WO2019102920A1 - 難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品 - Google Patents

難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品 Download PDF

Info

Publication number
WO2019102920A1
WO2019102920A1 PCT/JP2018/042210 JP2018042210W WO2019102920A1 WO 2019102920 A1 WO2019102920 A1 WO 2019102920A1 JP 2018042210 W JP2018042210 W JP 2018042210W WO 2019102920 A1 WO2019102920 A1 WO 2019102920A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
flame retardant
resin composition
retardant resin
base component
Prior art date
Application number
PCT/JP2018/042210
Other languages
English (en)
French (fr)
Inventor
裕介 山木
誠之 岩田
中村 詳一郎
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2019555278A priority Critical patent/JPWO2019102920A1/ja
Publication of WO2019102920A1 publication Critical patent/WO2019102920A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • C08L91/08Mineral waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the present invention relates to a flame retardant resin composition, an insulated wire using the same, a cable, an optical fiber cable and a molded article.
  • eco-materials are widely used as cable coatings, cable jackets, tubes, tapes, packaging materials, and the like.
  • a flame retardant resin composition in which calcium carbonate particles, a silicone compound and a fatty acid-containing compound are blended in a base component made of a polyolefin resin (see Patent Document 1 below).
  • Patent No. 5167401 gazette
  • the flame retardant resin composition described in Patent Document 1 has excellent flame retardancy and mechanical properties, it has room for improvement in terms of flexibility and oil resistance.
  • the flame-retardant resin composition which can improve a softness
  • the present invention has been made in view of the above circumstances, and a flame retardant resin composition capable of improving flexibility and oil resistance while having good flame retardancy and mechanical properties, It is an object of the present invention to provide an insulated wire, a cable, an optical fiber cable and a molded article which have been used.
  • the present inventors repeated studies to solve the above problems.
  • incorporation of a thermoplastic elastomer in the base component improves the flexibility but reduces the oil resistance. Therefore, as a result of intensive studies, the present inventors have found that not only the thermoplastic elastomer but also the process oil can be blended in the base component to improve not only the flexibility but also the oil resistance.
  • the present inventors discovered that the said subject could be solved by the following invention.
  • the present invention comprises a base component, an inorganic flame retardant, a silicone compound, and a fatty acid-containing compound
  • the base component is composed of polypropylene, polyethylene, a thermoplastic elastomer, and a process oil
  • the content of the polypropylene in the base component is 10 to 65% by mass
  • the content of the polyethylene in the base component is 10 to 65% by mass
  • the content of the thermoplastic elastomer in the base component is
  • the content of the process oil in the base component is 5 to 30% by mass
  • the proportion of the inorganic flame retardant is 1 to 100 parts by mass with respect to 100 parts by mass of the base component.
  • silicone compound is blended in a ratio of 0.5 to 10 parts by mass with respect to 100 parts by mass of the base component, Compound is blended in an amount of 2-10 parts by mass relative to the base component 100 parts by weight, a flame-retardant resin composition.
  • thermoplastic resin composition of the present invention flexibility and oil resistance can be improved while having good flame retardancy and mechanical properties.
  • the present inventors speculate as to the reason why the above effect can be obtained.
  • the flame retardant resin composition contains an inorganic flame retardant, a silicone compound and a fatty acid-containing compound, mainly an inorganic flame retardant, on the surface of the base component when the flame retardant resin composition is burned, A barrier layer composed of the silicone compound, the fatty acid-containing compound and the decomposition product thereof is formed, and the combustion of the base component is suppressed. Therefore, it is considered that good flame retardancy is secured. In addition, it is considered that good mechanical properties can be obtained when the base component contains not only polyethylene but also polypropylene. Furthermore, it is considered that the flexibility of the flame retardant resin composition can be improved by including the thermoplastic elastomer and the process oil in the base component.
  • thermoplastic elastomer and the process oil are contained in the base component, the thermoplastic elastomer swells with the process oil, thereby suppressing the permeation of the oil into the flame retardant resin composition, and the flame retardant It is believed that the oil resistance of the base resin composition can be improved.
  • thermoplastic elastomer is preferably a styrene-based elastomer.
  • the elongation of the flame retardant resin composition can be further improved as compared to the case where the thermoplastic elastomer is a thermoplastic elastomer other than a styrene-based elastomer.
  • the process oil is a paraffin-based process oil.
  • the flame retardant resin composition comes in contact with the oil, as compared to the case where the process oil is not a paraffinic process oil (for example, an aromatic process oil or a naphthene process oil) This makes it difficult to replace the oil with the process oil, and the oil resistance of the flame retardant resin composition can be further improved.
  • a paraffinic process oil for example, an aromatic process oil or a naphthene process oil
  • the polypropylene is preferably random polypropylene.
  • the flexibility of the flame retardant resin composition can be further improved as compared to the case where the polypropylene is not random polypropylene.
  • the density of the said polyethylene is less than 940 kg / m ⁇ 3 >.
  • the flexibility of the flame retardant resin composition can be further improved as compared to the case where the density of polyethylene is 940 kg / m 3 or more.
  • the density of the polyethylene is preferably 900 kg / m 3 or more.
  • the flame retardant resin composition has more excellent mechanical properties as compared to the case where the density of polyethylene is less than 900 kg / m 3 .
  • the inorganic flame retardant is preferably blended in a ratio of 1 to 70 parts by mass with respect to 100 parts by mass of the base component.
  • the flexibility of the flame retardant resin composition is further improved, and the elongation is further improved.
  • the inorganic flame retardant is preferably blended in a ratio of 1 to 30 parts by mass with respect to 100 parts by mass of the base component.
  • the flexibility of the flame retardant resin composition is significantly improved, and the elongation is further improved.
  • the fatty acid-containing compound is preferably blended in a proportion of 2 to 8 parts by mass with respect to 100 parts by mass of the base component.
  • the elongation of the flame retardant resin composition is significantly improved as compared to the case where the proportion of the fatty acid-containing compound relative to 100 parts by mass of the base component exceeds 8 parts by mass.
  • this invention is an insulated wire provided with a conductor and the insulating layer which coats the said conductor, and the said insulating layer is comprised with the flame-retardant resin composition mentioned above.
  • the conductor may comprise a metal conductor.
  • insulated wire of the present invention flexibility and oil resistance can be improved while having good flame retardancy and mechanical properties.
  • the present invention also includes a conductor, an insulated wire having an insulating layer covering the conductor, and a coating layer covering the insulated wire, wherein at least one of the insulating layer and the coating layer is the flame retardant. It is a cable comprised with the resin composition.
  • the conductor may comprise a metal conductor. When the conductor is composed of a metal conductor, the cable is a metal cable.
  • the present invention comprises an optical fiber and a covering portion for covering the optical fiber, the covering portion having an insulator for covering the optical fiber, and the insulator having the flame retardant resin composition described above It is an optical fiber cable composed of objects.
  • the insulator may or may not directly coat the optical fiber.
  • optical fiber cable of the present invention flexibility and oil resistance can be improved while having good flame retardancy and mechanical properties.
  • this invention is a molded article containing the said flame-retardant resin composition.
  • a flame retardant resin composition capable of improving flexibility and oil resistance while having good flame retardancy and mechanical properties, an insulated wire using the same, a cable, and an optical fiber cable And an article is provided.
  • FIG. 1 is a partial side view showing an embodiment of a cable of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 is a cross-sectional view showing an embodiment of the optical fiber cable of the present invention.
  • FIG. 1 is a partial side view showing an embodiment of a cable according to the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • the cable 10 includes an insulated wire 4 and a tubular covering layer 3 that covers the insulated wire 4.
  • the insulated wire 4 has the conductor 1 and the tube-shaped insulating layer 2 which coats the conductor 1.
  • the tubular insulating layer 2 and the covering layer 3 are composed of a flame retardant resin composition
  • the flame retardant resin composition comprises a base component, an inorganic flame retardant, a silicone compound, and a fatty acid.
  • the base component is composed of polypropylene, polyethylene, a thermoplastic elastomer, and a process oil, which contains the contained compound.
  • the content of polypropylene in the base component is 10 to 65% by mass
  • the content of polyethylene in the base component is 10 to 65% by mass
  • the content of thermoplastic elastomer in the base component is 5 to 30.
  • the content of the process oil in the base component is 5 to 30% by mass
  • the inorganic flame retardant is compounded in a ratio of 1 to 100 parts by mass with respect to 100 parts by mass of the base component
  • the silicone compound is The fatty acid-containing compound is compounded at a ratio of 2 to 10 parts by mass with respect to 100 parts by mass of the base component.
  • the insulating layer 2 and the covering layer 3 composed of the above-mentioned flame retardant resin composition can improve the flexibility and oil resistance while having good flame retardancy and mechanical properties.
  • the cable 10 can have improved flexibility and oil resistance while having good flame retardancy and mechanical properties.
  • the conductor 1 is prepared.
  • the conductor 1 may be configured by only one strand or may be configured by bundling a plurality of strands.
  • the conductor 1 is not specifically limited about the diameter of a conductor, the material of a conductor, etc., According to a use, it can define suitably.
  • a material of the conductor 1 for example, metal conductors such as mainly copper, aluminum or alloys containing them are preferable, but conductive substances such as carbon materials can also be appropriately used.
  • the above flame retardant resin composition contains the base component, the inorganic flame retardant, the silicone compound, and the fatty acid-containing compound.
  • the base component is composed of polypropylene, polyethylene, a thermoplastic elastomer, and a process oil. That is, the total content of polypropylene, polyethylene, thermoplastic elastomer and process oil in the base component is 100% by mass.
  • polypropylene refers to a resin containing a structural unit derived from propylene, and includes not only unacid-modified polypropylene but also acid-modified polypropylene. Therefore, such unacidic modified polypropylene includes homopolypropylene obtained by homopolymerization of propylene, polypropylene copolymer which is a copolymer of an olefin other than propylene and propylene, and a mixture of two or more of these. Examples of olefins other than propylene include ethylene, 1-butene, 2-butene, 1-hexene and 2-hexene.
