JP2010138883A - Control device for exhaust emission control system - Google Patents

Control device for exhaust emission control system Download PDF

Info

Publication number
JP2010138883A
JP2010138883A JP2008318623A JP2008318623A JP2010138883A JP 2010138883 A JP2010138883 A JP 2010138883A JP 2008318623 A JP2008318623 A JP 2008318623A JP 2008318623 A JP2008318623 A JP 2008318623A JP 2010138883 A JP2010138883 A JP 2010138883A
Authority
JP
Japan
Prior art keywords
exhaust
reducing agent
heat
storage unit
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008318623A
Other languages
Japanese (ja)
Other versions
JP4888480B2 (en
Inventor
Tatsuro Koga
達郎 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008318623A priority Critical patent/JP4888480B2/en
Priority to DE102009058300.9A priority patent/DE102009058300B4/en
Publication of JP2010138883A publication Critical patent/JP2010138883A/en
Application granted granted Critical
Publication of JP4888480B2 publication Critical patent/JP4888480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To execute suitable elimination of NOx while attaining effective utilization of energy. <P>SOLUTION: This exhaust emission control system includes: an SCR catalyst 13 provided in an exhaust pipe 11 of an engine body E; a reducing agent storage part 20 for storing a solid reducing agent; an ammonia supply valve 31 for supplying a gaseous reducing agent generated from the solid reducing agent stored in the reducing agent storage part 20 to an upstream side of the SCR catalyst 13 in an exhaust passage; and a discharge port 15. The reducing agent storage part 20 is configured as a heating part for heating the solid reducing agent stored in the storage part 20 and uses exhaust heat in the exhaust pipe 11 as a heat source. An ECU 40 controls a heat supply amount by the exhaust heat from inside the exhaust pipe 11 to the reducing agent storage part 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気浄化システムの制御装置に関し、特にSCR(Selective Catalytic Reduction)を採用した排気浄化システムを好適に実現するものである。   The present invention relates to a control device for an exhaust purification system, and in particular, suitably implements an exhaust purification system employing SCR (Selective Catalytic Reduction).

近年、自動車等に適用されるエンジン(特にディーゼルエンジン)において、排気中の窒素酸化物(NOx)を高い浄化率で浄化する排気浄化システムとしてSCRの開発が進められており、一部実用化に至っている。   In recent years, SCR has been developed as an exhaust purification system for purifying nitrogen oxide (NOx) in exhaust with a high purification rate in engines (particularly diesel engines) applied to automobiles, etc. Has reached.

SCRシステムとして、例えば、エンジン本体に接続された排気管にSCR触媒が設けられており、そのSCR触媒に対し、NOx還元剤としてのアンモニアガスが供給されるものが知られている(例えば特許文献1参照)。特許文献1のシステムでは、固体尿素等の固体還元剤が貯蔵タンクに貯蔵されており、その貯蔵タンク内の固体還元剤を電気ヒータにより加熱することで固体還元剤を液化する。そして、液体状態の還元剤を排気管内においてSCR触媒の上流側に添加する。これにより、還元剤が排気管内にて気体となり、その気体状態の還元剤と排気中のNOxとが作用する。つまり、SCR触媒上でアンモニアを還元剤とするNOxの還元反応が行われ、その結果、排気中のNOxが還元、浄化されることになる。
特開2002−4840号公報
As an SCR system, for example, an exhaust pipe connected to an engine body is provided with an SCR catalyst, and ammonia gas as a NOx reducing agent is supplied to the SCR catalyst (for example, Patent Documents). 1). In the system of Patent Document 1, a solid reducing agent such as solid urea is stored in a storage tank, and the solid reducing agent in the storage tank is heated by an electric heater to liquefy the solid reducing agent. Then, a liquid reducing agent is added to the upstream side of the SCR catalyst in the exhaust pipe. As a result, the reducing agent becomes a gas in the exhaust pipe, and the reducing agent in the gaseous state and NOx in the exhaust act. That is, NOx reduction reaction using ammonia as a reducing agent is performed on the SCR catalyst, and as a result, NOx in the exhaust is reduced and purified.
Japanese Patent Laid-Open No. 2002-4840

ところで、NOx還元剤を固体の状態でシステムに搭載する場合、その固体還元剤を液体又は気体に変化させた後に排気管内に供給するのが望ましい。このとき、上記特許文献1のように、固体還元剤を液化する際に電気ヒータを用いる場合、電気ヒータに電気エネルギを供給するための装置が必要になる。この供給装置として、例えば車載のバッテリを用いた場合、電気ヒータでの電力消費に伴いバッテリ電圧が低下するため、その低下分を補充するために内燃機関を駆動させる必要が生じ、結果として車両の燃費が悪化してしまうことが懸念される。   By the way, when the NOx reducing agent is mounted in the system in a solid state, it is desirable to supply the NOx reducing agent into the exhaust pipe after changing the solid reducing agent into liquid or gas. At this time, as in Patent Document 1, when an electric heater is used when liquefying the solid reducing agent, an apparatus for supplying electric energy to the electric heater is required. For example, when an in-vehicle battery is used as the supply device, the battery voltage decreases as the electric power consumed by the electric heater is reduced. Therefore, it is necessary to drive the internal combustion engine to replenish the decrease, and as a result, the vehicle There is concern that the fuel economy will deteriorate.

本発明は、上記課題を解決するためになされたものであり、エネルギの有効利用を図りつつNOx浄化を好適に行うことができる排気浄化システムの制御装置を提供することを主たる目的とする。   The present invention has been made to solve the above-described problems, and a main object of the present invention is to provide a control device for an exhaust gas purification system that can suitably perform NOx purification while effectively utilizing energy.

以下、上記課題を解決するための手段、及びその作用効果について説明する。   Hereinafter, means for solving the above-described problems and the effects thereof will be described.

SCRによる排気浄化システムにおいては、NOx還元剤として固体又は液体の還元剤を貯蔵しておくとともに、その固体又は液体の還元剤を加熱等により気体の状態にした後に排気管内に供給することが考えられる。これにより、選択還元型触媒にてNOx還元を十分に行わせることができると考えられる。ここで、固体又は液体の還元剤を気体に変化させる熱源として、本発明者は内燃機関の排気熱に着目し、同排気熱を熱源として固体又は液体の還元剤への熱供給量を制御することとした。   In an exhaust gas purification system based on SCR, it is considered that a solid or liquid reducing agent is stored as a NOx reducing agent, and the solid or liquid reducing agent is supplied into the exhaust pipe after being gasified by heating or the like. It is done. Thereby, it is considered that the NOx reduction can be sufficiently performed by the selective reduction catalyst. Here, as a heat source for changing the solid or liquid reducing agent into a gas, the present inventors pay attention to the exhaust heat of the internal combustion engine, and control the heat supply amount to the solid or liquid reducing agent using the exhaust heat as a heat source. It was decided.

つまり、本発明の排気浄化システムは、内燃機関の排気通路に設けられた選択還元型触媒と、固体又は液体の還元剤を貯蔵する貯蔵部と、前記貯蔵部に貯蔵された固体又は液体の還元剤を加熱する加熱部と、前記加熱部による加熱により発生した気体の還元剤を前記排気通路において前記選択還元型触媒よりも上流側に供給する還元剤供給手段とを備える排気浄化システムに適用される。そして、請求項1に記載の発明は、前記加熱部が、前記排気通路の排気熱を熱源とし、前記加熱部から前記貯蔵部への排気熱による熱供給量を制御する熱制御手段を備えることを特徴とする。この構成によれば、内燃機関の排気熱を気体還元剤の生成のための熱エネルギとして利用するため、電気ヒータのみを用いて固体又は液体の還元剤から気体還元剤を生成する場合に比べて、エネルギ消費を軽減することができる。また、排気熱による還元剤への熱供給量を調節するため、選択還元型触媒に供給される還元剤の過不足が生じるのを抑制することができる。したがって、エネルギの有効利用を図りつつNOx浄化を好適に行うことができる。   That is, the exhaust purification system of the present invention includes a selective reduction catalyst provided in an exhaust passage of an internal combustion engine, a storage unit that stores a solid or liquid reducing agent, and a reduction of the solid or liquid stored in the storage unit. The present invention is applied to an exhaust gas purification system including a heating unit that heats the agent, and a reducing agent supply unit that supplies a gaseous reducing agent generated by heating by the heating unit to the upstream side of the selective reduction catalyst in the exhaust passage. The In the first aspect of the present invention, the heating unit includes a heat control unit that uses exhaust heat from the exhaust passage as a heat source and controls a heat supply amount by the exhaust heat from the heating unit to the storage unit. It is characterized by. According to this configuration, since the exhaust heat of the internal combustion engine is used as thermal energy for generating the gas reducing agent, compared with a case where the gas reducing agent is generated from a solid or liquid reducing agent using only an electric heater. , Energy consumption can be reduced. Moreover, since the amount of heat supplied to the reducing agent by the exhaust heat is adjusted, it is possible to suppress the excess or deficiency of the reducing agent supplied to the selective catalytic reduction catalyst. Therefore, NOx purification can be suitably performed while achieving effective use of energy.

固体又は液体の還元剤に投入される熱量は排気流量に応じて異なり、排気流量が多いほど排気熱による還元剤への熱供給量が多くなる。また、加熱部の熱源とされる排気熱は、エンジン運転状態や、SCRよりも上流側に配置された他の排気浄化装置の状態等に応じて異なり、例えば、排気中の粒子状物質(PM)を捕集するフィルタ(DPF)が排気通路に設けられている構成において、DPFの再生処理時に排気温度が過高温(例えば600〜650℃)になり、排気熱が大きくなることが考えられる。かかる場合、排気熱による還元剤への熱供給を抑制する必要がある。   The amount of heat input to the solid or liquid reducing agent varies depending on the exhaust flow rate, and the amount of heat supplied to the reducing agent by the exhaust heat increases as the exhaust flow rate increases. Moreover, the exhaust heat used as the heat source of the heating unit varies depending on the engine operating state, the state of other exhaust purification devices disposed upstream of the SCR, and the like, for example, particulate matter (PM) in the exhaust ) In the exhaust passage, the exhaust temperature becomes excessively high (for example, 600 to 650 ° C.) during the regeneration process of the DPF, and the exhaust heat may increase. In such a case, it is necessary to suppress heat supply to the reducing agent due to exhaust heat.

その点に鑑み、請求項2に記載の発明は、前記排気通路において前記加熱部の熱源とされる排気熱を流通する排気流通部の排気流量を調節する流量調節手段を備え、前記熱制御手段は、前記熱供給量の制御として前記流量調節手段による排気流量を制御する。この構成によれば、排気流量を変えることにより還元剤への熱供給量を調節することができ、ひいては気体還元剤(例えばアンモニアガス)の発生量を好適に制御することができる。   In view of this point, the invention according to claim 2 includes a flow rate adjusting means for adjusting an exhaust flow rate of an exhaust circulation portion that circulates exhaust heat that is a heat source of the heating portion in the exhaust passage, and the thermal control means. Controls the exhaust flow rate by the flow rate adjusting means as control of the heat supply amount. According to this configuration, the amount of heat supplied to the reducing agent can be adjusted by changing the exhaust gas flow rate, and as a result, the amount of gas reducing agent (for example, ammonia gas) generated can be suitably controlled.

なお、流量調節手段として、排気通路から分岐する排気流通部としてのバイパス通路を設けるとともに、同パイパス通路に流量調節弁を設け、その流量調節弁の開度等を調節することにより、同バイパス通路の排気から固体又は液体の還元剤への熱供給量を制御する構成にするとよい。排気通路に設けたバイパス通路の排気熱を利用する構成とすることにより、流量調節弁により排気流量を少なくした場合に、排気通路において排気の流れが停滞するのを抑制することができる。   In addition, a bypass passage as an exhaust circulation part branched from the exhaust passage is provided as a flow control means, a flow control valve is provided in the bypass passage, and the opening degree of the flow control valve is adjusted to thereby adjust the bypass passage. The amount of heat supplied from the exhaust gas to the solid or liquid reducing agent may be controlled. By using the exhaust heat of the bypass passage provided in the exhaust passage, it is possible to suppress the stagnation of the exhaust flow in the exhaust passage when the exhaust flow rate is reduced by the flow rate control valve.

