン、ロジンエステル、水素添加ロジン等のロジン樹脂、テルペン系水素添加樹脂が挙げられる。また、上述のアクリル系モノマーを予め低分子ポリマー化した非反応性のオリゴマーも使用することができ、具体的には、ブチルアクリレートと2-ヘキシルアクリレートおよびアクリル酸の共重合体や、シクロヘキシルアクリレートとメタクリル酸の共重合体等が挙げられる。液状オイル成分としては、ポリブタジエン系オイル、ポリイソプレン系オイル等が挙げられる。
 光硬化性樹脂組成物が可塑剤を含有する場合、光硬化性樹脂組成物中の可塑剤の含有量の合計は、40~85質量%であることが好ましく、40~60質量%であることがより好ましい。可塑剤は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上の可塑剤を併用する場合、その合計量が上記範囲を満たすことが好ましい。
 [酸化防止剤]
 酸化防止剤は、例えば光硬化性樹脂組成物の変色防止の目的で用いられる。酸化防止剤は、特に限定されず、公知の酸化防止剤を用いることができる。例えば、ヒンダードフェノール構造を有する化合物、ヒンダードアミン構造を有する化合物、チオエーテル構造を有する化合物等が挙げられる。
 酸化防止剤の一例であるヒンダードフェノール構造を有する化合物の市販品としては、
「IRGANOX1010」、「IRGANOX1035」、「IRGANOX1076」、「IRGANOX1098」、「IRGANOX1135」、「IRGANOX1330」、「IRGANOX1726」、「IRGANOX1425WL」、「IRGANOX1520L」、「IRGANOX245」、「IRGANOX259」、「IRGANOX3114」、「IRGANOX565」、「IRGAMOD295」(以上、BASF社製)等が挙げられる。
 光硬化性樹脂組成物が酸化防止剤を含有する場合、光硬化性樹脂組成物中の酸化防止剤の含有量の合計は、0.1~10質量%とすることができ、0.5~3質量%とすることもできる。酸化防止剤は、1種単独で用いてもよく、2種以上を併用してもよい。2種以上の酸化防止剤を併用する場合、その合計量が上記含有量の範囲を満たすことが好ましい。
 本実施の形態に係る光硬化性樹脂組成物は、上述のように、長波の紫外線で開裂する光重合開始剤と、長波の紫外線を吸収する紫外線吸収剤とを含有する光硬化性樹脂組成物であって、厚さ150μmの硬化物(硬化樹脂層)の波長365nmにおける光透過率が5%以下であることが好ましく、2%以下であることがより好ましい。このような物性を満たすことにより、仮硬化層の本硬化時に、長波の紫外線で開裂する光重合開始剤を仮硬化層中により確実に残存させることができ、本硬化後に良好な接着性が得られる。また、本実施の形態に係る光硬化性樹脂組成物は、厚さ150μmの硬化物(硬化樹脂層)の波長405nmにおける光透過率が15%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。また、本実施の形態に係る光硬化性樹脂組成物は、厚さ150μmの硬化物(硬化樹脂層)の波長550nmにおける光透過率が90%以上であることが好ましく、99%以上であることがより好ましい。ここで、光透過率は、紫外可視分光光度計(装置名:UV-2450、島津製作所社製)を用いて25℃で測定した値をいう。
 光硬化性樹脂組成物は、常温で液状であることが好ましい。例えば、光硬化性樹脂組成物は、B型粘度計で測定した25℃における粘度が0.01~100Pa・sを示すことが好ましい。
 光硬化性樹脂組成物は、上述した各成分を、公知の混合手法に従って均一に混合することにより調製することができる。
 <画像表示装置>
 本実施の形態に係る画像表示装置1は、例えば図1に示すように、画像表示部材2と、硬化樹脂層3と、前面板4とをこの順に備える。