  • ⁇ -olefins such as ethylene, 1-butene and 1-hexene are preferably used from the viewpoint of excellent oil resistance, more preferably ethylene.
  • acid-modified polypropylene include maleic acid-modified polypropylene and maleic anhydride-modified polypropylene.
  • the polypropylene copolymer may be a block polypropylene copolymer or a random polypropylene copolymer, but is preferably a random polypropylene copolymer.
  • the flexibility of the flame retardant resin composition can be further improved as compared to the case where the polypropylene is not a random polypropylene copolymer.
  • the content of polypropylene in the base component is 10 to 65% by mass.
  • better mechanical properties can be obtained in the flame retardant resin composition as compared to the case where the content of polypropylene in the base component is less than 10% by mass.
  • flexibility of a flame retardant resin composition can be improved more compared with the case where the content rate of the polypropylene in a base component exceeds 65 mass%.
  • the content of polypropylene in the base component is preferably 20% by mass or more.
  • the flame retardant resin composition has more excellent mechanical properties than when the content of polypropylene in the base component is less than 20% by mass.
  • the content of polypropylene in the base component is preferably 55% by mass or less. In this case, the flexibility of the flame retardant resin composition can be further improved as compared to the case where the content of polypropylene in the base component exceeds 55% by mass.
  • the content of polypropylene in the base component is more preferably 40% by mass or less, and particularly preferably 25% by mass or less.
  • Polyethylene refers to a resin containing a constitutional unit derived from ethylene and no constitutional unit derived from propylene, and includes not only unacidified polyethylene but also acid-modified polyethylene.
  • the polyethylene may be linear polyethylene, branched polyethylene or a mixture thereof.
  • Examples of the acid-modified polyethylene include maleic acid-modified polyethylene and maleic anhydride-modified polyethylene.
  • Density polyethylenes 940 kg / m may be even less than 3 in 940 kg / m 3 or more, but preferably less than 940 kg / m 3, particularly preferably 930 kg / m 3 or less.
  • the flexibility of the flame retardant resin composition can be further improved as compared to the case where the density of polyethylene is 940 kg / m 3 or more.
  • the density of polyethylene is preferably 900 kg / m 3 or more.
  • the flame retardant resin composition has more excellent mechanical properties as compared to the case where the density of polyethylene is less than 900 kg / m 3 .
  • the polyethylene may be composed of only one type of polyethylene, or may be composed of a mixture of multiple types of polyethylene having different densities.
  • the content of polyethylene in the base component is 10 to 65% by mass.
  • the flexibility of the flame retardant resin composition can be further improved in the flame retardant resin composition as compared to the case where the content of polyethylene in the base component is less than 10% by mass.
  • better mechanical properties can be obtained in the flame retardant resin composition as compared to the case where the content of polyethylene in the base component exceeds 65% by mass.
  • the content of polyethylene in the base component is preferably 20% by mass or more.
  • the flame retardant resin composition has more excellent mechanical properties than the case where the content of polyethylene in the base component is less than 20% by mass.
  • the content of polyethylene in the base component is preferably 55% by mass or less. In this case, the flexibility of the flame retardant resin composition can be further improved as compared to the case where the content of polyethylene in the base component exceeds 55% by mass.
  • the content of polyethylene in the base component is more preferably 54% by mass or less, and particularly preferably 52% by mass or less.
  • thermoplastic elastomer is a block copolymer including at least a thermoplastic block and an elastic block, and the thermoplastic block includes, for example, styrene and the like.
  • the elastic block contains ethylene, propylene, butylene and the like.
  • thermoplastic elastomer a styrene-type elastomer, a non-styrene-type elastomer, etc. are mentioned, for example. Among them, styrene-based elastomers are preferable as the thermoplastic elastomer. In this case, the elongation of the flame retardant resin composition can be further increased as compared to the case where the thermoplastic elastomer is a thermoplastic elastomer (non-styrene elastomer) other than the styrene elastomer.
  • styrene-based elastomers examples include styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), styrene-ethylene-butylene-olefin crystal block copolymer (SEBC), styrene-ethylene-butylene-styrene block copolymer Block copolymers of olefin and styrene, such as coalesced (SEBS), hydrogenated products modified by hydrogenation to these, and olefin crystal-ethylene-butylene-olefin crystal copolymer (CEBC copolymer) Etc. These can be used alone or in combination of two or more.
  • SEEPS styrene-ethylene-ethylene-propylene-styrene block copolymer
  • SEBC styrene-ethylene-butylene-olefin crystal block copolymer
  • CEBC copolymer olefin crystal-ethylene-but
  • the content of the thermoplastic elastomer in the base component is 5 to 30% by mass.
  • the breaking strength of the flame retardant resin composition can be further increased as compared to the case where the content of the thermoplastic elastomer in the base component is less than 5% by mass.
  • the oil resistance of a flame retardant resin composition can be improved more.
  • the content of the thermoplastic elastomer in the base component is preferably 10% by mass or more.
  • the flexibility of the flame retardant resin composition can be further improved as compared to the case where the content of the thermoplastic elastomer in the base component is less than 10% by mass.
  • the content of the thermoplastic elastomer in the base component is preferably 25% by mass or less.
  • the oil resistance of the flame retardant resin composition can be further improved as compared to the case where the content of the thermoplastic elastomer in the base component exceeds 25% by mass.
  • the content of the thermoplastic elastomer in the base component is more preferably 20% by mass or less.
  • the process oil is not particularly limited, and examples of the process oil include aromatic process oils; aliphatic process oils such as naphthene process oils and paraffin process oils. Among them, paraffinic process oil is preferable as the process oil. In this case, when the flame retardant resin composition comes in contact with the oil, as compared to the case where the process oil is not a paraffinic process oil (for example, an aromatic process oil or a naphthene process oil) This makes it difficult to replace the oil with the process oil, and the oil resistance of the flame retardant resin composition can be further improved.
  • a paraffinic process oil for example, an aromatic process oil or a naphthene process oil
  • naphthene-based process oil means a process oil in which the mass ratio (% Cn) of naphthenic carbon in all carbons is 35% or more by ring analysis
  • aromatic process oil means ring analysis
  • process oil means that the mass ratio (% Ca) of aromatic carbon in total carbon is 35% or more
  • paraffin type process oil means the mass ratio (%) of paraffin carbon in total carbon by ring analysis.
  • Cp is more than 65%.
  • the content of process oil in the base component is 5 to 30% by mass.
  • the oil resistance of the flame retardant resin composition can be further improved as compared with the case where the content of the process oil in the base component is less than 5% by mass.
  • breaking strength can be made to increase more. .
  • the content of process oil in the base component is preferably 10% by mass or more.
  • the oil resistance and the flexibility of the flame retardant resin composition can be further improved as compared to the case where the content of the process oil in the base component is less than 10% by mass.
  • the content of process oil in the base component is preferably 25% by mass or less.
  • the flame retardancy and mechanical properties of the flame retardant resin composition can be further improved as compared to the case where the content of the process oil in the base component exceeds 25% by mass.
  • the content of the process oil in the base component is more preferably 15% by mass or less.
  • the inorganic flame retardant is composed of calcium carbonate particles or a silicate compound.
  • the calcium carbonate particles may be either ground calcium carbonate or light calcium carbonate.
  • the silicate compounds include talc and clay.
  • the inorganic flame retardant is blended in a ratio of 1 to 100 parts by mass with respect to 100 parts by mass of the base component.
  • the flame retardancy of the flame retardant resin composition can be further improved as compared to the case where the blending ratio of the inorganic flame retardant with respect to 100 parts by mass of the base component is less than 1 part by mass.
  • flexibility and mechanical property of a flame-retardant resin composition can be improved more compared with the case where the mixture ratio of the inorganic type flame retardant with respect to 100 mass parts of base components is larger than 100 mass parts.
  • the blending ratio of the inorganic flame retardant to 100 parts by mass of the base component is preferably 3 parts by mass or more. In this case, more excellent flame retardancy can be obtained in the flame retardant resin composition as compared to the case where the blending ratio of the inorganic flame retardant with respect to 100 parts by mass of the base component is less than 3 parts by mass.
  • the blending ratio of the inorganic flame retardant to 100 parts by mass of the base component is more preferably 8 parts by mass or more, still more preferably 20 parts by mass or more, and still more preferably 40 parts by mass or more. Particularly preferred is 50 parts by mass or more.
  • the mixture ratio of the inorganic type flame retardant with respect to 100 mass parts of base components is 70 mass parts or less.
  • the flame retardant resin composition has more excellent mechanical properties as compared to the case where the blending ratio of the inorganic flame retardant with respect to 100 parts by mass of the base component exceeds 70 parts by mass.
  • the blending ratio of the inorganic flame retardant to 100 parts by mass of the base component is more preferably 60 parts by mass or less, and still more preferably 50 parts by mass or less.
  • the flexibility of the flame retardant resin composition is further improved, and the elongation is further improved.
  • the blending ratio of the inorganic flame retardant to 100 parts by mass of the base component is particularly preferably 30 parts by mass or less. In this case, the flexibility of the flame retardant resin composition is significantly improved, and the elongation is further improved.
  • the silicone compound functions as a flame retardant auxiliary, and examples of the silicone compound include polyorganosiloxane and the like.
  • the polyorganosiloxane has a siloxane bond as a main chain and has an organic group in a side chain, and as the organic group, for example, an alkyl group such as a methyl group, an ethyl group, or a propyl group; a vinyl group; And aryl groups such as Specifically, as polyorganosiloxane, for example, dimethylpolysiloxane, methylethylpolysiloxane, methyloctylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane and methyl (3,3,3-trifluoropropyl) polysiloxane etc.
  • Polyorganosiloxanes are used in the form of silicone oils, silicone powders, silicone gums or silicone resins. Among them, polyorganosiloxane is preferably used in the form of silicone gum. In this case, compared to the case where the silicone compound is a silicone compound other than silicone gum, blooming does not easily occur in the flame retardant resin composition.
  • the silicone compound is blended in a proportion of 0.5 to 10 parts by mass with respect to 100 parts by mass of the base component as described above.
  • the flame retardancy of the flame retardant resin composition can be further improved as compared to the case where the blending ratio of the silicone compound to 100 parts by mass of the base component is less than 0.5 parts by mass.