上述したように、例えばDPF再生処理時には排気温度が過高温になることが考えられる。請求項3に記載の発明では、前記貯蔵部に、前記内燃機関の冷却水を流通させるための冷却水通路が設けられており、前記熱制御手段は、前記加熱部から前記貯蔵部内への熱供給が過剰であることを判定するとともに、前記貯蔵部内への熱供給が過剰であると判定された場合に前記冷却水通路を流通する冷却水により前記貯蔵部内への熱供給量を少なくする。この構成によれば、貯蔵部が冷却水により冷却されるため、排気熱による還元剤への熱供給を抑制することができ、ひいては気体還元剤(アンモニアガス等)の発生量が過剰になるのを抑制することができる。   As described above, for example, the exhaust temperature may be excessively high during the DPF regeneration process. According to a third aspect of the present invention, the storage section is provided with a cooling water passage for circulating the cooling water of the internal combustion engine, and the heat control means is configured to supply heat from the heating section to the storage section. It is determined that the supply is excessive, and when it is determined that the heat supply into the storage unit is excessive, the amount of heat supply into the storage unit is reduced by the cooling water flowing through the cooling water passage. According to this configuration, since the storage unit is cooled by the cooling water, the heat supply to the reducing agent due to the exhaust heat can be suppressed, and the generation amount of the gaseous reducing agent (such as ammonia gas) becomes excessive. Can be suppressed.

ここで、内燃機関の冷却水により貯蔵部内への熱供給量を制御する場合、冷却水流量を調節する手段を冷却水通路に設けるとよい。こうすれば、熱供給量の制御における精度を高めることができる。また、貯蔵部に流通される冷却水は、内燃機関から排出された後にラジエータにて冷却されたものであることが望ましい。   Here, when the amount of heat supplied to the storage unit is controlled by the cooling water of the internal combustion engine, a means for adjusting the cooling water flow rate may be provided in the cooling water passage. In this way, the accuracy in controlling the heat supply amount can be increased. Moreover, it is desirable that the cooling water distributed to the storage unit is cooled by a radiator after being discharged from the internal combustion engine.

例えば内燃機関の始動時やアイドル運転時などにおいては、排気温度が低く、固体又は液体の還元剤からアンモニアガス等を発生させるのに十分な排気熱が得られないことが考えられる。その点に鑑み、請求項4に記載の発明は、前記加熱部は、更に電気エネルギにより発熱する発熱体を熱源として有し、前記熱制御手段は、前記加熱部から前記貯蔵部内への熱供給が不足することを判定するとともに、前記貯蔵部内への熱供給が不足していると判定された場合に前記発熱体から前記貯蔵部へ熱供給を行う。この構成によれば、排気熱からの熱供給が不足する場合に発熱体から固体又は液体の還元剤に熱供給されるため、選択還元型触媒に供給されるアンモニアガス等が不足するのを抑制することができる。また、排気熱による熱供給が不足する場合に発熱体を補助的に使用するため、発熱体(つまり電気ヒータ)のみを使用する場合に比べて、エネルギ消費の低減を好適に図ることができる。   For example, when starting an internal combustion engine or during idling, the exhaust temperature is low, and it is conceivable that exhaust heat sufficient to generate ammonia gas or the like from a solid or liquid reducing agent cannot be obtained. In view of this, the invention according to claim 4 is characterized in that the heating unit further includes a heating element that generates heat by electric energy as a heat source, and the heat control unit supplies heat from the heating unit to the storage unit. Is determined to be insufficient, and when it is determined that the heat supply into the storage unit is insufficient, heat is supplied from the heating element to the storage unit. According to this configuration, when the heat supply from the exhaust heat is insufficient, heat is supplied from the heating element to the solid or liquid reducing agent, so that the ammonia gas supplied to the selective catalytic reduction catalyst is prevented from being insufficient. can do. Further, since the heating element is used supplementarily when the heat supply due to the exhaust heat is insufficient, energy consumption can be suitably reduced as compared with the case where only the heating element (that is, the electric heater) is used.

ところで、排気熱を還元剤の状態変化に利用した場合、熱エネルギの移動に伴い排気温度が低下することが考えられる。一方、排気浄化触媒において反応を促進させるには、同触媒を活性温度に維持することが必要になる。   By the way, when exhaust heat is used for the change of the state of the reducing agent, it is conceivable that the exhaust temperature decreases as the heat energy moves. On the other hand, in order to promote the reaction in the exhaust purification catalyst, it is necessary to maintain the catalyst at the activation temperature.

その点に鑑み、請求項5に記載の発明は、排気中の粒子状物質を捕集するフィルタと、排気中の窒素酸化物の酸化反応を促進する酸化触媒とが前記排気通路に更に備えられており、前記加熱部は、前記選択還元型触媒、前記フィルタ及び前記酸化触媒のうちいずれかの下流側における排気熱を熱源とする。この構成によれば、フィルタ(DPF)、酸化触媒及びSCRのうちいずれかの下流側の排気熱を還元剤の状態変化に利用するため、排気浄化触媒やフィルタにおける浄化機能を維持することができる。つまり、DPFの下流側の排気熱を利用することにより、DPF再生のための反応熱が貯蔵部へ伝達されるのを回避することができ、結果としてDPF再生に悪影響が及ぶのを抑制することができる。また、酸化触媒の下流側の排気熱を利用することにより、酸化触媒における酸化反応熱を還元剤の加熱に用いることができる。   In view of this, the invention according to claim 5 is further provided in the exhaust passage with a filter for collecting particulate matter in the exhaust and an oxidation catalyst for promoting an oxidation reaction of nitrogen oxide in the exhaust. The heating unit uses exhaust heat on the downstream side of any one of the selective reduction catalyst, the filter, and the oxidation catalyst as a heat source. According to this configuration, since the exhaust heat on the downstream side of any one of the filter (DPF), the oxidation catalyst, and the SCR is used for the state change of the reducing agent, the purification function of the exhaust purification catalyst and the filter can be maintained. . In other words, by utilizing the exhaust heat downstream of the DPF, it is possible to avoid the reaction heat for DPF regeneration being transmitted to the storage unit, and as a result, it is possible to suppress adverse effects on the DPF regeneration. Can do. Further, by utilizing the exhaust heat downstream of the oxidation catalyst, the heat of oxidation reaction in the oxidation catalyst can be used for heating the reducing agent.

請求項6に記載の発明は、前記貯蔵部と前記還元剤供給手段との間に、前記加熱部の加熱により発生した前記気体の還元剤を保管する気体保管部が設けられており、前記熱制御手段は、前記気体保管部内の圧力に基づいて前記加熱部から前記貯蔵部への熱供給量を制御する。気体保管部内の圧力によれば、固体又は液体の還元剤から放出されるアンモニアガス等の量を速やかにかつ精度よく検出することができ、ひいては還元剤への熱供給量を好適に制御することができる。   According to a sixth aspect of the present invention, there is provided a gas storage unit that stores the reducing agent of the gas generated by heating of the heating unit between the storage unit and the reducing agent supply means, and the heat The control means controls the amount of heat supplied from the heating unit to the storage unit based on the pressure in the gas storage unit. According to the pressure in the gas storage unit, the amount of ammonia gas and the like released from the solid or liquid reducing agent can be detected quickly and accurately, and thus the amount of heat supplied to the reducing agent is suitably controlled. Can do.

(第1の実施形態)
以下、本発明に係る排気浄化システムを具体化した実施形態について図面を参照しつつ説明する。本実施形態の排気浄化システムは、選択還元型触媒を用いて排気中のNOxを浄化するものであり、SCRシステムとして構築されている。はじめに、図1を参照してこのシステムの構成について詳述する。図1は、本実施形態に係るSCRシステムの概要を示す構成図である。
(First embodiment)
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying an exhaust purification system according to the present invention will be described with reference to the drawings. The exhaust purification system of this embodiment purifies NOx in exhaust using a selective reduction catalyst, and is constructed as an SCR system. First, the configuration of this system will be described in detail with reference to FIG. FIG. 1 is a configuration diagram showing an outline of the SCR system according to the present embodiment.

図1に示すように、本システムは、自動車に搭載されたディーゼルエンジンにより排出される排気を浄化対象として、排気を浄化するための各種アクチュエータ及び各種センサ、並びにECU(電子制御ユニット)40等を有して構築されている。   As shown in FIG. 1, this system has various actuators and various sensors for purifying exhaust as well as an ECU (electronic control unit) 40, etc., for exhaust gas exhausted by a diesel engine mounted on an automobile. Have built.

エンジン排気系の構成として具体的には、エンジン本体Eには、排気通路を形成する排気管11が接続されており、その排気管11には、DPF(Diesel Particulate Filter)12と選択還元型触媒(以下、SCR触媒という)13とが配設されている。   Specifically, as an engine exhaust system configuration, an exhaust pipe 11 that forms an exhaust passage is connected to the engine body E, and a DPF (Diesel Particulate Filter) 12 and a selective catalytic reduction catalyst are connected to the exhaust pipe 11. (Hereinafter referred to as SCR catalyst) 13 is provided.

DPF12は、排気中のPM(粒子状物質)を捕集するPM除去用フィルタである。DPF12に捕集されたPMは、ディーゼルエンジンにおけるメイン燃料噴射後のポスト噴射等により燃焼除去され(再生処理され)、これによりDPF12の継続使用が可能になっている。   The DPF 12 is a PM removal filter that collects PM (particulate matter) in the exhaust gas. The PM collected in the DPF 12 is burned and removed (regenerated) by post-injection after the main fuel injection in the diesel engine, and the DPF 12 can be used continuously.

SCR触媒13は、NOxの還元反応(排気浄化反応)を促進するものである。具体的には、例えば、
4NO+4NH3+O2→4N2+6H2O …(式1)
6NO2+8NH3→7N2+12H2O …(式2)
NO+NO2+2NH3→2N2+3H2O …(式3)
といった反応を促進することにより、排気中のNOxを還元してN2とH2Oとに変化させる。これにより、排気中のNOxが大気中に放出されないようにしている。
The SCR catalyst 13 promotes a NOx reduction reaction (exhaust purification reaction). Specifically, for example,
4NO + 4NH3 + O2 → 4N2 + 6H2O (Formula 1)
6NO2 + 8NH3 → 7N2 + 12H2O (Formula 2)
NO + NO2 + 2NH3 → 2N2 + 3H2O (Formula 3)
By promoting such a reaction, NOx in the exhaust gas is reduced and converted into N2 and H2O. This prevents NOx in the exhaust from being released into the atmosphere.

また、排気管11においてSCR触媒13の下流側には、NOx検出部(NOxセンサ)と排気温検出部(排気温センサ)とが内蔵された排気センサ16が設けられている。この排気センサ16により、SCR触媒13の下流側にて排気中のNOx量(SCR触媒13によるNOxの浄化率)及び排気の温度が検出される。排気管11において、SCR触媒13の更に下流には、排気中のアンモニア(NH3)を除去するためのアンモニア除去装置14(例えば酸化触媒)が設けられている。また、SCR触媒13の更に下流に、排気中のアンモニア量を検出するためのアンモニアセンサ等が必要に応じて設けられる。   Further, in the exhaust pipe 11, an exhaust sensor 16 incorporating a NOx detector (NOx sensor) and an exhaust temperature detector (exhaust temperature sensor) is provided downstream of the SCR catalyst 13. The exhaust sensor 16 detects the amount of NOx in the exhaust (NOx purification rate by the SCR catalyst 13) and the exhaust temperature on the downstream side of the SCR catalyst 13. In the exhaust pipe 11, an ammonia removal device 14 (for example, an oxidation catalyst) for removing ammonia (NH 3) in the exhaust gas is provided further downstream of the SCR catalyst 13. Further, an ammonia sensor or the like for detecting the amount of ammonia in the exhaust is provided further downstream of the SCR catalyst 13 as necessary.

ところで、SCR触媒13にてNOxを還元する場合、還元剤としてのアンモニアが必要になる。そこで、本実施形態では、アンモニアの発生源として、車両搭載性や安全性の観点から固体還元剤を搭載し、この固体還元剤を加熱することにより発生したアンモニアガスをSCR触媒13に供給している。   By the way, when NOx is reduced by the SCR catalyst 13, ammonia as a reducing agent is required. Therefore, in the present embodiment, a solid reducing agent is mounted as an ammonia generation source from the viewpoint of vehicle mountability and safety, and ammonia gas generated by heating the solid reducing agent is supplied to the SCR catalyst 13. Yes.