 画像表示部材2は、例えば、画像表示セルの視認側表面に偏光板が形成された画像表示パネルである。画像表示セルとしては、例えば液晶セルや有機ELセルが挙げられる。液晶セルとしては、例えば反射型液晶セル、透過型液晶セル等が挙げられる。画像表示部材2は、例えば液晶表示パネル、有機EL表示パネル、タッチパネル等である。ここで、タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力装置を組み合わせた画像表示・入力パネルを意味する。
 前面板4は、画像表示部材2に形成された画像が視認可能となるような光透過性を有するものであればよく、例えば、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の板状材料やシート状材料が挙げられる。これらの材料には、片面又は両面にハードコート処理、反射防止処理などが施されていてもよい。前面板4の厚さや弾性率などの物性は、使用目的に応じて適宜決定することができる。また、前面板4は、上記のような比較的構成の簡単な部材だけでなく、タッチパネルモジュールのような各種シート又はフィルム材が積層されたものも含まれる。
 上述のように、前面板として、長波の紫外線(例えば、波長380nm以上の光)のみを透過する部材を使用すると、仮硬化層の本硬化時には、長波の紫外線で開裂する光重合開始剤が仮硬化層中に残存する必要がある。しかし、長波の紫外線で開裂する光重合開始剤は、開裂が非常に速く、光硬化性樹脂組成物の仮硬化後には残存し難く、本硬化後に良好な接着性を得るのが難しい。そこで、本技術では、上述のように、長波の紫外線で開裂する光重合開始剤と、長波の紫外線を吸収する紫外線吸収剤とを含有する光硬化性樹脂組成物を用いることにより、仮硬化層の本硬化時に、長波の紫外線で開裂する光重合開始剤を仮硬化層中に残存させることができ、本硬化後に良好な接着性を得ることができる。
 前面板4の周縁部には、画像のコントラスト向上のために遮光層5が設けられていてもよい。遮光層5は、例えば、黒色等に着色された塗料をスクリーン印刷法などで塗布し、乾燥・硬化させて形成することができる。遮光層5の厚さは、通常5~100μmである。
 硬化樹脂層3は、上述した光硬化性樹脂組成物の硬化物であり、例えば、大気中で光照射により光硬化性樹脂組成物を光ラジカル重合させて得られた硬化物全体の平均的な反応率(硬化率)が90%以上(好ましくは97%以上)となるように硬化させたものをいう。
 ここで、反応率とは、光照射前の硬化性樹脂層中の(メタ)アクリロイル基の存在量に対する光照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)と定義される数値であり、この数値が大きい程、硬化が進行していることを示す。具体的には、反応率は、光照射前の硬化性樹脂層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(X)と、光照射後の硬化性樹脂層(硬化樹脂層3)のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(Y)とを、下記式に代入することにより算出することができる。
反応率(%)=[(X-Y)/X]×100
 硬化樹脂層3は、可視光領域の透過率が90%以上であることが好ましい。このような範囲を満たすことにより、画像表示部材2に形成された画像の視認性をより良好にすることができる。硬化樹脂層3の屈折率は、画像表示部材2や前面板4の屈折率とほぼ同等であることが好ましい。硬化樹脂層3の屈折率は、例えば1.45以上1.55以下であることが好ましい。これにより、画像表示部材2からの映像光の輝度やコントラストを高め、視認性を向上させることができる。硬化樹脂層3の厚さは、例えば25~200μm程度とすることができる。
 <画像表示装置の製造方法>
 本形態に係る画像表示装置の製造方法は、前面板の表面に、上述した光硬化性樹脂組成物からなる硬化性樹脂層を形成する工程(A)と、硬化性樹脂層に光を照射して仮硬化層を形成する工程(B)と、仮硬化層を介して画像表示部材と前面板とを貼り合わせる工程(C)と、仮硬化層に対して前面板を介して光照射し、硬化樹脂層を形成する工程(D)とを有する。