  • the breaking strength of the flame retardant resin composition can be further increased as compared with the case where the blending ratio of the silicone compound to 100 parts by mass of the base component is larger than 10 parts by mass.
  • the compounding ratio of the silicone compound with respect to 100 mass parts of base components is 1.5 mass parts or more.
  • the flame retardancy of the flame retardant resin composition can be further improved as compared with the case where the blending ratio of the silicone compound is less than 1.5 parts by mass.
  • the blending ratio of the silicone compound is preferably 5 parts by mass or less.
  • the silicone compound may be previously attached to the surface of the inorganic flame retardant. In this case, segregation of the silicone compound is less likely to occur in the flame retardant resin composition, and uniformity of characteristics in the flame retardant resin composition is further improved.
  • the silicone compound As a method of adhering the silicone compound to the surface of the inorganic flame retardant, for example, after adding the silicone compound to the inorganic flame retardant and mixing to obtain a mixture, this mixture is subjected to 10 to 40 minutes at 40 to 75 ° C.
  • the dried and dried mixture may be pulverized by a Henschel mixer, an atomizer or the like.
  • the fatty acid-containing compound functions as a flame retardant auxiliary.
  • the fatty acid-containing compound refers to a fatty acid or a metal salt thereof.
  • a fatty acid having 12 to 28 carbon atoms is used as the fatty acid.
  • Such fatty acids include, for example, lauric acid, myristic acid, palmitic acid, stearic acid, tubercurostearic acid, oleic acid, linoleic acid, arachidonic acid, behenic acid and montanic acid.
  • stearic acid or tuberculostearic acid is preferable, and stearic acid is particularly preferable. In this case, better flame retardancy can be obtained as compared to the case of using a fatty acid other than stearic acid or tuberculostearic acid.
  • the fatty acid-containing compound is preferably a metal salt of fatty acid.
  • more excellent flame retardancy can be obtained in the flame retardant resin composition as compared to the case where the fatty acid-containing compound is a fatty acid.
  • metals constituting metal salts of fatty acids include magnesium, calcium, zinc and lead.
  • magnesium stearate is preferred. In this case, more excellent flame retardancy can be obtained with a smaller amount of addition in the flame retardant resin composition as compared to the case of using a fatty acid metal salt other than magnesium stearate.
  • the fatty acid-containing compound is blended in a proportion of 2 to 10 parts by mass with respect to 100 parts by mass of the base component as described above.
  • the flame retardancy of the flame retardant resin composition can be further improved as compared to the case where the proportion of the fatty acid-containing compound is less than 2 parts by mass with respect to 100 parts by mass of the base component.
  • the breaking strength of a flame retardant resin composition can be made to increase more.
  • the blending ratio of the fatty acid-containing compound to 100 parts by mass of the base component is preferably 3 parts by mass or more.
  • the flame retardancy of the flame retardant resin composition can be further improved as compared to the case where the blending ratio of the fatty acid-containing compound is less than 3 parts by mass with respect to 100 parts by mass of the base component.
  • the blending ratio of the fatty acid-containing compound to 100 parts by mass of the base component is preferably 8 parts by mass or less.
  • the elongation of the flame retardant resin composition is significantly improved as compared to the case where the proportion of the fatty acid-containing compound relative to 100 parts by mass of the base component exceeds 8 parts by mass.
  • the fatty acid-containing compound may be previously attached to the surface of the inorganic flame retardant. In this case, segregation of the fatty acid-containing compound is less likely to occur in the flame retardant resin composition, and the uniformity of the characteristics of the flame retardant resin composition is further improved. Furthermore, the fatty acid-containing compound and the silicone compound may be previously attached to the surface of the inorganic flame retardant. In this case, segregation of the silicone compound and the fatty acid-containing compound becomes more difficult to occur in the flame retardant resin composition, and the uniformity of the characteristics in the flame retardant resin composition is further improved.
  • a silicone compound and a fatty acid-containing compound are added to the surface of an inorganic flame retardant and mixed to obtain a mixture.
  • a method of drying at 40 to 75 ° C. for 10 to 40 minutes and pulverizing the dried mixture with a Henschel mixer, an atomizer or the like can be mentioned.
  • the flame retardant resin composition may further contain a filler such as an antioxidant, an ultraviolet light deterioration inhibitor, a processing aid, a color pigment, and a lubricant as required.
  • a filler such as an antioxidant, an ultraviolet light deterioration inhibitor, a processing aid, a color pigment, and a lubricant as required.
  • the flame retardant resin composition can be obtained by kneading a base component composed of polypropylene, polyethylene, a thermoplastic elastomer and a process oil, an inorganic flame retardant, a silicone compound, a fatty acid-containing compound and the like. Kneading can be performed, for example, with a kneader such as a Banbury mixer, tumbler, pressure kneader, kneading extruder, twin screw extruder, mixing roll or the like.
  • a kneader such as a Banbury mixer, tumbler, pressure kneader, kneading extruder, twin screw extruder, mixing roll or the like.
  • the obtained master batch (MB) is the remaining base component, fatty acid-containing compound and inorganic type You may knead
  • the conductor 1 is coated with the above-mentioned flame retardant resin composition.
  • the above-mentioned flame retardant resin composition is melt-kneaded using an extruder to form a tube-like extrudate. Then, the tubular extrudate is continuously coated on the conductor 1. Thus, the insulated wire 4 is obtained.
  • ⁇ Covering layer> Finally, one insulated wire 4 obtained as described above is prepared, and this insulated wire 4 is covered with the covering layer 3 as an insulator manufactured using the flame retardant resin composition described above.
  • the covering layer 3 is a so-called sheath, which protects the insulating layer 2 from physical or chemical damage.
  • the cable 10 is obtained as described above.
  • the present invention is a molded article comprising the flame retardant resin composition described above.
  • This molded article can improve flexibility and oil resistance while having good flame retardancy and mechanical properties.
  • the molded article can be obtained by a general molding method such as an injection molding method or an extrusion molding method.
  • the present invention is not limited to the above embodiment.
  • a cable having one insulated wire 4 is used as the cable, but the cable of the present invention is not limited to the cable having one insulated wire 4, and It may be a cable having two or more insulated wires 4 inside.
  • a resin portion made of polypropylene or the like may be provided between the covering layer 3 and the insulated wire 4.
  • the insulating layer 2 and the coating layer 3 of the insulated wire 4 are comprised by said flame-retardant resin composition
  • the insulating layer 2 is comprised with normal insulating resin, and only the coating layer 3
  • the coating layer 3 may be composed of a normal insulating resin, and only the insulating layer 2 may be composed of the above-mentioned flame retardant resin composition.
  • the insulating layer 2 is not necessarily required and can be omitted.
  • the flame-retardant resin composition constituting the insulating layer 2 and the covering layer 3 of the insulated wire 4 in the above embodiment comprises an optical fiber and an optical fiber cable including a covering portion having an insulator directly covering the optical fiber. It can also be applied as a coating or insulator of
  • FIG. 3 is a cross-sectional view showing an indoor type optical fiber cable as one embodiment of the optical fiber cable of the present invention.
  • the indoor optical fiber cable 20 includes two tension members 22 and 23, an optical fiber 24, and a covering portion 25 that covers these.
  • the optical fiber 24 is provided so as to penetrate the covering portion 25.
  • the covering portion 25 is formed of an insulator directly covering the optical fiber 24, and the insulator is a flame retardant resin composition constituting the insulating layer 2 and the covering layer 3 of the insulated wire 4 in the above embodiment.
  • coated part 25 may further have a coating
  • the covering may or may not be constituted by the flame retardant resin composition constituting the insulating layer 2 and the covering layer 3 of the insulated wire 4 in the above embodiment, but the above embodiment is not limited thereto. It is preferable to be comprised with the flame-retardant resin composition which comprises the insulation layer 2 and the coating layer 3 of the insulated wire 4 in a form.
  • the insulator directly covers the optical fiber 24 in the above embodiment, the insulator may not directly cover the optical fiber.
  • Examples 1 to 55 and Comparative Examples 1 to 24 Polypropylene, polyethylene (hereinafter referred to as "polyethylene A”), thermoplastic elastomer, process oil, silicone masterbatch (silicone MB), fatty acid-containing compound and inorganic flame retardant are compounded in the amounts shown in Tables 1 to 12 The mixture was kneaded with a Banbury mixer at 160 ° C. for 15 minutes to obtain a flame retardant resin composition.
  • silicone MB is polyethylene (hereinafter referred to as "polyethylene B”) or a mixture of polypropylene and silicone gum.
  • the unit of the blending amount of each blending component is part by mass.
  • the total content of polypropylene, polyethylene A, thermoplastic elastomer and process oil is not 100 parts by mass, but the base components are polypropylene, polyethylene A, thermoplastic elastomer and process oil, It is composed of a mixture with polyethylene B or polypropylene in silicone MB, and the total blending amount of polypropylene, polyethylene A, thermoplastic elastomer and process oil and the blending amount of polyethylene B in silicone MB is the total Is 100 parts by mass.
  • polypropylene polyethylene A, a thermoplastic elastomer, process oil, silicone MB, a fatty acid containing compound, and an inorganic type flame retardant
  • block PP Random polypropylene copolymer (random PP) manufactured by Prime Polymer Co., Ltd .
  • Maleic anhydride modified polypropylene maleic anhydride modified PP manufactured by Japan Polypropylene Corporation: Mitsui Chemicals, Inc.
  • Linear low density polyethylene (LLDPE1): Sumitomo Chemical Co., Ltd., density 928 kg / m 3
  • Linear low density polyethylene (LLDPE2): Sumitomo Chemical Co., Ltd., density 912 kg / m 3
  • Maleic anhydride modified polyethylene (maleic anhydride modified PE): Mitsui Chemicals, Inc., density 885 kg / m 3
  • Thermoplastic elastomer SEEPS styrene-ethylene-ethylene-propylene-styrene block copolymer: SEBC made by Kuraray (styrene-ethylene-butylene-olefin crystal block copolymer): JSR-made CEBC (olefin crystal- Ethylene-butylene-olefin crystal block copolymer): Maleic anhydride modified styrenic elastomer (maleic anhydride modified styrenic elastomer) manufactured by JSR
  • Silicate compound Aminosilane-treated calcined clay: average particle diameter 0.9 ⁇ m
  • Barges 2211 manufactured by Burgess vinylsilane-treated clay: average particle diameter 0.9 ⁇ m
  • Barges KE untreated Bare clay manufactured by Burgess: average particle diameter 0.9 ⁇ m
  • ice cap K manufactured by Burgess
  • the flame retardancy and the oil resistance were evaluated for the insulated wire by preparing the insulated wire as follows using the flame retardant resin compositions of Examples 1 to 55 and Comparative Examples 1 to 24.
  • the cable, the optical fiber cable and the molded article of the present invention It is particularly suitable as automotive cables, fiber optic cables and moldings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Conductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Insulating Materials (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

