WO2019102564A1 - Thermoacoustic engine - Google Patents

Thermoacoustic engine Download PDF

Info

Publication number
WO2019102564A1
WO2019102564A1 PCT/JP2017/042118 JP2017042118W WO2019102564A1 WO 2019102564 A1 WO2019102564 A1 WO 2019102564A1 JP 2017042118 W JP2017042118 W JP 2017042118W WO 2019102564 A1 WO2019102564 A1 WO 2019102564A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
high temperature
opening
pipe
thermoacoustic
Prior art date
Application number
PCT/JP2017/042118
Other languages
French (fr)
Japanese (ja)
Inventor
深谷 典之
伊藤 剛
竜樹 加瀬
Original Assignee
中央精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央精機株式会社 filed Critical 中央精機株式会社
Priority to JP2019556032A priority Critical patent/JP6884491B2/en
Priority to PCT/JP2017/042118 priority patent/WO2019102564A1/en
Publication of WO2019102564A1 publication Critical patent/WO2019102564A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the present invention relates to thermoacoustic engines.
  • thermoacoustic engine that is incorporated into a thermoacoustic pipe in which a working gas is sealed (see, for example, Patent Document 1).
  • the thermoacoustic engine comprises a heat accumulator, a high temperature side heat exchanger, and a low temperature side heat exchanger.
  • the heat accumulator has a plurality of flow paths penetrating in the longitudinal direction of the thermoacoustic pipe.
  • the high temperature side heat exchanger is connected to one end in the longitudinal direction of the heat accumulator, and heats one end of the heat accumulator (and the working gas located near one end of the heat accumulator).
  • the low temperature side heat exchanger is connected to the other end of the heat accumulator in the longitudinal direction to cool the other end of the heat accumulator (and the working gas located near the other end of the heat accumulator).
  • thermoacoustic engine According to the thermoacoustic engine, a temperature gradient is generated between both ends of the heat accumulator by the action of the high-temperature side / low-temperature side heat exchangers respectively connected to the both ends of the heat accumulator.
  • the working gas is self-excited in the longitudinal direction of the heat accumulator due to the temperature gradient, whereby a vibration wave (sound wave) due to the longitudinal wave is generated.
  • acoustic energy (vibration energy) is generated in the thermoacoustic pipe.
  • the acoustic energy generated in the thermoacoustic piping can be typically used for power generation driving of a generator, refrigeration operation of a refrigerator, and the like.
  • thermoacoustic engine By the way, in view of the large amount of waste heat of high-temperature waste fluid discharged and discarded from vehicles, etc., the thermal energy of the high-temperature waste fluid can be recovered with high efficiency and used effectively Technology is desired. For this reason, it is conceivable to use a high temperature waste fluid as a heat source (a heating source having a temperature higher than normal temperature) used for the high temperature side heat exchanger of the thermoacoustic engine described above.
  • thermoacoustic piping in which the high temperature side heat exchanger is incorporated, the branch pipe branched and extended from the high temperature waste fluid flow path (for example, the factory chimney and the exhaust pipe of the vehicle) It is conceivable to connect to and traverse the inside of the part.
  • the working gas is heat-exchanged with the high-temperature waste fluid in the branch pipe through the pipe wall of the branch pipe inside the portion to locate the end of the heat accumulator near one end. The working gas (and one end of the regenerator) is heated.
  • the present invention has been made in view of the above-mentioned point, and an object thereof is to provide a thermoacoustic engine provided with a high temperature side heat exchanger having a simple structure and low manufacturing cost.
  • thermoacoustic engine which concerns on this invention is equipped with the same thermal storage device as the above-mentioned, a high temperature side heat exchanger, and a low temperature side heat exchanger.
  • the high temperature side heat exchanger is a through hole connected to the one end of the heat accumulator and in communication with the plurality of flow paths and through which the working gas passes.
  • a connecting portion integrally extending from the first portion to the outside of the thermoacoustic pipe and integrally connecting the first portion and the second portion.
  • a solid material having thermal conductivity wherein the first opening is partitioned by a partition.
  • the first portion, the second portion, and the connection portion that constitute the high temperature side heat exchanger are integrally formed of a solid material having thermal conductivity.
  • the heat of a fluid typically, a waste fluid
  • the working gas located near the first portion is sequentially transmitted to heat the working gas and one end of the heat accumulator.
  • thermoacoustic pipe without crossing (piercing) the branch pipe through which the high temperature fluid passes into the interior of the thermoacoustic pipe, it is possible to place the high temperature away from each other by utilizing only the heat conduction of the solid. Heat exchange can occur between the fluid and the working gas. Therefore, the high temperature side heat exchanger can be manufactured with a simple configuration and low manufacturing cost.
  • the first opening of the first portion communicating with the plurality of flow paths in the heat accumulator is partitioned by the partition. This increases the surface area of the first opening in contact with the working gas, as compared to the case where there is no such partition (that is, the case where the first opening is one large through hole). The heat transfer efficiency between the part and the working gas is increased.
  • the working gas self-excited along the longitudinal direction in the vicinity of one end of the heat accumulator is from one end of the heat accumulator to the outside of the heat accumulator (that is, the first opening).
  • the phenomenon of self-oscillation of the working gas is likely to occur due to the sudden entry into a large space immediately after moving to the
  • by providing such a partition part such a phenomenon becomes difficult to occur, and the conversion efficiency from thermal energy of the high-temperature fluid to acoustic energy becomes high.
  • the partition portion has a cantilever shape extending parallel to each other from the edge on the connection portion side in the first opening to the vicinity of the edge on the opposite side to the connection portion side. It is preferable to have the shape of
  • the base end of the partition portion is connected to the edge on the connection portion side of the first opening (that is, the edge on the side to which the heat of the high temperature fluid is conducted). Therefore, the heat of the high temperature fluid is efficiently conducted to the partition as compared with the aspect in which the base end of the partition is connected to the edge at a position different from the edge on the connection portion side in the first opening. be able to.
  • the front end (free end) of the partition portion is not connected to the edge of the first opening opposite to the connection portion side (that is, an air layer is interposed between the front end and the edge). Therefore, an aspect in which the front end of the partition part is also connected to the edge on the opposite side to the connection part side in the first opening (that is, an aspect in which the partition part has a double-supported beam shape extending parallel to each other)
  • the temperature of the partition portion is less likely to occur due to the influence of "the edge on the opposite side to the connection portion side in the first opening" which is relatively low temperature.
  • the heat transfer efficiency between the hot fluid and the working gas is increased because the temperature of the partition can be maintained at a high temperature.
  • thermoacoustic engine preferably, a slit, which is a through hole along the outer edge, is formed in the vicinity of the outer edge of the high temperature side heat exchanger.
  • the outer edge portion of the high temperature side heat exchanger and the central portion excluding the outer edge portion that is, the portion serving as a main path for conducting heat of the high temperature fluid from the second portion to the first portion
  • the temperature of the central portion of the high temperature side heat exchanger is affected by the outer edge portion of the high temperature side heat exchanger which is relatively low temperature as compared with the case where such a slit is not provided at all. It becomes difficult for the phenomenon of decreasing to occur.
  • the heat transfer efficiency between the high temperature fluid and the working gas is increased because the temperature of the central portion of the high temperature side heat exchanger can be maintained at a high temperature.
  • FIG. 1 is a view schematically showing a schematic configuration of a thermoacoustic power generation system including a thermoacoustic engine according to the present invention.
  • FIG. 2 is a view schematically showing the configuration of the thermoacoustic engine shown in FIG.
  • FIG. 3 is a view showing an example of an end face (a plurality of flow paths) of the heat accumulator shown in FIG.
  • FIG. 4 is a plan view of the high temperature side heat exchanger shown in FIG.
  • FIG. 5 is a plan view of a high temperature side heat exchanger according to a modification.
  • thermoacoustic engine according to the present invention will be described with reference to the drawings.
  • the thermoacoustic power generation system 100 includes a pipe configuration unit 101 made of metal piping.
  • the pipe configuration part 101 includes an annular pipe 102 which is an annular (loop-like) pipe part, and a branch pipe 103 which is branched from the annular pipe 102 and whose inner space communicates with the inner space of the annular pipe 102.
  • the annular pipe 102 corresponds to the “thermoacoustic pipe” in the present invention.
  • the branch pipe 103 is a pipe portion having a branch point branched from the annular pipe 102 as one end 103 a and extending in a long shape from the one end 103 a to the other end 103 b.
  • the branch pipe 103 is sealed by the energy outlet 160 at the other end 103 b.
  • a predetermined working gas (in this embodiment, helium) is sealed in both the annular pipe 102 and the branch pipe 103 under a predetermined pressure.
  • the working gas instead of or in addition to helium, nitrogen, argon, air, a mixed gas of these, or the like may be employed.
  • the annular pipe 102 is provided with three thermoacoustic engines (also referred to as “motors”) 110 connected in series.
  • the three thermoacoustic engines 110 constitute a so-called “multistage thermoacoustic engine”.
  • Each thermoacoustic engine 110 includes a heat storage device 111 incorporated in the pipe of the annular pipe 102, a high temperature side heat exchanger 112 connected to one end 111a which is a high temperature part of the heat storage device 111, and a normal temperature part of the heat storage device 111. And a low temperature side heat exchanger 113 connected to the other end 111b which is a low temperature part.
  • the number of installed thermoacoustic engines 110 is not limited to three, and other numbers may be selected as necessary.
  • the heat storage unit 111 has a cylindrical shape in which the cross-sectional shape in the direction perpendicular to the pipe longitudinal direction (extension direction of the pipe, x-axis direction) of the annular pipe 102 is circular. It is a structure. Both end surfaces of the heat accumulator 111 in the pipe longitudinal direction are planes perpendicular to the pipe longitudinal direction (x-axis direction).
  • the heat accumulator 111 has a plurality of penetrating flow paths 111c extending in parallel with each other along the longitudinal direction (x-axis direction) of the pipe between the one end 111a and the other end 111b. The working gas vibrates in the plurality of flow paths 111c.
  • the plurality of flow paths 111 c are partitioned and formed in a matrix by a plurality of walls dividing the inside of the heat accumulator 111 in the vertical and horizontal directions.
  • the inside of the heat accumulator 111 may be partitioned in any manner including a honeycomb shape and the like.
  • the heat accumulator 111 for example, a structure of typically ceramic, a structure in which a plurality of mesh thin plates made of stainless steel are laminated in parallel with a fine pitch, a non-woven material made of metal fibers, etc. can be used. . It should be noted that, instead of the heat storage unit 111 having a circular cross section, it is also possible to employ an oval, a polygon or the like on the cross section.
  • an oscillating wave (also referred to as “sound wave”, “oscillating flow” or “work flow”) is formed by the longitudinal wave oscillating along the longitudinal direction of the pipe, and this oscillating wave is branched from the pipe of the annular pipe 102. It is transmitted to the inside of the
  • the low temperature side heat exchanger 113 is configured to be supplied with a cooling fluid such as cold air, cold water or the like from the cooling source 130.
  • the low temperature side heat exchanger 113 includes a main body block 113a assembled to the other end 111b of the heat accumulator 111, and an introduction pipe 113b assembled to the main body block 113a.
  • a cylindrical cooling internal space 113c is formed in the main body block 113a along the longitudinal direction of the pipe (x-axis direction).
  • the cooling internal space 113c is in communication with the plurality of flow paths 111c of the heat accumulator 111, so that the working gas vibrates in the cooling internal space 113c.
  • the introduction pipe 113b is airtightly assembled to the main body block 113a so as to cross (penetrate) the cooling inner space 113c in the direction (z-axis direction) orthogonal to the longitudinal direction of the pipe.
  • the introduction pipe 113 b is connected to the cooling source 130.
  • heat exchange is performed between the cooling fluid in the introduction pipe 113b and the working gas in the cooling internal space 113c of the main body block 113a. It will be.
  • the working gas around the other end 111 b of the heat accumulator 111 and the other end 111 b of the heat accumulator 111 are cooled.
  • the cooling fluid in the introduction pipe 113b whose temperature has risen after the heat exchange is returned to the cooling source 130 to be cooled again.
  • the high temperature side heat exchanger 112 includes the heat of the fluid having a temperature higher than the normal temperature flowing in the pipe 120, the working gas around the one end 111 a of the heat accumulator 111, and one end of the heat accumulator 111 It is configured to transmit to the parts and heat them.
  • the fluid having a temperature higher than the normal temperature flowing in the conduit 120 is typically a high-temperature waste fluid discharged and discarded from facilities such as a factory and vehicles and the like. Therefore, the conduit 120 is a chimney of a factory. And exhaust pipes of vehicles.
  • the high temperature side heat exchanger 112 is a long plate-like solid member which connects a part of the pipeline 120 located apart from each other and one end 111a of the heat accumulator 111 (a part of the annular pipe 102). (See also FIG. 4 described later).