 [工程(A)]
 工程(A)では、例えば図2に示すように、画像表示部材2の表面に、光硬化性樹脂組成物6を塗布し、硬化性樹脂層7を形成する。具体的には、画像表示部材2の表面全面に、光硬化性樹脂組成物6を平坦になるように塗布することが好ましい。硬化性樹脂層7の厚さは、例えば、25~350μmとすることができる。光硬化性樹脂組成物6の塗布は、必要な厚さが得られるように行えばよく、1回で行ってもよいし、複数回で行ってもよい。
 [工程(B)]
 工程(B)では、図3に示すように、工程(A1)で形成された硬化性樹脂層7に光(例えば紫外線)を照射して、図4に示すように仮硬化層8を形成する。硬化性樹脂層7の仮硬化を行うのは、光硬化性樹脂組成物を液状から著しく流動しない状態にし、天地逆転させても流れ落ちないようにして取り扱い性を向上させるためである。
 硬化性樹脂層7の仮硬化は、仮硬化層8の反応率が、10~99%となるように行うことが好ましく、40~95%となるように行ってもよい。光照射の条件は、仮硬化層8の反応率が、例えば10~99%となるように硬化させることができる限り、特に制限されない。例えば、紫外線照射装置(UV-LED)を用いて、発光波長が365±5nmである紫外線を、照度100~300mW/cm、積算光量500~1500mJ/cmの条件で照射することが好ましい。得られた仮硬化層8中の光重合開始剤の残存率(%)は、40%以上であることが好ましく、44%以上がより好ましく、50%以上がさらに好ましい。仮硬化層8中の光重合開始剤の残存率(%)の測定方法は、後述の実施例における測定方法と同様である。
 [工程(C)]
 [工程(C)では、図5に示すように、仮硬化層8の表面に画像表示部材2を配置し、画像表示部材2と前面板4を仮硬化層8を介して貼合せる。貼合せは、例えば、公知の圧着装置を用いて、10~80℃で加圧することにより行うことができる。
 [工程(D)]
 工程(D)では、図6に示すように、前面板4を介して、仮硬化層8に対し光(例えば紫外線)を照射して本硬化させる。これにより、硬化樹脂層6を介して画像表示部材2と前面板4とが積層した画像表示装置1(図1参照)が得られる。
 仮硬化層8の本硬化は、硬化樹脂層6の反応率が90%以上となるように行うことが好ましく、95%以上となるように行うことがより好ましい。本硬化の条件は、硬化樹脂層6の反応率が90%以上となるように硬化させることができる限り、特に制限されない。例えば、紫外線照射装置(メタルハライドランプ)を用いて、積算光量1000~6000mJ/cmの条件で行うことが好ましい。
 以上のように、本実施の形態に係る画像表示装置の製造方法では、長波の紫外線で開裂する光重合開始剤と、長波の紫外線を吸収する紫外線吸収剤とを含有する光硬化性樹脂組成物6を用いることにより、仮硬化層8の本硬化時に、長波の紫外線で開裂する光重合開始剤を仮硬化層8中に残存させることができ、本硬化後に良好な接着性を得ることができる。また、長波の紫外線で開裂する光重合開始剤と、長波の紫外線を吸収する紫外線吸収剤とを含有する光硬化性樹脂組成物6を用いることにより、仮硬化後の貼合せの際のプロセスマージンを向上させることができる。
 なお、上述した画像表示装置の製造方法では、工程(A)において、画像表示部材2の表面に光硬化性樹脂組成物6を塗布する例を説明したが、前面板4の遮光層5が形成された側の表面に光硬化性樹脂組成物6を塗布してもよい。
 また、上述した画像表示装置の製造方法では、遮光層5を有する前面板4を用いた場合について説明したが、この例に限定されるものではない。例えば、遮光層5を有しない前面板を用いて画像表示装置を作製してもよい。
 また、他の画像表示装置の製造方法として、いわゆるダムフィルプロセスを採用してもよい。ダムフィルプロセスは、例えば、ダム材を用いて画像表示部材の表面にフィル材の塗布領域を形成し、この塗布領域にフィル材を塗布して画像表示部材と光透過性部材とをフィル材を介して貼合せ、フィル材に光を照射して硬化樹脂層を形成する方法である。