難燃性樹脂組成物は、ベース成分と、無機系難燃剤と、シリコーン化合物と、脂肪酸含有化合物とを含む。ベース成分は、ポリプロピレンと、ポリエチレンと、熱可塑性エラストマと、プロセスオイルとで構成される。ベース成分中のポリプロピレンの含有率は10~65質量%であり、ベース成分中のポリエチレンの含有率は10~65質量%であり、ベース成分中の熱可塑性エラストマの含有率は5~30質量%であり、ベース成分中のプロセスオイルの含有率は5~30質量%である。ベース成分100質量部に対して、無機系難燃剤は1~100質量部の割合で配合され、シリコーン化合物は0.5~10質量部の割合で配合され、脂肪酸含有化合物は2~10質量部の割合で配合される。

Description

難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品
 本発明は、難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品に関する。
 ケーブルの被覆、ケーブルの外被、チューブ、テープ、包装材、建材等にはいわゆるエコマテリアルが広く使用されるようになっている。
 このようなエコマテリアルとして、例えばポリオレフィン系樹脂からなるベース成分に、炭酸カルシウム粒子、シリコーン化合物及び脂肪酸含有化合物を配合した難燃性樹脂組成物が知られている(下記特許文献1参照)。
特許第5167401号公報
 ところで、近年、難燃性樹脂組成物には、ケーブルをはじめとする種々の用途に適用できるようにするため、難燃性及び機械的特性のみならず、柔軟性及び耐油性にも優れることが要求されるようになってきている。特に、自動車用ケーブルにおいてこの要求が強くなってきている。
 しかし、上記特許文献1に記載の難燃性樹脂組成物は優れた難燃性及び機械的特性を有しているものの、柔軟性及び耐油性の点では改善の余地を有していた。
 このため、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる難燃性樹脂組成物が求められていた。
 本発明は、上記事情に鑑みてなされたものであり、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品を提供することを目的とする。
 本発明者らは上記課題を解決するため検討を重ねた。まず本発明者らは、難燃性樹脂組成物の柔軟性を改善するため、ベース成分中に熱可塑性エラストマを配合してみた。しかし、ベース成分中に熱可塑性エラストマを配合すると、柔軟性は改善されるものの、耐油性が低下することが分かった。そこで、本発明者らは鋭意研究を重ねた結果、ベース成分中に熱可塑性エラストマのみならず、プロセスオイルをも配合することで、柔軟性のみならず耐油性まで改善し得ることを見出した。そして、本発明者らはさらに鋭意研究を重ねた結果、以下の発明により上記課題を解決し得ることを見出した。
 すなわち本発明は、ベース成分と、無機系難燃剤と、シリコーン化合物と、脂肪酸含有化合物とを含み、前記ベース成分が、ポリプロピレンと、ポリエチレンと、熱可塑性エラストマと、プロセスオイルとで構成され、前記ベース成分中の前記ポリプロピレンの含有率が10~65質量%であり、前記ベース成分中の前記ポリエチレンの含有率が10~65質量%であり、前記ベース成分中の前記熱可塑性エラストマの含有率が5~30質量%であり、前記ベース成分中の前記プロセスオイルの含有率が5~30質量%であり、前記無機系難燃剤が前記ベース成分100質量部に対して1~100質量部の割合で配合され、前記シリコーン化合物が前記ベース成分100質量部に対して0.5~10質量部の割合で配合され、前記脂肪酸含有化合物が前記ベース成分100質量部に対して2~10質量部の割合で配合される、難燃性樹脂組成物である。
 本発明の難燃性樹脂組成物によれば、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる。
 なお、本発明者らは、本発明の難燃性樹脂組成物において、上記の効果が得られる理由については以下のように推察している。
 すなわち、難燃性樹脂組成物中に無機系難燃剤、シリコーン化合物及び脂肪酸含有化合物が含まれていると、難燃性樹脂組成物の燃焼時に、ベース成分の表面に、主として無機系難燃剤、シリコーン化合物、脂肪酸含有化合物及びこれらの分解物からなるバリア層が形成され、ベース成分の燃焼が抑制される。そのため、良好な難燃性が確保されるものと考えられる。また、ベース成分がポリエチレンのみならず、ポリプロピレンをも含むことで、良好な機械的特性が得られると考えられる。さらに、ベース成分中に熱可塑性エラストマ及びプロセスオイルが含まれることで、難燃性樹脂組成物の柔軟性を向上させることができるものと考えられる。また、ベース成分中に熱可塑性エラストマ及びプロセスオイルが含まれていると、熱可塑性エラストマがプロセスオイルによって膨潤することで、オイルが難燃性樹脂組成物中に浸透することを抑制し、難燃性樹脂組成物の耐油性を向上させることができるものと考えられる。
 上記難燃性樹脂組成物においては、前記熱可塑性エラストマがスチレン系エラストマであることが好ましい。
 この場合、熱可塑性エラストマがスチレン系エラストマ以外の熱可塑性エラストマである場合に比べて、難燃性樹脂組成物の伸びをより向上させることができる。
 上記難燃性樹脂組成物においては、前記プロセスオイルがパラフィン系のプロセスオイルであることが好ましい。
 この場合、プロセスオイルがパラフィン系のプロセスオイルでない場合(例えば芳香族系のプロセスオイルである場合やナフテン系プロセスオイルである場合)に比べて、難燃性樹脂組成物がオイルと接触した場合に、このオイルと、プロセスオイルとの交換が起こりにくくなり、難燃性樹脂組成物の耐油性をより向上させることができる。
 上記難燃性樹脂組成物においては、前記ポリプロピレンがランダムポリプロピレンであることが好ましい。
 この場合、ポリプロピレンがランダムポリプロピレンでない場合に比べて、難燃性樹脂組成物の柔軟性をより向上させることができる。
 上記難燃性樹脂組成物においては、前記ポリエチレンの密度が940kg/m未満であることが好ましい。
 この場合、ポリエチレンの密度が940kg/m以上である場合に比べて、難燃性樹脂組成物の柔軟性をより向上させることができる。
 上記難燃性樹脂組成物においては、前記ポリエチレンの密度が900kg/m以上であることが好ましい。
 この場合、ポリエチレンの密度が900kg/m未満である場合と比べて、難燃性樹脂組成物がより優れた機械的特性を有する。
 上記難燃性樹脂組成物においては、前記無機系難燃剤が前記ベース成分100質量部に対して1~70質量部の割合で配合されることが好ましい。
 この場合、難燃性樹脂組成物の柔軟性がより向上するとともに、伸びがより向上する。
 上記難燃性樹脂組成物においては、前記無機系難燃剤が前記ベース成分100質量部に対して1~30質量部の割合で配合されることが好ましい。
 この場合、難燃性樹脂組成物の柔軟性が顕著に向上するとともに、伸びがより向上する。
 上記難燃性樹脂組成物においては、前記脂肪酸含有化合物が前記ベース成分100質量部に対して2~8質量部の割合で配合されることが好ましい。
 この場合、ベース成分100質量部に対する脂肪酸含有化合物の配合割合が8質量部を超える場合に比べて、難燃性樹脂組成物の伸びが顕著に向上する。
 また本発明は、導体と、前記導体を被覆する絶縁層とを備え、前記絶縁層が、上述した難燃性樹脂組成物で構成される絶縁電線である。導体は金属導体を含んでもよい。
 本発明の絶縁電線によれば、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる。
 また、本発明は、導体、及び、前記導体を被覆する絶縁層を有する絶縁電線と、前記絶縁電線を被覆する被覆層とを備え、前記絶縁層及び前記被覆層の少なくとも一方が、上記難燃性樹脂組成物で構成されるケーブルである。導体は金属導体を含んでもよい。導体が金属導体で構成される場合にはケーブルはメタルケーブルとなる。
 本発明のケーブルによれば、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる。
 さらに本発明は、光ファイバと、前記光ファイバを被覆する被覆部とを備え、前記被覆部が、前記光ファイバを被覆する絶縁体を有し、前記絶縁体が、上述した難燃性樹脂組成物で構成される光ファイバケーブルである。絶縁体は光ファイバを直接被覆してもよく、直接被覆していなくてもよい。
 本発明の光ファイバケーブルによれば、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる。
 また本発明は、上記難燃性樹脂組成物を含む成形品である。
 本発明の成形品によれば、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる。
 なお、本発明において、「ポリエチレンの密度」とは、ポリエチレンが、密度の異なる複数種類のポリエチレンの混合物で構成される場合、各ポリエチレンごとに以下の式で算出される値Xを合計した値を言うものとする。
 