具体的には、図1に示すように、排気管11においてアンモニア除去装置14の更に下流部には、固体還元剤を貯蔵する還元剤貯蔵部20が排気管11に隣接配置されている。また、還元剤貯蔵部20には、エンジン冷却水の通路としての冷却水循環配管17が設けられており、エンジン冷却水が、エンジン本体E→還元剤貯蔵部20→エンジン本体Eを循環可能になっている。冷却水循環配管17には、例えば還元剤貯蔵部20の上流側に電磁式の開閉弁としての冷却水調量弁18が設けられている。冷却水調量弁18においては、その通電量をデューティ制御することにより開弁時間又は開度が調節可能になっており、これにより還元剤貯蔵部20を通過するエンジン冷却水の水量が調節される。   Specifically, as shown in FIG. 1, a reducing agent storage unit 20 that stores a solid reducing agent is disposed adjacent to the exhaust pipe 11 further downstream of the ammonia removing device 14 in the exhaust pipe 11. Further, the reducing agent storage unit 20 is provided with a cooling water circulation pipe 17 as an engine cooling water passage so that the engine cooling water can circulate through the engine body E → the reducing agent storage unit 20 → the engine body E. ing. The cooling water circulation pipe 17 is provided with a cooling water metering valve 18 as an electromagnetic on-off valve, for example, upstream of the reducing agent storage unit 20. In the cooling water metering valve 18, the valve opening time or the opening degree can be adjusted by duty-controlling the energization amount, whereby the amount of engine cooling water passing through the reducing agent storage unit 20 is adjusted. The

なお、エンジン本体E付近にはエンジン駆動式のウォータポンプWPが設けられており、このウォータポンプWPの駆動によりエンジン冷却水の循環が行われる。また、冷却水循環配管17を介して還元剤貯蔵部20の上流側とラジエータ(図示略)の下流側とが接続されることで、エンジン本体Eから排出された後にラジエータにて冷却されたエンジン冷却水が還元剤貯蔵部20を通過するのが望ましい。   An engine-driven water pump WP is provided in the vicinity of the engine body E, and the engine coolant is circulated by driving the water pump WP. In addition, the upstream side of the reducing agent storage unit 20 and the downstream side of the radiator (not shown) are connected via the cooling water circulation pipe 17 so that the engine is cooled by the radiator after being discharged from the engine body E. It is desirable for water to pass through the reducing agent reservoir 20.

図2は、還元剤貯蔵部20の詳細を示す図である。図2に示すように、還元剤貯蔵部20は、排気管11内の熱の授受を行う伝熱部21と、固体還元剤が貯蔵される固体用容器22と、アンモニアガスの放出口としての放出部23とを有している。   FIG. 2 is a diagram illustrating details of the reducing agent storage unit 20. As shown in FIG. 2, the reducing agent storage unit 20 includes a heat transfer unit 21 that transfers heat in the exhaust pipe 11, a solid container 22 that stores the solid reducing agent, and an ammonia gas discharge port. And a discharge portion 23.

伝熱部21は、排気管11内の排気熱を固体用容器22側に伝導するものであり、排気管壁11aの内外を貫通した状態で配設されている。伝熱部21は、伝熱性が高くかつアンモニアに対する耐食性の高い材料(例えばステンレス鋼やカーボン)により構成されている。伝熱部21の内部には、排気管11の外側において排気管11の延びる方向に沿って冷却水循環配管17が通じており、エンジン冷却水が伝熱部21内を通過可能になっている。   The heat transfer section 21 conducts exhaust heat in the exhaust pipe 11 to the solid container 22 side, and is disposed in a state of penetrating the inside and outside of the exhaust pipe wall 11a. The heat transfer section 21 is made of a material (for example, stainless steel or carbon) that has high heat transfer and high corrosion resistance against ammonia. Inside the heat transfer section 21, a coolant circulation pipe 17 communicates with the outside of the exhaust pipe 11 along the direction in which the exhaust pipe 11 extends, so that the engine coolant can pass through the heat transfer section 21.

また、伝熱部21には、複数の薄板状又は棒状の突起部として、受熱フィン21A及び放熱フィン21Bが設けられている。具体的には、排気管11内の排気に曝された部分に受熱フィン21Aが設けられ、排気管11の外部に露出する部分に放熱フィン21Bが設けられている。これにより、伝熱部21とその周辺との接触面積が大きくなり、熱の伝導が効率よく行われるようになっている。   The heat transfer section 21 is provided with heat receiving fins 21A and heat radiating fins 21B as a plurality of thin plate-like or rod-like protrusions. Specifically, heat receiving fins 21 </ b> A are provided in portions exposed to the exhaust in the exhaust pipe 11, and heat radiation fins 21 </ b> B are provided in portions exposed to the outside of the exhaust pipe 11. Thereby, the contact area of the heat-transfer part 21 and its periphery becomes large, and heat conduction is performed efficiently.

固体用容器22は、その内部にチャンバ22Aが形成されており、同チャンバ22Aにおいて、伝熱部21のうち排気管11の外側に露出した部分(放熱フィン21B)が格納されている。これにより、排気管11内の排気熱が、受熱フィン21Aで受け取られた後、放熱フィン21Bからチャンバ22Aに放出されることとなる。また、固体用容器22には、チャンバ22Aの温度を検出する温度センサ22Bが設けられている。このチャンバ22Aには、例えば固体用容器22の側面に設けられた投入口(図示略)を介して、塊状や粒状の固体還元剤25が収容される。ここで、固体還元剤25としては、加熱によりアンモニアガスを放出する物質であれば特に限定せず、例えば種々のアンミン錯体(例えば、CaCl2・8NH3、SrCl2・8NH3、MgCl2・6NH3)や固体尿素、アンモニウムカーバメートなどが用いられる。   The solid container 22 has a chamber 22A formed therein, in which the portion of the heat transfer section 21 exposed outside the exhaust pipe 11 (radiation fin 21B) is stored. Thereby, after the exhaust heat in the exhaust pipe 11 is received by the heat receiving fins 21A, it is released from the heat radiating fins 21B to the chamber 22A. The solid container 22 is provided with a temperature sensor 22B for detecting the temperature of the chamber 22A. In this chamber 22A, for example, a solid or granular solid reducing agent 25 is accommodated through an inlet (not shown) provided on the side surface of the solid container 22. Here, the solid reducing agent 25 is not particularly limited as long as it is a substance that releases ammonia gas by heating. For example, various ammine complexes (for example, CaCl2 · 8NH3, SrCl2 · 8NH3, MgCl2 · 6NH3), solid urea, Ammonium carbamate or the like is used.

放出部23は、固体用容器22の例えば上部に設けられており、ガス通路が内部に形成されたガス配管26の一端に接続されている。また、ガス配管26の他端には、アンモニアガスを排出する排出口15が設けられおり、同排出口15が、DPF12とSCR触媒13との間の排気管11内に配置されている。つまり、排気管11内の排気熱が伝熱部21を介して固体用容器22内に放出されると、その熱により固体用容器22に収容された固体還元剤25の気化又は熱分解が起こり、アンモニアガスが発生する。発生したアンモニアガスは、ガス発生による圧力上昇に伴い生じる圧力差を利用して放出部23から放出された後、ガス配管26を通じてSCR触媒13の上流側に排出される。排出されたアンモニアガスは、SCR触媒13に吸着されるとともに、同SCR触媒13において排気中のNOxと反応する。つまり、SCR触媒13においては、アンモニアを還元剤として上記反応式(式1)〜(式3)によりNOxの還元、浄化が行われる。   The discharge part 23 is provided, for example, in the upper part of the solid container 22 and is connected to one end of a gas pipe 26 in which a gas passage is formed. The other end of the gas pipe 26 is provided with a discharge port 15 for discharging ammonia gas, and the discharge port 15 is disposed in the exhaust pipe 11 between the DPF 12 and the SCR catalyst 13. That is, when the exhaust heat in the exhaust pipe 11 is released into the solid container 22 through the heat transfer section 21, vaporization or thermal decomposition of the solid reducing agent 25 accommodated in the solid container 22 occurs due to the heat. Ammonia gas is generated. The generated ammonia gas is discharged from the discharge portion 23 by using a pressure difference caused by the pressure increase due to gas generation, and then discharged to the upstream side of the SCR catalyst 13 through the gas pipe 26. The discharged ammonia gas is adsorbed by the SCR catalyst 13 and reacts with NOx in the exhaust gas in the SCR catalyst 13. That is, in the SCR catalyst 13, NOx is reduced and purified by the above reaction formulas (Formula 1) to (Formula 3) using ammonia as a reducing agent.

ガス配管26において、還元剤貯蔵部20と排出口15との中途部分には、アンモニアガスを貯蔵するガス貯蔵部27が配設されている。ガス貯蔵部27は、還元剤貯蔵部20から発生するアンモニアを気体の状態で貯蔵する。ガス貯蔵部27には、内圧を検出する圧力センサ28と、ガス温度を検出する温度センサ29とが設けられている。また、ガス配管26においてガス貯蔵部27と排出口15との間には、電磁式の開閉弁としてのアンモニア供給弁31が設けられている。このアンモニア供給弁31の開弁時間又は開度により、ガス貯蔵部27から排気管11内へ排出されるアンモニア量が調節される。   In the gas pipe 26, a gas storage unit 27 that stores ammonia gas is disposed in the middle of the reducing agent storage unit 20 and the outlet 15. The gas storage unit 27 stores ammonia generated from the reducing agent storage unit 20 in a gaseous state. The gas storage unit 27 is provided with a pressure sensor 28 that detects an internal pressure and a temperature sensor 29 that detects a gas temperature. Further, an ammonia supply valve 31 as an electromagnetic on-off valve is provided between the gas storage unit 27 and the discharge port 15 in the gas pipe 26. The amount of ammonia discharged from the gas storage unit 27 into the exhaust pipe 11 is adjusted by the valve opening time or the opening degree of the ammonia supply valve 31.

なお、DPF12とSCR触媒13との間には、NOをNO2に酸化してSCR触媒13中の還元反応を促進するための酸化触媒が必要に応じて設けられる。この場合、同酸化触媒とSCR触媒13との間に排出口15が配置され、同位置にて排気管11内にアンモニアを排出する。   An oxidation catalyst is provided between the DPF 12 and the SCR catalyst 13 as needed to oxidize NO to NO2 and promote the reduction reaction in the SCR catalyst 13. In this case, a discharge port 15 is disposed between the oxidation catalyst and the SCR catalyst 13, and ammonia is discharged into the exhaust pipe 11 at the same position.

ここで、排気熱を利用して固体用容器22内の固体還元剤25からアンモニアガスを放出させるのにあたり、例えばエンジン始動時やアイドル運転時などにおいては、排気温度が低く、固体還元剤25からアンモニアガスを放出させるのに十分な排気熱が得られないことが考えられる。そこで本実施形態では、固体還元剤25の加熱補助を目的として、還元剤貯蔵部20に電気エネルギにより発熱するヒータ部24を設けている。ヒータ部24は、固体用容器22の例えば側壁に内蔵されており、ヒータ部24への通電のオン/オフの切替制御を行うことによりその発熱量が調節される。   Here, when exhaust gas is used to release ammonia gas from the solid reducing agent 25 in the solid container 22, for example, when the engine is started or during idling, the exhaust temperature is low and the solid reducing agent 25 It is conceivable that exhaust heat sufficient to release ammonia gas cannot be obtained. Therefore, in the present embodiment, for the purpose of assisting heating of the solid reducing agent 25, the reducing agent storage unit 20 is provided with a heater unit 24 that generates heat by electric energy. The heater unit 24 is built in, for example, a side wall of the solid container 22, and the amount of generated heat is adjusted by performing on / off switching control of energization to the heater unit 24.

上記システムにおいて、電子制御ユニットとして主体的に排気浄化に係る制御を行う部分がECU40である。ECU40は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータ(以下、マイコンという)41を主体として構成され、ROMに記憶された各種の制御プログラムを実行する。すなわち、ECU40のマイコン41は、前述した各種センサの検出値に基づいて、所望とされる態様でアンモニア供給弁31や冷却水調量弁18、ヒータ部24などを作動させる。これにより、排気浄化に係る各種の制御を行う。   In the above system, the ECU 40 is a part that mainly performs control related to exhaust gas purification as an electronic control unit. The ECU 40 is composed mainly of a microcomputer 41 (hereinafter referred to as a microcomputer) composed of a CPU, a ROM, a RAM, and the like as well known, and executes various control programs stored in the ROM. That is, the microcomputer 41 of the ECU 40 operates the ammonia supply valve 31, the cooling water metering valve 18, the heater unit 24, and the like in a desired manner based on the detection values of the various sensors described above. Thus, various controls related to exhaust purification are performed.

具体的には、マイコン41は、エンジン運転中において、排気センサ16の検出信号に基づいてSCR触媒13の下流側におけるNOx量を算出し、算出したNOx量に基づいて、排気管11内におけるSCR触媒13の上流側に排出口15から排出されるアンモニア量を制御する。この場合、排気センサ16で検出されるNOx量が多いほどアンモニアがより多く必要となる。一方、アンモニアが過剰に供給されると、NOx還元反応に使用されず、又はSCR触媒13に吸着されない余剰分のアンモニアが排気に混じって大気放出されるおそれがある。そこで、マイコン41は、排気センサ16で検出されるNOx量に応じた適正量のアンモニアが排出口15から排気管11中に排出されるようアンモニア供給量を制御している。   Specifically, the microcomputer 41 calculates the NOx amount on the downstream side of the SCR catalyst 13 based on the detection signal of the exhaust sensor 16 during engine operation, and based on the calculated NOx amount, the SCR in the exhaust pipe 11. The amount of ammonia discharged from the discharge port 15 is controlled upstream of the catalyst 13. In this case, a larger amount of NOx detected by the exhaust sensor 16 requires more ammonia. On the other hand, if ammonia is supplied in excess, excess ammonia that is not used in the NOx reduction reaction or is not adsorbed by the SCR catalyst 13 may be mixed with the exhaust gas and released into the atmosphere. Therefore, the microcomputer 41 controls the ammonia supply amount so that an appropriate amount of ammonia corresponding to the NOx amount detected by the exhaust sensor 16 is discharged into the exhaust pipe 11 from the discharge port 15.