 以下、本技術の実施例について説明する。なお、本技術は、これらの実施例に限定されるものではない。
<光ラジカル反応性成分>
UV-3700B:紫外線硬化型ウレタンアクリレート、日本合成化学社製
Oppanol B12SFN:ポリイソブチレン、BASF社製
MEDOL-10:単官能モノマー((2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート)、大阪有機化学工業社製
IBXA:イソボルニルアクリレート、大阪有機化学工業社製
LA:ラウリルアクリレート、大阪有機化学工業社製
<可塑剤>
EXCENOL 510:ポリエーテルポリオール(Mw:4000)、旭硝子社製
<光重合開始剤>
IRGACURE 184:1-ヒドロキシ-シクロヘキシル-フェニルケトン、BASF社製、吸収ピーク:240nm付近、波長365nmの光に対するモル吸光係数:8.864×10ml/(g・cm)(MeOH使用)
IRGACURE TPO:2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、BASF社製、吸収ピーク:380nm付近、波長365nmの光に対するモル吸光係数:4.720×10ml/(g・cm)(MeOH使用)、波長405nmの光に対するモル吸光係数:1.650×10ml/(g・cm)(MeOH使用)
IRGACURE 819:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASF社製、吸収ピーク:370nm付近、波長365nmの光に対するモル吸光係数:2.309×10ml/(g・cm)(MeOH使用)、波長405nmの光に対するモル吸光係数:8.990×10ml/(g・cm)(MeOH使用)
<酸化防止剤>
IRGANOX 1135:3-(4-ヒドロキシ-3,5-ジイソプロピルフェニル)プロピオン酸オクチル、BASF社製
<紫外線吸収剤>
TINUVIN 928:2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール、BASF社製、吸収ピーク:349nm付近(トルエン中、1cmセルを使用)
TINUVIN PS:2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール、BASF社製、吸収ピーク:342nm付近(トルエン中、1cmセルを使用)
 <光硬化性樹脂組成物の調製>
 <実施例1>
 紫外線硬化型ウレタンアクリレート(UV-3700B)20質量部、単官能モノマー(MEDOL-10)30質量部、光重合開始剤(IRGACURE TPO)1質量部、酸化防止剤(IRGANOX 1135)1質量部、可塑剤(EXCENOL 510)50質量部、紫外線吸収剤(TINUVIN 928)1質量部からなる光硬化性樹脂組成物を調製した。
 <比較例1>
 紫外線吸収剤(TINUVIN 928)を配合しないこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <実施例2>
 紫外線吸収剤(TINUVIN 928)の量を0.5質量部に変更したこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <比較例2>
 紫外線吸収剤(TINUVIN 928)の量を0.4質量部に変更したこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <比較例3>
 紫外線吸収剤(TINUVIN 928)の量を0.3質量部に変更したこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <比較例4>
 紫外線吸収剤(TINUVIN 928)の量を0.2質量部に変更したこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <比較例5>