X=ポリエチレンの密度(単位:kg/m)×ポリエチレンの混合物中のポリエチレンの含有率(単位:質量%)
 
 本発明によれば、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品が提供される。
本発明のケーブルの一実施形態を示す部分側面図である。 図1のII-II線に沿った断面図である。 本発明の光ファイバケーブルの一実施形態を示す断面図である。
 以下、本発明の実施形態について図1及び図2を用いて詳細に説明する。
 [ケーブル]
 図1は、本発明に係るケーブルの一実施形態を示す部分側面図である。図2は、図1のII-II線に沿った断面図である。図1及び図2に示すように、ケーブル10は、絶縁電線4と、絶縁電線4を被覆するチューブ状の被覆層3とを備えている。そして、絶縁電線4は、導体1と、導体1を被覆するチューブ状の絶縁層2とを有している。
 ここで、チューブ状の絶縁層2及び被覆層3は難燃性樹脂組成物で構成されており、この難燃性樹脂組成物は、ベース成分と、無機系難燃剤と、シリコーン化合物と、脂肪酸含有化合物とを含み、ベース成分が、ポリプロピレンと、ポリエチレンと、熱可塑性エラストマと、プロセスオイルとで構成されている。そして、ベース成分中のポリプロピレンの含有率が10~65質量%であり、ベース成分中のポリエチレンの含有率が10~65質量%であり、ベース成分中の熱可塑性エラストマの含有率が5~30質量%であり、ベース成分中のプロセスオイルの含有率が5~30質量%であり、無機系難燃剤がベース成分100質量部に対して1~100質量部の割合で配合され、シリコーン化合物がベース成分100質量部に対して0.5~10質量部の割合で配合され、脂肪酸含有化合物がベース成分100質量部に対して2~10質量部の割合で配合される。
 上記難燃性樹脂組成物で構成される絶縁層2及び被覆層3は、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる。従って、ケーブル10は、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる。
 [ケーブルの製造方法]
 次に、上述したケーブル10の製造方法について説明する。
 <導体>
 まず導体1を準備する。導体1は、1本の素線のみで構成されてもよく、複数本の素線を束ねて構成されたものであってもよい。また、導体1は、導体径や導体の材質などについて特に限定されるものではなく、用途に応じて適宜定めることができる。導体1の材料としては、例えば、主に銅、アルミニウム又はそれらを含む合金などの金属導体が好ましいが、カーボン材料などの導電性物質も適宜使用できる。
 <難燃性樹脂組成物>
 一方、上記難燃性樹脂組成物を準備する。難燃性樹脂組成物は、上述したように、ベース成分と、無機系難燃剤と、シリコーン化合物と、脂肪酸含有化合物とを含む。
 (1)ベース成分
 上述したように、ベース成分は、ポリプロピレンと、ポリエチレンと、熱可塑性エラストマと、プロセスオイルとで構成されている。すなわち、ベース成分中のポリプロピレン、ポリエチレン、熱可塑性エラストマ、及び、プロセスオイルの合計含有率は100質量%である。
 (ポリプロピレン)
 ポリプロピレンとは、プロピレンに由来する構成単位を含む樹脂を言い、未酸変性ポリプロピレンのみならず酸変性ポリプロピレンをも含む。従って、このような未酸変性ポリプロピレンには、プロピレンの単独重合により得られるホモポリプロピレン、プロピレン以外のオレフィンとプロピレンとの共重合体であるポリプロピレンコポリマー、これらの2種以上の混合物が含まれる。プロピレン以外のオレフィンとしては、例えばエチレン、1-ブテン、2-ブテン、1-ヘキセン、2-ヘキセンなどが挙げられる。中でも、エチレン、1-ブテン、1-ヘキセンなどのα-オレフィンが、耐油性に優れるという観点から好ましく用いられ、より好ましくはエチレンが用いられる。酸変性ポリプロピレンとしては、例えばマレイン酸変性ポリプロピレン、無水マレイン酸変性ポリプロピレンなどが挙げられる。
 ポリプロピレンがポリプロピレンコポリマーである場合、このポリプロピレンコポリマーは、ブロックポリプロピレンコポリマーでもランダムポリプロピレンコポリマーでもよいが、ランダムポリプロピレンコポリマーであることが好ましい。この場合、ポリプロピレンがランダムポリプロピレンコポリマーでない場合に比べて、難燃性樹脂組成物の柔軟性をより向上させることができる。
 ベース成分中のポリプロピレンの含有率は10~65質量%である。この場合、ベース成分中のポリプロピレンの含有率が10質量%未満である場合に比べて、難燃性樹脂組成物において、より良好な機械的特性が得られる。また、ベース成分中のポリプロピレンの含有率が65質量%を超える場合に比べて、難燃性樹脂組成物の柔軟性をより向上させることができる。
 ベース成分中のポリプロピレンの含有率は20質量%以上であることが好ましい。この場合、ベース成分中のポリプロピレンの含有率が20質量%未満である場合に比べて、難燃性樹脂組成物がより優れた機械的特性を有する。
 ベース成分中のポリプロピレンの含有率は55質量%以下であることが好ましい。この場合、ベース成分中のポリプロピレンの含有率が55質量%を超える場合に比べて、難燃性樹脂組成物の柔軟性をより向上させることができる。ベース成分中のポリプロピレンの含有率は40質量%以下であることがより好ましく、25質量%以下であることが特に好ましい。
 (ポリエチレン)
 ポリエチレンは、エチレンに由来する構成単位を含み且つプロピレンに由来する構成単位を含まない樹脂を言い、未酸変性ポリエチレンのみならず、酸変性ポリエチレンをも含む。ポリエチレンは、直鎖状ポリエチレン、分岐状ポリエチレン又はこれらの混合物であってもよい。酸変性ポリエチレンとしては、例えばマレイン酸変性ポリエチレン、無水マレイン酸変性ポリエチレンなどが挙げられる。但し、成形加工が容易となることから、ポリエチレンは、直鎖状ポリエチレンを含むことが好ましい。
 ポリエチレンの密度は、940kg/m未満であっても940kg/m以上であってもよいが、940kg/m未満であることが好ましく、930kg/m以下であることが特に好ましい。この場合、ポリエチレンの密度が940kg/m以上である場合と比べて、難燃性樹脂組成物の柔軟性をより向上させることができる。ポリエチレンの密度は900kg/m以上であることが好ましい。この場合、ポリエチレンの密度が900kg/m未満である場合と比べて、難燃性樹脂組成物がより優れた機械的特性を有する。
 ポリエチレンは、1種類のポリエチレンのみで構成されていてもよく、密度の異なる複数種類のポリエチレンの混合物で構成されていてもよい。
 ベース成分中のポリエチレンの含有率は10~65質量%である。この場合、ベース成分中のポリエチレンの含有率が10質量%未満である場合に比べて、難燃性樹脂組成物において、難燃性樹脂組成物の柔軟性をより向上させることができる。また、ベース成分中のポリエチレンの含有率が65質量%を超える場合に比べて、難燃性樹脂組成物において、より良好な機械的特性が得られる。
 ベース成分中のポリエチレンの含有率は20質量%以上であることが好ましい。この場合、ベース成分中のポリエチレンの含有率が20質量%未満である場合に比べて、難燃性樹脂組成物がより優れた機械的特性を有する。
 ベース成分中のポリエチレンの含有率は55質量%以下であることが好ましい。この場合、ベース成分中のポリエチレンの含有率が55質量%を超える場合に比べて、難燃性樹脂組成物の柔軟性をより向上させることができる。ベース成分中のポリエチレンの含有率は54質量%以下であることがより好ましく、52質量%以下であることが特に好ましい。
 (熱可塑性エラストマ)
 熱可塑性エラストマは、熱可塑性ブロックと弾性ブロックとを少なくとも含むブロック共重合体であり、熱可塑性ブロックは、例えばスチレンなどを含む。また、弾性ブロックは、エチレン、プロピレン、ブチレンなどを含む。
 熱可塑性エラストマとしては、例えばスチレン系エラストマ、非スチレン系エラストマなどが挙げられる。中でも、熱可塑性エラストマとしては、スチレン系エラストマが好ましい。この場合、熱可塑性エラストマがスチレン系エラストマ以外の熱可塑性エラストマ(非スチレン系エラストマ)である場合に比べて、難燃性樹脂組成物の伸びをより増加させることができる。スチレン系エラストマとしては、例えばスチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-エチレン-ブチレン-オレフィン結晶ブロック共重合体(SEBC)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)などの、オレフィンとスチレンとのブロック共重合体、これらに水素添加して改質した水添物、及び、オレフィン結晶-エチレン-ブチレン-オレフィン結晶共重合体(CEBC共重合体)などが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 ベース成分中の熱可塑性エラストマの含有率は5~30質量%である。この場合、ベース成分中の熱可塑性エラストマの含有率が5質量%未満である場合に比べて、難燃性樹脂組成物の破断強度をより増加させることができる。また、ベース成分中のポリプロピレンの含有率が30質量%を超える場合に比べて、難燃性樹脂組成物の耐油性をより向上させることができる。
 ベース成分中の熱可塑性エラストマの含有率は10質量%以上であることが好ましい。この場合、ベース成分中の熱可塑性エラストマの含有率が10質量%未満である場合に比べて、難燃性樹脂組成物の柔軟性をより向上させることができる。
 ベース成分中の熱可塑性エラストマの含有率は25質量%以下であることが好ましい。この場合、ベース成分中の熱可塑性エラストマの含有率が25質量%を超える場合に比べて、難燃性樹脂組成物の耐油性をより向上させることができる。ベース成分中の熱可塑性エラストマの含有率は20質量%以下であることがより好ましい。
 (プロセスオイル)
 プロセスオイルは特に制限されるものではないが、プロセスオイルとしては、例えば芳香族系プロセスオイル;ナフテン系プロセスオイル、パラフィン系プロセスオイルなどの脂肪族系プロセスオイルが挙げられる。中でも、プロセスオイルとしては、パラフィン系プロセスオイルが好ましい。この場合、プロセスオイルがパラフィン系のプロセスオイルでない場合(例えば芳香族系のプロセスオイルである場合やナフテン系プロセスオイルである場合)に比べて、難燃性樹脂組成物がオイルと接触した場合に、このオイルと、プロセスオイルとの交換が起こりにくくなり、難燃性樹脂組成物の耐油性をより向上させることができる。なお、ナフテン系プロセスオイルとは、環分析法により、全炭素中のナフテン炭素の質量比率(%Cn)が35%以上であるプロセスオイルを言い、芳香族系のプロセスオイルとは、環分析法により、全炭素中の芳香族炭素の質量比率(%Ca)が35%以上であるプロセスオイルを言い、パラフィン系プロセスオイルとは、環分析法により、全炭素中のパラフィン炭素の質量比率(%Cp)が65%以上であるプロセスオイルを言う。
 ベース成分中のプロセスオイルの含有率は5~30質量%である。この場合、ベース成分中のプロセスオイルの含有率が5質量%未満である場合に比べて、難燃性樹脂組成物の耐油性をより向上させることができる。また、ベース成分中のプロセスオイルの含有率が30質量%を超える場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができるとともに、破断強度をより増加させることができる。
 ベース成分中のプロセスオイルの含有率は10質量%以上であることが好ましい。この場合、ベース成分中のプロセスオイルの含有率が10質量%未満である場合に比べて、難燃性樹脂組成物の耐油性及び柔軟性をより向上させることができる。
 ベース成分中のプロセスオイルの含有率は25質量%以下であることが好ましい。この場合、ベース成分中のプロセスオイルの含有率が25質量%を超える場合に比べて、難燃性樹脂組成物の難燃性及び機械的特性をより向上させることができる。ベース成分中のプロセスオイルの含有率は15質量%以下であることがより好ましい。
 (2)無機系難燃剤
 無機系難燃剤は、炭酸カルシウム粒子又はケイ酸塩化合物で構成される。
 炭酸カルシウム粒子は、重質炭酸カルシウム又は軽質炭酸カルシウムのいずれでもよい。
 ケイ酸塩化合物としては、タルク及びクレーなどが挙げられる。
 無機系難燃剤は、ベース成分100質量部に対して1~100質量部の割合で配合される。この場合、ベース成分100質量部に対する無機系難燃剤の配合割合が1質量部未満である場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。またベース成分100質量部に対する無機系難燃剤の配合割合が100質量部より大きい場合に比べて、難燃性樹脂組成物の柔軟性及び機械的特性をより向上させることができる。