アンモニア供給量の制御について更にマイコン41は、還元剤貯蔵部20内の固体還元剤25に供給する熱量を制御することにより、固体還元剤25からアンモニアガスが生成される量を制御する。これにより、ガス貯蔵部27内のアンモニア圧力PNHを所定範囲(例えば2〜2.5気圧)に維持する。また、ガス貯蔵部27におけるアンモニア圧力PNHとガス温度TNHとに基づいてアンモニア供給弁31の開弁時間又は開度を設定することにより、排出口15から排気管11内に放出されるアンモニアガス量を制御する。これにより、排気中のNOx量に対して適正な量のアンモニアをSCR触媒13に供給している。   Regarding the control of the ammonia supply amount, the microcomputer 41 further controls the amount of ammonia gas generated from the solid reducing agent 25 by controlling the amount of heat supplied to the solid reducing agent 25 in the reducing agent storage unit 20. Thereby, the ammonia pressure PNH in the gas storage unit 27 is maintained within a predetermined range (for example, 2 to 2.5 atm). Further, the amount of ammonia gas released from the exhaust port 15 into the exhaust pipe 11 by setting the valve opening time or opening of the ammonia supply valve 31 based on the ammonia pressure PNH and the gas temperature TNH in the gas storage unit 27. To control. Thereby, an appropriate amount of ammonia is supplied to the SCR catalyst 13 with respect to the amount of NOx in the exhaust gas.

ここで、固体還元剤25からアンモニアガスを生成するのにあたり、本システムでは、基本的には排気管11内の排気熱を利用し、その排気熱による加熱により固体還元剤25からアンモニアガスを生成している。ところが、排気温度によっては、固体還元剤25への熱供給量が過剰であったり不足したりすることが考えられる。そこで、本システムでは、ヒータ部24及び冷却水調量弁18の作動を制御することにより、固体還元剤25への熱供給量を制御している。具体的には、マイコン41は、排気熱による熱供給量が過剰な場合に、還元剤貯蔵部20におけるエンジン冷却水の循環を開始するか又は還元剤貯蔵部20を通過するエンジン冷却水の流量を増加する。これにより、排気管11内から還元剤貯蔵部20へ排気熱の移動を抑制し、固体還元剤25へ供給される熱量を少なくする。一方、排気熱による熱供給量が不足する場合には、ヒータ部24への通電を開始するか又はその通電量を増加する。これにより、ヒータ部24により固体還元剤25の加熱を補助し、固体還元剤25に供給される熱量を多くする。   Here, in generating ammonia gas from the solid reducing agent 25, this system basically uses the exhaust heat in the exhaust pipe 11, and generates ammonia gas from the solid reducing agent 25 by heating with the exhaust heat. is doing. However, depending on the exhaust temperature, the amount of heat supplied to the solid reducing agent 25 may be excessive or insufficient. Therefore, in this system, the heat supply amount to the solid reducing agent 25 is controlled by controlling the operation of the heater unit 24 and the cooling water metering valve 18. Specifically, the microcomputer 41 starts the circulation of the engine cooling water in the reducing agent storage unit 20 or the flow rate of the engine cooling water passing through the reducing agent storage unit 20 when the heat supply amount due to the exhaust heat is excessive. To increase. Thereby, the movement of exhaust heat from the exhaust pipe 11 to the reducing agent storage unit 20 is suppressed, and the amount of heat supplied to the solid reducing agent 25 is reduced. On the other hand, when the heat supply amount due to the exhaust heat is insufficient, energization to the heater unit 24 is started or the energization amount is increased. Thereby, the heating of the solid reducing agent 25 is assisted by the heater unit 24, and the amount of heat supplied to the solid reducing agent 25 is increased.

次に、マイコン41によって実行される固体還元剤25の加熱処理についてフローチャートを用いて説明する。図3は、固体還元剤25の加熱処理の処理手順を示すフローチャートである。この処理は、マイコン41により所定周期毎に実行される。   Next, the heating process of the solid reducing agent 25 executed by the microcomputer 41 will be described using a flowchart. FIG. 3 is a flowchart showing a processing procedure for the heat treatment of the solid reducing agent 25. This process is executed at predetermined intervals by the microcomputer 41.

図3において、まずステップS11では、圧力センサ28により検出されるガス貯蔵部27内のアンモニア圧力の検出値PNHが、ガス貯蔵部27内の圧力として予め定められた範囲の下限値Pmin(例えば2気圧)以上か否かを判定する。アンモニア圧力の検出値PNHが下限値Pmin未満の場合、つまり固体還元剤25への熱供給量が不足している場合には、ステップS12へ進み、エンジン冷却水がエンジン本体Eと還元剤貯蔵部20との間を循環しているか否かを判定する。   In FIG. 3, first, in step S <b> 11, the detected value PNH of the ammonia pressure in the gas storage unit 27 detected by the pressure sensor 28 is a lower limit value Pmin (for example, 2) within a predetermined range as the pressure in the gas storage unit 27. Pressure) or more. When the detected value PNH of the ammonia pressure is less than the lower limit value Pmin, that is, when the heat supply amount to the solid reducing agent 25 is insufficient, the process proceeds to step S12, and the engine cooling water is sent from the engine body E and the reducing agent storage unit. Whether or not it is circulating between 20 is determined.

エンジン冷却水がエンジン本体と還元剤貯蔵部20との間を循環している場合、つまりウォータポンプWPが駆動され、かつ冷却水調量弁18が開弁している場合には、ステップS13へ進み、冷却水調量弁18の通電制御におけるデューティ比を小さくすることにより、冷却水循環配管17内におけるエンジン冷却水の流量を現時点よりも減少させる。一方、エンジン冷却水が循環中でない場合には、ステップS14へ進み、ヒータ部24への通電をオン状態にしてヒータ部24から固体還元剤25への熱供給を行う。これにより、ヒータ部24による加熱補助を行う。つまり、本処理において、固体還元剤25への熱供給量を増量させる際には、まずエンジン冷却水の流量を減少させる処理を優先して行い、エンジン冷却水の流量をゼロにしてもガス貯蔵部27内のアンモニア圧力PNHが下限値Pminよりも低い場合にヒータ部24を作動させる。   When engine cooling water is circulating between the engine body and the reducing agent storage unit 20, that is, when the water pump WP is driven and the cooling water metering valve 18 is opened, go to step S13. Then, the flow rate of the engine cooling water in the cooling water circulation pipe 17 is reduced from the current time by reducing the duty ratio in the energization control of the cooling water metering valve 18. On the other hand, when the engine cooling water is not circulating, the process proceeds to step S14 where the energization of the heater unit 24 is turned on to supply heat from the heater unit 24 to the solid reducing agent 25. Thereby, the heating assistance by the heater part 24 is performed. That is, in this process, when increasing the amount of heat supplied to the solid reducing agent 25, first, the process of decreasing the flow rate of the engine cooling water is prioritized, and the gas is stored even if the flow rate of the engine cooling water is zero. When the ammonia pressure PNH in the part 27 is lower than the lower limit value Pmin, the heater part 24 is operated.

また、アンモニア圧力の検出値PNHが下限値Pmin以上の場合には、ステップS11で肯定判定がなされ、ステップS15へ進み、ヒータ部24への通電をオフ状態にすることにより、ヒータ部24から固体還元剤25への熱供給を停止する。   If the detected value PNH of the ammonia pressure is equal to or greater than the lower limit value Pmin, an affirmative determination is made in step S11, the process proceeds to step S15, and the heater unit 24 is turned off by energizing the heater unit 24. The heat supply to the reducing agent 25 is stopped.

続くステップS16では、アンモニア圧力の検出値PNHが、ガス貯蔵部27内の圧力として予め定められた範囲の上限値Pmax(例えば2.5気圧)を超えているか否かを判定する。アンモニア圧力の検出値PNHが上限値Pmax以下の場合には、同検出値PNHが設定範囲内にあることから、その状態を維持すべくそのまま本ルーチンを終了する。   In subsequent step S16, it is determined whether or not the detected value PNH of the ammonia pressure exceeds an upper limit value Pmax (for example, 2.5 atmospheres) within a predetermined range as the pressure in the gas storage unit 27. If the detected value PNH of the ammonia pressure is equal to or lower than the upper limit value Pmax, the detected value PNH is within the set range, so this routine is terminated as it is to maintain the state.

一方、アンモニア圧力の検出値PNHが上限値Pmaxより大きい場合、つまり固体還元剤25への熱供給量が過剰な場合には、ステップS17へ進み、冷却水調量弁18の通電制御におけるデューティ比を大きくすることにより、冷却水循環配管17内におけるエンジン冷却水の流量を現時点よりも増加させる。   On the other hand, when the detected value PNH of the ammonia pressure is larger than the upper limit value Pmax, that is, when the heat supply amount to the solid reducing agent 25 is excessive, the process proceeds to step S17, and the duty ratio in the energization control of the cooling water metering valve 18 Is increased, the flow rate of the engine cooling water in the cooling water circulation pipe 17 is increased from the present time.

なお、アンモニア圧力の検出値PNHに応じてエンジン冷却水の流量を可変にする構成としたが、アンモニア圧力の検出値PNHに応じてエンジン冷却水の循環のオン/オフを切り替える構成としてもよい。また、アンモニア圧力の検出値PNHが下限値Pmin未満になった場合にエンジン冷却水の流量を減少させる構成としたが、アンモニア圧力の検出値PNHが例えば下限値Pminと上限値Pmaxとの間に定められた所定値を下回った時点でエンジン冷却水の流量を減少させる構成としてもよい。エンジン冷却水の流量を増加させる場合も同様に、アンモニア圧力の検出値PNHが上限値Pmaxを超えた場合にエンジン冷却水の流量を増加させる代わりに、アンモニア圧力の検出値PNHが例えば下限値Pminと上限値Pmaxとの間に定められた所定値を上回った時点でエンジン冷却水の流量を増加させる構成としてもよい。さらに、アンモニア圧力の検出値PNHに応じてエンジン冷却水の流量を連続的に変化させる構成としてもよい。   In addition, although it was set as the structure which makes the flow volume of engine cooling water variable according to the detected value PNH of ammonia pressure, it is good also as a structure which switches ON / OFF of circulation of engine cooling water according to the detected value PNH of ammonia pressure. Further, the flow rate of the engine cooling water is decreased when the detected value PNH of the ammonia pressure becomes less than the lower limit value Pmin. However, the detected value PNH of the ammonia pressure is, for example, between the lower limit value Pmin and the upper limit value Pmax. It is good also as a structure which decreases the flow volume of engine cooling water when it falls below the predetermined value. Similarly, when the flow rate of the engine coolant is increased, instead of increasing the flow rate of the engine coolant when the detected value PNH of the ammonia pressure exceeds the upper limit value Pmax, the detected value PNH of the ammonia pressure is, for example, the lower limit value Pmin. The flow rate of the engine cooling water may be increased when a predetermined value defined between the upper limit value Pmax and the upper limit value Pmax is exceeded. Furthermore, it is good also as a structure which changes the flow volume of engine cooling water continuously according to the detected value PNH of ammonia pressure.

以上説明した実施の形態によれば、次の優れた効果が得られる。   According to the embodiment described above, the following excellent effects can be obtained.

固体還元剤25から気体還元剤としてのアンモニアガスを発生させる際に、エンジン本体Eからの排気熱をアンモニアの生成のための熱エネルギとして利用するため、エネルギの消費を軽減することができる。また、固体還元剤25へ供給される排気熱量を調節する構成としたため、ガス貯蔵部27内のアンモニアガス量を適正量にしておくことができ、ひいてはSCR触媒13に供給される還元剤の過不足が生じるのを抑制することができる。したがって、エネルギの有効利用を図りつつNOx浄化を好適に行うことができる。   When generating ammonia gas as a gaseous reducing agent from the solid reducing agent 25, exhaust heat from the engine body E is used as thermal energy for generating ammonia, so that energy consumption can be reduced. In addition, since the amount of exhaust heat supplied to the solid reducing agent 25 is adjusted, the amount of ammonia gas in the gas storage unit 27 can be set to an appropriate amount, and as a result, excess of the reducing agent supplied to the SCR catalyst 13 can be maintained. The shortage can be suppressed. Therefore, NOx purification can be suitably performed while achieving effective use of energy.