  • the high temperature side heat exchanger 112 is configured to perform heat exchange between the high temperature fluid and the working gas located apart from each other by utilizing only the heat conduction of the solid. The detailed configuration of the high temperature side heat exchanger 112 will be described later.
  • the cooperation between the heating action by the high temperature side heat exchanger 112 and the cooling action by the low temperature side heat exchanger 113 creates a predetermined temperature gradient between the one end 111 a and the other end 111 b in the heat accumulator 111. That is, the high temperature side heat exchanger 112 and the low temperature side heat exchanger 113 have temperature gradients between both ends of the plurality of flow channels 111 c of the heat accumulator 111 in order to cause the working gas enclosed in the piping configuration unit 101 to vibrate by itself.
  • the heat exchanger is configured to exchange heat with the working gas so that
  • the branch piping 103 linearly extends on the opposite side of the annular piping 102 with the first piping portion 104 extending linearly between the annular piping 102 and the turbine 140 and the turbine 140 interposed therebetween.
  • the existing second piping unit 105 and a crank piping unit 106 bent in a crank shape so as to connect the first piping unit 104 and the second piping unit 105 are provided.
  • the turbine 140 is configured to be in communication with the pipe of the branch pipe 103, and converts acoustic energy (also referred to as “vibration energy”) by vibration waves of the working gas present in the pipe of the branch pipe 103 into mechanical rotational energy. Perform a function. That is, the turbine 140 is provided in the branch pipe 103 and rotates by receiving acoustic energy generated by self-oscillation of the working gas in the thermoacoustic engine 110. Connected to the turbine 140 is a generator 150 for converting kinetic energy (rotational energy) by the rotation of the turbine 140 into electric power.
  • acoustic energy also referred to as “vibration energy”
  • thermoacoustic power generation system 100 configured as described above will be briefly described in line with the above description.
  • one end 111 a of the heat accumulator 111 is heated by the high temperature heat exchanger 112, and the other end 111 b of the heat accumulator 111 is cooled by the low temperature heat exchanger 113.
  • a temperature gradient is generated between the one end 111 a and the other end 111 b of the heat accumulator 111. Due to this temperature gradient, in each heat accumulator 111, an oscillating wave is formed mainly by the self-excited oscillation of the working gas.
  • the acoustic energy (vibration energy) by the vibration wave (sound wave) is transmitted from the annular pipe 102 of the pipe configuration section 101 to the turbine 140 through the branch pipe 103 and further transmitted to the energy extracting section 160.
  • the branch pipe 103 is configured as a resonant pipe (waveguide) for guiding the acoustic energy of the working gas generated in the thermoacoustic engine 110.
  • a portion of the acoustic energy is extracted by a turbine 140 which is an energy extracting means, converted into electric energy (electric power) by a generator 150 connected to the turbine 140, and extracted by an energy extracting unit 160 to a predetermined energy (power). For example, it is converted into vibration energy, electrical energy, etc.).
  • the high temperature side heat exchanger 112 uses facilities such as a factory and high temperature waste fluid discharged and discarded from a vehicle or the like as a heat source (a heating source having a temperature higher than normal temperature).
  • the high temperature waste fluid may be supplied from the pipe line 120. That is, as the high temperature side heat exchanger 112, the branch pipe branched and extended from the pipe line 120 is connected to the main body block assembled to the one end 111a of the heat accumulator 111, and traversed in the internal space of the main body block.
  • the configuration is conceivable.
  • the high temperature side heat exchanger 112 is a long plate 1 made of a solid material (typically, a metal material) having good thermal conductivity. It consists only of two solid members. Specifically, the high temperature side heat exchanger 112 includes a first portion 112a connected to one end 111a of the heat accumulator 111, a second portion 112b interposed and fixed in the pipe line 120, and a first portion 112a. And a connecting portion 112c integrally extending out of the annular pipe 102 and integrally connecting the first portion 112a and the second portion 112b.
  • a connecting portion 112c integrally extending out of the annular pipe 102 and integrally connecting the first portion 112a and the second portion 112b.
  • the connecting portion 112c linearly extends between the first and second portions 112a and 112b along the direction (z-axis direction) connecting the one end portion 111a of the heat accumulator 111 and the pipe line 120. ing.
  • the connecting portion 112c may extend while bending between the first and second portions 112a and 112b.
  • a first opening 112a1 is formed which is a through hole penetrating in the thickness direction (x-axis direction, piping longitudinal direction).
  • the outline shape of the first opening 112a1 is a circular shape having a diameter substantially the same as the inner diameter of the cylindrical heat accumulator 111 (see FIG. 3).
  • the first opening 112a1 is in communication with the plurality of flow paths 111c (see FIG. 3) of the heat accumulator 111, and the working gas can pass through the first opening 112a1.
  • the first opening 112a1 is composed of a plurality of openings partitioned by a plurality of partition portions 112a2.
  • Each of the plurality of partition portions 112a2 extends from the edge of the first opening 112a1 on the connection portion 112c side (z-axis positive direction side) to the vicinity of the edge on the opposite side (z-axis negative direction side) of the connection portion 112c It has a cantilever shape extending parallel to each other along the extending direction (z-axis direction) of the connecting portion 112c.
  • the second portion 112 b is formed with a second opening 112 b 1 which is a through hole penetrating in the thickness direction (x-axis direction, extending direction of the conduit 120).
  • the outline shape of the second opening 112b1 is a circle having a diameter substantially the same size as the inner diameter of the tubular conduit 120 (see FIG. 2).
  • the second opening 112 b 1 is in communication with the internal space of the conduit 120, and high temperature waste fluid can pass through the second opening 112 b 1.
  • the second opening 112 b 1 is configured of a plurality of openings partitioned by a plurality of partition portions 112 b 2.
  • Each of the plurality of partition portions 112b2 extends from the edge of the second opening 112b1 on the connection portion 112c side (z-axis negative direction side) to the vicinity of the edge on the opposite side (z-axis positive direction side) of the connection portion 112c It has a cantilever shape extending parallel to each other along the extending direction (z-axis direction) of the connecting portion 112c.
  • the first portion 112a is larger than the second portion 112b due to the first opening 112a1 being larger than the second opening 112b1. Therefore, the connecting portion 112c has a shape in which the width dimension (dimension in the y-axis direction) gradually increases from the second portion 112b toward the first portion 112a.
  • the first portion 112a may be smaller than the second portion 112b, or the sizes of the first and second portions 112a and 112b may be the same.
  • the heat of the fluid (typically, the waste fluid) having a temperature higher than the normal temperature passing through the pipe line 120 located outside the annular pipe 102 is solid
  • the working gas located in the vicinity of the first portion 112a (that is, in the vicinity of one end 111a of the heat accumulator 111) sequentially through the second portion 112b, the connection portion 112c, and the first portion 112a.
  • the working gas and one end 111 a of the heat accumulator 111 are heated.
  • the high temperature side heat exchanger 112 can be manufactured with a simple configuration and low manufacturing cost.
  • the first opening 112a1 of the first portion 112a in communication with the plurality of flow paths 111c in the heat accumulator 111 is constituted by a plurality of openings partitioned by a plurality of cantilevered partition portions 112a2.
  • the surface area of the first opening 112a1 in contact with the working gas is larger than that in the case where there are no such partition portions 112a2 (that is, the first opening 112a1 is one large through hole).
  • the heat transfer efficiency between the first portion 112a and the working gas is enhanced.
  • the working gas self-excited vibrating in the longitudinal direction (x-axis direction) of the pipe in the vicinity of one end 111 a of the heat accumulator 111 is one end of the heat accumulator 111 Due to the sudden approach to the wide space immediately after moving from 111a to the outside of the heat accumulator 111 (that is, the first opening 112a1), a phenomenon in which the self-excited vibration of the working gas attenuates tends to occur. On the other hand, by providing such a plurality of partition parts 112a2, such a phenomenon becomes difficult to occur, and the conversion efficiency from thermal energy of the high-temperature fluid to acoustic energy becomes high.
  • each of the plurality of cantilevered partition portions 112a2 conducts the heat of the high temperature fluid (that is, the edge of the first opening 112a1 on the side of the connecting portion 112c (the z-axis positive direction side) It is connected with the edge of the coming side). Therefore, compared to the aspect in which the base end of each of the plurality of partition portions 112a2 is connected to the edge at a position different from the edge on the connection portion 112c side in the first opening 112a1, Can be efficiently conducted to the partition portion 112a2 of the
  • each of the plurality of cantilevered partitions 112a2 is not connected to the edge of the first opening 112a1 on the opposite side (z-axis negative direction side) to the connecting portion 112c side (ie , An air layer is interposed between the tip and the edge).
  • the second opening 112b1 of the second portion 112b communicating with the internal space of the conduit 120 is constituted by a plurality of openings partitioned by a plurality of cantilevered partition portions 112b2.
  • the surface area of the second opening 112b1 in contact with the high temperature fluid is smaller than in the case where there are no such partition portions 112b2 (that is, the second opening 112b1 is one large through hole).
  • the heat transfer efficiency between the second portion 112 b and the high temperature fluid becomes higher.
  • each of the plurality of cantilevered partition portions 112b2 conducts the heat of the high temperature fluid (that is, the edge of the second opening portion 112b1 on the side of the connecting portion 112c (the z-axis negative direction side) Connected to the edge of the Therefore, compared with the aspect in which the base end of each of the plurality of partition parts 112b2 is connected to the edge at a position different from the edge on the connection part 112c side in the second opening 112b1, the heat of the high temperature fluid is connected It can conduct efficiently to portion 112c.
  • each of the plurality of cantilevered partitions 112b2 is not connected to the edge of the second opening 112b1 on the opposite side (z-axis positive direction side) to the connecting portion 112c side (that is, , An air layer is interposed between the tip and the edge).
  • the first opening 112a1 of the first portion 112a is partitioned by the plurality of cantilevered partitions 112a2.
  • the first opening 112a1 may be partitioned by the plurality of cantilevered partitions.
  • the connection at the first opening 112a1 is It may be connected to the edge at a position different from the portion 112 c side.
  • the second opening 112b1 of the second portion 112b is partitioned by the plurality of cantilevered partitions 112b2.
  • the second opening 112b1 is partitioned by the plurality of cantilevered partitions. It is also good.
  • the base ends of the plurality of cantilevered partitions 112b2 are connected to the edge of the second opening 112b1 on the side of the connecting portion 112c (the z-axis negative direction side), but the connection at the second opening 112b1 is It may be connected to the edge at a position different from the portion 112 c side.
  • the plurality of partition portions 112b2 may not be provided (that is, the second opening 112b1 may be one large through hole).
  • the high temperature side heat exchanger 112 is comprised by one solid member of elongate plate shape, you may be comprised laminating
  • the high temperature side heat exchanger 112 is formed of one solid member having a relatively large thickness, in order to form a plurality of cantilevered partition portions 112a2 and 112b2 having a very complicated shape.
  • the high temperature side heat exchanger 112 needs to be manufactured using wire cut electrical discharge machining or the like.
  • each thin plate member can be manufactured by press processing etc., so the manufacturing cost of the high temperature side heat exchanger 112 is reduced. It is possible.
  • a slit 112 d may be formed in the vicinity of the outer edge of the high temperature side heat exchanger 112, which is a through hole along the outer edge.
  • the outer edge of the high temperature side heat exchanger 112 is located at four places (the edge opposite to the connecting portion 112c side in the first portion 112a, the edge opposite to the connecting portion 112c in the second portion 112b Slits 112d are formed on the both sides of the connecting portion 112c in the width direction), but the slits 112d may be formed at one, two or three of them. .
  • the heat is transferred from the second portion 112b to the first portion 112a at the outer edge portion of the high temperature side heat exchanger 112 and at the central portion excluding the outer edge portion.
  • An air layer intervenes between the main route and the main route). Therefore, the high temperature side heat exchanger in which the temperature of the central portion of the high temperature side heat exchanger 112 is relatively low compared to the case where such slits 112d are not provided at all (see FIG. 4).
  • the phenomenon of decreasing is less likely to occur.
  • the temperature of the central portion of the high temperature side heat exchanger 112 can be maintained at a high temperature, the heat transfer efficiency between the high temperature fluid and the working gas is high.
  • SYMBOLS 110 Thermoacoustic engine 102 ... Annular piping (piping for thermoacoustics) 111 ... Thermal storage device 111 ... One end part, 111b ... Other end part 111c ... Several flow paths 112 ... High temperature side heat exchanger, 112a ... 1st part, 112a1 ... 1st opening, 112a 2 ... partition, 112b ... 2nd part, 112b 1 ... 2nd opening, 112b 2 ... partition, 112c ... connected part, 112d ... slit, 113 ... low temperature side heat exchanger