 紫外線吸収剤(TINUVIN 928)の量を0.1質量部に変更したこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <実施例3>
 光重合開始剤(IRGACURE TPO)の量を0.5質量部に変更したこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <実施例4>
 光重合開始剤(IRGACURE TPO)の量を5質量部に変更し、紫外線吸収剤(TINUVIN 928)の量を3質量部に変更したこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <実施例5>
 紫外線吸収剤として、10質量部のTINUVIN PSを用いたこと以外は、実施例4と同様にして光硬化性樹脂組成物を調製した。
 <実施例6>
 光重合開始剤(IRGACURE TPO)を、等量のIRGACURE 819に変更したこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <実施例7>
 光重合開始剤(IRGACURE 819)の量を0.5質量部に変更したこと以外は、実施例6と同様にして光硬化性樹脂組成物を調製した。
 <実施例8>
 紫外線吸収剤(TINUVIN 928)を、等量のTINUVIN PSに変更したこと以外は、実施例1と同様にして光硬化性樹脂組成物を調製した。
 <実施例9>
 紫外線吸収剤(TINUVIN 928)の量を0.5質量部に変更したこと以外は、実施例8と同様にして光硬化性樹脂組成物を調製した。
 <比較例6>
 光重合開始剤(IRGACURE TPO)を等量のIRGACURE 184に変更したこと以外は、比較例1と同様にして光硬化性樹脂組成物を調製した。
 <実施例10>
 Oppanol B12SFNを30質量部、IBXAを40質量部、LAを30質量部、光重合開始剤(IRGACURE TPO)1質量部、紫外線吸収剤(TINUVIN 928)1質量部からなる光硬化性樹脂組成物を調製した。
 [評価用の積層体の作製]
 図7に示すように、厚さ1mmのガラス板9上に、直径6mmの開口部を有する厚さ150μmのスペーサ10を配置した。スペーサの開口部を覆うように光硬化性樹脂組成物6を滴下した。
 図8に示すように、スキージー11を用いて、スペーサ10上の光硬化性樹脂組成物6を除去し、硬化性樹脂層7の厚さが150μmとなるように調整した。その後、スペーサ10をガラス板9から除去した。
 図9に示すように、硬化性樹脂層7に対して、下記表1に示す紫外線照射装置12(UV-LED、型式:H-4MLH200-V1、HOYA社製)を用いて、積算光量が1000mJ/cmとなるように、200mW/cm強度の紫外線(発光波長:365±5nm)を5秒間照射することにより、仮硬化層8を形成した。各実施例及び比較例で得られた仮硬化層8の反応率は、表2に示すように、それぞれ40~99%の範囲であった。
Figure JPOXMLDOC01-appb-T000002
 図10(A)に示すように、ポリカーボネート板13(厚さ2.0mm)の表面に、仮硬化層8付のガラス板9を、仮硬化層8を介して貼り合わせ、仮硬化層8を介してガラス板9とポリカーボネート板13とが接合された積層体を得た。得られた積層体の仮硬化層8に対し、ポリカーボネート板13を介して、紫外線照射装置14(メタルハライドランプ)を用いて、積算光量が5000mJ/cmとなるように紫外線を照射し、仮硬化層8を完全に硬化(本硬化)させた。これにより、直径6mm、厚さ150μmの硬化樹脂層3を介してポリカーボネート13板とガラス板9とが接合された、評価用の積層体が得られた。
 [仮硬化後の開始剤残存率]