還元剤貯蔵部20に冷却水循環配管17を貫通させて設け、還元剤貯蔵部20内をエンジン冷却水が通過する構成としたため、排気温度が高く、排気熱から還元剤貯蔵部20への熱供給量が過剰な場合に、還元剤貯蔵部20を冷却することができる。これにより、排気熱による固体還元剤25への熱供給を抑制することができ、ひいてはアンモニアの発生量が過剰になるのを抑制することができる。   Since the cooling water circulation pipe 17 is provided through the reducing agent storage unit 20 so that the engine cooling water passes through the reducing agent storage unit 20, the exhaust temperature is high, and heat is supplied from the exhaust heat to the reducing agent storage unit 20. When the amount is excessive, the reducing agent reservoir 20 can be cooled. Thereby, the heat supply to the solid reducing agent 25 by the exhaust heat can be suppressed, and as a result, the generation amount of ammonia can be suppressed from becoming excessive.

また、冷却水循環配管17における冷却水流量を調節する手段として、冷却水循環配管17に冷却水調量弁18を配設する構成としたため、冷却水調量弁18の通電制御により冷却水循環配管17内の冷却水流量を調節することができる。その結果、固体還元剤25への熱供給量の制御においてその精度を高めることができる。   Further, since the cooling water metering valve 18 is provided in the cooling water circulation pipe 17 as means for adjusting the cooling water flow rate in the cooling water circulation pipe 17, the inside of the cooling water circulation pipe 17 is controlled by energization control of the cooling water metering valve 18. The cooling water flow rate can be adjusted. As a result, the accuracy in controlling the amount of heat supplied to the solid reducing agent 25 can be increased.

電気エネルギにより発熱するヒータ部24を備え、排気管11内から固体還元剤25への熱供給が不足する場合にヒータ部24から熱供給を行う構成としたため、例えばエンジン始動時やアイドル運転時などにおいて、排気温度が低く、アンモニアを発生させるのに十分な排気熱が得られない場合であっても、ヒータ部24による加熱補助により、固体還元剤25への熱供給量を確保することができる。これにより、SCR触媒13に供給されるアンモニアが不足するのを抑制することができる。   Since the heater unit 24 that generates heat by electric energy is provided and heat is supplied from the heater unit 24 when the heat supply from the exhaust pipe 11 to the solid reducing agent 25 is insufficient, for example, at the time of engine start, idle operation, etc. In this case, even when the exhaust gas temperature is low and sufficient exhaust heat to generate ammonia cannot be obtained, the heat supply amount to the solid reducing agent 25 can be secured by the heating assistance by the heater unit 24. . Thereby, it can suppress that the ammonia supplied to the SCR catalyst 13 runs short.

DPF12、SCR触媒13及びアンモニア除去装置14の下流側に還元剤貯蔵部20を設けることで、DPF12、SCR触媒13及びアンモニア除去装置14の下流側における排気熱を熱源として固体還元剤25を加熱する構成としたため、還元剤貯蔵部20での排気熱の利用に伴う排気温度の低下に起因してDPF12、SCR触媒13及びアンモニア除去装置14の機能低下が生じるのを抑制することができる。つまり、DPF12の下流側の排気熱を利用することにより、DPF再生に要する熱量が固体還元剤25の熱分解等により消費されるのを回避することができる。これにより、DPF再生に悪影響が及ぶのを抑制することができる。また、SCR触媒13の下流側の排気熱を利用することにより、SCR触媒13におけるNOx浄化反応を促進させるのに必要な反応温度を確保することができる。これにより、NOx浄化に悪影響が及ぶのを抑制することができる。また、アンモニア除去装置14の下流側の排気熱を利用することにより、アンモニアの酸化反応を促進させるのに必要な反応温度を確保することができる。これにより、アンモニアスリップが発生するのを抑制することができる。   By providing the reducing agent storage unit 20 on the downstream side of the DPF 12, the SCR catalyst 13 and the ammonia removing device 14, the solid reducing agent 25 is heated using the exhaust heat on the downstream side of the DPF 12, the SCR catalyst 13 and the ammonia removing device 14 as a heat source. Since it was set as the structure, it can suppress that the function fall of DPF12, the SCR catalyst 13, and the ammonia removal apparatus 14 resulting from the fall of the exhaust temperature accompanying utilization of the exhaust heat in the reducing agent storage part 20 arises. That is, by using the exhaust heat downstream of the DPF 12, it is possible to avoid the amount of heat required for the DPF regeneration being consumed due to the thermal decomposition of the solid reducing agent 25 or the like. Thereby, it is possible to suppress an adverse effect on the DPF regeneration. Further, by using the exhaust heat downstream of the SCR catalyst 13, the reaction temperature necessary for promoting the NOx purification reaction in the SCR catalyst 13 can be ensured. Thereby, it can suppress that a bad influence is exerted on NOx purification. In addition, by using the exhaust heat downstream of the ammonia removing device 14, a reaction temperature necessary for promoting the oxidation reaction of ammonia can be ensured. Thereby, it is possible to suppress the occurrence of ammonia slip.

アンモニアガスを貯蔵するガス貯蔵部27を還元剤貯蔵部20と排出口15との間に設け、圧力センサ28により検出されるガス貯蔵部27内のアンモニア圧力の検出値PNHに基づいて排気熱による固体還元剤25への熱供給量を制御する構成としたため、固体還元剤25から排出口15へ向かって放出されるアンモニア量を速やかにかつ精度よく検出することができ、ひいては固体還元剤25への熱供給量を好適に制御することができる。   A gas storage unit 27 for storing ammonia gas is provided between the reducing agent storage unit 20 and the discharge port 15, and is based on the exhaust heat based on the detected value PNH of the ammonia pressure in the gas storage unit 27 detected by the pressure sensor 28. Since the heat supply amount to the solid reducing agent 25 is controlled, the amount of ammonia released from the solid reducing agent 25 toward the discharge port 15 can be detected quickly and accurately. The amount of heat supplied can be controlled suitably.

また、還元剤貯蔵部20から放出されるアンモニアガスが排気管11内に排出される前に一旦ガス貯蔵部27に保管される、つまりガス貯蔵部27がバッファとして機能するため、排気管11内に排出されるアンモニアガスが不足する事態を回避することができ、ひいてはSCR触媒13に対してアンモニアを安定して供給することができる。   Further, the ammonia gas released from the reducing agent storage unit 20 is temporarily stored in the gas storage unit 27 before being discharged into the exhaust pipe 11, that is, the gas storage unit 27 functions as a buffer. Therefore, it is possible to avoid a situation in which the ammonia gas discharged to the shortage is short, and to stably supply ammonia to the SCR catalyst 13.

固体還元剤25への熱供給量を増加するのにあたり、エンジン冷却水の流量を減少させる処理を優先して行い、エンジン冷却水の流量をゼロにしてもガス貯蔵部27内のアンモニア圧力の検出値PNHが下限値Pminよりも低い場合にヒータ部24を作動させる構成としたため、ヒータ部24による固体還元剤25の加熱の機会を極力少なくすることができ、エネルギ消費を軽減するのに好適である。   In increasing the amount of heat supplied to the solid reducing agent 25, priority is given to the process of reducing the flow rate of the engine cooling water, and detection of the ammonia pressure in the gas storage unit 27 even if the flow rate of the engine cooling water is made zero. Since the heater unit 24 is operated when the value PNH is lower than the lower limit value Pmin, the opportunity for heating the solid reducing agent 25 by the heater unit 24 can be reduced as much as possible, which is suitable for reducing energy consumption. is there.

(第2の実施形態)
次に、本発明の第2の実施形態について、第1の実施形態との相違点を中心に説明する。上記第1の実施形態では、SCR触媒13等が設けられた排気管11に還元剤貯蔵部20を配設する構成としたが、これを変更し、本実施形態では、SCR触媒13等が設けられた排気管11に、還元剤貯蔵部20への排気流量を調節する手段として、同排気管11から分岐するバイパス配管を設ける。そして、そのバイパス配管に還元剤貯蔵部20を配設している。
(Second Embodiment)
Next, a second embodiment of the present invention will be described focusing on differences from the first embodiment. In the first embodiment, the reducing agent storage unit 20 is disposed in the exhaust pipe 11 provided with the SCR catalyst 13 and the like. However, in this embodiment, the SCR catalyst 13 and the like are provided. The exhaust pipe 11 is provided with a bypass pipe branched from the exhaust pipe 11 as means for adjusting the exhaust flow rate to the reducing agent storage unit 20. And the reducing agent storage part 20 is arrange | positioned in the bypass piping.

図4は、本実施形態におけるSCRシステムの概要を示す構成図である。同図は、図1の一部を変更したものである。なお、図4において、図1と重複する構成については同一の符号を付すとともに説明を省略する。図示は省略するが、DPF12やガス貯蔵部27、アンモニア供給弁31の構成は図1と同一である。   FIG. 4 is a configuration diagram showing an outline of the SCR system in the present embodiment. This figure is a modification of part of FIG. In FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. Although illustration is omitted, the configurations of the DPF 12, the gas storage unit 27, and the ammonia supply valve 31 are the same as those in FIG.

図4に示すように、排気管11には、アンモニア除去装置14の下流側において、排気管11から分岐するバイパス配管51が設けられている。バイパス配管51には、還元剤貯蔵部20が取り付けられており、同還元剤貯蔵部20の上流側に、電磁式の開閉弁としての排気調量弁52が設けられている。なお、本実施形態の還元剤貯蔵部20は、エンジン冷却水の通路としての冷却水循環配管17がその内部に設けられていない点において上記実施形態の還元剤貯蔵部20と異なる。   As shown in FIG. 4, the exhaust pipe 11 is provided with a bypass pipe 51 branched from the exhaust pipe 11 on the downstream side of the ammonia removing device 14. A reducing agent storage unit 20 is attached to the bypass pipe 51, and an exhaust metering valve 52 as an electromagnetic on-off valve is provided on the upstream side of the reducing agent storage unit 20. In addition, the reducing agent storage part 20 of this embodiment differs from the reducing agent storage part 20 of the said embodiment in the point that the cooling water circulation piping 17 as a passage of engine cooling water is not provided in the inside.

排気調量弁52は、ECU40からの駆動信号に基づいて通電量がディーティ制御されることにより、その開弁時間又は開度が調節される。つまり、排気調量弁52によれば、バイパス配管51における排気流量が制御され、その結果、還元剤貯蔵部20への熱供給量が制御される。   The exhaust metering valve 52 is adjusted in duty by duty control based on a drive signal from the ECU 40, so that its valve opening time or opening is adjusted. That is, according to the exhaust metering valve 52, the exhaust gas flow rate in the bypass pipe 51 is controlled, and as a result, the heat supply amount to the reducing agent storage unit 20 is controlled.

次に、マイコン41によって実行される固体還元剤25の加熱処理についてフローチャートを用いて説明する。図5は、固体還元剤25の加熱処理の処理手順を示すフローチャートである。この処理は、マイコン41により所定周期毎に実行される。   Next, the heating process of the solid reducing agent 25 executed by the microcomputer 41 will be described using a flowchart. FIG. 5 is a flowchart showing a processing procedure for heating the solid reducing agent 25. This process is executed at predetermined intervals by the microcomputer 41.

図5において、まずステップS21では、圧力センサ28により検出されるガス貯蔵部27内のアンモニア圧力の検出値PNHが下限値Pmin以上か否かを判定する。アンモニア圧力の検出値PNHが下限値Pminよりも低い場合には、ステップS22へ進み、排気調量弁52の通電制御のデューディ比が予め定められた範囲の最大値に設定されている、つまりバイパス配管51における排気流量が最大か否かを判定する。   5, first, in step S21, it is determined whether or not the detected value PNH of the ammonia pressure in the gas storage unit 27 detected by the pressure sensor 28 is equal to or higher than the lower limit value Pmin. When the detected value PNH of the ammonia pressure is lower than the lower limit value Pmin, the process proceeds to step S22, and the duty ratio of the energization control of the exhaust metering valve 52 is set to the maximum value in a predetermined range, that is, bypass. It is determined whether the exhaust flow rate in the pipe 51 is maximum.

排気調量弁52の通電制御のデューティ比が最大値に設定されておらず、バイパス配管51における排気流量が最大でない場合には、ステップS23へ進み、その排気流量を増加させるべく、デューティ比を大きくする。一方、排気流量が最大の場合には、ステップS24へ進み、ヒータ部24への通電をオン状態にして、ヒータ部24から固体還元剤25への熱供給を行う。つまり、本処理において、固体還元剤25への熱供給量を増量させる際には、まずバイパス配管51内の排気流量を増量させる処理を優先して行い、バイパス配管51内の排気流量を最大にしてもガス貯蔵部27内のアンモニア圧力の検出値PNHが下限値Pminよりも低い場合にヒータ部24による加熱補助を行う。   If the duty ratio of the energization control of the exhaust metering valve 52 is not set to the maximum value and the exhaust flow rate in the bypass pipe 51 is not the maximum, the process proceeds to step S23, and the duty ratio is set to increase the exhaust flow rate. Enlarge. On the other hand, when the exhaust gas flow rate is maximum, the process proceeds to step S24, the energization of the heater unit 24 is turned on, and the heat supply from the heater unit 24 to the solid reducing agent 25 is performed. That is, in this process, when increasing the amount of heat supplied to the solid reducing agent 25, first, the process of increasing the exhaust flow rate in the bypass pipe 51 is prioritized to maximize the exhaust flow rate in the bypass pipe 51. However, when the detected value PNH of the ammonia pressure in the gas storage unit 27 is lower than the lower limit value Pmin, the heater unit 24 performs heating assistance.