Abstract

A thermoacoustic engine 110, which is incorporated in a thermoacoustic pipe 102 in which a working gas is sealed, comprises: a heat storage device 111 having a plurality of flow paths 111c penetrating in the longitudinal direction; a high-temperature-side heat exchanger 112 coupled to one end of the heat storage device; and a low-temperature-side heat exchanger 113 coupled to the other end of the heat storage device. The high-temperature-side heat exchanger comprises: a first section 112a connected to the one end of the heat storage device and in which a first opening 112a1 through which the working gas passes is formed; a second section 112b, which is interposed in a fluid passage 120 positioned on the outside of the thermoacoustic pipe and through which a fluid having a higher temperature than room temperature passes, and in which a second opening 112b1 through which the fluid passes is formed; and a connecting section 112c integrally connecting the first and second sections. The first opening is partitioned by a partition part 112a2. Thus, it is possible to provide a thermoacoustic engine equipped with a high-temperature-side heat exchanger having a simple configuration and a low manufacturing cost.

Description

熱音響エンジンThermoacoustic engine
 本発明は、熱音響エンジンに関する。 The present invention relates to thermoacoustic engines.
 従来より、作動気体が封入された熱音響用配管に組み込まれる熱音響エンジンが知られている(例えば、特許文献1を参照)。熱音響エンジンは、蓄熱器と、高温側熱交換器と、低温側熱交換器とを備える。蓄熱器は、熱音響用配管の長手方向に貫通する複数の流路を有する。高温側熱交換器は、蓄熱器の長手方向の一端部に連結されて、蓄熱器の一端部(及び、蓄熱器の一端部近傍に位置する作動気体)を加熱する。低温側熱交換器は、蓄熱器の長手方向の他端部に連結されて、蓄熱器の他端部(及び、蓄熱器の他端部近傍に位置する作動気体)を冷却する。 Conventionally, a thermoacoustic engine is known that is incorporated into a thermoacoustic pipe in which a working gas is sealed (see, for example, Patent Document 1). The thermoacoustic engine comprises a heat accumulator, a high temperature side heat exchanger, and a low temperature side heat exchanger. The heat accumulator has a plurality of flow paths penetrating in the longitudinal direction of the thermoacoustic pipe. The high temperature side heat exchanger is connected to one end in the longitudinal direction of the heat accumulator, and heats one end of the heat accumulator (and the working gas located near one end of the heat accumulator). The low temperature side heat exchanger is connected to the other end of the heat accumulator in the longitudinal direction to cool the other end of the heat accumulator (and the working gas located near the other end of the heat accumulator).
 熱音響エンジンによれば、蓄熱器の両端部にそれぞれ連結された高温側・低温側熱交換器の作用により、蓄熱器の両端部間にて温度勾配が発生する。この温度勾配によって作動気体が蓄熱器の長手方向に沿って自励振動することで、縦波による振動波(音波)が発生する。この結果、熱音響用配管内にて音響エネルギー(振動エネルギー)が発生する。このように熱音響用配管内で発生した音響エネルギーは、典型的には、発電機の発電駆動、及び、冷凍機の冷凍作動などに使用され得る。 According to the thermoacoustic engine, a temperature gradient is generated between both ends of the heat accumulator by the action of the high-temperature side / low-temperature side heat exchangers respectively connected to the both ends of the heat accumulator. The working gas is self-excited in the longitudinal direction of the heat accumulator due to the temperature gradient, whereby a vibration wave (sound wave) due to the longitudinal wave is generated. As a result, acoustic energy (vibration energy) is generated in the thermoacoustic pipe. Thus, the acoustic energy generated in the thermoacoustic piping can be typically used for power generation driving of a generator, refrigeration operation of a refrigerator, and the like.
WO2013/084830号公報WO 2013/084830 gazette
 ところで、工場等の設備、及び、車両等から排出・廃棄される高温の廃棄流体の排熱の量が未だ多いことに鑑み、高温の廃棄流体が有する熱エネルギーを高い効率で回収して有効活用する技術が望まれている。このため、上述した熱音響エンジンの高温側熱交換器に使用される熱源(常温より高温の加熱源)として、高温の廃棄流体を利用することが考えられる。 By the way, in view of the large amount of waste heat of high-temperature waste fluid discharged and discarded from vehicles, etc., the thermal energy of the high-temperature waste fluid can be recovered with high efficiency and used effectively Technology is desired. For this reason, it is conceivable to use a high temperature waste fluid as a heat source (a heating source having a temperature higher than normal temperature) used for the high temperature side heat exchanger of the thermoacoustic engine described above.
 この場合、高温の廃棄流体の流路(例えば、工場の煙突、及び、車両の排気管)から分岐・延出させた分岐管を、熱音響用配管における高温側熱交換器が組み込まれた部分に接続し、当該部分の内部にて横断させる構成が考えられる。この構成では、当該部分の内部にて、作動気体が、分岐管内の高温の廃棄流体との間で、分岐管の管壁を介して熱交換を行うことで、蓄熱器の一端部近傍に位置する作動気体(及び、蓄熱器の一端部)が加熱される。 In this case, a portion of the thermoacoustic piping in which the high temperature side heat exchanger is incorporated, the branch pipe branched and extended from the high temperature waste fluid flow path (for example, the factory chimney and the exhaust pipe of the vehicle) It is conceivable to connect to and traverse the inside of the part. In this configuration, the working gas is heat-exchanged with the high-temperature waste fluid in the branch pipe through the pipe wall of the branch pipe inside the portion to locate the end of the heat accumulator near one end. The working gas (and one end of the regenerator) is heated.
 しかしながら、この構成では、分岐管内にて、廃棄流体の通過に起因する煤や汚れが付着し、分岐管の詰まりや劣化が発生する可能性がある。また、熱音響用配管における高温側熱交換器が組み込まれた部分にて分岐管を横断(貫通)させる必要があるため、高温側熱交換器そのものの構造が複雑になり、高温側熱交換器そのものの製造コストが高くなる。更には、高温の廃棄流体の流路から分岐管を分岐させるため、高温の廃棄流体の流路(例えば、工場の煙突、及び、車両の排気管)を大幅に改造する必要がある。 However, in this configuration, dirt and dirt may be attached in the branch pipe due to the passage of the waste fluid, which may cause clogging or deterioration of the branch pipe. In addition, since it is necessary to cross (penetrate) the branch pipe at the portion where the high temperature side heat exchanger is incorporated in the thermoacoustic piping, the structure of the high temperature side heat exchanger itself becomes complicated, and the high temperature side heat exchanger The manufacturing cost of itself increases. Furthermore, in order to branch the branch pipe from the high temperature waste fluid flow path, it is necessary to greatly remodel the high temperature waste fluid flow path (for example, a factory chimney and a vehicle exhaust pipe).
 本発明は上記の点に鑑みてなされたものであり、その目的は、簡易な構成を有し且つ製造コストが低い高温側熱交換器を備えた熱音響エンジンを提供することである。 The present invention has been made in view of the above-mentioned point, and an object thereof is to provide a thermoacoustic engine provided with a high temperature side heat exchanger having a simple structure and low manufacturing cost.
 本発明に係る熱音響エンジンは、上述と同様の蓄熱器、高温側熱交換器、及び、低温側熱交換器を備える。本発明に係る熱音響エンジンの特徴は、前記高温側熱交換器が、前記蓄熱器の前記一端部に連結され、前記複数の流路に連通すると共に前記作動気体が通過する貫通孔である第1開口部が形成された第1部分と、前記熱音響用配管の外部に位置すると共に常温より高温の流体が通過する流路に介挿され、前記流体が通過する貫通孔である第2開口部が形成された第2部分と、前記第1部分から一体で前記熱音響用配管の外部に延出すると共に前記第1部分と前記第2部分とを一体で連結する連結部分と、を備え、熱伝導性を有する固体材料で構成され、前記第1開口部が、仕切り部によって仕切られている、ことにある。 The thermoacoustic engine which concerns on this invention is equipped with the same thermal storage device as the above-mentioned, a high temperature side heat exchanger, and a low temperature side heat exchanger. A feature of the thermoacoustic engine according to the present invention is that the high temperature side heat exchanger is a through hole connected to the one end of the heat accumulator and in communication with the plurality of flow paths and through which the working gas passes. 1) A first portion in which an opening is formed, and a second opening which is a through-hole through which the fluid passes, which is interposed in a flow path which is located outside the thermoacoustic piping and through which a high temperature fluid passes. And a connecting portion integrally extending from the first portion to the outside of the thermoacoustic pipe and integrally connecting the first portion and the second portion. And a solid material having thermal conductivity, wherein the first opening is partitioned by a partition.
 これによれば、高温側熱交換器を構成する第1部分、第2部分、及び、連結部分が、熱伝導性を有する固体材料で一体に構成されている。熱音響用配管の外部に位置する流路を通過する常温より高温の流体(典型的には、廃棄流体)が有する熱が、固体の熱伝導によって、第2部分、連結部分、及び第1部分を順に介して、第1部分の近傍(即ち、蓄熱器の一端部の近傍)に位置する作動気体に伝達され、当該作動気体、及び、蓄熱器の一端部が加熱される。 According to this, the first portion, the second portion, and the connection portion that constitute the high temperature side heat exchanger are integrally formed of a solid material having thermal conductivity. The heat of a fluid (typically, a waste fluid) having a temperature higher than normal temperature passing through a flow path located outside the thermoacoustic piping is subjected to heat conduction of a solid to form a second portion, a connection portion, and a first portion The working gas located near the first portion (that is, near one end of the heat accumulator) is sequentially transmitted to heat the working gas and one end of the heat accumulator.
 換言すれば、上述のように、高温の流体が通過する分岐管を熱音響用配管の内部に横断(貫通)させることなく、固体の熱伝導のみを利用して、互いに離れて位置する高温の流体と作動気体との間で熱交換を行わせることができる。このため、高温側熱交換器を、簡易な構成で且つ低い製造コストで製造することができる。 In other words, as described above, without crossing (piercing) the branch pipe through which the high temperature fluid passes into the interior of the thermoacoustic pipe, it is possible to place the high temperature away from each other by utilizing only the heat conduction of the solid. Heat exchange can occur between the fluid and the working gas. Therefore, the high temperature side heat exchanger can be manufactured with a simple configuration and low manufacturing cost.
 更に、蓄熱器内の複数の流路に連通する第1部分の第1開口部が、仕切り部によって仕切られている。これにより、このような仕切り部がない場合(即ち、第1開口部が1つの大きな貫通孔である場合)と比べて、作動気体と接触する第1開口部の表面積が大きくなるので、第1部分と作動気体との間の熱伝達効率が高くなる。 Furthermore, the first opening of the first portion communicating with the plurality of flow paths in the heat accumulator is partitioned by the partition. This increases the surface area of the first opening in contact with the working gas, as compared to the case where there is no such partition (that is, the case where the first opening is one large through hole). The heat transfer efficiency between the part and the working gas is increased.
 加えて、このような仕切り部がない場合には、蓄熱器の一端部近傍で長手方向に沿って自励振動している作動気体が蓄熱器の一端から蓄熱器の外部(即ち、第1開口部)に移動した直後に広い空間に突然進入することに起因して、作動気体の自励振動が減衰する現象が発生し易い。これに対し、このような仕切り部が設けられることで、このような現象が発生し難くなり、高温の流体が有する熱エネルギーから音響エネルギーへの変換効率が高くなる。 In addition, in the absence of such a partition, the working gas self-excited along the longitudinal direction in the vicinity of one end of the heat accumulator is from one end of the heat accumulator to the outside of the heat accumulator (that is, the first opening The phenomenon of self-oscillation of the working gas is likely to occur due to the sudden entry into a large space immediately after moving to the On the other hand, by providing such a partition part, such a phenomenon becomes difficult to occur, and the conversion efficiency from thermal energy of the high-temperature fluid to acoustic energy becomes high.
 上記本発明に係る熱音響エンジンでは、前記仕切り部が、前記第1開口部における前記連結部分側の縁部から前記連結部分側と反対側の縁部の近傍まで互いに平行に延びる片持ち梁状の形状を有していることが好適である。 In the thermoacoustic engine according to the present invention, the partition portion has a cantilever shape extending parallel to each other from the edge on the connection portion side in the first opening to the vicinity of the edge on the opposite side to the connection portion side. It is preferable to have the shape of
 これによれば、仕切り部の基端が、第1開口部における連結部分側の縁部(即ち、高温の流体の熱が伝導してくる側の縁部)と繋がっている。従って、仕切り部の基端が、第1開口部における連結部分側の縁部とは異なる位置にある縁部と繋がっている態様と比べて、高温の流体の熱を仕切り部に効率良く伝導することができる。 According to this, the base end of the partition portion is connected to the edge on the connection portion side of the first opening (that is, the edge on the side to which the heat of the high temperature fluid is conducted). Therefore, the heat of the high temperature fluid is efficiently conducted to the partition as compared with the aspect in which the base end of the partition is connected to the edge at a position different from the edge on the connection portion side in the first opening. be able to.
 更には、仕切り部の先端(自由端)が、第1開口部における連結部分側と反対側の縁部と繋がっていない(即ち、先端と縁部との間に空気層が介在する)。従って、仕切り部の先端が、第1開口部における連結部分側と反対側の縁部にも繋がっている態様(即ち、仕切り部が互いに平行に延びる両持ち梁状の形状を有している態様)と比べて、仕切り部の温度が、相対的に低温となっている「第1開口部における連結部分側と反対側の縁部」による影響を受けて低下する現象が発生し難くなる。この結果、仕切り部の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 Furthermore, the front end (free end) of the partition portion is not connected to the edge of the first opening opposite to the connection portion side (that is, an air layer is interposed between the front end and the edge). Therefore, an aspect in which the front end of the partition part is also connected to the edge on the opposite side to the connection part side in the first opening (that is, an aspect in which the partition part has a double-supported beam shape extending parallel to each other) Compared to the above, the temperature of the partition portion is less likely to occur due to the influence of "the edge on the opposite side to the connection portion side in the first opening" which is relatively low temperature. As a result, the heat transfer efficiency between the hot fluid and the working gas is increased because the temperature of the partition can be maintained at a high temperature.