 仮硬化層8中の光重合開始剤の残存率(%)の測定方法は、以下の方法で測定した。上述した評価用の積層体の作製において、仮硬化前の光硬化性樹脂組成物6と、仮硬化層8とを同じ量はかりとり、それぞれを室温下にて所定の溶媒に一定時間接触させてそれぞれの内部に含まれる光重合開始剤を抽出して、得られた抽出液を、超高速液体クロマトグラフ(島津製作所社製、製品名:Nexera X2)にかけて光重合開始剤由来のピークの高さをそれぞれ測定し、光硬化性樹脂組成物6から抽出された光重合開始剤由来のピークの高さ(H1)と、仮硬化層8から抽出された光重合開始剤由来のピーク高さ(H2)との比(H2/H1)を算出して、比(H2/H1)×100の計算式より光重合開始剤の残存率(%)を計算した。実用上、光重合開始剤の残存率は、40%以上であることが望ましい。結果を表2に示す。
 [仮硬化後の貼り合せ性]
 上述した評価用の積層体の作製において、仮硬化層8を形成した後の貼合せの際のプロセスマージンについて評価した。具体的には、仮硬化層8を形成した後、ポリカーボネート板13の表面に、仮硬化層8付きのガラス板9を貼り合わせるまでの時間を数秒に設定し、仮硬化層8に気泡が発生しなかった場合をOKと評価し、仮硬化層8に気泡が発生した場合をNGと評価した。結果を表2に示す。
 [本硬化後の接着強度]
 図10(B)、(C)に示すように、上述した評価用の積層体の作製で得られた評価用の積層体について、積層体の下側に位置するガラス板9を固定し、治具15を用いて上側に位置するポリカーボネート板13を垂直方向に5mm/分の速度でリフトアップし、以下の基準で接着状態を評価した。接着強度の測定には、島津製作所製、AGS-Xを用いた。接着強度(N/cm)は、ガラス板9とポリカーボネート板13とが分離するまでに要した応力を25℃で測定し、その応力を硬化樹脂層3の単位面積で除することにより算出した。実用上、接着強度は、10N/cm以上であることが望ましい。結果を表2に示す。
 [光透過率]
 上述した評価用の積層体の作製において、波長365nm、405nm、550nmの光に対する、硬化樹脂層3の透過率(25℃)を紫外可視分光光度計(装置名:UV-2450、島津製作所社製)で測定した。結果を表2に示す。実用上、365nmの光に対する硬化樹脂層3の透過率は、5%以下であることが望ましい。なお、図11は、評価用の積層体に用いたポリカーボネート板13の波長300~500nmの光に対する透過率を示すグラフである。この結果から、ポリカーボネート板13は、長波の紫外線(波長380nm以上の光)のみを透過することが分かる。
 図12は、紫外線吸収剤を含有する光硬化性樹脂組成物からなる硬化樹脂層の光透過率を25℃で測定したグラフである。具体的に、図12(A)~(D)は、実施例1、2、8、9の光硬化性樹脂組成物を用いて作製した、評価用の積層体における硬化樹脂層についての結果である。
Figure JPOXMLDOC01-appb-T000003
 実施例のように、光ラジカル反応性成分と、長波の紫外線で開裂する光重合開始剤と、長波の紫外線を吸収する紫外線吸収剤とを含有する光硬化性樹脂より、本硬化後に良好な接着性が得られることが分かった。また、仮硬化後の貼合せの際のプロセスマージンが広いことが分かった。
 比較例1~5のように、長波の紫外線を吸収する紫外線吸収剤の含有量が少なすぎる、または、長波の紫外線を吸収する紫外線吸収剤を含有しないと、仮硬化層中における光重合開始剤の残存率が低くなってしまい、本硬化後に良好な密着性を得ることができないことが分かった。また、比較例1では、貼合せの際のプロセスマージンが狭いことが分かった。
 比較例6のように、短波の紫外線で開裂する光重合開始剤のみを含有する場合、仮硬化後の光重合開始剤の残存率は良好であるものの、本硬化後に良好な密着性を得ることができないことが分かった。これは、仮硬化層中に長波の紫外線で開裂する光重合開始剤が含まれていないため、ポリカーボネート板を介して仮硬化層に紫外線を照射しても、仮硬化層を架橋させることができなかったためと考えられる。
1 画像表示装置、2 画像表示部材、3 硬化樹脂層、4 前面板、5 遮光層、6 光硬化性樹脂組成物、7 硬化性樹脂層、8 仮硬化層、9 ガラス板、10 スペーサ、11 スキージー、12 紫外線照射装置、13 ポリカーボネート板、14 紫外線照射装置、15 冶具
 