また、ガス貯蔵部27内のアンモニア圧力の検出値PNHが下限値Pmin以上の場合には、ステップS21で肯定判定がなされ、ステップS25へ進み、ヒータ部24への通電をオフ状態にすることにより、ヒータ部24から固体還元剤25への熱供給を停止する。続くステップS26では、アンモニア圧力の検出値PNHが上限値Pmaxを超えているか否かを判定し、アンモニア圧力の検出値PNHが上限値Pmax以下の場合には、同検出値PNHが設定範囲内にあることから、その状態を維持すべくそのまま本ルーチンを終了する。   Further, when the detected value PNH of the ammonia pressure in the gas storage unit 27 is equal to or higher than the lower limit value Pmin, an affirmative determination is made in step S21, the process proceeds to step S25, and the energization to the heater unit 24 is turned off. Then, the heat supply from the heater unit 24 to the solid reducing agent 25 is stopped. In the subsequent step S26, it is determined whether or not the detected value PNH of the ammonia pressure exceeds the upper limit value Pmax. If the detected value PNH of the ammonia pressure is equal to or lower than the upper limit value Pmax, the detected value PNH is within the set range. Therefore, this routine is terminated as it is to maintain the state.

一方、アンモニア圧力の検出値PNHが上限値Pmaxより大きい場合には、ステップS27へ進み、バイパス配管51における排気流量を小さくすべく、排気調量弁52の通電制御のデューティ比を小さくする。これにより、還元剤貯蔵部20に供給される排気熱が少なくなり、アンモニア発生量が少なくなる。   On the other hand, when the detected value PNH of the ammonia pressure is larger than the upper limit value Pmax, the process proceeds to step S27, and the duty ratio of the energization control of the exhaust metering valve 52 is decreased in order to decrease the exhaust flow rate in the bypass pipe 51. Thereby, the exhaust heat supplied to the reducing agent storage unit 20 is reduced, and the amount of ammonia generated is reduced.

以上説明した実施の形態によれば、次の優れた効果が得られる。   According to the embodiment described above, the following excellent effects can be obtained.

排気管11に対しバイパス配管52及び排気調量弁52を設けるとともに、還元剤貯蔵部20をバイパス配管52に隣接配置する構成としたため、排気調量弁52によりパイパス配管52内の排気流量を変えることで固体還元剤25への熱供給量を調節することができ、ひいては固体還元剤25から生成されるアンモニア量を好適に制御することができる。特に、例えばDPF12の再生処理時において排気温度が過高温(例えば600〜650℃)になる結果、固体還元剤25への熱供給が過剰になることが考えられるところ、この構成によれば、排気流量をゼロ又はその近傍にすることができるため、過高温の排気によって固体還元剤25が過剰に加熱されるのを回避することができる。したがって、上記実施形態のようにエンジン冷却水により熱供給の抑制を図る場合に比べ、同抑制を好適に行うことができる。   Since the bypass pipe 52 and the exhaust metering valve 52 are provided for the exhaust pipe 11 and the reducing agent storage unit 20 is disposed adjacent to the bypass pipe 52, the exhaust metering valve 52 changes the exhaust flow rate in the bypass pipe 52. Thus, the amount of heat supplied to the solid reducing agent 25 can be adjusted, and as a result, the amount of ammonia produced from the solid reducing agent 25 can be suitably controlled. In particular, for example, when the exhaust temperature becomes excessively high (for example, 600 to 650 ° C.) during the regeneration process of the DPF 12, for example, it is considered that the heat supply to the solid reducing agent 25 becomes excessive. Since the flow rate can be set to zero or in the vicinity thereof, it is possible to avoid the solid reducing agent 25 from being heated excessively by the excessively high temperature exhaust. Therefore, compared with the case where heat supply is suppressed by engine cooling water as in the above embodiment, the same suppression can be performed.

バイパス配管51の排気流量を増減させることにより固体還元剤25への熱供給量を制御する構成としたため、排気調量弁52により還元剤貯蔵部20への排気流量を少なくした場合に、排気調量弁52及び還元剤貯蔵部20を排気管11に設ける構成に比べて、エンジン本体Eからの排気を排気管11からスムーズに放出することができる。   Since the heat supply amount to the solid reducing agent 25 is controlled by increasing / decreasing the exhaust flow rate of the bypass pipe 51, when the exhaust flow rate to the reducing agent storage unit 20 is reduced by the exhaust metering valve 52, the exhaust control amount is adjusted. Compared with the configuration in which the quantity valve 52 and the reducing agent storage unit 20 are provided in the exhaust pipe 11, the exhaust from the engine body E can be discharged smoothly from the exhaust pipe 11.

固体還元剤25への熱供給量を増加するのにあたり、バイパス配管51内の排気流量を増加させる処理を優先して行い、同排気流量を最大にしてもガス貯蔵部27内のアンモニア圧力の検出値PNHが下限値Pminよりも低い場合にヒータ部24を作動させる構成としたため、ヒータ部24による固体還元剤25の加熱の機会を極力少なくすることができ、エネルギ消費を軽減するのに好適である。   In increasing the amount of heat supplied to the solid reducing agent 25, priority is given to the process of increasing the exhaust flow rate in the bypass pipe 51, and even if the exhaust flow rate is maximized, the ammonia pressure in the gas storage unit 27 is detected. Since the heater unit 24 is operated when the value PNH is lower than the lower limit value Pmin, the opportunity for heating the solid reducing agent 25 by the heater unit 24 can be reduced as much as possible, which is suitable for reducing energy consumption. is there.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.

・圧力センサ28で検出されるガス貯蔵部27内のアンモニア圧力の検出値PNHが高いほど固体還元剤25から発生するアンモニアガス量が多く、同検出値PNHが低いほど固体還元剤25から発生するアンモニアガス量が少ないと判断されることから、アンモニア圧力の検出値PNHに基づいて固体還元剤25への熱供給量を制御する構成としたが、これを変更し、温度センサ22Bにより検出される固体用容器22内の温度に基づいて固体還元剤25への熱供給量を制御する構成としてもよい。具体的には、固体用容器22内の温度が高いほど固体還元剤25から発生するアンモニアガス量が多く、固体用容器22内の温度が低いほど固体還元剤25から発生するアンモニアガス量が少ないと判断されることから、固体用容器22内の温度が設定温度よりも高い場合には、冷却水調量弁18又は排気調量弁52の通電制御により、冷却水循環配管17内のエンジン冷却水量を増加させるか、又はバイパス配管51内の排気流量を減少させる。一方、固体用容器22内の温度が設定温度よりも低い場合には、冷却水循環配管17内のエンジン冷却水量を減少させるか、又はバイパス配管51内の排気流量を増加させる。このとき、ヒータ部24へ通電してヒータ部24から固体還元剤25へ熱供給を行ってもよい。   The higher the detected value PNH of the ammonia pressure in the gas storage unit 27 detected by the pressure sensor 28, the larger the amount of ammonia gas generated from the solid reducing agent 25, and the lower the detected value PNH, the more generated from the solid reducing agent 25. Since it is determined that the amount of ammonia gas is small, the heat supply amount to the solid reducing agent 25 is controlled based on the detected value PNH of the ammonia pressure, but this is changed and detected by the temperature sensor 22B. The heat supply amount to the solid reducing agent 25 may be controlled based on the temperature in the solid container 22. Specifically, the amount of ammonia gas generated from the solid reducing agent 25 increases as the temperature in the solid container 22 increases, and the amount of ammonia gas generated from the solid reducing agent 25 decreases as the temperature in the solid container 22 decreases. Therefore, when the temperature in the solid container 22 is higher than the set temperature, the amount of engine cooling water in the cooling water circulation pipe 17 is controlled by the energization control of the cooling water metering valve 18 or the exhaust metering valve 52. Or the exhaust flow rate in the bypass pipe 51 is decreased. On the other hand, when the temperature in the solid container 22 is lower than the set temperature, the engine cooling water amount in the cooling water circulation pipe 17 is decreased or the exhaust gas flow rate in the bypass pipe 51 is increased. At this time, the heater unit 24 may be energized to supply heat from the heater unit 24 to the solid reducing agent 25.

あるいは、アンモニア圧力の検出値PNHに代えて、排気センサ16により検出される排気温度に基づいて固体還元剤25への熱供給量を制御する構成としてもよい。具体的には、排気温度が高いほど排気熱が多いため固体還元剤25から発生するアンモニアガス量が多く、排気温度が低いほど排気熱が少ないため固体還元剤25から発生するアンモニアガス量が少ないと判断されることから、排気温度が、固体還元剤25からアンモニアを放出させるのに適正な温度範囲よりも高い場合には、冷却水調量弁18又は排気調量弁52の通電制御により、冷却水循環配管17内のエンジン冷却水量を増加させるか、又はバイパス配管51内の排気流量を減少させる。一方、排気温度が上記温度範囲よりも低い場合には、冷却水循環配管17内のエンジン冷却水量を減少させるか、又はバイパス配管51内の排気流量を増加させる。このとき、ヒータ部24へ通電してヒータ部24から固体還元剤25へ熱供給を行ってもよい。   Alternatively, the heat supply amount to the solid reducing agent 25 may be controlled based on the exhaust temperature detected by the exhaust sensor 16 instead of the detected value PNH of the ammonia pressure. Specifically, the higher the exhaust temperature, the more exhaust heat is generated, so the amount of ammonia gas generated from the solid reducing agent 25 is larger. The lower the exhaust temperature, the less exhaust heat is generated, so the amount of ammonia gas generated from the solid reducing agent 25 is small. Therefore, when the exhaust temperature is higher than the temperature range appropriate for releasing ammonia from the solid reducing agent 25, the energization control of the cooling water metering valve 18 or the exhaust metering valve 52 is performed. The amount of engine cooling water in the cooling water circulation pipe 17 is increased, or the exhaust flow rate in the bypass pipe 51 is decreased. On the other hand, when the exhaust temperature is lower than the above temperature range, the amount of engine cooling water in the cooling water circulation pipe 17 is decreased or the exhaust flow rate in the bypass pipe 51 is increased. At this time, the heater unit 24 may be energized to supply heat from the heater unit 24 to the solid reducing agent 25.

・上記第1の実施形態では、還元剤貯蔵部20を排気管11に隣接配置する構成とし、上記第2の実施形態では、還元剤貯蔵部20をバイパス配管51に隣接配置する構成としたが、還元剤貯蔵部20に排気熱を供給可能であれば、排気管11又はバイパス配管51に対する還元剤貯蔵部20の位置は特に限定しない。例えば、排気管11と還元剤貯蔵部20とを離間させて配置し、排気管11内の排気熱を、空気を媒体として還元剤貯蔵部20に伝達する構成としてもよい。   In the first embodiment, the reducing agent storage unit 20 is disposed adjacent to the exhaust pipe 11, and in the second embodiment, the reducing agent storage unit 20 is disposed adjacent to the bypass pipe 51. As long as exhaust heat can be supplied to the reducing agent storage unit 20, the position of the reducing agent storage unit 20 with respect to the exhaust pipe 11 or the bypass pipe 51 is not particularly limited. For example, the exhaust pipe 11 and the reducing agent storage unit 20 may be arranged separately from each other, and the exhaust heat in the exhaust pipe 11 may be transmitted to the reducing agent storage unit 20 using air as a medium.

・上記第2の実施形態では、バイパス配管51をアンモニア除去装置14の下流側に設けるとともにバイパス配管51に還元剤貯蔵部20を隣接配置する構成としたが、これを変更し、SCR触媒13とアンモニア除去装置14との間や、DPF12とSCR触媒13との間、あるいはDPF12の上流側にバイパス配管51を設ける構成としてもよい。   In the second embodiment, the bypass pipe 51 is provided on the downstream side of the ammonia removing device 14 and the reducing agent storage unit 20 is disposed adjacent to the bypass pipe 51. A bypass pipe 51 may be provided between the ammonia removing device 14, between the DPF 12 and the SCR catalyst 13, or upstream of the DPF 12.

・上記第2の実施形態では、排気管11から分岐させたバイパス配管51の下流側を排気管11に接続することでバイパス配管51を通過する排気を排気管11に戻す構成としたが、これを変更し、バイパス配管51を通過する排気をそのまま大気に放出させる構成としてもよい。   In the second embodiment, the exhaust pipe passing through the bypass pipe 51 is returned to the exhaust pipe 11 by connecting the downstream side of the bypass pipe 51 branched from the exhaust pipe 11 to the exhaust pipe 11. The exhaust gas passing through the bypass pipe 51 may be directly released into the atmosphere.