 上記本発明に係る熱音響エンジンでは、前記高温側熱交換器の外縁の近傍部分には、前記外縁に沿う貫通孔であるスリットが形成されていることが好適である。 In the thermoacoustic engine according to the present invention, preferably, a slit, which is a through hole along the outer edge, is formed in the vicinity of the outer edge of the high temperature side heat exchanger.
 これによれば、高温側熱交換器における外縁部と、外縁部を除く中央部分(即ち、高温の流体の熱が第2部分から第1部分へ伝導していく主たる経路となる部分)との間に空気層が介在する。従って、このようなスリットが全く設けられていない場合と比べて、高温側熱交換器の中央部分の温度が、相対的に低温となっている高温側熱交換器の外縁部による影響を受けて低下する現象が発生し難くなる。この結果、高温側熱交換器の中央部分の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 According to this, the outer edge portion of the high temperature side heat exchanger and the central portion excluding the outer edge portion (that is, the portion serving as a main path for conducting heat of the high temperature fluid from the second portion to the first portion) There is an air layer in between. Therefore, the temperature of the central portion of the high temperature side heat exchanger is affected by the outer edge portion of the high temperature side heat exchanger which is relatively low temperature as compared with the case where such a slit is not provided at all. It becomes difficult for the phenomenon of decreasing to occur. As a result, the heat transfer efficiency between the high temperature fluid and the working gas is increased because the temperature of the central portion of the high temperature side heat exchanger can be maintained at a high temperature.
図1は、本発明に係る熱音響エンジンを含む熱音響発電システムの概略構成を模式的に示す図である。FIG. 1 is a view schematically showing a schematic configuration of a thermoacoustic power generation system including a thermoacoustic engine according to the present invention. 図2は、図1に示した熱音響エンジンの構成を模式的に示す図である。FIG. 2 is a view schematically showing the configuration of the thermoacoustic engine shown in FIG. 図3は、図2に示した蓄熱器の端面(複数の流路)の一例を示す図である。FIG. 3 is a view showing an example of an end face (a plurality of flow paths) of the heat accumulator shown in FIG. 図4は、図2に示した高温側熱交換器の平面図である。FIG. 4 is a plan view of the high temperature side heat exchanger shown in FIG. 図5は、変形例に係る高温側熱交換器の平面図である。FIG. 5 is a plan view of a high temperature side heat exchanger according to a modification.
 以下、本発明に係る熱音響エンジンの実施形態について図面を参照しながら説明する。 Hereinafter, an embodiment of a thermoacoustic engine according to the present invention will be described with reference to the drawings.
(構成)
 図1に示すように、熱音響発電システム100は、金属製の配管からなる配管構成部101を備えている。配管構成部101は、環状(ループ状)の配管部分である環状配管102と、環状配管102から分岐し且つその管内空間が環状配管102の管内空間と連通する分岐配管103と、を含む。この環状配管102が本発明の「熱音響用配管」に相当する。
(Constitution)
As shown in FIG. 1, the thermoacoustic power generation system 100 includes a pipe configuration unit 101 made of metal piping. The pipe configuration part 101 includes an annular pipe 102 which is an annular (loop-like) pipe part, and a branch pipe 103 which is branched from the annular pipe 102 and whose inner space communicates with the inner space of the annular pipe 102. The annular pipe 102 corresponds to the “thermoacoustic pipe” in the present invention.
 分岐配管103は、環状配管102から分岐する分岐点を一方端103aとし、この一方端103aから他方端103bまで長尺状に延びる配管部分である。分岐配管103が他方端103bにてエネルギー取り出し部160によって封止されている。環状配管102及び分岐配管103の双方に所定の作動気体(本実施形態では、ヘリウム)が所定圧力下で封入されている。尚、作動気体としては、ヘリウムに代えて或いは加えて、窒素、アルゴン、空気、これらの混合気体等が採用され得る。 The branch pipe 103 is a pipe portion having a branch point branched from the annular pipe 102 as one end 103 a and extending in a long shape from the one end 103 a to the other end 103 b. The branch pipe 103 is sealed by the energy outlet 160 at the other end 103 b. A predetermined working gas (in this embodiment, helium) is sealed in both the annular pipe 102 and the branch pipe 103 under a predetermined pressure. As the working gas, instead of or in addition to helium, nitrogen, argon, air, a mixed gas of these, or the like may be employed.
 環状配管102には、直列に接続された3つの熱音響エンジン(「原動機」ともいう)110が設けられている。これら3つの熱音響エンジン110によって、所謂「多段型の熱音響エンジン」が構成されている。各熱音響エンジン110は、環状配管102の管内に組み込まれた蓄熱器111と、蓄熱器111の高温部である一端部111aに連結された高温側熱交換器112と、蓄熱器111の常温部(或いは低温部)である他端部111bに連結された低温側熱交換器113と、を備えている。なお、熱音響エンジン110の設置数は、3つに限定されるものではなく、必要に応じてその他の設置数が選択され得る。 The annular pipe 102 is provided with three thermoacoustic engines (also referred to as “motors”) 110 connected in series. The three thermoacoustic engines 110 constitute a so-called "multistage thermoacoustic engine". Each thermoacoustic engine 110 includes a heat storage device 111 incorporated in the pipe of the annular pipe 102, a high temperature side heat exchanger 112 connected to one end 111a which is a high temperature part of the heat storage device 111, and a normal temperature part of the heat storage device 111. And a low temperature side heat exchanger 113 connected to the other end 111b which is a low temperature part. Note that the number of installed thermoacoustic engines 110 is not limited to three, and other numbers may be selected as necessary.
 図2、及び、図3に示すように、蓄熱器111は、環状配管102の配管長手方向(配管の延在方向、x軸方向)に垂直な方向の断面の形状が円形となる円柱状の構造体である。蓄熱器111の配管長手方向の両端面は、配管長手方向(x軸方向)と垂直な平面である。蓄熱器111は、一端部111aと他端部111bとの間で配管長手方向(x軸方向)に沿って互いに平行に延びる貫通した複数の流路111cを有する。この複数の流路111c内にて作動気体が振動するようになっている。 As shown in FIG. 2 and FIG. 3, the heat storage unit 111 has a cylindrical shape in which the cross-sectional shape in the direction perpendicular to the pipe longitudinal direction (extension direction of the pipe, x-axis direction) of the annular pipe 102 is circular. It is a structure. Both end surfaces of the heat accumulator 111 in the pipe longitudinal direction are planes perpendicular to the pipe longitudinal direction (x-axis direction). The heat accumulator 111 has a plurality of penetrating flow paths 111c extending in parallel with each other along the longitudinal direction (x-axis direction) of the pipe between the one end 111a and the other end 111b. The working gas vibrates in the plurality of flow paths 111c.
 図3に示す例では、複数の流路111cは、蓄熱器111の内部を縦横に仕切る多数の壁によってマトリクス状に区画・形成されている。なお、蓄熱器111の内部にて配管長手方向に延びる貫通した複数の流路が形成されている限りにおいて、蓄熱器111の内部は、ハニカム状等を含みどのように仕切られていてもよい。 In the example shown in FIG. 3, the plurality of flow paths 111 c are partitioned and formed in a matrix by a plurality of walls dividing the inside of the heat accumulator 111 in the vertical and horizontal directions. As long as a plurality of penetrating channels extending in the longitudinal direction of the pipe are formed inside the heat accumulator 111, the inside of the heat accumulator 111 may be partitioned in any manner including a honeycomb shape and the like.
 蓄熱器111としては、例えば、典型的にはセラミック製の構造体や、ステンレス鋼によるメッシュ薄板の複数を微小ピッチで平行に積層した構造体、金属繊維からなる不織布状物などを用いることができる。尚、蓄熱器111として横断面が円形のもの代えて、横断面が楕円形、多角形等のものを採用することもできる。 As the heat accumulator 111, for example, a structure of typically ceramic, a structure in which a plurality of mesh thin plates made of stainless steel are laminated in parallel with a fine pitch, a non-woven material made of metal fibers, etc. can be used. . It should be noted that, instead of the heat storage unit 111 having a circular cross section, it is also possible to employ an oval, a polygon or the like on the cross section.
 蓄熱器111において、一端部111aと他端部111bとの間に所定の温度勾配が生じると、環状配管102内の作動気体が不安定になって配管長手方向に沿って自励振動する。この結果、配管長手方向に沿って振動する縦波による振動波(「音波」、「振動流」或いは「仕事流」ともいう)が形成され、この振動波が環状配管102の管内から分岐配管103の管内へと伝わるようになっている。 In the heat accumulator 111, when a predetermined temperature gradient is generated between the one end 111a and the other end 111b, the working gas in the annular pipe 102 becomes unstable and vibrates in the longitudinal direction of the pipe. As a result, an oscillating wave (also referred to as “sound wave”, “oscillating flow” or “work flow”) is formed by the longitudinal wave oscillating along the longitudinal direction of the pipe, and this oscillating wave is branched from the pipe of the annular pipe 102. It is transmitted to the inside of the
 図2に示すように、低温側熱交換器113は、冷却源130から、冷風、冷水等の冷却用流体が供給されるように構成されている。具体的には、低温側熱交換器113は、蓄熱器111の他端部111bに組み付けられる本体ブロック113aと、本体ブロック113aに組み付けられる導入管113b、とを備える。本体ブロック113aには、配管長手方向(x軸方向)に沿って貫通する円柱状の冷却用内部空間113cが形成されている。 As shown in FIG. 2, the low temperature side heat exchanger 113 is configured to be supplied with a cooling fluid such as cold air, cold water or the like from the cooling source 130. Specifically, the low temperature side heat exchanger 113 includes a main body block 113a assembled to the other end 111b of the heat accumulator 111, and an introduction pipe 113b assembled to the main body block 113a. A cylindrical cooling internal space 113c is formed in the main body block 113a along the longitudinal direction of the pipe (x-axis direction).
 冷却用内部空間113cは、蓄熱器111の複数の流路111cと連通しており、冷却用内部空間113c内にて作動気体が振動するようになっている。導入管113bは、冷却用内部空間113cを配管長手方向に直交する方向(z軸方向)に横断(貫通)するように、本体ブロック113aに気密的に組み付けられている。 The cooling internal space 113c is in communication with the plurality of flow paths 111c of the heat accumulator 111, so that the working gas vibrates in the cooling internal space 113c. The introduction pipe 113b is airtightly assembled to the main body block 113a so as to cross (penetrate) the cooling inner space 113c in the direction (z-axis direction) orthogonal to the longitudinal direction of the pipe.
 導入管113bは、冷却源130と接続されている。冷却源130から供給される冷却用流体を導入管113bに流すことによって、導入管113b内の冷却用流体と、本体ブロック113aの冷却用内部空間113c内の作動気体との間で熱交換が行われる。この結果、蓄熱器111の他端部111b周辺の作動気体、及び、蓄熱器111の他端部111bが冷却されるようになっている。熱交換後の温度が上昇した導入管113b内の冷却用流体は、冷却源130に戻されて再び冷却されるようになっている。 The introduction pipe 113 b is connected to the cooling source 130. By flowing the cooling fluid supplied from the cooling source 130 into the introduction pipe 113b, heat exchange is performed between the cooling fluid in the introduction pipe 113b and the working gas in the cooling internal space 113c of the main body block 113a. It will be. As a result, the working gas around the other end 111 b of the heat accumulator 111 and the other end 111 b of the heat accumulator 111 are cooled. The cooling fluid in the introduction pipe 113b whose temperature has risen after the heat exchange is returned to the cooling source 130 to be cooled again.
 図2に示すように、高温側熱交換器112は、管路120内を流れる常温より高温の流体が有する熱を、蓄熱器111の一端部111a周辺の作動気体、及び、蓄熱器111の一端部に伝達し、これらを加熱するように構成されている。管路120内を流れる常温より高温の流体は、典型的には、工場等の設備、及び、車両等から排出・廃棄される高温の廃棄流体であり、従って、管路120は、工場の煙突、及び、車両の排気管等である。 As shown in FIG. 2, the high temperature side heat exchanger 112 includes the heat of the fluid having a temperature higher than the normal temperature flowing in the pipe 120, the working gas around the one end 111 a of the heat accumulator 111, and one end of the heat accumulator 111 It is configured to transmit to the parts and heat them. The fluid having a temperature higher than the normal temperature flowing in the conduit 120 is typically a high-temperature waste fluid discharged and discarded from facilities such as a factory and vehicles and the like. Therefore, the conduit 120 is a chimney of a factory. And exhaust pipes of vehicles.
 高温側熱交換器112は、互いに離れて位置する管路120の一部と蓄熱器111の一端部111a(環状配管102の一部)とを連結する、長尺板状の中実部材である(後述する図4も参照)。高温側熱交換器112は、固体の熱伝導のみを利用して、互いに離れて位置する高温の流体と作動気体との間で熱交換を行わせるように構成されている。高温側熱交換器112の詳細な構成については後述する。 The high temperature side heat exchanger 112 is a long plate-like solid member which connects a part of the pipeline 120 located apart from each other and one end 111a of the heat accumulator 111 (a part of the annular pipe 102). (See also FIG. 4 described later). The high temperature side heat exchanger 112 is configured to perform heat exchange between the high temperature fluid and the working gas located apart from each other by utilizing only the heat conduction of the solid. The detailed configuration of the high temperature side heat exchanger 112 will be described later.
 上述した高温側熱交換器112による加熱作用と低温側熱交換器113による冷却作用との協働によって、蓄熱器111において一端部111aと他端部111bとの間に所定の温度勾配が生じる。即ち、高温側熱交換器112及び低温側熱交換器113は、配管構成部101に封入された作動気体を自励振動させるために蓄熱器111の複数の流路111cの両端部間に温度勾配が生じるように作動気体との間で熱交換を行う熱交換器を構成している。 The cooperation between the heating action by the high temperature side heat exchanger 112 and the cooling action by the low temperature side heat exchanger 113 creates a predetermined temperature gradient between the one end 111 a and the other end 111 b in the heat accumulator 111. That is, the high temperature side heat exchanger 112 and the low temperature side heat exchanger 113 have temperature gradients between both ends of the plurality of flow channels 111 c of the heat accumulator 111 in order to cause the working gas enclosed in the piping configuration unit 101 to vibrate by itself. The heat exchanger is configured to exchange heat with the working gas so that