Claims (10)

  1.  硬化樹脂層を介して画像表示部材と前面板とが接合された画像表示装置を製造するために用いられる、上記硬化樹脂層用の光硬化性樹脂組成物であって、
     光ラジカル反応性成分と、
     光重合開始剤と、
     紫外線吸収剤とを含有し、
     上記光重合開始剤は、波長365nmの光に対するモル吸光係数が1.2×10ml/(g・cm)以上である光重合開始剤であり、
     上記紫外線吸収剤は、波長365nm以上の光を吸収する紫外線吸収剤である、光硬化性樹脂組成物。
  2.  硬化樹脂層を介して画像表示部材と前面板とが接合された画像表示装置を製造するために用いられる、上記硬化樹脂層用の光硬化性樹脂組成物であって、
     光ラジカル反応性成分と、
     光重合開始剤と、
     紫外線吸収剤とを含有し、
     上記光重合開始剤は、波長350~400nmの範囲に光の吸収ピークを有する光重合開始剤であり、
     上記紫外線吸収剤は、波長340~400nmの範囲に光の吸収ピークを有する紫外線吸収剤である、光硬化性樹脂組成物。
  3.  上記光重合開始剤と上記紫外線吸収剤との質量比(光重合開始剤/紫外線吸収剤)が0.5~2.0である、請求項1又は2記載の光硬化性樹脂組成物。
  4.  上記光重合開始剤は、アシルフォスフィン系の光重合開始剤を含有する、請求項1~3のいずれか1項に記載の光硬化性樹脂組成物。
  5.  上記紫外線吸収剤の含有量が0.5質量%以上である、請求項1~4のいずれか1項に記載の光硬化性樹脂組成物。
  6.  可塑剤をさらに含有する、請求項1~5のいずれか1項に記載の光硬化性樹脂組成物。
  7.  硬化樹脂層を介して画像表示部材と前面板とが接合された画像表示装置の製造方法であって、
     上記画像表示部材又は上記前面板の表面に、光ラジカル硬化性成分と、光重合開始剤と、紫外線吸収剤とを含有する光硬化性樹脂組成物からなる硬化性樹脂層を形成する工程と、
     上記硬化性樹脂層に光を照射して仮硬化層を形成する工程と、
     上記仮硬化層を介して、上記画像表示部材と上記前面板とを貼り合わせる工程と、
     上記仮硬化層に対して、上記前面板を介して光照射し、上記硬化樹脂層を形成する工程とを有し、
     上記光重合開始剤は、波長365nmの光に対するモル吸光係数が1.2×10ml/(g・cm)以上である光重合開始剤であり、
     上記紫外線吸収剤は、波長365nm以上の光を吸収する紫外線吸収剤である、画像表示装置の製造方法。
  8.  硬化樹脂層を介して画像表示部材と前面板とが接合された画像表示装置の製造方法であって、
     上記画像表示部材又は上記前面板の表面に、光ラジカル硬化性成分と、光重合開始剤と、紫外線吸収剤とを含有する光硬化性樹脂組成物からなる硬化性樹脂層を形成する工程と、
     上記硬化性樹脂層に光を照射して仮硬化層を形成する工程と、
     上記仮硬化層を介して、上記画像表示部材と上記前面板とを貼り合わせる工程と、
     上記仮硬化層に対して、上記前面板を介して光照射し、上記硬化樹脂層を形成する工程とを有し、
     上記光重合開始剤は、波長350~400nmの範囲に光の吸収ピークを有する光重合開始剤であり、
     上記紫外線吸収剤は、波長340~400nmの範囲に光の吸収ピークを有する紫外線吸収剤である、画像表示装置の製造方法。
  9.  上記仮硬化層は、上記光重合開始剤の残存率が40%以上である、請求項7又は8記載の画像表示装置の製造方法。
  10.  上記前面板は、波長365nmの光透過率が0%であり、波長405nmの光透過率が80%以上である、請求項7~9のいずれか1項に記載の画像表示装置の製造方法。
     
PCT/JP2018/042293 2017-11-24 2018-11-15 光硬化性樹脂組成物、及び画像表示装置の製造方法 WO2019102928A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310009062.8A CN115894740A (zh) 2017-11-24 2018-11-15 光固化性树脂组合物及图像显示装置的制造方法
CN201880072351.XA CN111344311B (zh) 2017-11-24 2018-11-15 光固化性树脂组合物及图像显示装置的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017225706 2017-11-24
JP2017-225706 2017-11-24
JP2018214511A JP2019094485A (ja) 2017-11-24 2018-11-15 光硬化性樹脂組成物、及び画像表示装置の製造方法
JP2018-214511 2018-11-15

Publications (1)

Publication Number Publication Date
WO2019102928A1 true WO2019102928A1 (ja) 2019-05-31

Family

ID=66630984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042293 WO2019102928A1 (ja) 2017-11-24 2018-11-15 光硬化性樹脂組成物、及び画像表示装置の製造方法

Country Status (2)

Country Link
JP (1) JP2023164830A (ja)
WO (1) WO2019102928A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001855A1 (ja) * 2008-06-30 2010-01-07 東亞合成株式会社 活性エネルギー線硬化型接着剤組成物
JP2013152339A (ja) * 2012-01-25 2013-08-08 Dexerials Corp 画像表示装置の製造方法
WO2014092199A1 (ja) * 2012-12-14 2014-06-19 デクセリアルズ株式会社 画像表示装置の製造方法、樹脂用ディスペンサー
JP2014119557A (ja) * 2012-12-14 2014-06-30 Dexerials Corp 画像表示装置の製造方法
JP2016169335A (ja) * 2015-03-13 2016-09-23 旭硝子株式会社 硬化性組成物、硬化物、積層体および画像表示装置
JP2017019903A (ja) * 2015-07-08 2017-01-26 日立化成株式会社 画像表示装置用粘着シート、画像表示装置の製造方法及び画像表示装置
JP2017168430A (ja) * 2015-12-25 2017-09-21 日東電工株式会社 有機el表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001855A1 (ja) * 2008-06-30 2010-01-07 東亞合成株式会社 活性エネルギー線硬化型接着剤組成物
JP2013152339A (ja) * 2012-01-25 2013-08-08 Dexerials Corp 画像表示装置の製造方法
WO2014092199A1 (ja) * 2012-12-14 2014-06-19 デクセリアルズ株式会社 画像表示装置の製造方法、樹脂用ディスペンサー
JP2014119557A (ja) * 2012-12-14 2014-06-30 Dexerials Corp 画像表示装置の製造方法
JP2016169335A (ja) * 2015-03-13 2016-09-23 旭硝子株式会社 硬化性組成物、硬化物、積層体および画像表示装置
JP2017019903A (ja) * 2015-07-08 2017-01-26 日立化成株式会社 画像表示装置用粘着シート、画像表示装置の製造方法及び画像表示装置
JP2017168430A (ja) * 2015-12-25 2017-09-21 日東電工株式会社 有機el表示装置

Also Published As

Publication number Publication date
JP2023164830A (ja) 2023-11-14

Similar Documents

Publication Publication Date Title
US11137630B2 (en) Method of producing image display device and resin dispenser
KR102435423B1 (ko) 광경화성 수지 조성물, 및 화상 표시 장치의 제조 방법
JP2019094485A (ja) 光硬化性樹脂組成物、及び画像表示装置の製造方法
WO2014091768A1 (ja) 画像表示装置の製造方法
US11124676B2 (en) Method for manufacturing optical member
JP6689051B2 (ja) 光硬化性樹脂組成物、及び画像表示装置の製造方法
WO2018146953A1 (ja) 画像表示装置の製造方法
KR102566223B1 (ko) 화상 표시 장치의 제조 방법, 광경화성 수지 조성물 및 광투과성 경화 수지층
WO2017212948A1 (ja) 積層体の製造方法、及び光硬化性樹脂組成物
JP6538252B1 (ja) 画像表示装置の製造方法
WO2019102928A1 (ja) 光硬化性樹脂組成物、及び画像表示装置の製造方法
WO2018159110A1 (ja) 積層体の製造方法、及び光硬化性樹脂組成物
US11208575B2 (en) Assembly processes using UV curable pressure sensitive adhesives (PSA) or stageable PSA systems
WO2017038845A1 (ja) 光硬化性樹脂組成物、及び画像表示装置の製造方法
JP7160745B2 (ja) 画像表示装置の製造方法
JP2020128546A (ja) 光学部材の製造方法
WO2019116479A1 (ja) 光硬化性樹脂組成物
TWI831835B (zh) 圖像顯示裝置之製造方法
JP5880830B2 (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881470

Country of ref document: EP

Kind code of ref document: A1