・還元剤貯蔵部20において、伝熱部21を排気管壁11aの内外に貫通させ、同伝熱部21を介して排気熱を固体用容器22内の固体還元剤25に伝達する構成としたが、これを変更し、固体用容器22を排気管壁11aの外表面に直接配置し、排気管壁11aを介して排気熱を固体用容器22内の固体還元剤25に伝達する構成としてもよい。また、伝熱部21において、受熱フィン21A及び放熱フィン21Bの少なくともいずれかを設けない構成としてもよい。   In the reducing agent storage unit 20, the heat transfer unit 21 penetrates the inside and outside of the exhaust pipe wall 11 a and the exhaust heat is transmitted to the solid reducing agent 25 in the solid container 22 through the heat transfer unit 21. However, it is also possible to change this, arrange the solid container 22 directly on the outer surface of the exhaust pipe wall 11a, and transmit the exhaust heat to the solid reducing agent 25 in the solid container 22 through the exhaust pipe wall 11a. Good. Moreover, in the heat-transfer part 21, it is good also as a structure which does not provide at least any one of the heat receiving fin 21A and the radiation fin 21B.

・エンジン始動操作後の所定期間においてヒータ部24により固体還元剤25を加熱する構成としてもよい。エンジン始動時には、排気温度が低く、固体還元剤25からアンモニアガスを発生させるのに十分な排気熱が供給されないことが考えられる。したがって、エンジンの始動操作後から所定の期間では、ヒータ部24による固体還元剤25の加熱を行うことにより、エンジン始動時にアンモニア供給量が不足するのを抑制することができる。ここで、エンジン始動操作後の所定期間は、例えばイグニッションオンからの経過時間や、エンジン回転速度が所定の回転速度以上になるまでの期間等として定められる。   -It is good also as a structure which heats the solid reducing agent 25 with the heater part 24 in the predetermined period after engine starting operation. When starting the engine, it is conceivable that the exhaust gas temperature is low and sufficient exhaust heat is not supplied to generate ammonia gas from the solid reducing agent 25. Therefore, in a predetermined period after the engine start operation, the solid reductant 25 is heated by the heater unit 24, so that it is possible to suppress the shortage of the ammonia supply amount when starting the engine. Here, the predetermined period after the engine start operation is determined, for example, as an elapsed time since the ignition is turned on, or a period until the engine rotational speed becomes equal to or higher than the predetermined rotational speed.

・固体還元剤25として固体尿素やアンモニウムカーバメートのように加熱により昇華が一気に起こる物質を用いる場合、固体用容器22に還元剤供給口を設けるとよい。この場合、還元剤供給口から投入する固体還元剤25の量を排気中のNOx量に応じて調節するとともに、固体用容器22内の温度が固体還元剤25を昇華させるのに最適な温度になるよう還元剤貯蔵部20への熱供給量を制御する構成とするとよい。   In the case where a substance that undergoes sublimation at a stretch by heating, such as solid urea or ammonium carbamate, is used as the solid reducing agent 25, a reducing agent supply port may be provided in the solid container 22. In this case, the amount of the solid reducing agent 25 introduced from the reducing agent supply port is adjusted in accordance with the amount of NOx in the exhaust gas, and the temperature in the solid container 22 becomes an optimum temperature for sublimating the solid reducing agent 25. It is preferable that the amount of heat supplied to the reducing agent storage unit 20 is controlled to be as follows.

・バイパス配管51に還元剤貯蔵部20設けた場合、還元剤貯蔵部20に冷却水循環配管17を貫通させる構成としてもよい。こうすれば、排気流量とエンジン冷却水流量とヒータ部24とによる還元剤貯蔵部20への熱供給量の制御が可能となる。   -When the reducing agent storage part 20 is provided in the bypass piping 51, it is good also as a structure which makes the reducing agent storage part 20 penetrate the cooling water circulation piping 17. As shown in FIG. In this way, it is possible to control the amount of heat supplied to the reducing agent storage unit 20 by the exhaust flow rate, the engine coolant flow rate, and the heater unit 24.

・ヒータ部24により加熱補助を行う構成としたが、ヒータ部24を設置しない構成としてもよい。例えば、気化又は熱分解による固体還元剤25からのアンモニアガスの発生開始温度が、排気温度が撮り得る値の最小値よりも低い場合にヒータ部24を設置しない構成とする。あるいは、排気高温時に固体還元剤25からのアンモニアガスをガス貯蔵部27に貯めておき、排気低温時にはガス貯蔵部27内に貯蔵しておいたアンモニアガスを排気管11内に供給する場合にヒータ部24を設置しない構成とする。   -Although it was set as the structure which assists a heating with the heater part 24, it is good also as a structure which does not install the heater part 24. FIG. For example, the heater unit 24 is not installed when the generation start temperature of ammonia gas from the solid reducing agent 25 by vaporization or thermal decomposition is lower than the minimum value that can be taken by the exhaust gas temperature. Alternatively, when the ammonia gas from the solid reducing agent 25 is stored in the gas storage unit 27 when the exhaust gas is hot and the ammonia gas stored in the gas storage unit 27 is supplied into the exhaust pipe 11 when the exhaust gas temperature is low, the heater is used. The part 24 is not installed.

・ヒータ部24を電気エネルギにより発熱する構成としたが、発熱体であればこれに限定せず、例えば化学反応やガス等により発熱する構成としてもよい。   The heater unit 24 generates heat by electric energy. However, the heater unit 24 is not limited to this as long as it is a heating element, and may be configured to generate heat by a chemical reaction, gas, or the like.

・上記第1の実施形態では、還元剤貯蔵部20をアンモニア除去装置14の下流側に配置する構成としたが、これを変更し、SCR触媒13とアンモニア除去装置14との間や、DPF12とSCR触媒13との間、あるいはDPF12の上流側に還元剤貯蔵部20を設ける構成としてもよい。   In the first embodiment, the reducing agent storage unit 20 is arranged on the downstream side of the ammonia removing device 14, but this is changed so that the SCR catalyst 13 and the ammonia removing device 14 and the DPF 12 It is good also as a structure which provides the reducing agent storage part 20 between the SCR catalysts 13 or the upstream of DPF12.

・アンモニア圧力PNHが上限値Pmaxよりも高い場合に、エンジン冷却水により伝熱部21から固体還元剤25への熱供給量を低減させる構成としたが、エンジン冷却水を用いる代わりに、伝熱部21から固体還元剤25への熱供給量を低減させるための冷却装置を別に設けてもよい。   When the ammonia pressure PNH is higher than the upper limit value Pmax, the engine cooling water reduces the amount of heat supplied from the heat transfer unit 21 to the solid reducing agent 25. However, instead of using engine cooling water, heat transfer You may provide the cooling device for reducing the heat supply amount from the part 21 to the solid reducing agent 25 separately.

・還元剤貯蔵部20に貯蔵する還元剤として固体還元剤25を用いたが、これを変更し、例えば尿素水溶液などの液体還元剤を用いてもよい。つまり、還元剤貯蔵部20に液体状態の還元剤を貯蔵しておき、排気熱による熱供給量を制御することで、還元剤貯蔵部20内の液体還元剤を気体に変化させる。その気体の還元剤を、ガス配管26を介してガス貯蔵部27に一旦保管しておき、そのガス貯蔵部27のアンモニアガスを排出口15から排気管11内に排出する。   -Although the solid reducing agent 25 was used as the reducing agent stored in the reducing agent storage part 20, this may be changed and liquid reducing agents, such as urea aqueous solution, may be used, for example. That is, the liquid reducing agent in the reducing agent storage unit 20 is changed to gas by storing the reducing agent in a liquid state in the reducing agent storage unit 20 and controlling the heat supply amount by the exhaust heat. The gaseous reducing agent is temporarily stored in the gas storage unit 27 via the gas pipe 26, and the ammonia gas in the gas storage unit 27 is discharged into the exhaust pipe 11 from the discharge port 15.

・車載ディーゼルエンジン用のSCRシステムとしての実用化以外に、他のエンジン、例えばガソリンエンジン(火花点火式エンジン)用のSCRシステムとしての実用化が可能である。   In addition to practical application as an SCR system for on-board diesel engines, practical application as an SCR system for other engines such as gasoline engines (spark ignition engines) is possible.

SCRシステムの概要を示す構成図。The block diagram which shows the outline | summary of an SCR system. 還元剤貯蔵部の概要を示す構成図。The block diagram which shows the outline | summary of a reducing agent storage part. 固体還元剤の加熱処理の処理手順を示すフローチャート。The flowchart which shows the process sequence of the heat processing of a solid reducing agent. 第2の実施形態におけるSCRシステムの概要を示す構成図。The block diagram which shows the outline | summary of the SCR system in 2nd Embodiment. 第2の実施形態における固体還元剤の加熱処理の処理手順を示すフローチャート。The flowchart which shows the process sequence of the heat processing of the solid reducing agent in 2nd Embodiment.

符号の説明Explanation of symbols

11…排気管、13…SCR触媒(選択還元型触媒)、15…排出口(還元剤供給手段)、17…冷却水循環配管、18…冷却水調量弁、20…還元剤貯蔵部(貯蔵部、加熱部)、20A…受熱フィン、20B…放熱フィン、22…固体用容器、22B…温度センサ、23…放出部、24…ヒータ部(発熱体)、25…固体還元剤、27…ガス貯蔵部(気体保管部)、28…圧力センサ、31…アンモニア供給弁(還元剤供給手段)、40…ECU、41…マイコン、51…バイパス配管(流量調節手段、排気流通部)、52…排気調量弁(流量調節手段)。   DESCRIPTION OF SYMBOLS 11 ... Exhaust pipe, 13 ... SCR catalyst (selective reduction type catalyst), 15 ... Discharge port (reducing agent supply means), 17 ... Cooling water circulation piping, 18 ... Cooling water metering valve, 20 ... Reducing agent storage part (storage part) , Heating unit), 20A ... heat receiving fins, 20B ... radiation fins, 22 ... container for solid, 22B ... temperature sensor, 23 ... discharge unit, 24 ... heater unit (heating element), 25 ... solid reducing agent, 27 ... gas storage Part (gas storage part), 28 ... pressure sensor, 31 ... ammonia supply valve (reducing agent supply means), 40 ... ECU, 41 ... microcomputer, 51 ... bypass pipe (flow rate adjusting means, exhaust circulation part), 52 ... exhaust control Quantity valve (flow rate adjusting means).

Claims (6)