 図1に戻り、分岐配管103は、環状配管102とタービン140との間に直線状に延在する第1配管部104と、タービン140を挟んで環状配管102とは反対側に直線状に延在する第2配管部105と、第1配管部104と第2配管部105を連結するようにクランク状に屈曲したクランク配管部106と、を備えている。 Referring back to FIG. 1, the branch piping 103 linearly extends on the opposite side of the annular piping 102 with the first piping portion 104 extending linearly between the annular piping 102 and the turbine 140 and the turbine 140 interposed therebetween. The existing second piping unit 105 and a crank piping unit 106 bent in a crank shape so as to connect the first piping unit 104 and the second piping unit 105 are provided.
 タービン140は、分岐配管103の管内に連通するように構成され、分岐配管103の管内に存在する作動気体の振動波による音響エネルギー(「振動エネルギー」ともいう)を機械的な回転エネルギーに変換する機能を果たす。即ち、このタービン140は、分岐配管103に設けられ熱音響エンジン110における作動気体の自励振動によって生じた音響エネルギーを受けて回転する。タービン140には、このタービン140の回転による運動エネルギー(回転エネルギー)を電力に変換するための発電機150が接続されている。 The turbine 140 is configured to be in communication with the pipe of the branch pipe 103, and converts acoustic energy (also referred to as “vibration energy”) by vibration waves of the working gas present in the pipe of the branch pipe 103 into mechanical rotational energy. Perform a function. That is, the turbine 140 is provided in the branch pipe 103 and rotates by receiving acoustic energy generated by self-oscillation of the working gas in the thermoacoustic engine 110. Connected to the turbine 140 is a generator 150 for converting kinetic energy (rotational energy) by the rotation of the turbine 140 into electric power.
 分岐配管103の他方端103b、即ち、第2配管105の両側の管端部のうちタービン140とは反対側の管端部には、作動気体の音響エネルギーを分岐配管103から管外に取り出すためのエネルギー取り出し部160が設けられている。このエネルギー取り出し部160は、典型的には圧力振動を受けて電気エネルギー(電力)を出力することが可能な公知のリニア発電機やスピーカー型発電機等によって構成される。 At the other end 103 b of the branch pipe 103, that is, at the pipe end opposite to the turbine 140 among the pipe ends on both sides of the second pipe 105, acoustic energy of the working gas is extracted from the branch pipe 103 to the outside of the pipe The energy extraction unit 160 is provided. The energy extracting unit 160 is typically configured by a known linear generator, a speaker generator, or the like capable of outputting electric energy (electric power) under pressure vibration.
(作動)
 以下、上記のように構成された熱音響発電システム100の作動について、前述の内容に沿って簡単に説明する。図1に示すように、各熱音響エンジン110において、蓄熱器111の一端部111aが高温側熱交換器112によって加熱され、且つ蓄熱器111の他端部111bが低温側熱交換器113によって冷却されると、蓄熱器111の一端部111aと他端部111bとの間に温度勾配が生じる。この温度勾配によって、各蓄熱器111では主として作動気体の自励振動による振動波が形成される。この振動波(音波)による音響エネルギー(振動エネルギー)は、配管構成部101の環状配管102から分岐配管103を通じてタービン140に伝達され、更にはエネルギー取り出し部160に伝達される。この場合、分岐配管103は、熱音響エンジン110において発生した作動気体の音響エネルギーを導くための共鳴管(導波管)として構成される。音響エネルギーの一部は、エネルギー取り出し手段であるタービン140によって取り出され当該タービン140に接続された発電機150によって電気エネルギー(電力)に変換され、またエネルギー取り出し部160によって取り出されて所定のエネルギー(例えば、振動エネルギーや電気エネルギー等)に変換される。
(Operation)
Hereinafter, the operation of the thermoacoustic power generation system 100 configured as described above will be briefly described in line with the above description. As shown in FIG. 1, in each thermoacoustic engine 110, one end 111 a of the heat accumulator 111 is heated by the high temperature heat exchanger 112, and the other end 111 b of the heat accumulator 111 is cooled by the low temperature heat exchanger 113. Then, a temperature gradient is generated between the one end 111 a and the other end 111 b of the heat accumulator 111. Due to this temperature gradient, in each heat accumulator 111, an oscillating wave is formed mainly by the self-excited oscillation of the working gas. The acoustic energy (vibration energy) by the vibration wave (sound wave) is transmitted from the annular pipe 102 of the pipe configuration section 101 to the turbine 140 through the branch pipe 103 and further transmitted to the energy extracting section 160. In this case, the branch pipe 103 is configured as a resonant pipe (waveguide) for guiding the acoustic energy of the working gas generated in the thermoacoustic engine 110. A portion of the acoustic energy is extracted by a turbine 140 which is an energy extracting means, converted into electric energy (electric power) by a generator 150 connected to the turbine 140, and extracted by an energy extracting unit 160 to a predetermined energy (power). For example, it is converted into vibration energy, electrical energy, etc.).
(高温側熱交換器の構成、並びに、作用・効果)
 上述のように、高温側熱交換器112は、熱源(常温より高温の加熱源)として、工場等の設備、及び、車両等から排出・廃棄される高温の廃棄流体を利用している。この場合、高温側熱交換器112として、低温側熱交換器113と同様、管路120から、高温の廃棄流体が供給されるように構成され得る。即ち、高温側熱交換器112として、管路120から分岐・延出させた分岐管を、蓄熱器111の一端部111aに組み付けられた本体ブロックに接続し、本体ブロックの内部空間にて横断させる構成が考えられる。
(Configuration of high-temperature side heat exchanger, and action and effect)
As described above, the high temperature side heat exchanger 112 uses facilities such as a factory and high temperature waste fluid discharged and discarded from a vehicle or the like as a heat source (a heating source having a temperature higher than normal temperature). In this case, as the high temperature side heat exchanger 112, similar to the low temperature side heat exchanger 113, the high temperature waste fluid may be supplied from the pipe line 120. That is, as the high temperature side heat exchanger 112, the branch pipe branched and extended from the pipe line 120 is connected to the main body block assembled to the one end 111a of the heat accumulator 111, and traversed in the internal space of the main body block. The configuration is conceivable.
 しかしながら、この構成では、分岐管内にて、廃棄流体の通過に起因する煤や汚れが付着し、分岐管の詰まりや劣化が発生する可能性がある。また、蓄熱器111の一端部111aに組み付けられた本体ブロックにて分岐管を気密的に横断(貫通)させる必要があるため、高温側熱交換器そのものの構造が複雑になり、高温側熱交換器そのものの製造コストが高くなる。更には、管路120から分岐管を分岐させるため、管路120を大幅に改造する必要がある。 However, in this configuration, dirt and dirt may be attached in the branch pipe due to the passage of the waste fluid, which may cause clogging or deterioration of the branch pipe. In addition, since the branch pipe needs to be airtightly crossed (penetrated) by the main body block assembled to one end 111a of the heat accumulator 111, the structure of the high temperature side heat exchanger itself becomes complicated, and the high temperature side heat exchange The cost of manufacturing the vessel itself is high. Furthermore, in order to branch the branch pipe from the pipe line 120, the pipe line 120 needs to be largely remodeled.
 そこで、本実施形態では、図2及び図4に示すように、高温側熱交換器112が、熱伝導性が良好な固体材料(典型的には、金属材料)からなる長尺板状の1つの中実部材のみで構成されている。具体的には、高温側熱交換器112は、蓄熱器111の一端部111aに連結された第1部分112aと、管路120に介挿・固定された第2部分112bと、第1部分112aから一体で環状配管102の外部に延出すると共に第1部分112aと第2部分112bとを一体で連結する連結部分112cと、から構成される。本例では、連結部分112cは、蓄熱器111の一端部111aと管路120との間を結ぶ方向(z軸方向)に沿って、第1、第2部分112a,112b間を直線状に延びている。なお、連結部分112cが、第1、第2部分112a,112b間を屈曲しながら延びていてもよいことはもちろんである。 Therefore, in the present embodiment, as shown in FIG. 2 and FIG. 4, the high temperature side heat exchanger 112 is a long plate 1 made of a solid material (typically, a metal material) having good thermal conductivity. It consists only of two solid members. Specifically, the high temperature side heat exchanger 112 includes a first portion 112a connected to one end 111a of the heat accumulator 111, a second portion 112b interposed and fixed in the pipe line 120, and a first portion 112a. And a connecting portion 112c integrally extending out of the annular pipe 102 and integrally connecting the first portion 112a and the second portion 112b. In the present example, the connecting portion 112c linearly extends between the first and second portions 112a and 112b along the direction (z-axis direction) connecting the one end portion 111a of the heat accumulator 111 and the pipe line 120. ing. Of course, the connecting portion 112c may extend while bending between the first and second portions 112a and 112b.
 第1部分112aには、板厚方向(x軸方向、配管長手方向)に貫通する貫通孔である第1開口部112a1が形成されている。第1開口部112a1の輪郭形状は、円柱状の蓄熱器111(図3を参照)の内径と略同一寸法の直径を有する円形状となっている。第1開口部112a1は、蓄熱器111の複数の流路111c(図3を参照)と連通しており、作動気体が第1開口部112a1を通過可能となっている。 In the first portion 112a, a first opening 112a1 is formed which is a through hole penetrating in the thickness direction (x-axis direction, piping longitudinal direction). The outline shape of the first opening 112a1 is a circular shape having a diameter substantially the same as the inner diameter of the cylindrical heat accumulator 111 (see FIG. 3). The first opening 112a1 is in communication with the plurality of flow paths 111c (see FIG. 3) of the heat accumulator 111, and the working gas can pass through the first opening 112a1.
 第1開口部112a1は、複数の仕切り部112a2によって仕切られた複数の開口で構成されている。複数の仕切り部112a2それぞれは、第1開口部112a1における連結部分112c側(z軸正方向側)の縁部から連結部分112c側と反対側(z軸負方向側)の縁部の近傍まで、連結部分112cの延在方向(z軸方向)に沿って互いに平行に延びる片持ち梁状の形状を有している。 The first opening 112a1 is composed of a plurality of openings partitioned by a plurality of partition portions 112a2. Each of the plurality of partition portions 112a2 extends from the edge of the first opening 112a1 on the connection portion 112c side (z-axis positive direction side) to the vicinity of the edge on the opposite side (z-axis negative direction side) of the connection portion 112c It has a cantilever shape extending parallel to each other along the extending direction (z-axis direction) of the connecting portion 112c.
 第2部分112bには、板厚方向(x軸方向、管路120の延在方向)に貫通する貫通孔である第2開口部112b1が形成されている。第2開口部112b1の輪郭形状は、円管状の管路120(図2を参照)の内径と略同一寸法の直径を有する円形状となっている。第2開口部112b1は、管路120の内部空間と連通しており、高温の廃棄流体が第2開口部112b1を通過可能となっている。 The second portion 112 b is formed with a second opening 112 b 1 which is a through hole penetrating in the thickness direction (x-axis direction, extending direction of the conduit 120). The outline shape of the second opening 112b1 is a circle having a diameter substantially the same size as the inner diameter of the tubular conduit 120 (see FIG. 2). The second opening 112 b 1 is in communication with the internal space of the conduit 120, and high temperature waste fluid can pass through the second opening 112 b 1.
 第2開口部112b1は、複数の仕切り部112b2によって仕切られた複数の開口で構成されている。複数の仕切り部112b2それぞれは、第2開口部112b1における連結部分112c側(z軸負方向側)の縁部から連結部分112c側と反対側(z軸正方向側)の縁部の近傍まで、連結部分112cの延在方向(z軸方向)に沿って互いに平行に延びる片持ち梁状の形状を有している。 The second opening 112 b 1 is configured of a plurality of openings partitioned by a plurality of partition portions 112 b 2. Each of the plurality of partition portions 112b2 extends from the edge of the second opening 112b1 on the connection portion 112c side (z-axis negative direction side) to the vicinity of the edge on the opposite side (z-axis positive direction side) of the connection portion 112c It has a cantilever shape extending parallel to each other along the extending direction (z-axis direction) of the connecting portion 112c.
 本例では、第1開口部112a1が第2開口部112b1より大きいことに起因して、第1部分112aが第2部分112bより大きくなっている。このため、連結部分112cは、第2部分112bから第1部分112aに向けて幅寸法(y軸方向の寸法)が次第に大きくなる形状を有している。なお、第1部分112aが第2部分112bより小さくても、或いは、第1、第2部分112a,112bの大きさが同じであってもよいことはもちろんである。 In this example, the first portion 112a is larger than the second portion 112b due to the first opening 112a1 being larger than the second opening 112b1. Therefore, the connecting portion 112c has a shape in which the width dimension (dimension in the y-axis direction) gradually increases from the second portion 112b toward the first portion 112a. Of course, the first portion 112a may be smaller than the second portion 112b, or the sizes of the first and second portions 112a and 112b may be the same.
 以上の構成を有する高温側熱交換器112によれば、環状配管102の外部に位置する管路120を通過する常温より高温の流体(典型的には、廃棄流体)が有する熱が、固体の熱伝導によって、第2部分112b、連結部分112c、及び第1部分112aを順に介して、第1部分112aの近傍(即ち、蓄熱器111の一端部111aの近傍)に位置する作動気体に伝達され、当該作動気体、及び、蓄熱器111の一端部111aが加熱される。 According to the high temperature side heat exchanger 112 having the above configuration, the heat of the fluid (typically, the waste fluid) having a temperature higher than the normal temperature passing through the pipe line 120 located outside the annular pipe 102 is solid By heat conduction, it is transmitted to the working gas located in the vicinity of the first portion 112a (that is, in the vicinity of one end 111a of the heat accumulator 111) sequentially through the second portion 112b, the connection portion 112c, and the first portion 112a. The working gas and one end 111 a of the heat accumulator 111 are heated.
 換言すれば、高温の流体が通過する分岐管を環状配管102の内部に横断(貫通)させることなく、固体の熱伝導のみを利用して、互いに離れて位置する高温の流体と作動気体との間で熱交換を行わせることができる。このため、高温側熱交換器112を、簡易な構成で且つ低い製造コストで製造することができる。 In other words, without crossing (penetrating) the branch pipe through which the high temperature fluid passes into the inside of the annular pipe 102, only the heat conduction of the solid is used to separate the high temperature fluid and the working gas located apart from each other. Heat exchange can be performed between them. For this reason, the high temperature side heat exchanger 112 can be manufactured with a simple configuration and low manufacturing cost.
 また、蓄熱器111内の複数の流路111cに連通する第1部分112aの第1開口部112a1が、片持ち梁状の複数の仕切り部112a2によって仕切られた複数の開口で構成される。これにより、このような複数の仕切り部112a2がない場合(即ち、第1開口部112a1が1つの大きな貫通孔である場合)と比べて、作動気体と接触する第1開口部112a1の表面積が大きくなるので、第1部分112aと作動気体との間の熱伝達効率が高くなる。 Further, the first opening 112a1 of the first portion 112a in communication with the plurality of flow paths 111c in the heat accumulator 111 is constituted by a plurality of openings partitioned by a plurality of cantilevered partition portions 112a2. Thereby, the surface area of the first opening 112a1 in contact with the working gas is larger than that in the case where there are no such partition portions 112a2 (that is, the first opening 112a1 is one large through hole). Thus, the heat transfer efficiency between the first portion 112a and the working gas is enhanced.
 また、このような複数の仕切り部112a2がない場合には、蓄熱器111の一端部111a近傍で配管長手方向(x軸方向)に沿って自励振動している作動気体が蓄熱器111の一端111aから蓄熱器111の外部(即ち、第1開口部112a1)に移動した直後に広い空間に突然進入することに起因して、作動気体の自励振動が減衰する現象が発生し易い。これに対し、このような複数の仕切り部112a2が設けられることで、このような現象が発生し難くなり、高温の流体が有する熱エネルギーから音響エネルギーへの変換効率が高くなる。 Further, in the case where there are no such partition portions 112 a 2, the working gas self-excited vibrating in the longitudinal direction (x-axis direction) of the pipe in the vicinity of one end 111 a of the heat accumulator 111 is one end of the heat accumulator 111 Due to the sudden approach to the wide space immediately after moving from 111a to the outside of the heat accumulator 111 (that is, the first opening 112a1), a phenomenon in which the self-excited vibration of the working gas attenuates tends to occur. On the other hand, by providing such a plurality of partition parts 112a2, such a phenomenon becomes difficult to occur, and the conversion efficiency from thermal energy of the high-temperature fluid to acoustic energy becomes high.
 また、片持ち梁状の複数の仕切り部112a2それぞれの基端が、第1開口部112a1における連結部分112c側(z軸正方向側)の縁部(即ち、高温の流体の熱が伝導してくる側の縁部)と繋がっている。従って、複数の仕切り部112a2それぞれの基端が、第1開口部112a1における連結部分112c側の縁部とは異なる位置にある縁部と繋がっている態様と比べて、高温の流体の熱を複数の仕切り部112a2に効率良く伝導することができる。 Further, the base end of each of the plurality of cantilevered partition portions 112a2 conducts the heat of the high temperature fluid (that is, the edge of the first opening 112a1 on the side of the connecting portion 112c (the z-axis positive direction side) It is connected with the edge of the coming side). Therefore, compared to the aspect in which the base end of each of the plurality of partition portions 112a2 is connected to the edge at a position different from the edge on the connection portion 112c side in the first opening 112a1, Can be efficiently conducted to the partition portion 112a2 of the
 また、片持ち梁状の複数の仕切り部112a2それぞれの先端(自由端)が、第1開口部112a1における連結部分112c側と反対側(z軸負方向側)の縁部と繋がっていない(即ち、先端と縁部との間に空気層が介在する)。従って、複数の仕切り部112a2それぞれの先端が、第1開口部112a1における連結部分112c側と反対側の縁部にも繋がっている態様(即ち、複数の仕切り部112a2それぞれが互いに平行に延びる両持ち梁状の形状を有している態様)と比べて、複数の仕切り部112a2の温度が、相対的に低温となっている「第1開口部112a1における連結部分112c側と反対側の縁部」による影響を受けて低下する現象が発生し難くなる。この結果、複数の仕切り部112a2の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 In addition, the tip (free end) of each of the plurality of cantilevered partitions 112a2 is not connected to the edge of the first opening 112a1 on the opposite side (z-axis negative direction side) to the connecting portion 112c side (ie , An air layer is interposed between the tip and the edge). Therefore, an aspect in which the tip of each of the plurality of partition portions 112a2 is also connected to the edge of the first opening 112a1 opposite to the connection portion 112c side (that is, each of the plurality of partition portions 112a2 extends in parallel with each other) "The edge of the first opening 112a1 on the opposite side to the connecting portion 112c side" in which the temperatures of the plurality of partitions 112a2 are relatively low compared to the embodiment having a beam shape) It becomes difficult to generate the phenomenon of lowering due to the influence of As a result, since the temperatures of the plurality of partition portions 112a2 can be maintained at a high temperature, the heat transfer efficiency between the high temperature fluid and the working gas is enhanced.
 また、管路120の内部空間に連通する第2部分112bの第2開口部112b1が、片持ち梁状の複数の仕切り部112b2によって仕切られた複数の開口で構成される。これにより、このような複数の仕切り部112b2がない場合(即ち、第2開口部112b1が1つの大きな貫通孔である場合)と比べて、高温の流体と接触する第2開口部112b1の表面積が大きくなるので、第2部分112bと高温の流体との間の熱伝達効率が高くなる。 Further, the second opening 112b1 of the second portion 112b communicating with the internal space of the conduit 120 is constituted by a plurality of openings partitioned by a plurality of cantilevered partition portions 112b2. Thereby, the surface area of the second opening 112b1 in contact with the high temperature fluid is smaller than in the case where there are no such partition portions 112b2 (that is, the second opening 112b1 is one large through hole). As it becomes larger, the heat transfer efficiency between the second portion 112 b and the high temperature fluid becomes higher.
 また、片持ち梁状の複数の仕切り部112b2それぞれの基端が、第2開口部112b1における連結部分112c側(z軸負方向側)の縁部(即ち、高温の流体の熱が伝導していく側の縁部)と繋がっている。従って、複数の仕切り部112b2それぞれの基端が、第2開口部112b1における連結部分112c側の縁部とは異なる位置にある縁部と繋がっている態様と比べて、高温の流体の熱を連結部分112cに効率良く伝導することができる。 Further, the base end of each of the plurality of cantilevered partition portions 112b2 conducts the heat of the high temperature fluid (that is, the edge of the second opening portion 112b1 on the side of the connecting portion 112c (the z-axis negative direction side) Connected to the edge of the Therefore, compared with the aspect in which the base end of each of the plurality of partition parts 112b2 is connected to the edge at a position different from the edge on the connection part 112c side in the second opening 112b1, the heat of the high temperature fluid is connected It can conduct efficiently to portion 112c.
 また、片持ち梁状の複数の仕切り部112b2それぞれの先端(自由端)が、第2開口部112b1における連結部分112c側と反対側(z軸正方向側)の縁部と繋がっていない(即ち、先端と縁部との間に空気層が介在する)。従って、複数の仕切り部112b2それぞれの先端が、第2開口部112b1における連結部分112c側と反対側の縁部にも繋がっている態様(即ち、複数の仕切り部112b2それぞれが互いに平行に延びる両持ち梁状の形状を有している態様)と比べて、複数の仕切り部112b2の温度が、相対的に低温となっている「第2開口部112b1における連結部分112c側と反対側の縁部」による影響を受けて低下する現象が発生し難くなる。この結果、複数の仕切り部112b2の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 In addition, the tip (free end) of each of the plurality of cantilevered partitions 112b2 is not connected to the edge of the second opening 112b1 on the opposite side (z-axis positive direction side) to the connecting portion 112c side (that is, , An air layer is interposed between the tip and the edge). Therefore, an aspect in which the tip of each of the plurality of partition portions 112b2 is also connected to the edge of the second opening 112b1 opposite to the connection portion 112c side (that is, both ends of the plurality of partition portions 112b2 extend in parallel with each other) "The edge of the second opening 112b1 on the opposite side to the connecting portion 112c side" in which the temperatures of the plurality of partitions 112b2 are relatively lower than in the embodiment having a beam-like shape) It becomes difficult to generate the phenomenon of lowering due to the influence of As a result, since the temperatures of the plurality of partition portions 112b2 can be maintained at a high temperature, the heat transfer efficiency between the high temperature fluid and the working gas is enhanced.
 本発明は、上記の典型的な実施形態のみに限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の応用や変形が考えられる。例えば、上記実施形態を応用した次の各形態を実施することもできる。 The invention is not limited to the exemplary embodiments described above, but various applications and modifications are conceivable without departing from the object of the invention. For example, the following embodiments to which the above embodiment is applied can be implemented.
 上記実施形態では、第1部分112aの第1開口部112a1が、片持ち梁状の複数の仕切り部112a2によって仕切られているが、両持ち梁状の複数の仕切り部によって仕切られていてもよい。また、片持ち梁状の複数の仕切り部112a2の基端が、第1開口部112a1における連結部分112c側(z軸正方向側)の縁部と繋がっているが、第1開口部112a1における連結部分112c側とは異なる位置の縁部と繋がっていてもよい。 In the above embodiment, the first opening 112a1 of the first portion 112a is partitioned by the plurality of cantilevered partitions 112a2. However, the first opening 112a1 may be partitioned by the plurality of cantilevered partitions. . Further, although the base ends of the plurality of cantilevered partitions 112a2 are connected to the edge of the first opening 112a1 on the side of the connecting portion 112c (the z-axis positive direction side), the connection at the first opening 112a1 is It may be connected to the edge at a position different from the portion 112 c side.
 また、上記実施形態では、第2部分112bの第2開口部112b1が、片持ち梁状の複数の仕切り部112b2によって仕切られているが、両持ち梁状の複数の仕切り部によって仕切られていてもよい。また、片持ち梁状の複数の仕切り部112b2の基端が、第2開口部112b1における連結部分112c側(z軸負方向側)の縁部と繋がっているが、第2開口部112b1における連結部分112c側とは異なる位置の縁部と繋がっていてもよい。更には、このような複数の仕切り部112b2がなくてもよい(即ち、第2開口部112b1が1つの大きな貫通孔であってもよい)。 In the above embodiment, the second opening 112b1 of the second portion 112b is partitioned by the plurality of cantilevered partitions 112b2. However, the second opening 112b1 is partitioned by the plurality of cantilevered partitions. It is also good. The base ends of the plurality of cantilevered partitions 112b2 are connected to the edge of the second opening 112b1 on the side of the connecting portion 112c (the z-axis negative direction side), but the connection at the second opening 112b1 is It may be connected to the edge at a position different from the portion 112 c side. Furthermore, the plurality of partition portions 112b2 may not be provided (that is, the second opening 112b1 may be one large through hole).
 また、上記実施形態では、高温側熱交換器112が、長尺板状の1つの中実部材で構成されているが、平面視同一形状の薄板部材を積層して構成されてもよい。高温側熱交換器112が板厚の比較的大きい1つの中実部材で構成される場合には、非常に複雑な形状を有する片持ち梁状の複数の仕切り部112a2,112b2を形成するために、高温側熱交換器112をワイヤーカット放電加工等を用いて製造する必要がある。これに対し、高温側熱交換器112が薄板部材を積層して構成される場合には、各薄板部材をプレス加工等で製造することができるので、高温側熱交換器112の製造コストを低減することが可能である。 Moreover, in the said embodiment, although the high temperature side heat exchanger 112 is comprised by one solid member of elongate plate shape, you may be comprised laminating | stacking the thin plate member of planar view same shape. When the high temperature side heat exchanger 112 is formed of one solid member having a relatively large thickness, in order to form a plurality of cantilevered partition portions 112a2 and 112b2 having a very complicated shape. The high temperature side heat exchanger 112 needs to be manufactured using wire cut electrical discharge machining or the like. On the other hand, when the high temperature side heat exchanger 112 is configured by laminating thin plate members, each thin plate member can be manufactured by press processing etc., so the manufacturing cost of the high temperature side heat exchanger 112 is reduced. It is possible.
 また、上記実施形態においては、図5に示すように、高温側熱交換器112の外縁の近傍部分に、外縁に沿う貫通孔であるスリット112dが形成されてもよい。図5に示す例では、高温側熱交換器112の外縁の4か所(第1部分112aにおける連結部分112c側と反対側の縁部、第2部分112bにおける連結部分112c側と反対側の縁部、連結部分112cにおける幅方向両側のそれぞれの縁部)にスリット112dが形成されているが、これらのうち1か所、2か所、或いは3か所にスリット112dが形成されていてもよい。 Further, in the above embodiment, as shown in FIG. 5, a slit 112 d may be formed in the vicinity of the outer edge of the high temperature side heat exchanger 112, which is a through hole along the outer edge. In the example shown in FIG. 5, the outer edge of the high temperature side heat exchanger 112 is located at four places (the edge opposite to the connecting portion 112c side in the first portion 112a, the edge opposite to the connecting portion 112c in the second portion 112b Slits 112d are formed on the both sides of the connecting portion 112c in the width direction), but the slits 112d may be formed at one, two or three of them. .
 このように、スリット112dを設けることで、高温側熱交換器112における外縁部と、外縁部を除く中央部分(即ち、高温の流体の熱が第2部分112bから第1部分112aへ伝導していく主たる経路となる部分)との間に空気層が介在する。従って、このようなスリット112dが全く設けられていない場合(図4を参照)と比べて、高温側熱交換器112の中央部分の温度が、相対的に低温となっている高温側熱交換器112の外縁部による影響を受けて低下する現象が発生し難くなる。この結果、高温側熱交換器112の中央部分の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 Thus, by providing the slit 112d, the heat is transferred from the second portion 112b to the first portion 112a at the outer edge portion of the high temperature side heat exchanger 112 and at the central portion excluding the outer edge portion. An air layer intervenes between the main route and the main route). Therefore, the high temperature side heat exchanger in which the temperature of the central portion of the high temperature side heat exchanger 112 is relatively low compared to the case where such slits 112d are not provided at all (see FIG. 4). Under the influence of the outer edge portion 112, the phenomenon of decreasing is less likely to occur. As a result, since the temperature of the central portion of the high temperature side heat exchanger 112 can be maintained at a high temperature, the heat transfer efficiency between the high temperature fluid and the working gas is high.
 110…熱音響エンジン、102…環状配管(熱音響用配管)、111…蓄熱器、111a…一端部、111b…他端部、111c…複数の流路、112…高温側熱交換器、112a…第1部分、112a1…第1開口部、112a2…仕切り部、112b…第2部分、112b1…第2開口部、112b2…仕切り部、112c…連結部分、112d…スリット、113…低温側熱交換器 DESCRIPTION OF SYMBOLS 110 ... Thermoacoustic engine 102 ... Annular piping (piping for thermoacoustics) 111 ... Thermal storage device 111 ... One end part, 111b ... Other end part 111c ... Several flow paths 112 ... High temperature side heat exchanger, 112a ... 1st part, 112a1 ... 1st opening, 112a 2 ... partition, 112b ... 2nd part, 112b 1 ... 2nd opening, 112b 2 ... partition, 112c ... connected part, 112d ... slit, 113 ... low temperature side heat exchanger

Claims (3)

  1.  作動気体が封入された熱音響用配管に組み込まれる熱音響エンジンであって、
     前記熱音響用配管の長手方向に貫通する複数の流路を有する蓄熱器と、
     前記蓄熱器の前記長手方向の一端部に連結され、前記蓄熱器の前記一端部を加熱する高温側熱交換器と、
     前記蓄熱器の前記長手方向の他端部に連結され、前記蓄熱器の前記他端部を冷却する低温側熱交換器と、
     を備え、
     前記高温側熱交換器は、
     前記蓄熱器の前記一端部に連結され、前記複数の流路に連通すると共に前記作動気体が通過する貫通孔である第1開口部が形成された第1部分と、
     前記熱音響用配管の外部に位置すると共に常温より高温の流体が通過する流路に介挿され、前記流体が通過する貫通孔である第2開口部が形成された第2部分と、
     前記第1部分から一体で前記熱音響用配管の外部に延出すると共に前記第1部分と前記第2部分とを一体で連結する連結部分と、
     を備え、熱伝導性を有する固体材料で構成され、
     前記第1開口部は、仕切り部によって仕切られている、熱音響エンジン。
    A thermoacoustic engine incorporated in thermoacoustic piping in which a working gas is sealed, comprising:
    A heat accumulator having a plurality of flow paths penetrating in the longitudinal direction of the thermoacoustic pipe;
    A high temperature side heat exchanger connected to one end of the heat accumulator in the longitudinal direction to heat the one end of the heat accumulator;
    A low temperature side heat exchanger connected to the other end of the heat accumulator in the longitudinal direction to cool the other end of the heat accumulator;
    Equipped with
    The high temperature side heat exchanger
    A first portion connected to the one end of the heat accumulator and in communication with the plurality of flow paths and formed with a first opening which is a through hole through which the working gas passes;
    A second portion having a second opening which is a through hole which is located outside the thermoacoustic pipe and through which a fluid having a temperature higher than normal temperature passes and which passes the fluid;
    A connecting portion integrally extending from the first portion to the outside of the thermoacoustic pipe and integrally connecting the first portion and the second portion;
    And is made of a solid material having thermal conductivity,
    The thermoacoustic engine, wherein the first opening is partitioned by a partition.
  2.  請求項1に記載の熱音響エンジンにおいて、
     前記仕切り部は、前記第1開口部における前記連結部分側の縁部から前記連結部分側と反対側の縁部の近傍まで互いに平行に延びる片持ち梁状の形状を有している、熱音響エンジン。
    In the thermoacoustic engine according to claim 1,
    The thermo-acoustic transducer has a cantilever shape extending parallel to each other from the edge on the connection portion side of the first opening to the vicinity of the edge on the opposite side to the connection portion. engine.
  3.  請求項1又は請求項2に記載の熱音響エンジンにおいて、
     前記高温側熱交換器の外縁の近傍部分には、前記外縁に沿う貫通孔であるスリットが形成されている、熱音響エンジン。
    The thermoacoustic engine according to claim 1 or 2,
    The thermoacoustic engine in which the slit which is a through-hole along the said outer edge is formed in the vicinity of the outer edge of the said high temperature side heat exchanger.
PCT/JP2017/042118 2017-11-23 2017-11-23 Thermoacoustic engine WO2019102564A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019556032A JP6884491B2 (en) 2017-11-23 2017-11-23 Thermoacoustic engine
PCT/JP2017/042118 WO2019102564A1 (en) 2017-11-23 2017-11-23 Thermoacoustic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042118 WO2019102564A1 (en) 2017-11-23 2017-11-23 Thermoacoustic engine

Publications (1)

Publication Number Publication Date
WO2019102564A1 true WO2019102564A1 (en) 2019-05-31

Family

ID=66631849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042118 WO2019102564A1 (en) 2017-11-23 2017-11-23 Thermoacoustic engine

Country Status (2)

Country Link
JP (1) JP6884491B2 (en)
WO (1) WO2019102564A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110341924A (en) * 2018-04-03 2019-10-18 中国科学院理化技术研究所 A kind of Ship Propulsion System
JP7374534B1 (en) 2023-01-06 2023-11-07 関東冶金工業株式会社 Sonic generator, thermoacoustic engine and heat treatment furnace
JP7438581B1 (en) 2023-01-06 2024-02-27 関東冶金工業株式会社 Thermoacoustic engine and heat treatment furnace

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457467A1 (en) * 1979-01-17 1980-12-19 Collard Et A Trolart Sa G Heat exchanger for multiple fluids - has number of tubes side by side by side with cross plates penetrating each tube
JPS5769956U (en) * 1980-10-17 1982-04-27
CN1916404A (en) * 2006-09-05 2007-02-21 浙江大学 Heat-phonomotor driven by heat transfer through heat pipe
JP2009024931A (en) * 2007-07-19 2009-02-05 Tokyo Univ Of Agriculture & Technology Heat exchanger
JP2010043849A (en) * 2008-07-22 2010-02-25 Tai-Her Yang Isothermal system
JP2010138883A (en) * 2008-12-15 2010-06-24 Denso Corp Control device for exhaust emission control system
DE102010029663A1 (en) * 2010-06-02 2011-12-08 Willy Kretz Heat conducting module for use in heat exchanger, has separating base, and projections arranged at base for heat exchange with heat exchanger medium, where base comprises connection region connected with another heat conducting module
US20140209070A1 (en) * 2013-01-25 2014-07-31 Woodward, Inc. Heat Exchange in a Vehicle Engine System
JP2015055438A (en) * 2013-09-13 2015-03-23 学校法人東海大学 Thermoacoustic engine and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457467A1 (en) * 1979-01-17 1980-12-19 Collard Et A Trolart Sa G Heat exchanger for multiple fluids - has number of tubes side by side by side with cross plates penetrating each tube
JPS5769956U (en) * 1980-10-17 1982-04-27
CN1916404A (en) * 2006-09-05 2007-02-21 浙江大学 Heat-phonomotor driven by heat transfer through heat pipe
JP2009024931A (en) * 2007-07-19 2009-02-05 Tokyo Univ Of Agriculture & Technology Heat exchanger
JP2010043849A (en) * 2008-07-22 2010-02-25 Tai-Her Yang Isothermal system
JP2010138883A (en) * 2008-12-15 2010-06-24 Denso Corp Control device for exhaust emission control system
DE102010029663A1 (en) * 2010-06-02 2011-12-08 Willy Kretz Heat conducting module for use in heat exchanger, has separating base, and projections arranged at base for heat exchange with heat exchanger medium, where base comprises connection region connected with another heat conducting module
US20140209070A1 (en) * 2013-01-25 2014-07-31 Woodward, Inc. Heat Exchange in a Vehicle Engine System
JP2015055438A (en) * 2013-09-13 2015-03-23 学校法人東海大学 Thermoacoustic engine and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110341924A (en) * 2018-04-03 2019-10-18 中国科学院理化技术研究所 A kind of Ship Propulsion System
JP7374534B1 (en) 2023-01-06 2023-11-07 関東冶金工業株式会社 Sonic generator, thermoacoustic engine and heat treatment furnace
JP7438581B1 (en) 2023-01-06 2024-02-27 関東冶金工業株式会社 Thermoacoustic engine and heat treatment furnace

Also Published As

Publication number Publication date
JP6884491B2 (en) 2021-06-09
JPWO2019102564A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2019102564A1 (en) Thermoacoustic engine
JP3015786B1 (en) Loop tube air column acoustic wave refrigerator
US7404296B2 (en) Cooling device
JP7032987B2 (en) Thermoacoustic device
CN109312964B (en) Thermoacoustic engine and design method thereof
JP2012202586A (en) Stack for thermoacoustic device and manufacturing method of stack for thermoacoustic device
JP2013234820A (en) Thermoacoustic engine
JP4035069B2 (en) Piping equipment equipped with a sound amplifying / attenuator using thermoacoustic effect
JP5453950B2 (en) Thermoacoustic engine
JP6257412B2 (en) Method for manufacturing thermal / sonic wave conversion component, thermal / sonic wave conversion component, and thermal / sonic wave transducer
JP5526600B2 (en) Thermoacoustic engine
JP2016217265A (en) Thermoacoustic power generation system
CN107614869B (en) Thermoacoustic power generation system
JP6532819B2 (en) Thermoacoustic engine
JP5532959B2 (en) Thermoacoustic engine
JP5310287B2 (en) Thermoacoustic engine
JP6532818B2 (en) Method of manufacturing thermoacoustic engine
JP2006145176A (en) Thermoacoustic engine
JP5446498B2 (en) Thermoacoustic engine
WO2019087952A1 (en) Industrial furnace
JP2018091525A (en) Thermoacoustic engine and heat accumulator
JP6938095B2 (en) Thermoacoustic engine
JPWO2019049221A1 (en) Thermoacoustic temperature control system
JP2019019991A (en) Thermoacoustic temperature control system
JP2020165634A (en) Flow passage structure for heat exchanger and heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932995

Country of ref document: EP

Kind code of ref document: A1