 ベース成分100質量部に対する無機系難燃剤の配合割合は3質量部以上であることが好ましい。この場合、ベース成分100質量部に対する無機系難燃剤の配合割合が3質量部未満である場合に比べて、難燃性樹脂組成物においてより優れた難燃性が得られる。ベース成分100質量部に対する無機系難燃剤の配合割合は8質量部以上であることがより好ましく、20質量部以上であることがより一層好ましく、40質量部以上であることがさらにより一層好ましく、50質量部以上であることが特に好ましい。
 また、ベース成分100質量部に対する無機系難燃剤の配合割合は70質量部以下であることが好ましい。この場合、ベース成分100質量部に対する無機系難燃剤の配合割合が70質量部を超える場合と比べて、難燃性樹脂組成物がより優れた機械的特性を有する。ベース成分100質量部に対する無機系難燃剤の配合割合は60質量部以下であることがより好ましく、50質量部以下であることがより一層好ましい。この場合、難燃性樹脂組成物の柔軟性がより向上するとともに、伸びがより向上する。ベース成分100質量部に対する無機系難燃剤の配合割合は30質量部以下であることが特に好ましい。この場合、難燃性樹脂組成物の柔軟性が顕著に向上するとともに、伸びがより向上する。
 (3)シリコーン化合物
 シリコーン化合物は、難燃助剤として機能するものであり、シリコーン化合物としては、ポリオルガノシロキサンなどが挙げられる。ここで、ポリオルガノシロキサンは、シロキサン結合を主鎖とし側鎖に有機基を有するものであり、有機基としては、例えばメチル基、エチル基、プロピル基などのアルキル基;ビニル基;及びフェニル基などのアリール基などが挙げられる。具体的にはポリオルガノシロキサンとしては、例えばジメチルポリシロキサン、メチルエチルポリシロキサン、メチルオクチルポリシロキサン、メチルビニルポリシロキサン、メチルフェニルポリシロキサン及びメチル(3,3,3-トリフルオロプロピル)ポリシロキサンなどが挙げられる。ポリオルガノシロキサンは、シリコーンオイル、シリコーンパウダー、シリコーンガム又はシリコーンレジンの形態で用いられる。中でも、ポリオルガノシロキサンは、シリコーンガムの形態で用いられることが好ましい。この場合、シリコーン化合物がシリコーンガム以外のシリコーン化合物である場合に比べて、難燃性樹脂組成物においてブルームが起こりにくくなる。
 シリコーン化合物は、上述したようにベース成分100質量部に対して0.5~10質量部の割合で配合される。この場合、ベース成分100質量部に対するシリコーン化合物の配合割合が0.5質量部未満である場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。またベース成分100質量部に対するシリコーン化合物の配合割合が10質量部より大きい場合に比べて、難燃性樹脂組成物の破断強度をより増加させることができる。
 ベース成分100質量部に対するシリコーン化合物の配合割合は1.5質量部以上であることが好ましい。この場合、シリコーン化合物の配合割合が1.5質量部未満である場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。但し、シリコーン化合物の配合割合は5質量部以下であることが好ましい。
 シリコーン化合物は、無機系難燃剤の表面に予め付着させておいてもよい。この場合、難燃性樹脂組成物中においてシリコーン化合物の偏析が起こりにくくなり、難燃性樹脂組成物における特性の均一性がより向上する。
 無機系難燃剤の表面にシリコーン化合物を付着させる方法としては、例えば無機系難燃剤にシリコーン化合物を添加して混合し、混合物を得た後、この混合物を40~75℃にて10~40分乾燥し、乾燥した混合物をヘンシェルミキサ、アトマイザなどにより粉砕する方法が挙げられる。
 (4)脂肪酸含有化合物
 脂肪酸含有化合物は難燃助剤として機能するものである。脂肪酸含有化合物とは、脂肪酸又はその金属塩を言う。ここで、脂肪酸としては、例えば炭素原子数が12~28である脂肪酸が用いられる。このような脂肪酸としては、例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ツベルクロステアリン酸、オレイン酸、リノール酸、アラキドン酸、ベヘン酸及びモンタン酸が挙げられる。中でも、脂肪酸としては、ステアリン酸又はツベルクロステアリン酸が好ましく、ステアリン酸が特に好ましい。この場合、ステアリン酸又はツベルクロステアリン酸以外の脂肪酸を用いる場合に比べて、より優れた難燃性が得られる。
 脂肪酸含有化合物は脂肪酸の金属塩であることが好ましい。この場合、脂肪酸含有化合物が脂肪酸である場合に比べて、難燃性樹脂組成物において、より優れた難燃性が得られる。脂肪酸の金属塩を構成する金属としては、マグネシウム、カルシウム、亜鉛及び鉛などが挙げられる。脂肪酸の金属塩としては、ステアリン酸マグネシウムが好ましい。この場合、ステアリン酸マグネシウム以外の脂肪酸金属塩を用いる場合に比べて、難燃性樹脂組成物においてより少ない添加量でより優れた難燃性が得られる。
 脂肪酸含有化合物は、上述したようにベース成分100質量部に対して2~10質量部の割合で配合される。この場合、ベース成分100質量部に対する脂肪酸含有化合物の割合が2質量部未満である場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。またベース成分100質量部に対する脂肪酸含有化合物の配合割合が10質量部より大きい場合に比べて、難燃性樹脂組成物の破断強度をより増加させることができる。
 ベース成分100質量部に対する脂肪酸含有化合物の配合割合は3質量部以上であることが好ましい。この場合、ベース成分100質量部に対する脂肪酸含有化合物の配合割合が3質量部未満である場合と比べて、難燃性樹脂組成物の難燃性をより向上させることができる。但し、ベース成分100質量部に対する脂肪酸含有化合物の配合割合は8質量部以下であることが好ましい。この場合、ベース成分100質量部に対する脂肪酸含有化合物の配合割合が8質量部を超える場合に比べて、難燃性樹脂組成物の伸びが顕著に向上する。
 脂肪酸含有化合物は無機系難燃剤の表面に予め付着させておいてもよい。この場合、難燃性樹脂組成物中において脂肪酸含有化合物の偏析がより起こりにくくなり、難燃性樹脂組成物における特性の均一性がより向上する。さらに脂肪酸含有化合物とシリコーン化合物とを、無機系難燃剤の表面に予め付着させておいてもよい。この場合、難燃性樹脂組成物中においてシリコーン化合物及び脂肪酸含有化合物の偏析がより起こりにくくなり、難燃性樹脂組成物における特性の均一性がさらに向上する。
 無機系難燃剤の表面にシリコーン化合物及び脂肪酸含有化合物を付着させる方法としては、例え無機系難燃剤の表面にシリコーン化合物及び脂肪酸含有化合物を添加して混合し、混合物を得た後、この混合物を40~75℃にて10~40分乾燥し、乾燥した混合物をヘンシェルミキサ、アトマイザなどにより粉砕する方法が挙げられる。
 上記難燃性樹脂組成物は、酸化防止剤、紫外線劣化防止剤、加工助剤、着色顔料、滑剤などの充填剤を必要に応じてさらに含んでもよい。
 上記難燃性樹脂組成物は、ポリプロピレン、ポリエチレン、熱可塑性エラストマ及びプロセスオイルで構成されるベース成分、無機系難燃剤、シリコーン化合物及び脂肪酸含有化合物等を混練することにより得ることができる。混練は、例えばバンバリーミキサ、タンブラ、加圧ニーダ、混練押出機、二軸押出機、ミキシングロール等の混練機で行うことができる。このとき、シリコーン化合物の分散性を向上させる観点からは、ポリエチレン又はポリプロピレンの一部とシリコーン化合物とを混練し、得られたマスターバッチ(MB)を、残りのベース成分、脂肪酸含有化合物及び無機系難燃剤等と混練してもよい。
 次に、上記難燃性樹脂組成物で導体1を被覆する。具体的には、上記の難燃性樹脂組成物を、押出機を用いて溶融混練し、チューブ状の押出物を形成する。そして、このチューブ状押出物を導体1上に連続的に被覆する。こうして絶縁電線4が得られる。
 <被覆層>
 最後に、上記のようにして得られた絶縁電線4を1本用意し、この絶縁電線4を、上述した難燃性樹脂組成物を用いて作製した絶縁体としての被覆層3で被覆する。被覆層3は、いわゆるシースであり、絶縁層2を物理的又は化学的な損傷から保護するものである。
 以上のようにしてケーブル10が得られる。
 [成形品]
 本発明は、上述した難燃性樹脂組成物を含む成形品である。
 この成形品は、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができる。
 上記成形品は、射出成形法、押出成形法などの一般的な成形法によって得ることができる。
 本発明は、上記実施形態に限定されるものではない。例えば上記実施形態ではケーブルとして、1本の絶縁電線4を有するケーブルが用いられているが、本発明のケーブルは1本の絶縁電線4を有するケーブルに限定されるものではなく、被覆層3の内側に絶縁電線4を2本以上有するケーブルであってもよい。また被覆層3と絶縁電線4との間には、ポリプロピレン等からなる樹脂部が設けられていてもよい。
 また上記実施形態では、絶縁電線4の絶縁層2及び被覆層3が上記の難燃性樹脂組成物で構成されているが、絶縁層2が通常の絶縁樹脂で構成され、被覆層3のみが、上記の難燃性樹脂組成物で構成されてもよく、被覆層3が通常の絶縁樹脂で構成され、絶縁層2のみが、上記の難燃性樹脂組成物で構成されてもよい。さらに絶縁層2は必ずしも必要なものではなく、省略が可能である。
 さらに、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物は、光ファイバと、光ファイバを直接被覆する絶縁体を有する被覆部とを備える光ファイバケーブルの被覆部又は絶縁体としても適用可能である。例えば図3は、本発明の光ファイバケーブルの一実施形態としてのインドア型光ファイバケーブルを示す断面図である。図3に示すように、インドア型光ファイバケーブル20は、2本のテンションメンバ22,23と、光ファイバ24と、これらを被覆する被覆部25とを備えている。ここで、光ファイバ24は、被覆部25を貫通するように設けられている。ここで、被覆部25は、光ファイバ24を直接被覆する絶縁体で構成され、絶縁体は、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物で構成される。
 なお、光ファイバケーブル20においては、被覆部25が絶縁体で構成されているが、被覆部25は、絶縁体を被覆する被覆体をさらに有していてもよい。ここで、被覆体は、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物で構成されてもよいし、構成されていなくてもよいが、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物で構成されていることが好ましい。
 さらに、上記実施形態では、絶縁体が光ファイバ24を直接被覆しているが、絶縁体は光ファイバを直接被覆していなくてもよい。
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
 (実施例1~55及び比較例1~24)
 ポリプロピレン、ポリエチレン(以下、「ポリエチレンA」と呼ぶ)、熱可塑性エラストマ、プロセスオイル、シリコーンマスターバッチ(シリコーンMB)、脂肪酸含有化合物及び無機系難燃剤を、表1~12に示す配合量で配合し、バンバリーミキサによって160℃にて15分間混練し、難燃性樹脂組成物を得た。ここで、シリコーンMBはポリエチレン(以下、「ポリエチレンB」と呼ぶ)又はポリプロピレンとシリコーンガムとの混合物である。なお、表1~12において、各配合成分の配合量の単位は質量部である。また表1~12において、ポリプロピレン、ポリエチレンA、熱可塑性エラストマ、プロセスオイルの配合量の合計が100質量部となっていないが、ベース成分は、ポリプロピレン、ポリエチレンA、熱可塑性エラストマ及びプロセスオイルと、シリコーンMB中のポリエチレンB又はポリプロピレンとの混合物で構成されており、ポリプロピレン、ポリエチレンA、熱可塑性エラストマ及びプロセスオイルの合計配合量とシリコーンMB中のポリエチレンBの配合量とを合計すれば、その合計は100質量部となる。
 <密度>
 実施例1~55及び比較例1~24の難燃性樹脂組成物において、ベース成分中のポリエチレンの密度は下記式によって求めた。結果を表1~12に示す。
 
ベース成分中のポリエチレンの密度(kg/m)=
ポリエチレンAの密度(kg/m)×ポリエチレンの混合物中のポリエチレンAの含有率(質量%)+
ポリエチレンBの密度(kg/m)×ポリエチレンの混合物中のポリエチレンBの含有率(質量%)
 
 上記ポリプロピレン、ポリエチレンA、熱可塑性エラストマ、プロセスオイル、シリコーンMB、脂肪酸含有化合物及び無機系難燃剤としては具体的には下記のものを用いた。
(1)ポリプロピレン
ブロックポリプロピレンコポリマー(ブロックPP):プライムポリマー社製
ランダムポリプロピレンコポリマー(ランダムPP):日本ポリプロ社製
無水マレイン酸変性ポリプロピレン(無水マレイン酸変性PP):三井化学社製
(2)ポリエチレンA
直鎖状低密度ポリエチレン(LLDPE1):住友化学社製、密度928kg/m
直鎖状低密度ポリエチレン(LLDPE2):住友化学社製、密度912kg/m
無水マレイン酸変性ポリエチレン(無水マレイン酸変性PE):三井化学社製、密度885kg/m
(3)熱可塑性エラストマ
SEEPS(スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体):クラレ社製
SEBC(スチレン-エチレン-ブチレン-オレフィン結晶ブロック共重合体):JSR社製
CEBC(オレフィン結晶-エチレン-ブチレン-オレフィン結晶ブロック共重合体):JSR社製
無水マレイン酸変性スチレン系エラストマ(無水マレイン酸変性スチレン系エラストマ):旭化成社製
(4)プロセスオイル
パラフィン系プロセスオイル、出光興産社製
(5)シリコーンMB
信越化学工業社製(50質量%シリコーンガムと50質量%ポリエチレンB(密度915kg/m)とを含有)
信越化学工業社製(50質量%シリコーンガムと50質量%ポリプロピレンとを含有)
(6)脂肪酸含有化合物
ステアリン酸マグネシウム:ADEKA社製
ステアリン酸亜鉛:日油社製
ステアリン酸:日油社製
(7)無機系難燃剤
炭酸カルシウム粒子:平均粒径1.7μm、日東粉化社製
ケイ酸塩化合物:
アミノシラン処理焼成クレー:平均粒径0.9μm、バーゲス2211、バーゲス社製
ビニルシラン処理焼成クレー:平均粒径0.9μm、バーゲスKE、バーゲス社製
未処理焼成クレー:平均粒径0.9μm、アイスキャップK、バーゲス社製
 [特性評価]
 上記のようにして得られた実施例1~55及び比較例1~24の難燃性樹脂組成物について、難燃性、柔軟性、耐油性及び機械的特性の評価を行った。
 なお、難燃性及び耐油性は、実施例1~55及び比較例1~24の難燃性樹脂組成物を用いて以下のようにして絶縁電線を作製し、この絶縁電線について評価した。
 (絶縁電線の作製)
 実施例1~55及び比較例1~24の難燃性樹脂組成物を、単軸押出機(L/D=20、スクリュー形状:フルフライトスクリュー、マース精機社製)に投入して混練し、その押出機からチューブ状の押出物を押し出し、断面積0.382mmの導体上に、厚さが0.3mmとなるように被覆した。こうして絶縁電線を作製した。
 <難燃性>
 上記のようにして得られた10本の絶縁電線について、JASO D618に準拠して水平燃焼試験を行った。そして、燃焼中にドリップせず、30秒以内に自己消火した絶縁電線を合格とし、10本の絶縁電線のうち自己消火した絶縁電線の割合を合格率(単位:%)として下記式に基づいて算出し、この合格率を難燃性の評価指標とした。
 
合格率(%)=100×自己消火した絶縁電線の本数/試験を行った絶縁電線の総数(10本)
 
結果を表1~12に示す。なお、難燃性の合格基準は以下の通りとした。
 
(合格基準)合格率が100%であること
 
 <柔軟性>
 柔軟性は、実施例1~55及び比較例1~24の難燃性樹脂組成物を用いて90mm×20mm×1.0mm(厚さ)の寸法を有するシートを作製し、このシートについて評価した。具体的には、まず上記のシートを支点間距離70mmの冶具に静置し、荷重をかけた際にシートのたわみが10mmとなった際の荷重を求め、下記式に基づいて曲げ応力を算出した。
 
曲げ応力=(3×シートのたわみが10mmとなった際の荷重×支点間距離)/(2×試験片幅×試験片厚さ×試験片厚さ)
 
柔軟性の合格基準は下記の通りとした。
 
(合格基準)曲げ応力が5.0MPa以下であること
 
 <耐油性>
 上記のようにして得られた絶縁電線について、JASO D618に準拠して耐油試験を行った。具体的には、上記のようにして得られた絶縁電線を、50℃のエンジンオイルからなる油中に20時間以上浸漬し、浸漬後の膨潤率を以下の式に基づいて算出した。結果を表1~12に示す。
膨潤率=100×(浸漬後の絶縁電線の外径-浸漬前の絶縁電線の外径)/(浸漬前の絶縁電線の外径)
耐油性の合格基準は以下の通りとした。
 
(合格基準)絶縁電線の膨潤率が110%以下であること
 
 <機械的特性>
 機械的特性は、実施例1~55及び比較例1~24の難燃性樹脂組成物を用いてJASO D618に準拠してダンベル試験片を作製し、このダンベル試験片について評価した。具体的には、このダンベル試験片について、JASO D618により引張試験を行い、測定された破断強度及び伸びを機械的特性の指標とした。結果を表1~12に示す。なお、機械的特性の合格基準は下記の通りとした。また引張試験は、引張速度500mm/min、標線間距離20mmの条件で行った。
 
(合格基準)破断強度が10.3MPa以上で且つ伸びが125%以上であること
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表1~12に示す結果より、実施例1~55の難燃性樹脂組成物は、難燃性、機械的特性、柔軟性及び耐油性について合格基準に達していた。これに対し、比較例1~24の難燃性樹脂組成物は、難燃性、機械的特性、柔軟性及び耐油性のうち少なくとも1つについて合格基準に達していなかった。
 このことから、本発明の難燃性樹脂組成物が、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができることが確認された。
産業上の利用分野
 本発明の難燃性樹脂組成物が、良好な難燃性及び機械的特性を有しながら、柔軟性及び耐油性を向上させることができるので、本発明のケーブル、光ファイバケーブル及び成形品は自動車のケーブル、光ファイバケーブル及び成形品として特に適している。
 1…導体
 2…絶縁層
 3…被覆層
 4…絶縁電線
 10…ケーブル
 20…光ファイバケーブル
 24…光ファイバ
 25…被覆部(絶縁体)

Claims (13)

  1.  ベース成分と、
     無機系難燃剤と、
     シリコーン化合物と、
     脂肪酸含有化合物とを含み、
     前記ベース成分が、ポリプロピレンと、ポリエチレンと、熱可塑性エラストマと、プロセスオイルとで構成され、
     前記ベース成分中の前記ポリプロピレンの含有率が10~65質量%であり、
     前記ベース成分中の前記ポリエチレンの含有率が10~65質量%であり、
     前記ベース成分中の前記熱可塑性エラストマの含有率が5~30質量%であり、
     前記ベース成分中の前記プロセスオイルの含有率が5~30質量%であり、
     前記無機系難燃剤が前記ベース成分100質量部に対して1~100質量部の割合で配合され、
     前記シリコーン化合物が前記ベース成分100質量部に対して0.5~10質量部の割合で配合され、
     前記脂肪酸含有化合物が前記ベース成分100質量部に対して2~10質量部の割合で配合される、難燃性樹脂組成物。
  2.  前記熱可塑性エラストマがスチレン系エラストマである、請求項1に記載の難燃性樹脂組成物。
  3.  前記プロセスオイルがパラフィン系のプロセスオイルである、請求項1又は2に記載の難燃性樹脂組成物。
  4.  前記ポリプロピレンがランダムポリプロピレンコポリマーである、請求項1~3のいずれか一項に記載の難燃性樹脂組成物。
  5.  前記ポリエチレンの密度が940kg/m未満である、請求項1~4のいずれか一項に記載の難燃性樹脂組成物。
  6.  前記ポリエチレンの密度が900kg/m以上である、請求項1~5のいずれか一項に記載の難燃性樹脂組成物。
  7.  前記無機系難燃剤が前記ベース成分100質量部に対して1~70質量部の割合で配合される、請求項1~6のいずれか一項に記載の難燃性樹脂組成物。
  8.  前記無機系難燃剤が前記ベース成分100質量部に対して1~30質量部の割合で配合される、請求項7に記載の難燃性樹脂組成物。
  9.  前記脂肪酸含有化合物が前記ベース成分100質量部に対して2~8質量部の割合で配合される、請求項1~8のいずれか一項に記載の難燃性樹脂組成物。
  10.  導体と、
     前記導体を被覆する絶縁層とを備え、
     前記絶縁層が、請求項1~9のいずれか一項に記載の難燃性樹脂組成物で構成される絶縁電線。
  11.  導体、及び、前記導体を被覆する絶縁層を有する絶縁電線と、
     前記絶縁電線を被覆する被覆層とを備え、
     前記絶縁層及び前記被覆層の少なくとも一方が、請求項1~9のいずれか一項に記載の難燃性樹脂組成物で構成されるケーブル。
  12.  光ファイバと、
     前記光ファイバを被覆する被覆部とを備え、
     前記被覆部が、前記光ファイバを被覆する絶縁体を有し、
     前記絶縁体が、請求項1~9のいずれか一項に記載の難燃性樹脂組成物で構成される光ファイバケーブル。
  13.  請求項1~9のいずれか一項に記載の難燃性樹脂組成物を含む成形品。
PCT/JP2018/042210 2017-11-22 2018-11-15 難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品 WO2019102920A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019555278A JPWO2019102920A1 (ja) 2017-11-22 2018-11-15 難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-224141 2017-11-22
JP2017224141 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019102920A1 true WO2019102920A1 (ja) 2019-05-31

Family

ID=66631894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042210 WO2019102920A1 (ja) 2017-11-22 2018-11-15 難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品

Country Status (2)

Country Link
JP (1) JPWO2019102920A1 (ja)
WO (1) WO2019102920A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014858A1 (ja) * 2019-07-20 2021-01-28 株式会社フジクラ 難燃性樹脂組成物及びこれを用いたケーブル
CN113549276A (zh) * 2021-08-13 2021-10-26 浙江万马高分子材料集团有限公司 半导电屏蔽料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129064A (ja) * 1998-10-28 2000-05-09 Furukawa Electric Co Ltd:The 耐熱性絶縁電線
JP2001184946A (ja) * 1999-12-28 2001-07-06 Furukawa Electric Co Ltd:The 絶縁樹脂組成物および絶縁電線
JP2003221479A (ja) * 2002-01-30 2003-08-05 Furukawa Electric Co Ltd:The 絶縁樹脂組成物および絶縁電線
JP2003277573A (ja) * 2002-03-22 2003-10-02 Sumitomo Wiring Syst Ltd 非ハロゲン重合体組成物および電源コード
JP2014009238A (ja) * 2012-06-27 2014-01-20 Furukawa Electric Co Ltd:The 耐熱性樹脂組成物、当該耐熱性樹脂組成物を有する配線材、ケーブル及び成形品
JP2015183157A (ja) * 2014-03-26 2015-10-22 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129064A (ja) * 1998-10-28 2000-05-09 Furukawa Electric Co Ltd:The 耐熱性絶縁電線
JP2001184946A (ja) * 1999-12-28 2001-07-06 Furukawa Electric Co Ltd:The 絶縁樹脂組成物および絶縁電線
JP2003221479A (ja) * 2002-01-30 2003-08-05 Furukawa Electric Co Ltd:The 絶縁樹脂組成物および絶縁電線
JP2003277573A (ja) * 2002-03-22 2003-10-02 Sumitomo Wiring Syst Ltd 非ハロゲン重合体組成物および電源コード
JP2014009238A (ja) * 2012-06-27 2014-01-20 Furukawa Electric Co Ltd:The 耐熱性樹脂組成物、当該耐熱性樹脂組成物を有する配線材、ケーブル及び成形品
JP2015183157A (ja) * 2014-03-26 2015-10-22 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014858A1 (ja) * 2019-07-20 2021-01-28 株式会社フジクラ 難燃性樹脂組成物及びこれを用いたケーブル
CN113544208A (zh) * 2019-07-20 2021-10-22 株式会社藤仓 阻燃性树脂组合物和使用该阻燃性树脂组合物的电缆
JPWO2021014858A1 (ja) * 2019-07-20 2021-12-09 株式会社フジクラ 難燃性樹脂組成物及びこれを用いたケーブル
CN113549276A (zh) * 2021-08-13 2021-10-26 浙江万马高分子材料集团有限公司 半导电屏蔽料及其制备方法

Also Published As

Publication number Publication date
JPWO2019102920A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
US9982118B2 (en) Flame retardant resin composition and cable using same
EP3187534B1 (en) Flame-retardant resin composition, cable using same, and optical fiber cable
JP5282163B1 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル
WO2017104362A1 (ja) 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
WO2019102920A1 (ja) 難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形品
JP6456722B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
CN108026339B (zh) 阻燃性树脂组合物、使用该阻燃性树脂组合物的金属缆线、光纤缆线和成型品
CN111670225B (zh) 阻燃性树脂组合物、使用其的绝缘电线、电缆以及光纤电缆
CA2800871C (en) Halogen-free flame retardant polyolefin
JP6563016B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP6046100B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
TWI663200B (zh) 阻燃性樹脂組成物、使用此組成物之金屬電纜及光纖電纜以及成形品
JP2019052244A (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JP6542058B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP2018039902A (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル、自動車用ワイヤハーネス、及び成形品
JP2019089983A (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JP2018039903A (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル、自動車用ワイヤハーネス、及び成形品
WO2021014858A1 (ja) 難燃性樹脂組成物及びこれを用いたケーブル
WO2020170891A1 (ja) 難燃性樹脂組成物、これを用いた絶縁電線、ケーブル、光ファイバケーブル及び成形体
WO2020189533A1 (ja) 難燃性樹脂組成物、これを用いたケーブル及びワイヤハーネス
JP2020122059A (ja) 難燃性樹脂組成物、これを用いたケーブル及び成形体
JP2019089982A (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JP2020122058A (ja) 難燃性樹脂組成物、これを用いたケーブル及び成形体
WO2019176886A1 (ja) ケーブル及びワイヤハーネス
WO2019176887A1 (ja) ケーブル及びワイヤハーネス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555278

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880405

Country of ref document: EP

Kind code of ref document: A1