内燃機関の排気通路に設けられた選択還元型触媒と、固体又は液体の還元剤を貯蔵する貯蔵部と、前記貯蔵部に貯蔵された固体又は液体の還元剤を加熱する加熱部と、前記加熱部による加熱により発生した気体の還元剤を前記排気通路において前記選択還元型触媒よりも上流側に供給する還元剤供給手段とを備える排気浄化システムに適用され、
前記加熱部は、前記排気通路の排気熱を熱源とし、
前記加熱部から前記貯蔵部への排気熱による熱供給量を制御する熱制御手段を備えることを特徴とする排気浄化システムの制御装置。
A selective reduction catalyst provided in an exhaust passage of an internal combustion engine; a storage unit that stores a solid or liquid reducing agent; a heating unit that heats a solid or liquid reducing agent stored in the storage unit; and the heating Applied to an exhaust gas purification system comprising a reducing agent supply means for supplying a gaseous reducing agent generated by heating by a part upstream of the selective reduction catalyst in the exhaust passage,
The heating unit uses exhaust heat from the exhaust passage as a heat source,
A control device for an exhaust purification system, comprising a heat control means for controlling a heat supply amount by exhaust heat from the heating unit to the storage unit.
前記排気通路において前記加熱部の熱源とされる排気熱を流通する排気流通部の排気流量を調節する流量調節手段を備え、
前記熱制御手段は、前記熱供給量の制御として前記流量調節手段による排気流量を制御する請求項1に記載の排気浄化システムの制御装置。
A flow rate adjusting means for adjusting an exhaust flow rate of an exhaust circulation part that circulates exhaust heat that is a heat source of the heating part in the exhaust passage;
2. The exhaust purification system control device according to claim 1, wherein the heat control unit controls an exhaust flow rate of the flow rate adjusting unit as control of the heat supply amount.
前記貯蔵部に、前記内燃機関の冷却水を流通させるための冷却水通路が設けられており、
前記熱制御手段は、前記加熱部から前記貯蔵部内への熱供給が過剰であることを判定する手段と、前記貯蔵部内への熱供給が過剰であると判定された場合に前記冷却水通路を流通する冷却水により前記貯蔵部内への熱供給量を少なくする手段と、を備える請求項1又は2に記載の排気浄化システムの制御装置。
The storage section is provided with a cooling water passage for circulating the cooling water of the internal combustion engine,
The heat control means is configured to determine that the heat supply from the heating unit into the storage unit is excessive, and to determine that the heat supply into the storage unit is excessive, The control device of the exhaust gas purification system according to claim 1 or 2, further comprising means for reducing a heat supply amount into the storage unit by circulating cooling water.
前記加熱部は、更に電気エネルギにより発熱する発熱体を熱源として有し、
前記熱制御手段は、前記加熱部から前記貯蔵部内への熱供給が不足することを判定する手段と、前記貯蔵部内への熱供給が不足していると判定された場合に前記発熱体から前記貯蔵部へ熱供給を行う手段と、を備える請求項1乃至3のいずれか一項に記載の排気浄化システムの制御装置。
The heating unit further includes a heating element that generates heat by electric energy as a heat source,
The heat control means is configured to determine that the heat supply from the heating unit into the storage unit is insufficient, and from the heating element when it is determined that the heat supply into the storage unit is insufficient. The control device of the exhaust gas purification system according to any one of claims 1 to 3, further comprising: means for supplying heat to the storage unit.
排気中の粒子状物質を捕集するフィルタと、排気中の窒素酸化物の酸化反応を促進する酸化触媒とが前記排気通路に更に備えられており、
前記加熱部は、前記選択還元型触媒、前記フィルタ及び前記酸化触媒のうちいずれかの下流側における排気熱を熱源とする請求項1乃至4のいずれか一項に記載の排気浄化システムの制御装置。
The exhaust passage further includes a filter that collects particulate matter in the exhaust and an oxidation catalyst that promotes an oxidation reaction of nitrogen oxides in the exhaust,
The exhaust purification system control device according to any one of claims 1 to 4, wherein the heating unit uses exhaust heat in the downstream side of any of the selective reduction catalyst, the filter, and the oxidation catalyst as a heat source. .
前記貯蔵部と前記還元剤供給手段との間に、前記加熱部の加熱により発生した前記気体の還元剤を保管する気体保管部が設けられており、
前記熱制御手段は、前記気体保管部内の圧力に基づいて前記加熱部から前記貯蔵部への熱供給量を制御する請求項1乃至5のいずれか一項に記載の排気浄化システムの制御装置。
Between the storage unit and the reducing agent supply means, a gas storage unit for storing the gaseous reducing agent generated by heating the heating unit is provided,
The exhaust heat purification system control device according to any one of claims 1 to 5, wherein the heat control unit controls a heat supply amount from the heating unit to the storage unit based on a pressure in the gas storage unit.
JP2008318623A 2008-12-15 2008-12-15 Control device for exhaust purification system Expired - Fee Related JP4888480B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008318623A JP4888480B2 (en) 2008-12-15 2008-12-15 Control device for exhaust purification system
DE102009058300.9A DE102009058300B4 (en) 2008-12-15 2009-12-15 Emission control system with control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318623A JP4888480B2 (en) 2008-12-15 2008-12-15 Control device for exhaust purification system

Publications (2)

Publication Number Publication Date
JP2010138883A true JP2010138883A (en) 2010-06-24
JP4888480B2 JP4888480B2 (en) 2012-02-29

Family

ID=42168983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318623A Expired - Fee Related JP4888480B2 (en) 2008-12-15 2008-12-15 Control device for exhaust purification system

Country Status (2)

Country Link
JP (1) JP4888480B2 (en)
DE (1) DE102009058300B4 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223022A (en) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc Reducing gas generating device and catalyst reducing system
CN102966417A (en) * 2011-08-30 2013-03-13 现代自动车株式会社 Solid scr system and heating method for solid scr reductant using the same
WO2013073054A1 (en) 2011-11-18 2013-05-23 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
WO2013076814A1 (en) 2011-11-22 2013-05-30 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP2013124551A (en) * 2011-12-13 2013-06-24 Mitsubishi Motors Corp Exhaust emission control apparatus
JP2013130109A (en) * 2011-12-21 2013-07-04 Mitsubishi Motors Corp Exhaust emission control device and method of internal combustion engine
JP2013130072A (en) * 2011-12-20 2013-07-04 Mitsubishi Motors Corp Exhaust emission control device and method of internal combustion engine
WO2013114614A1 (en) 2012-02-03 2013-08-08 トヨタ自動車株式会社 Exhaust purification device of internal combustion engine
JP2013181452A (en) * 2012-03-01 2013-09-12 Nippon Soken Inc Exhaust purification device
JP2013245652A (en) * 2012-05-29 2013-12-09 Isuzu Motors Ltd Urea water thawing device
WO2014016909A1 (en) * 2012-07-24 2014-01-30 Udトラックス株式会社 Exhaust gas purification device, and method for thawing liquid reducing agent or precursor thereof
KR20140053993A (en) * 2011-06-24 2014-05-08 아아키위 & 아아키위 에스아 Method for determining the quantity of reducing agent in a tank
JP2014114714A (en) * 2012-12-07 2014-06-26 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system for diesel engine
WO2014126090A1 (en) * 2013-02-15 2014-08-21 日立造船株式会社 Exhaust gas purification system
JP2014234706A (en) * 2013-05-30 2014-12-15 株式会社豊田自動織機 Exhaust emission control device
WO2014203350A1 (en) * 2013-06-19 2014-12-24 ボルボ ラストバグナー アクチエボラグ Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof
JP2015520823A (en) * 2012-05-25 2015-07-23 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Container having a heating device for a tank for storing liquid additives
KR101601496B1 (en) * 2014-09-30 2016-03-08 두산엔진주식회사 Selective catalytic reduction system
WO2019102564A1 (en) * 2017-11-23 2019-05-31 中央精機株式会社 Thermoacoustic engine
KR20200078016A (en) * 2018-12-21 2020-07-01 한국기계연구원 A Reactor for A System for Purification of NOx Emissions and A System for Purification of NOx Emissions

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2973833B1 (en) * 2011-04-05 2013-05-10 Peugeot Citroen Automobiles Sa SUPPORT MEMBER OF A CARTRIDGE CONTAINING AMMONIA FOR REPORTING ON A CHASSIS OF A MOTOR VEHICLE
US9222389B2 (en) 2012-02-02 2015-12-29 Cummins Inc. Systems and methods for controlling reductant delivery to an exhaust stream
WO2015092469A1 (en) * 2013-12-19 2015-06-25 Volvo Truck Corporation An exhaust gas treatment system to be fitted on a chassis of an automotive vehicle
CN104179554B (en) * 2014-08-12 2016-08-17 吉林省众鑫汽车装备有限公司 A kind of solid ammonia storage tank tail gas connection controls device and connects control method
FR3087835B1 (en) * 2018-10-26 2021-03-05 Faurecia Systemes Dechappement INJECTOR FOR INJECTING A GAS REDUCING AGENT INTO THE EXHAUST GAS FLOW OF AN INTERNAL COMBUSTION ENGINE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220437A (en) * 1999-02-02 2000-08-08 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2002004840A (en) * 2000-06-23 2002-01-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002155732A (en) * 2000-11-20 2002-05-31 Toyota Motor Corp Reducing agent feeder of internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025257B4 (en) 2006-05-31 2016-09-01 Volkswagen Ag Method for operating an SCR catalytic converter and program algorithm for carrying out the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220437A (en) * 1999-02-02 2000-08-08 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2002004840A (en) * 2000-06-23 2002-01-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002155732A (en) * 2000-11-20 2002-05-31 Toyota Motor Corp Reducing agent feeder of internal combustion engine

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223022A (en) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc Reducing gas generating device and catalyst reducing system
KR20140053993A (en) * 2011-06-24 2014-05-08 아아키위 & 아아키위 에스아 Method for determining the quantity of reducing agent in a tank
KR101908097B1 (en) 2011-06-24 2018-10-16 아아키위 & 아아키위 에스아 Method for determining the quantity of reducing agent in a tank
JP2014517216A (en) * 2011-06-24 2014-07-17 アークイス アンド アークイス エス アー Method for determining the amount of reducing agent in a tank
CN102966417A (en) * 2011-08-30 2013-03-13 现代自动车株式会社 Solid scr system and heating method for solid scr reductant using the same
JP2013050099A (en) * 2011-08-30 2013-03-14 Hyundai Motor Co Ltd Solid scr system and heating method for solid reducing agent using the same
US8893484B2 (en) 2011-08-30 2014-11-25 Hyundai Motor Company Solid SCR system and heating method for solid SCR reductant using the same
WO2013073054A1 (en) 2011-11-18 2013-05-23 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
WO2013076814A1 (en) 2011-11-22 2013-05-30 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP2013124551A (en) * 2011-12-13 2013-06-24 Mitsubishi Motors Corp Exhaust emission control apparatus
JP2013130072A (en) * 2011-12-20 2013-07-04 Mitsubishi Motors Corp Exhaust emission control device and method of internal combustion engine
JP2013130109A (en) * 2011-12-21 2013-07-04 Mitsubishi Motors Corp Exhaust emission control device and method of internal combustion engine
WO2013114614A1 (en) 2012-02-03 2013-08-08 トヨタ自動車株式会社 Exhaust purification device of internal combustion engine
JP2013181452A (en) * 2012-03-01 2013-09-12 Nippon Soken Inc Exhaust purification device
JP2015520823A (en) * 2012-05-25 2015-07-23 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Container having a heating device for a tank for storing liquid additives
JP2013245652A (en) * 2012-05-29 2013-12-09 Isuzu Motors Ltd Urea water thawing device
WO2014016909A1 (en) * 2012-07-24 2014-01-30 Udトラックス株式会社 Exhaust gas purification device, and method for thawing liquid reducing agent or precursor thereof
US9732650B2 (en) 2012-07-24 2017-08-15 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
JP5859651B2 (en) * 2012-07-24 2016-02-10 Udトラックス株式会社 Exhaust purification device, method for thawing liquid reducing agent or precursor thereof
CN104395572A (en) * 2012-07-24 2015-03-04 优迪卡汽车株式会社 Exhaust gas purification device, and method for thawing liquid reducing agent or precursor thereof
US20150128570A1 (en) * 2012-07-24 2015-05-14 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
JP2014114714A (en) * 2012-12-07 2014-06-26 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system for diesel engine
WO2014126090A1 (en) * 2013-02-15 2014-08-21 日立造船株式会社 Exhaust gas purification system
JP2014156821A (en) * 2013-02-15 2014-08-28 Hitachi Zosen Corp Exhaust emission control system
JP2014234706A (en) * 2013-05-30 2014-12-15 株式会社豊田自動織機 Exhaust emission control device
WO2014203350A1 (en) * 2013-06-19 2014-12-24 ボルボ ラストバグナー アクチエボラグ Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof
KR101601496B1 (en) * 2014-09-30 2016-03-08 두산엔진주식회사 Selective catalytic reduction system
WO2019102564A1 (en) * 2017-11-23 2019-05-31 中央精機株式会社 Thermoacoustic engine
KR20200078016A (en) * 2018-12-21 2020-07-01 한국기계연구원 A Reactor for A System for Purification of NOx Emissions and A System for Purification of NOx Emissions
KR102172440B1 (en) * 2018-12-21 2020-10-30 한국기계연구원 A Reactor for A System for Purification of NOx Emissions and A System for Purification of NOx Emissions

Also Published As

Publication number Publication date
DE102009058300B4 (en) 2019-07-11
DE102009058300A1 (en) 2010-06-17
JP4888480B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4888480B2 (en) Control device for exhaust purification system
US10060319B2 (en) Internal combustion engine
JP4656039B2 (en) Engine exhaust purification system
JP2008267682A (en) Fluid heating device and exhaust gas post-treatment device equipped with same
JP6622967B2 (en) Diesel engine exhaust gas purification method
US9151199B2 (en) Method for operating an exhaust-gas treatment device and motor vehicle having the device
JP4978635B2 (en) Control device for exhaust purification system
JP5880514B2 (en) Engine exhaust purification system
US8438838B2 (en) Fuel-fired burner and heat exchanger system for heating a NOx reducing agent supply tank
JP2011080397A (en) Exhaust emission control device for internal combustion engine
JP4445001B2 (en) Exhaust purification device
JP5874968B2 (en) Exhaust gas purification device for internal combustion engine
JP6028397B2 (en) Vehicle heating system
GB2533099A (en) Method for providing heating to a diesel exhaust fluid (DEF) tank and diesel exhaust fluid (DEF) tank
RU2556946C2 (en) Method and device relating cooling of dosing units of scr system
JP2009228433A (en) Urea water supplying device and exhaust emission control system
JP4895887B2 (en) Engine exhaust purification system
JP5979469B2 (en) Exhaust gas purification device and purification method for internal combustion engine
JP6062906B2 (en) Exhaust gas purification device for internal combustion engine
JP2014202094A (en) Control device of urea water addition device
JP7063016B2 (en) Post-processing equipment
JP4844572B2 (en) Exhaust gas purification device for internal combustion engine
JP2019105188A (en) Reducing agent feeding device, exhaust emission control system and control method for reducing agent feeding device
JP2019173737A (en) Exhaust emission control device
JP2020094516A (en) Exhaust emission control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4888480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees