JP2002155732A - Reducing agent feeder of internal combustion engine - Google Patents

Reducing agent feeder of internal combustion engine

Info

Publication number
JP2002155732A
JP2002155732A JP2000353057A JP2000353057A JP2002155732A JP 2002155732 A JP2002155732 A JP 2002155732A JP 2000353057 A JP2000353057 A JP 2000353057A JP 2000353057 A JP2000353057 A JP 2000353057A JP 2002155732 A JP2002155732 A JP 2002155732A
Authority
JP
Japan
Prior art keywords
reducing agent
pressure
internal combustion
combustion engine
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000353057A
Other languages
Japanese (ja)
Other versions
JP3600522B2 (en
Inventor
Kazuhiro Ito
和浩 伊藤
Shigeki Omichi
重樹 大道
Naohisa Oyama
尚久 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2000353057A priority Critical patent/JP3600522B2/en
Priority to FR0114945A priority patent/FR2816986B1/en
Priority to DE10156714A priority patent/DE10156714B4/en
Publication of JP2002155732A publication Critical patent/JP2002155732A/en
Application granted granted Critical
Publication of JP3600522B2 publication Critical patent/JP3600522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reducing agent feeder of internal combustion engine for feeding a prescribed quantity of a reducing agent immediately without delay in response to a command to feed the reducing agent. SOLUTION: The reducing agent feeder 16 is mounted in an exhaust pipe 10 of the internal combustion engine 1 for feeding a reducing agent to an NOx catalyst 9 to clean nitrogen oxides emitted from the internal combustion engine 1. The reducing agent feeder 16 comprises a main reducing agent storage tank 20 for storing the solid reducing agent, a reducing gas generating part 30 for gasifying the solid reducing agent stored in the main reducing agent storage tank 20, an auxiliary reducing agent storage tank 40 for temporality storing the reducing agent gasified by the reduced gas generating part 30, an ECU 15 for calculating the quantity of the reducing agent to be fed to the NOx catalyst 9 based on the operation condition of the main body of the engine, and a reducing agent applying valve 50 for applying the reducing agent stored in the auxiliary reducing agent storage tank 40 to the upstream side of the NOx catalyst 9 in the exhaust pipe 10 of the internal combustion engine 1 based on the quantity to be fed calculated by the ECU 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の還元剤
供給装置に関し、より詳細には、内燃機関より排出され
る窒素酸化物(NOx )を浄化するNOx 触媒に、還元
剤を供給する還元剤供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for supplying a reducing agent for an internal combustion engine, and more particularly to a reducing apparatus for supplying a reducing agent to a NOx catalyst for purifying nitrogen oxides (NOx) discharged from the internal combustion engine. The present invention relates to an agent supply device.

【0002】[0002]

【従来の技術】内燃機関の排気系に設けられ該内燃機関
より排出される窒素酸化物(以下、単にNOx と称す
)を浄化するNOx 触媒に、還元剤を供給する還元剤
供給装置として、例えば、特開平5−272331号公
報に開示される還元剤供給装置を例示できる。
2. Description of the Related Art As a reducing agent supply device which is provided in an exhaust system of an internal combustion engine and supplies a reducing agent to a NOx catalyst for purifying nitrogen oxides (hereinafter simply referred to as NOx) discharged from the internal combustion engine, for example, And a reducing agent supply device disclosed in JP-A-5-272331.

【0003】この特開平5−272331号公報に開示
される還元剤供給装置では、低温においても高い浄化率
でNOx を還元し得る尿素CO(NH22 を還元剤に
採用し、該尿素をNOx 触媒に供給して排気中に含まれ
るNOx の浄化を促している。
In the reducing agent supply apparatus disclosed in Japanese Patent Application Laid-Open No. 5-272331, urea CO (NH 2 ) 2, which can reduce NOx at a high purification rate even at a low temperature, is employed as the reducing agent. It is supplied to the NOx catalyst to promote the purification of NOx contained in the exhaust gas.

【0004】より詳しくは、エンジンコントロール用電
子制御ユニット(以下、単にECUと称す)からの還元
剤供給命令を受けて、収容タンクに収容された固体状の
尿素を炉筒内にて加熱ガス化させた後、該ガス化された
尿素を機関排気通路におけるNOx 触媒上流側に供給し
てNOx の浄化を促している。
More specifically, in response to a reducing agent supply command from an electronic control unit for engine control (hereinafter simply referred to as an ECU), solid urea stored in a storage tank is heated and gasified in a furnace tube. After that, the gasified urea is supplied to the upstream side of the NOx catalyst in the engine exhaust passage to promote the purification of NOx.

【0005】ところで、固体状の還元剤は、気体状の還
元剤および液体状の還元剤に比べて体積が小さく車両搭
載性に優れるものの、そのままの状態では粒子が大きく
NOx 触媒に供給できない。そこで、上記した還元剤供
給装置のように固体状の還元剤を炉筒内にて加熱ガス化
して、NOx 触媒に供給できる状態(変態)にする必要
がある。
[0005] By the way, the solid reducing agent has a smaller volume than the gaseous reducing agent and the liquid reducing agent and is excellent in mountability on a vehicle, but cannot be supplied to the NOx catalyst because the particles are large as they are. Therefore, it is necessary to heat and gasify the solid reducing agent in the furnace tube as in the above-described reducing agent supply device, so that the NOx catalyst can be supplied to the NOx catalyst (transformation).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
還元剤供給装置では、ECUからの還元剤供給命令を受
けた後、還元剤をガス化してNOx 触媒に供給するた
め、還元剤供給命令に遅れて還元剤の供給がなされるこ
ともあった。
However, in the conventional reducing agent supply device, after receiving the reducing agent supply instruction from the ECU, the reducing agent is gasified and supplied to the NOx catalyst, so that the reducing agent supply instruction is delayed. In some cases, a reducing agent was supplied.

【0007】とりわけ、固体状尿素を主成分とする還元
剤は、ガス化に時間がかかるばかりか、適宜のタイミン
グを外してNOx 触媒に供給されると、NOx と反応せ
ずに大気に放出され異臭を放つ虞もある。このため還元
剤供給命令に対して即座に対応できる還元剤供給装置の
開発が急がれている。
In particular, a reducing agent containing solid urea as a main component not only takes a long time to gasify, but is also released to the atmosphere without reacting with NOx when supplied to a NOx catalyst at an appropriate timing. There is also a risk of emitting an unpleasant odor. Therefore, the development of a reducing agent supply device that can immediately respond to a reducing agent supply instruction is urgently required.

【0008】また、要求される還元剤の供給量が、炉筒
内にて生成される還元ガス(還元剤)の生成量を凌ぐ場
合には還元ガスの供給が追いつかず、適量の還元剤をN
Ox触媒に供給できなかった。従って、NOx 触媒にお
けるNOx の浄化率が大幅に低下することになり排気エ
ミッションの低下を招く虞もある。
If the required supply amount of the reducing agent exceeds the amount of the reducing gas (reducing agent) generated in the furnace tube, the supply of the reducing gas cannot catch up with the required amount of the reducing agent. N
Could not supply Ox catalyst. Therefore, the purification rate of NOx in the NOx catalyst is greatly reduced, which may cause a reduction in exhaust emission.

【0009】また、従来の還元剤供給装置では、炉筒内
にて生成された還元ガスを直に排気通路に供給するため
還元剤の供給圧力が安定せず、要求された供給量に見合
う適量の還元剤をNOx 触媒に供給できなかった。
Further, in the conventional reducing agent supply apparatus, the reducing gas generated in the furnace tube is directly supplied to the exhaust passage, so that the supply pressure of the reducing agent is not stable, and the appropriate amount of the reducing agent matches the required supply amount. Could not be supplied to the NOx catalyst.

【0010】よって本発明は、還元剤の供給命令に対し
て、遅延することなく即座に所定量の還元剤を供給し得
る内燃機関の還元剤供給装置を提供することを課題とす
る。
It is therefore an object of the present invention to provide a reducing agent supply device for an internal combustion engine which can immediately supply a predetermined amount of reducing agent without delay in response to a reducing agent supply command.

【0011】[0011]

【課題を解決するための手段】上記した技術的課題を解
決するため、本発明では、以下の手段を採用した。すな
わち、内燃機関の排気系に設けられ該内燃機関より排出
される窒素酸化物を浄化するNOx 触媒に、還元剤を供
給する還元剤供給装置であって、固体状の還元剤を貯蔵
する主還元剤貯蔵手段と、前記主還元剤貯蔵手段に貯蔵
された固体状の還元剤を供給可能に流動化させる還元剤
流動化手段と、前記還元剤流動化手段によって流動化さ
れた還元剤を一時期貯蔵する副還元剤貯蔵手段と、機関
本体の運転状態に基づき前記NOx 触媒に供給する還元
剤の供給量を算出する還元剤供給量算出手段と、前記副
還元剤貯蔵手段に貯蔵される還元剤を、前記還元剤供給
量算出手によって算出された供給量に基づき前記内燃機
関の排気系におけるNOx 触媒上流に添加する還元剤添
加手段と、を有することを特徴とする。
Means for Solving the Problems In order to solve the above technical problems, the present invention employs the following means. That is, a reducing agent supply device that is provided in an exhaust system of an internal combustion engine and supplies a reducing agent to a NOx catalyst that purifies nitrogen oxides discharged from the internal combustion engine. Agent storing means, reducing agent fluidizing means for fluidizing the solid reducing agent stored in the main reducing agent storing means so as to be supplied, and temporarily storing the reducing agent fluidized by the reducing agent fluidizing means. A reducing agent supply means for calculating a supply amount of the reducing agent to be supplied to the NOx catalyst based on an operating state of the engine body; and a reducing agent stored in the auxiliary reducing agent storing means. And a reducing agent adding means for adding the NOx catalyst upstream of the NOx catalyst in the exhaust system of the internal combustion engine based on the supply amount calculated by the reducing agent supply amount calculator.

【0012】このような手段を採用する本発明によれ
ば、還元剤流動化手段によって添加可能に流動性を持た
された還元剤を、副還元剤貯蔵手段に予め準備、貯蔵し
ているため、還元剤の供給命令に対して即座に還元剤を
供給できる。また、副還元剤貯蔵タンク40内に還元ガ
スを常時貯蔵しているため、大量の還元剤を要する場合
においても安定した還元剤の供給を行える。尚、還元剤
の流動化とは、還元剤添加手段による還元剤の添加時
に、該添加された還元剤の拡散を容易にするための行為
である。すなわち、本発明で流動化とは、ガス化、液
化、ゲル化、粉体化などの行為を総称して流動化と称し
ている。
According to the present invention employing such means, the reducing agent having fluidity which can be added by the reducing agent fluidizing means is prepared and stored in advance in the auxiliary reducing agent storage means. The reducing agent can be supplied immediately in response to the reducing agent supply instruction. Further, since the reducing gas is always stored in the auxiliary reducing agent storage tank 40, even when a large amount of the reducing agent is required, a stable supply of the reducing agent can be performed. The fluidization of the reducing agent is an action for facilitating the diffusion of the added reducing agent when the reducing agent is added by the reducing agent adding means. That is, in the present invention, fluidization generally refers to gasification, liquefaction, gelation, powdering, and other acts as fluidization.

【0013】なお、還元剤流動化手段は、固体状の還元
剤をガス化して該還元剤に流動性を持たせるのが望まし
い。すなわち、固体状の還元剤をガス化して、還元剤添
加手段による添加時に、該添加された還元剤の拡散を良
好にしている。
The reducing agent fluidizing means desirably gasifies the solid reducing agent to give the reducing agent fluidity. That is, the solid reducing agent is gasified to improve the diffusion of the added reducing agent when added by the reducing agent adding means.

【0014】また、前記副還元剤貯蔵手段は、該副還元
剤貯蔵手段に貯蔵されている還元剤の残量を算出する残
量算出手段を備え、前記還元剤流動化手段は、前記残量
算出手段によって算出される残量が所定値未満になった
ことを受けて、前記主還元剤貯蔵手段に貯蔵される固体
状の還元剤を流動化して副還元剤貯蔵手段に補給するよ
うにしていもよい。
Further, the sub-reducing agent storage means includes a remaining amount calculating means for calculating a remaining amount of the reducing agent stored in the sub-reducing agent storing means, and the reducing agent fluidizing means comprises When the remaining amount calculated by the calculating means becomes less than a predetermined value, the solid reducing agent stored in the main reducing agent storing means is fluidized and supplied to the sub-reducing agent storing means. Is also good.

【0015】すなわち、この手段では、副還元剤貯蔵手
段に貯蔵される還元剤の残量が少なくなったとき、固体
状の還元剤を新たに流動化させて副還元剤貯蔵手段に補
給している。よって、固体状の還元剤を不必要に流動化
させることなく、常に、副還元剤貯蔵手段に還元剤を確
保できる。なお、固体状の還元剤は、通常、ガス化、液
化などに伴い体積が増加する。従って、固体状の還元剤
を不必要に流動化させると、その分、装置内における還
元剤の貯蔵手段の容量を増やす必要があり、装置の大型
化につながる。このため上記したように必要量のみを流
動化させることによって、装置の大型化を最小限にとど
めることができる。尚、所定値とは、ゼロを除く数値で
あり、経験則などに基づき任意に設定可能な値である。
That is, according to this means, when the remaining amount of the reducing agent stored in the sub-reducing agent storage means becomes small, the solid reducing agent is newly fluidized and supplied to the sub-reducing agent storage means. I have. Therefore, the reducing agent can always be secured in the auxiliary reducing agent storage means without unnecessarily fluidizing the solid reducing agent. The volume of the solid reducing agent generally increases with gasification, liquefaction, and the like. Therefore, if the solid reducing agent is fluidized unnecessarily, it is necessary to increase the capacity of the storage means for the reducing agent in the device, which leads to an increase in the size of the device. Therefore, by fluidizing only the necessary amount as described above, the size of the apparatus can be minimized. Here, the predetermined value is a numerical value excluding zero, and is a value that can be arbitrarily set based on an empirical rule or the like.

【0016】また、前記副還元剤貯蔵手段は、前記流動
化された還元剤を一時期貯蔵する副還元剤貯蔵室と、こ
の副還元剤貯蔵室内の圧力を検知する圧力検知手段と、
を備え、前記残量算出手段は、前記圧力検知手段によっ
て検知される圧力が高いとき、還元剤の残量を多いと判
断し、前記圧力検知手段によって検知される圧力が低い
とき、還元剤の残量を少ないと判断するようにしてもよ
い。すなわち、副還元剤貯蔵室内の圧力変化に基づい
て、副還元剤貯蔵室内に貯蔵される還元剤の残量を把握
するようにしている。
The sub-reducing agent storage means includes a sub-reducing agent storage chamber for temporarily storing the fluidized reducing agent, a pressure detecting means for detecting a pressure in the sub-reducing agent storage chamber,
The remaining amount calculating means determines that the remaining amount of the reducing agent is large when the pressure detected by the pressure detecting means is high, and when the pressure detected by the pressure detecting means is low, It may be determined that the remaining amount is small. That is, the remaining amount of the reducing agent stored in the sub-reducing agent storage chamber is determined based on the pressure change in the sub-reducing agent storage chamber.

【0017】また、前記副還元剤貯蔵手段は、前記流動
化された還元剤を一時期貯蔵する副還元剤貯蔵室と、こ
の副還元剤貯蔵室内の圧力を検知する圧力検知手段と、
を備え、前記還元剤添加手段は、前記NOx 触媒上流の
排気系に設けられ開弁時に前記副還元剤貯蔵室に貯蔵さ
れる還元剤を前記NOx 触媒上流に添加する還元剤添加
弁と、前記圧力検知手段によって検知される圧力に基づ
いて前記還元剤添加弁の開弁時間を制御する添加弁制御
手段と、を有する構成としてもよい。
The sub-reducing agent storage means includes a sub-reducing agent storage chamber for temporarily storing the fluidized reducing agent, a pressure detecting means for detecting a pressure in the sub-reducing agent storage chamber,
Wherein the reducing agent addition means is provided in an exhaust system upstream of the NOx catalyst and adds a reducing agent stored in the sub-reducing agent storage chamber when the valve is opened to the upstream of the NOx catalyst; An addition valve control means for controlling the opening time of the reducing agent addition valve based on the pressure detected by the pressure detection means may be provided.

【0018】すなわち、この手段では、副還元剤貯蔵室
内の圧力を圧力検知手段によって検知することにより、
還元剤添加弁に作用する還元剤の供給圧力を把握してい
る。そして、還元剤添加弁からNOx 触媒に供給される
還元剤の供給量を常に目標値になるように制御してい
る。したがって、副還元剤貯蔵室内の圧力が変動して
も、要求された供給量に見合う還元剤をNOx 触媒に供
給できる。
That is, in this means, the pressure in the secondary reducing agent storage chamber is detected by the pressure detecting means,
The supply pressure of the reducing agent acting on the reducing agent addition valve is grasped. Then, the supply amount of the reducing agent supplied from the reducing agent addition valve to the NOx catalyst is controlled so as to always reach the target value. Therefore, even if the pressure in the secondary reducing agent storage chamber fluctuates, the reducing agent that matches the required supply amount can be supplied to the NOx catalyst.

【0019】なお、前記添加弁制御手段は、前記副還元
剤貯蔵室内の圧力が高いとき、前記還元剤添加弁の開弁
時間を短くし、前記副還元剤貯蔵内の圧力が低いとき、
前記還元剤添加弁の開弁時間を長くするようにしてもよ
い。
When the pressure in the secondary reducing agent storage chamber is high, the addition valve control means shortens the valve opening time of the reducing agent addition valve, and when the pressure in the secondary reducing agent storage is low,
The opening time of the reducing agent addition valve may be lengthened.

【0020】即ち、副還元剤貯蔵室内の圧力が高いとき
には、単位時間当たりにおける還元剤の供給量が増加す
るため開弁時間を短くし、逆に、副還元剤貯蔵室内の圧
力が低いときには、単位時間当たりにおける還元剤の供
給量が減少するため開弁時間を長くして、還元剤添加弁
より添加される還元剤の供給量を目標値となるように維
持している。
That is, when the pressure in the secondary reducing agent storage chamber is high, the valve opening time is shortened because the supply amount of the reducing agent per unit time increases, and conversely, when the pressure in the secondary reducing agent storage chamber is low, Since the supply amount of the reducing agent per unit time decreases, the valve opening time is lengthened, and the supply amount of the reducing agent added from the reducing agent addition valve is maintained at the target value.

【0021】また、前記NOx 触媒は、還元剤の存在下
で、窒素酸化物を分解又は還元せしめる選択還元型NO
x 触媒とするのが望ましい。また、固体状の還元剤は、
前記還元剤流動化手段によるガス化時に、アンモニアを
基調とする還元ガスを生成する還元剤とするのが望まし
い。
In addition, the NOx catalyst is a selective reduction type NO that decomposes or reduces nitrogen oxides in the presence of a reducing agent.
x It is desirable to use a catalyst. Also, the solid reducing agent is
It is desirable to use a reducing agent that generates a reducing gas based on ammonia during gasification by the reducing agent fluidizing means.

【0022】[0022]

【発明の実施の形態】以下、本発明の還元剤供給装置に
係わる好適な実施の形態について図面を参照して説明す
る。なお、以下に説明する実施の形態は、本発明の還元
剤供給装置を車両用ディーゼルエンジンに適用した形態
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described with reference to the drawings. The embodiment described below is an embodiment in which the reducing agent supply device of the present invention is applied to a vehicle diesel engine.

【0023】<内燃機関の概要>初めに、本発明の還元
剤供給装置を説明するに先立ち、この還元剤供給装置が
装備されるディーゼルエンジンについて図1を参照して
説明する。
<Overview of Internal Combustion Engine> Before describing the reducing agent supply device of the present invention, a diesel engine equipped with the reducing agent supply device will be described with reference to FIG.

【0024】ディーゼルエンジン1(以下、単にエンジ
ンと称す)は、ピストン3、シリンダ4、シリンダヘッ
ド5などにて構成される燃焼室2と、該燃焼室2に機関
燃料を供給する燃料噴射弁6と、を有する。また、燃焼
室2には、空気吸入量を測定するエアフローメータ7を
備えた吸気管8が接続されて、燃焼室2内では、該吸気
管8を経て導入された空気と、燃料噴射弁6により供給
される機関燃料と、が混合されて自己着火による機関燃
焼が行われている。
A diesel engine 1 (hereinafter simply referred to as an engine) includes a combustion chamber 2 including a piston 3, a cylinder 4, a cylinder head 5, and the like, and a fuel injection valve 6 for supplying engine fuel to the combustion chamber 2. And Further, an intake pipe 8 having an air flow meter 7 for measuring an air intake amount is connected to the combustion chamber 2. In the combustion chamber 2, air introduced through the intake pipe 8 and a fuel injection valve 6 are provided. And the engine fuel supplied by the engine is mixed to perform engine combustion by self-ignition.

【0025】一方、燃焼室2内での機関燃焼に伴い生成
される排気ガスは、燃焼室2に接続され経路途中に選択
還元型NOx 触媒9、および消音器(図示せず)を備え
る排気管10を経て大気に排気される。なお、以下の説
明では、選択還元型NOx 触媒を単にNOx 触媒と称す
ることもある。
On the other hand, the exhaust gas generated as a result of engine combustion in the combustion chamber 2 is connected to the combustion chamber 2 and is provided with an exhaust pipe having a selective reduction type NOx catalyst 9 and a muffler (not shown) in the middle of the path. It is exhausted to the atmosphere after 10. In the following description, the selective reduction type NOx catalyst may be simply referred to as a NOx catalyst.

【0026】排気管10に設けられる選択還元型NOx
触媒9は、主として排気中の窒素酸化物(以下、単にN
Oxと称す )を効果的に浄化せしめる触媒であり、還元
剤の存在下で、NOx を還元または分解して浄化する触
媒である。
Selective reduction type NOx provided in exhaust pipe 10
The catalyst 9 mainly includes nitrogen oxides (hereinafter simply referred to as N
Ox) is a catalyst that effectively purifies NOx, and is a catalyst that purifies NOx by reducing or decomposing it in the presence of a reducing agent.

【0027】なお、選択還元型NOx 触媒9としては、
ゼオライトにCu等の遷移金属をイオン交換にて担持さ
せてなる触媒、ゼオライト又はアルミナに貴金属を担持
させてなる触媒、チタニウムにバナジウムを担持させて
なる触媒、等を例示できる。
The selective reduction type NOx catalyst 9 includes:
Examples thereof include a catalyst in which a transition metal such as Cu is supported on zeolite by ion exchange, a catalyst in which a noble metal is supported on zeolite or alumina, and a catalyst in which vanadium is supported on titanium.

【0028】また、排気管10におけるNOx 触媒9上
流側には、NOx センサ11、入りガス圧センサ12、
排気温度センサ13等が設けられ、また、NOx 触媒9
下流側には、還元剤センサ14が設けられている。NO
x センサ11は、排気ガス中のNOx 濃度を測定するセ
ンサである。入りガス圧センサ12は、排気管10内の
管内圧力(排圧)を測定するセンサである。また、排気
温度センサ13は、NOx 触媒9に流入する排気ガスの
温度を測定するセンサである。還元剤センサ14は、排
気ガス中における還元剤の濃度を測定するセンサであ
る。そして、各種センサは、後述するエンジンコントロ
ール用電子制御ユニット15の入力ポートに接続されて
いる。
On the upstream side of the NOx catalyst 9 in the exhaust pipe 10, a NOx sensor 11, an incoming gas pressure sensor 12,
An exhaust temperature sensor 13 and the like are provided.
On the downstream side, a reducing agent sensor 14 is provided. NO
The x sensor 11 is a sensor that measures the NOx concentration in the exhaust gas. The incoming gas pressure sensor 12 is a sensor that measures a pipe pressure (exhaust pressure) in the exhaust pipe 10. Further, the exhaust gas temperature sensor 13 is a sensor that measures the temperature of the exhaust gas flowing into the NOx catalyst 9. The reducing agent sensor 14 is a sensor that measures the concentration of the reducing agent in the exhaust gas. The various sensors are connected to input ports of an engine control electronic control unit 15 described later.

【0029】また、エンジン1は、エンジンコントロー
ル用電子制御ユニット15(以下、単にECU15と称
する)によって、運転状態に見合った制御がなされてい
る。ECU15は、双方向性バスによって相互に接続さ
れたROM(リード・オンリ・メモリ)、RAM(ラン
ダム・アクセス・メモリ)、CPU(セントラルプロセ
ッサユニット)、入力ポート、出力ポート、A/Dコン
バータ等を有してなり、入力ポートに入力される各種セ
ンサからの出力信号に基づき、ROM上に展開された各
種制御マップを参照して、例えば、燃料噴射弁5におけ
る燃料噴射制御などを行っている。また、本発明では、
還元剤供給装置16の制御をも同時に行っている。
The engine 1 is controlled by an engine control electronic control unit 15 (hereinafter simply referred to as ECU 15) in accordance with the operating state. The ECU 15 includes a ROM (Read Only Memory), a RAM (Random Access Memory), a CPU (Central Processor Unit), an input port, an output port, an A / D converter, etc., which are interconnected by a bidirectional bus. For example, based on output signals from various sensors input to the input port and referring to various control maps developed on the ROM, for example, fuel injection control in the fuel injection valve 5 is performed. In the present invention,
The control of the reducing agent supply device 16 is also performed at the same time.

【0030】そして、本発明では、エンジン1の機関燃
焼に伴い排出される排気ガス中のNOx をNOx 触媒9
にて浄化せしめるために、該NOx 触媒9に対して還元
剤たるアンモニアガス(NH3 )を供給する還元剤供
給装置16を設けている。以下、本発明の主旨となる還
元剤添加装置16について、図2を参照して詳細に説明
する。
In the present invention, NOx in the exhaust gas discharged with the combustion of the engine of the engine 1 is converted into a NOx catalyst 9.
In order to purify the NOx catalyst 9, ammonia gas (NH3) ) Is provided. Hereinafter, the reducing agent addition device 16 which is the gist of the present invention will be described in detail with reference to FIG.

【0031】<還元剤供給装置の構造>まず初めに、還
元剤供給装置16の構造について説明する。還元剤供給
装置16は、固体状の還元剤を内部に貯蔵する主還元剤
貯蔵タンク20(主還元剤貯蔵手段)と、この主還元剤
貯蔵タンク20に貯蔵された固体状の還元剤を加熱して
還元ガスを生成する還元ガス生成部30(還元剤流動化
手段)と、還元ガス生成部30によって生成された還元
ガスを一時期貯蔵する副還元剤貯蔵タンク40(副還元
剤貯蔵手段)と、副還元剤貯蔵タンク40に貯蔵された
還元ガスをECU15からの還元剤供給命令に応じてN
Ox 触媒9に添加する還元剤添加弁50(還元剤添加手
段)と、を有してなる。
<Structure of Reducing Agent Supply Apparatus> First, the structure of the reducing agent supply apparatus 16 will be described. The reducing agent supply device 16 heats a main reducing agent storage tank 20 (main reducing agent storing means) for storing a solid reducing agent therein and a solid reducing agent stored in the main reducing agent storage tank 20. A reducing gas generating section 30 (reducing agent fluidizing means) for generating reducing gas, and a sub-reducing agent storage tank 40 (sub-reducing agent storing means) for temporarily storing the reducing gas generated by the reducing gas generating section 30. The reducing gas stored in the sub-reducing agent storage tank 40 is stored in the N
A reducing agent addition valve 50 (reducing agent adding means) for adding to the Ox catalyst 9.

【0032】主還元剤貯蔵タンク20は、還元剤たる固
体状のカルバミン酸アンモニウムを内部に収容するタン
ク本体21と、タンク本体21を取り囲むように設けら
れた断熱部材22と、を有してなり、後述する還元ガス
生成部30に対して着脱自在に設けられている。
The main reducing agent storage tank 20 has a tank body 21 for containing solid ammonium carbamate as a reducing agent therein, and a heat insulating member 22 provided so as to surround the tank body 21. , Is provided detachably with respect to a reducing gas generating unit 30 described later.

【0033】なお、カルバミン酸アンモニウムは、アン
モニアを基調とする還元剤の一種であり、常温で固体状
をなし摂氏40度前後でガス化する特性を有している。
また、従来から使用されている炭化水素(HC)や一酸
化炭素(CO)などの還元剤に比べて遙かに強い還元作
用を有するため、比較的低温度でもNOx を高い浄化効
率で浄化できるといった利点を備えている。
It should be noted that ammonium carbamate is a kind of reducing agent based on ammonia, and has the property of forming a solid at room temperature and gasifying at around 40 degrees Celsius.
Also, since it has a much stronger reducing action than conventional reducing agents such as hydrocarbons (HC) and carbon monoxide (CO), NOx can be purified with a high purification efficiency even at a relatively low temperature. It has such advantages.

【0034】なお、主還元剤貯蔵タンク20を還元ガス
生成部30に対して着脱自在に設ける理由としては、内
部に貯蔵されるカルバミン酸アンモニウムを使い尽くし
たとき、新規カルバミン酸アンモニウムを貯蔵した新品
の主還元剤貯蔵タンク20と使用後の空の主還元剤貯蔵
タンクとを容易に交換できるようにするためである。即
ち、主還元剤貯蔵タンク20は、カートリッジ式になっ
ている。
The reason why the main reducing agent storage tank 20 is provided detachably with respect to the reducing gas generating section 30 is that when the ammonium carbamate stored inside is exhausted, a new product storing new ammonium carbamate is used. This is because it is possible to easily exchange the main reducing agent storage tank 20 with the empty main reducing agent storage tank after use. That is, the main reducing agent storage tank 20 is of a cartridge type.

【0035】還元ガス生成部30は、主還元剤貯蔵タン
ク20に連結し主還元剤貯蔵タンク20内に貯蔵される
還元剤のガス化を促す加熱室31と、該加熱室31を取
り囲むように設けられた外壁32と、を有する。また、
加熱室31と外壁32との間には、機関冷却水の循環経
路となるウォータジャケット(図示せず)に通じた空間
33が形成され、機関燃焼により暖められた機関冷却水
がこの空間33内に流れ込むことにより、加熱室31内
の室内温度が昇温する仕組みとなっている。
The reducing gas generator 30 is connected to the main reducing agent storage tank 20 and has a heating chamber 31 for promoting gasification of the reducing agent stored in the main reducing agent storage tank 20. The heating chamber 31 surrounds the heating chamber 31. And an outer wall 32 provided. Also,
A space 33 is formed between the heating chamber 31 and the outer wall 32 and communicates with a water jacket (not shown) that serves as a circulation path for the engine cooling water. , The inside temperature of the heating chamber 31 rises.

【0036】また、ウォータジャケットと還元ガス生成
部30(空間33)との間には、該還元ガス生成部30
に対する機関冷却水の流れ込みを規制する機関冷却水制
御弁34が設けられている(図1参照)。そして、この
機関冷却水制御弁34の開閉動作をECU15にて制御
することにより、加熱室31内に流れ込む機関冷却水の
流量を制御して加熱室31内の室内温度を任意に調節で
きるようにしている。
Further, between the water jacket and the reducing gas generator 30 (space 33), the reducing gas generator 30 is provided.
An engine cooling water control valve 34 for regulating the flow of the engine cooling water to the engine is provided (see FIG. 1). The opening and closing operation of the engine cooling water control valve 34 is controlled by the ECU 15 so that the flow rate of the engine cooling water flowing into the heating chamber 31 is controlled so that the room temperature in the heating chamber 31 can be arbitrarily adjusted. ing.

【0037】そして、機関冷却水制御弁34を開弁し
て、機関燃焼により暖められた機関冷却水を還元ガス生
成部30(空間33)に導くと、該加熱室31内の室内
温度が昇温するため加熱室31に連通した主還元剤貯蔵
タンク20内のカルバミン酸アンモニウムがガス化す
る。なお、以下の説明では、ガス化されたカルバミン酸
アンモニウムを単に還元ガスと称することもある。
Then, the engine cooling water control valve 34 is opened to guide the engine cooling water warmed by the engine combustion to the reducing gas generator 30 (space 33), and the room temperature in the heating chamber 31 rises. The ammonium carbamate in the main reducing agent storage tank 20 communicating with the heating chamber 31 is gasified for warming. In the following description, the gasified ammonium carbamate may be simply referred to as a reducing gas.

【0038】副還元剤貯蔵タンク40は、還元剤たるガ
ス状のカルバミン酸アンモニウムを貯蔵するタンク本体
41と、該タンク本体41を取り囲むように設けられた
断熱部材42と、タンク本体41内の圧力を検知する圧
力センサ43(圧力検知手段)と、を有し、タンク本体
41と上記した還元ガス生成部30とは、連結管60を
介して互いに連結されている。したがって、還元ガス生
成部30でガス化されたカルバミン酸アンモニウムは、
連結管60を経て副還元剤貯蔵タンク40に流れ込み、
副還元剤貯蔵タンク40に一旦貯蔵される。
The sub-reducing agent storage tank 40 includes a tank body 41 for storing gaseous ammonium carbamate as a reducing agent, a heat insulating member 42 provided to surround the tank body 41, and a pressure inside the tank body 41. , And the tank main body 41 and the above-described reducing gas generating unit 30 are connected to each other through a connecting pipe 60. Therefore, the ammonium carbamate gasified in the reducing gas generator 30 is:
It flows into the auxiliary reducing agent storage tank 40 via the connecting pipe 60,
Once stored in the auxiliary reducing agent storage tank 40.

【0039】還元剤添加弁50は、NOx 触媒9上流側
の排気管10に設けられ、ECU15からの還元剤供給
命令を受けて、前記副還元剤貯蔵タンク40に貯蔵され
た還元ガスを、NOx 触媒9上流側の排気管10に添加
する。
The reducing agent addition valve 50 is provided in the exhaust pipe 10 on the upstream side of the NOx catalyst 9 and receives a reducing agent supply command from the ECU 15 to convert the reducing gas stored in the auxiliary reducing agent storage tank 40 into NOx. The catalyst 9 is added to the exhaust pipe 10 on the upstream side.

【0040】還元剤添加弁50は、弁体51、及び弁体
51を支持するガイド52などにて構成されるノズル部
53と、該ノズル部53に設けられる弁体51の開閉を
行うソレノイド54と、前記連結管60に接続し副還元
剤貯蔵タンク40に貯蔵される還元ガスをノズル部53
に導く導入通路55と、を有してなり、副還元剤貯蔵タ
ンク40に貯蔵される還元ガスは、導入通路55を流下
してノズル部53に導かれる。そして、還元ガスは、ソ
レノイド54による弁体51の開閉制御によって、適切
量且つ適宜のタイミングにて排気管10に添加される仕
組みとなっている。
The reducing agent addition valve 50 includes a nozzle portion 53 composed of a valve body 51 and a guide 52 for supporting the valve body 51, and a solenoid 54 for opening and closing the valve body 51 provided in the nozzle portion 53. The reducing gas connected to the connecting pipe 60 and stored in the auxiliary reducing agent storage tank 40 is supplied to the nozzle 53.
The reducing gas stored in the auxiliary reducing agent storage tank 40 flows down the introduction passage 55 and is guided to the nozzle portion 53. The reducing gas is added to the exhaust pipe 10 at an appropriate amount and at an appropriate timing by controlling the opening and closing of the valve element 51 by the solenoid 54.

【0041】また、弁体51を開閉させるソレノイド5
4は、ECU15によってデューティ比制御され、開弁
電圧の印可時に弁体51を開弁させて副還元剤貯蔵タン
ク40内の還元ガスを排気管10に添加するようにして
いる。なお、副還元剤貯蔵タンク40の内部圧力は、常
時、排気管10内の排圧に比べて高く維持されており、
還元ガスの添加時には、この圧力差を利用して還元ガス
の添加をなし得るようにしている。副還元剤貯蔵タンク
40の圧力調節に関しては、次の還元剤供給制御の説明
において詳述する。
A solenoid 5 for opening and closing the valve body 51
4 is controlled by the ECU 15 so that the valve element 51 is opened when the valve opening voltage is applied, and the reducing gas in the auxiliary reducing agent storage tank 40 is added to the exhaust pipe 10. In addition, the internal pressure of the auxiliary reducing agent storage tank 40 is always maintained higher than the exhaust pressure in the exhaust pipe 10,
When the reducing gas is added, the pressure difference is used to add the reducing gas. The pressure adjustment of the auxiliary reducing agent storage tank 40 will be described in detail in the following description of the reducing agent supply control.

【0042】<還元剤供給装置の制御>以下、上記した
還元剤供給装置に係る還元剤供給制御について説明す
る。エンジン1の運転開始(機関燃焼の開始)に伴い機
関冷却水の温度が摂氏40度前後に達すると、ECU1
5では、主還元剤貯蔵タンク20に貯蔵される還元剤の
ガス化を図るために、まず、機関冷却水制御弁34を開
弁して還元ガス生成部30に機関冷却水を導き入れる。
<Control of Reducing Agent Supply Device> Hereinafter, the control of the reducing agent supply according to the above-described reducing agent supply device will be described. When the temperature of the engine cooling water reaches about 40 degrees Celsius with the start of operation of the engine 1 (start of engine combustion), the ECU 1
In 5, in order to gasify the reducing agent stored in the main reducing agent storage tank 20, first, the engine cooling water control valve 34 is opened and the engine cooling water is introduced into the reducing gas generation unit 30.

【0043】そして、機関冷却水によって加熱室31内
の空間温度が、摂氏40度前後に達すると還元ガス生成
部30に連通した主還元剤貯蔵タンク20内のカルバミ
ン酸アンモニウムが一部ガス化して、連結路60を経て
副還元剤貯蔵タンク40に充填される。
When the space temperature in the heating chamber 31 reaches about 40 degrees Celsius due to the engine cooling water, the ammonium carbamate in the main reducing agent storage tank 20 communicating with the reducing gas generator 30 is partially gasified. The secondary reducing agent is charged into the storage tank 40 via the connecting path 60.

【0044】また、このときECU15では、副還元剤
貯蔵タンク40に充填された還元ガスの充填量を圧力セ
ンサ43の出力値を基づき把握しており、圧力センサ4
3にて検出される副還元剤貯蔵タンク40内の圧力が所
定値に達したとき、還元ガスの充填量が規定量に達した
とみなし、前記機関冷却水制御弁34を閉弁して、カル
バミン酸アンモニウムのガス化を一時中断するようにし
ている。
At this time, the ECU 15 knows the amount of the reducing gas filled in the sub-reducing agent storage tank 40 based on the output value of the pressure sensor 43.
When the pressure in the auxiliary reducing agent storage tank 40 detected at 3 reaches a predetermined value, it is considered that the filling amount of the reducing gas has reached the specified amount, and the engine cooling water control valve 34 is closed, The gasification of ammonium carbamate is temporarily suspended.

【0045】ここで所定値とは、各種予備実験により求
められた値であり、例えば、副還元剤貯蔵タンク40の
最大許容圧力、排気管10内の平均排圧、単位時間当た
りにおける還元ガスの消費量等を考慮して任意に設定さ
れる値である。
Here, the predetermined value is a value obtained by various preliminary experiments, and includes, for example, the maximum allowable pressure of the auxiliary reducing agent storage tank 40, the average exhaust pressure in the exhaust pipe 10, and the amount of reducing gas per unit time. This value is arbitrarily set in consideration of the consumption amount and the like.

【0046】またなお、ECU15では、圧力センサ4
3にて検出される副還元剤貯蔵タンク40の圧力が、所
定時間経過した後においても上昇しないときに主還元剤
貯蔵タンク20内に貯蔵されているカルバミン酸アンモ
ニウムが尽きたとして、車内に設けられるインジケータ
パネル18に警告ランプ19を点灯させ、運転者にその
旨を伝える。
In the ECU 15, the pressure sensor 4
When the pressure of the sub-reducing agent storage tank 40 detected at 3 does not increase even after a predetermined time has elapsed, it is determined that the ammonium carbamate stored in the main reducing agent storage tank 20 has run out. A warning lamp 19 is lit on the indicator panel 18 to inform the driver of the fact.

【0047】また、ECU15では、NOx の浄化を促
すべく還元剤の供給制御を行うために、機関負荷、機関
回転数、NOx 濃度、触媒温度、還元ガスの充填圧力、
などに基づいて還元剤の目標供給量を算出し、該算出さ
れた目標供給量に見合う還元剤を適宜のタイミングにて
NOx 触媒9に添加するように還元剤添加弁50におけ
るソレノイド54の制御を行っている。
Further, the ECU 15 controls the supply of the reducing agent to promote the purification of NOx, so that the engine load, the engine speed, the NOx concentration, the catalyst temperature, the charging pressure of the reducing gas,
The target supply amount of the reducing agent is calculated based on the above, and the control of the solenoid 54 in the reducing agent addition valve 50 is performed so that the reducing agent corresponding to the calculated target supply amount is added to the NOx catalyst 9 at an appropriate timing. Is going.

【0048】還元剤添加弁50の制御について詳述する
と、ECU15には、上記の如くエアフロメータ7から
の出力信号、及びNOx センサ11からの出力信号が入
力ポート及びA/D変換器を介して入力されている。そ
して、ECU15では、エアフロメータ7にて検出され
る空気吸入量と、NOx センサ11にて検出されるNO
x 濃度から、単位時間当たりに排出されるNOx の排出
量を演算して、該演算されたNOx 排出量に見合う還元
剤の目標供給量を設定している(還元剤供給量算出手
段)。
The control of the reducing agent addition valve 50 will be described in detail. The output signal from the air flow meter 7 and the output signal from the NOx sensor 11 are sent to the ECU 15 via the input port and the A / D converter as described above. Has been entered. Then, in the ECU 15, the air intake amount detected by the air flow meter 7 and the NO detected by the NOx sensor 11 are determined.
The amount of NOx discharged per unit time is calculated from the x concentration, and the target supply amount of the reducing agent corresponding to the calculated NOx discharge amount is set (reducing agent supply amount calculating means).

【0049】また、ECU15には、副還元剤貯蔵タン
ク40に設けられた圧力センサ43からの出力信号、お
よび排気管10に設けられた入りガス圧センサ12から
の出力信号が入力されている。圧力センサ43は、副還
元剤貯蔵タンク40の内部圧力に比例した出力電圧を出
力し、入りガス圧センサ12は、排気管10内の排圧に
比例した出力電圧を出力する。そして、ECU15で
は、これら各圧力センサ43,12からの出力値に基づ
いて、副還元剤貯蔵タンク40の圧力と、排気管10内
の圧力(排圧)と、の間における圧力差を求めて、排気
管10に対する還元ガスの供給圧力を算出している。
An output signal from the pressure sensor 43 provided in the sub-reducing agent storage tank 40 and an output signal from the incoming gas pressure sensor 12 provided in the exhaust pipe 10 are input to the ECU 15. The pressure sensor 43 outputs an output voltage proportional to the internal pressure of the auxiliary reducing agent storage tank 40, and the incoming gas pressure sensor 12 outputs an output voltage proportional to the exhaust pressure in the exhaust pipe 10. Then, the ECU 15 obtains a pressure difference between the pressure of the auxiliary reducing agent storage tank 40 and the pressure (discharge pressure) in the exhaust pipe 10 based on the output values from the pressure sensors 43 and 12. The supply pressure of the reducing gas to the exhaust pipe 10 is calculated.

【0050】また、ECU15では、この算出された還
元ガスの供給圧力を考慮して、単位時間当たりにおける
還元ガスの供給量が目標供給量となるように還元剤添加
弁50における弁体51のデューティ比を演算し、該算
出されたデューティ比に基づく還元剤添加弁50のデュ
ーティ比制御を行う(添加弁制御手段)。尚、ここでデ
ューティ比とは、単位時間当たりにおける弁体51の開
閉回数を意味している。したがって、デューティ比制御
では、単位時間当たりにおける弁体51の開閉回数を増
加させるほど、より多くの還元ガスが排気管10に供給
されることとなる。
The ECU 15 takes into consideration the calculated supply pressure of the reducing gas so that the supply amount of the reducing gas per unit time becomes equal to the target supply amount so that the duty of the valve body 51 of the reducing agent addition valve 50 is adjusted. The ratio is calculated, and duty ratio control of the reducing agent addition valve 50 is performed based on the calculated duty ratio (addition valve control means). Here, the duty ratio means the number of times the valve element 51 is opened and closed per unit time. Therefore, in the duty ratio control, as the number of times of opening and closing of the valve element 51 per unit time is increased, more reducing gas is supplied to the exhaust pipe 10.

【0051】すなわち、還元ガスの供給圧力が高いとき
には、単位時間当たりにおける還元ガスの供給量が必然
的に増加するためデューティ比を小さく設定し、逆に還
元ガスの供給圧力が低いときには、単位時間当たりにお
ける還元ガスの供給量が減少するためデューティ比を大
きく設定している。
That is, when the supply pressure of the reducing gas is high, the duty ratio is set small because the supply amount of the reducing gas per unit time is inevitably increased. Conversely, when the supply pressure of the reducing gas is low, the unit time is reduced. Since the supply amount of the reducing gas per hit decreases, the duty ratio is set large.

【0052】また、ECU15には、排気温度センサ1
3からの出力信号が入力されている。排気温度センサ1
3は、排気ガスの温度に比例した出力電圧を出力し、N
Ox触媒9の触媒温度の把握に用いられる。そして、E
CU15では、排気温度センサ13にて把握される触媒
温度が、NOx を浄化し得る活性化温度に達したことを
受けて、算出された目標供給量に見合う還元剤添加弁5
0のデューティ制御を行い還元ガスをNOx 触媒9に添
加する。
The ECU 15 has an exhaust temperature sensor 1
3 is input. Exhaust gas temperature sensor 1
3 outputs an output voltage proportional to the temperature of the exhaust gas;
It is used to determine the catalyst temperature of the Ox catalyst 9. And E
In the CU 15, when the catalyst temperature detected by the exhaust temperature sensor 13 reaches an activation temperature at which NOx can be purified, the reducing agent addition valve 5 corresponding to the calculated target supply amount is provided.
The duty control of 0 is performed, and the reducing gas is added to the NOx catalyst 9.

【0053】また、ECU15には、還元剤センサ14
からの出力信号が入力されている。そして、ECU15
では、還元剤供給装置16の故障などにより大量の還元
剤が不本意に供給された場合、その還元剤を還元剤セン
サ14にて感知して還元剤の供給を直ちに強制的に停止
させる制御を行う。
The ECU 15 includes a reducing agent sensor 14.
Output signal is input. And the ECU 15
In the case where a large amount of reductant is unintentionally supplied due to a failure of the reductant supply device 16 or the like, control is performed to sense the reductant by the reductant sensor 14 and immediately forcibly stop the supply of the reductant. Do.

【0054】一方、副還元剤貯蔵タンク40に貯蔵され
る還元ガスは、還元剤添加弁50からの添加によって消
費され、時間の経過と共にその残量は減少していく。そ
こでECU15では、副還元剤貯蔵タンク40に貯蔵さ
れる還元ガスを切らさないように、副還元剤貯蔵タンク
40内における還元ガスの残量を常時把握して、その残
量が少なくなった時には、副還元剤貯蔵タンク40に還
元ガスを補給する還元ガス補給制御を行っている。
On the other hand, the reducing gas stored in the auxiliary reducing agent storage tank 40 is consumed by the addition from the reducing agent addition valve 50, and the remaining amount thereof decreases with time. Therefore, the ECU 15 always grasps the remaining amount of the reducing gas in the sub-reducing agent storage tank 40 so as not to run out the reducing gas stored in the sub-reducing agent storage tank 40, and when the remaining amount decreases, Reducing gas replenishment control for replenishing the sub-reducing agent storage tank 40 with reducing gas is performed.

【0055】ECU15にて還元ガスの残量を把握する
には、上記した圧力センサ43の出力信号を利用して残
量を把握している。すなわち、副還元剤貯蔵タンク40
内の還元ガスが消費されると、副還元剤貯蔵タンク40
の内部圧力も低下する。したがって、圧力センサ43の
出力値を監視することにより副還元剤貯蔵タンク40内
の残量を把握できる(残量検出手段)。
The remaining amount of the reducing gas is grasped by the ECU 15 by using the output signal of the pressure sensor 43 described above. That is, the auxiliary reducing agent storage tank 40
When the reducing gas in the tank is consumed, the secondary reducing agent storage tank 40
Internal pressure also decreases. Therefore, by monitoring the output value of the pressure sensor 43, the remaining amount in the auxiliary reducing agent storage tank 40 can be grasped (remaining amount detecting means).

【0056】そして、ECU15では、圧力センサ43
にて検知される副還元剤貯蔵タンク40内の圧力(還元
ガスの充填圧力)が所定値未満になったことを受けて、
前記機関冷却水制御弁34を開弁して加熱室31を加熱
し、主還元剤貯蔵タンク20に貯蔵されるカルバミン酸
アンモニウムを新たにガス化させる。その結果、新たに
ガス化されたカルバミン酸アンモニウムが副還元剤貯蔵
タンク40内に流れ込み副還元剤貯蔵タンク40内に還
元ガスが補給されることになる。
In the ECU 15, the pressure sensor 43
In response to the fact that the pressure in the auxiliary reducing agent storage tank 40 (the charging pressure of the reducing gas) detected at
The engine cooling water control valve 34 is opened to heat the heating chamber 31 to newly gasify the ammonium carbamate stored in the main reducing agent storage tank 20. As a result, the newly gasified ammonium carbamate flows into the sub-reducing agent storage tank 40 and replenishes the sub-reducing agent storage tank 40 with the reducing gas.

【0057】なお、ここで所定値とは任意に設定可能な
値であるが、好ましくは、排圧に対して十分に大きい値
とするのが望ましい。即ち、還元ガスの充填圧力を高く
しておくことにより、排気管10に対する還元ガスの拡
散が良好になる他、排圧の変化に対する単位時間当たり
の供給量も安定する。
Here, the predetermined value is a value that can be set arbitrarily, but it is preferable that the predetermined value is set to a value sufficiently larger than the exhaust pressure. That is, by increasing the filling pressure of the reducing gas, the diffusion of the reducing gas into the exhaust pipe 10 is improved, and the supply amount per unit time with respect to the change in the exhaust pressure is also stabilized.

【0058】なお、副還元剤貯蔵タンク40の内部圧力
が所定値以上になった場合には、上記したように機関冷
却水制御弁34を閉弁して、カルバミン酸アンモニウム
のガス化を停止させる。
When the internal pressure of the sub-reducing agent storage tank 40 exceeds a predetermined value, the engine cooling water control valve 34 is closed as described above to stop the gasification of ammonium carbamate. .

【0059】このように本発明の還元剤供給装置16で
は、還元剤添加弁50からの添加をなし得るように固体
状の還元剤をガス化して副還元剤貯蔵タンク40に予め
貯蔵・準備しておき、ECU15からの還元剤添加命令
に対して即座に対応できるようにしている。
As described above, in the reducing agent supply device 16 of the present invention, the solid reducing agent is gasified and stored and prepared in the auxiliary reducing agent storage tank 40 in advance so that addition from the reducing agent addition valve 50 can be performed. In addition, it is possible to immediately respond to the reducing agent addition command from the ECU 15.

【0060】なお、上記した各説明は、あくまでも本発
明の一実施形態にすぎず、詳細は任意に変更可能であ
る。例えば、ECU15にてNOx の排出量を算出する
場合には、ECU15にNOx 排出量マップを準備して
おき、該マップを利用してNOx 排出量の算出を行わせ
てもよい。
The above description is merely one embodiment of the present invention, and details can be arbitrarily changed. For example, when the ECU 15 calculates the NOx emission amount, the ECU 15 may prepare a NOx emission amount map and use the map to calculate the NOx emission amount.

【0061】なお、NOx 排出量マップは、機関負荷と
機関回転数とをパラメータとして、これらパラメータと
各種予備実験により求められた単位時間当たりにおける
NOx 排出量との関係をマップ化したものである。従っ
て、図示しないアクセル開度センサの出力信号、及びク
ランク角センサからの出力信号をECU15に入力して
NOx 排出量マップに照らし合わせると、単位時間当た
りにおけるNOx 排出量を算出できる。
The NOx emission map maps the relationship between these parameters and the NOx emission per unit time obtained by various preliminary experiments, using the engine load and the engine speed as parameters. Therefore, when the output signal of the accelerator opening sensor (not shown) and the output signal of the crank angle sensor are input to the ECU 15 and compared with the NOx emission map, the NOx emission per unit time can be calculated.

【0062】尚、アクセル開度センサは、アクセル開度
に比例した出力電圧をECU15に出力し、その出力電
圧は機関負荷の演算に用いられる。一方、クランク角セ
ンサは、エンジン1の図示しないクランクシャフトが一
定角度回転する毎に出力パルスをECU15に出力し、
その出力パルスは機関回転数の演算に用いられている。
The accelerator opening sensor outputs an output voltage proportional to the accelerator opening to the ECU 15, and the output voltage is used for calculating the engine load. On the other hand, the crank angle sensor outputs an output pulse to the ECU 15 every time a crankshaft (not shown) of the engine 1 rotates by a certain angle,
The output pulse is used for calculating the engine speed.

【0063】また、上記した例では、還元剤添加弁50
に作用する還元剤の供給圧力を、入りガス圧センサ12
の出力値と圧力センサ43の出力値とによって求めてい
るが、排気管10内の圧力は、機関負荷及び機関回転数
をパラメータとして作成した排圧マップにより推測でき
る。従って、圧力センサ43の出力値と排圧マップ上で
算出された排圧とによって、還元剤の供給圧力を算出す
るようにしてもよい。
In the above example, the reducing agent addition valve 50
Supply pressure of the reducing agent acting on the gas pressure sensor 12
And the output value of the pressure sensor 43, the pressure in the exhaust pipe 10 can be estimated from an exhaust pressure map created using the engine load and the engine speed as parameters. Therefore, the supply pressure of the reducing agent may be calculated based on the output value of the pressure sensor 43 and the exhaust pressure calculated on the exhaust pressure map.

【0064】また、上記した例では、入りガス圧センサ
12の出力値と圧力センサ43の出力値とを考慮して、
還元剤添加弁50におけるデューティ比制御を行ってい
るが、副還元剤貯蔵タンク40に対する還元ガスの貯蔵
圧力を排気管10内の圧力に対して十分に大きくする
と、排圧の影響による単位時間当たりの還元剤供給量の
変動を相対的に小さくできる。即ち、副還元剤貯蔵タン
ク40に対する還元ガスの貯蔵圧力を十分に大きく設定
した場合には、副還元剤貯蔵タンク40の圧力のみを考
慮して還元剤添加弁50のデューティ比制御を行っても
よい。
In the above example, the output value of the incoming gas pressure sensor 12 and the output value of the pressure sensor 43 are taken into consideration, and
Although the duty ratio control in the reducing agent addition valve 50 is performed, if the storage pressure of the reducing gas in the auxiliary reducing agent storage tank 40 is sufficiently increased with respect to the pressure in the exhaust pipe 10, the unit pressure per unit time due to the influence of the exhaust pressure is reduced. Of the supply amount of the reducing agent can be relatively reduced. That is, if the storage pressure of the reducing gas in the sub-reducing agent storage tank 40 is set to be sufficiently large, the duty ratio control of the reducing agent addition valve 50 may be performed by considering only the pressure of the sub-reducing agent storage tank 40. Good.

【0065】また、上記した例では、ガス化された還元
剤をそのままの形態で副還元剤貯蔵タンク40内に貯蔵
しているが、生成された還元剤を圧縮及び冷却して体積
を減少させ副還元剤貯蔵タンク40に貯蔵しても構わな
い。すなわち、還元ガスを圧縮して副還元剤貯蔵タンク
40に貯蔵することにより、さらなる装置の小型化を図
れる。例えばこの場合、副還元剤貯蔵タンク40の容積
を機械的に減少させて還元ガスの圧縮を行い、還元剤貯
蔵タンク40の周囲に冷却フィンなどを設けて還元ガス
の冷却を図るなどの方法を例示できる。
In the above example, the gasified reducing agent is stored as it is in the auxiliary reducing agent storage tank 40, but the generated reducing agent is compressed and cooled to reduce the volume. It may be stored in the auxiliary reducing agent storage tank 40. That is, by compressing the reducing gas and storing it in the auxiliary reducing agent storage tank 40, the size of the apparatus can be further reduced. For example, in this case, a method of mechanically reducing the volume of the auxiliary reducing agent storage tank 40 to compress the reducing gas and providing cooling fins or the like around the reducing agent storage tank 40 to cool the reducing gas is used. Can be illustrated.

【0066】また、副還元剤貯蔵タンク40内にアンモ
ニア吸蔵合金を収容しておき、該アンモニア吸蔵合金に
還元ガスを吸蔵させた状態で、副還元剤貯蔵タンク40
内に還元ガスを貯蔵してもよい。なお、アンモニア吸蔵
合金は、還元ガスと結合して還元ガスを貯蔵するため、
副還元剤貯蔵タンク40内に、より高密度に還元ガスを
貯蔵できる。
Further, an ammonia storage alloy is stored in the sub-reducing agent storage tank 40, and the reducing gas is stored in the ammonia storage alloy.
The reducing gas may be stored therein. In addition, since the ammonia storage alloy combines with the reducing gas and stores the reducing gas,
The reducing gas can be stored in the auxiliary reducing agent storage tank 40 at a higher density.

【0067】また、上記した例では固体状の還元剤をガ
ス化させ副還元剤貯蔵タンク40に貯蔵しているが、還
元ガス発生部30の温度を還元剤の液化に抑える程度ま
で低下せしめ、固体状の還元剤を液化した状態にて副還
元剤貯蔵タンク40内に貯蔵するようにしてもよい。す
なわち、副還元剤貯蔵タンク40に貯蔵される還元剤の
形態は、還元剤添加弁50より即座に添加可能な形態で
あればよい。
In the above example, the solid reducing agent is gasified and stored in the sub-reducing agent storage tank 40. However, the temperature of the reducing gas generating section 30 is reduced to such an extent that the reducing agent is liquefied. The solid reducing agent may be stored in the auxiliary reducing agent storage tank 40 in a liquefied state. That is, the form of the reducing agent stored in the sub-reducing agent storage tank 40 may be any form that can be added immediately by the reducing agent addition valve 50.

【0068】また、上記した例では、固体状の還元剤と
してカルバミン酸アンモニウムを適用したが、勿論、尿
素CO(NH22などの他の物質を還元剤として採用
してもよい。なお、尿素など比較的高温にてガス化する
還元剤を採用した場合には、還元ガス発生部30を電気
ヒータなどにて構成して、還元剤のガス化を行ってもよ
い。また、機関潤滑油の熱を利用して加熱してもよい。
In the above example, ammonium carbamate is used as the solid reducing agent. However, other substances such as urea CO (NH 2 ) 2 may be used as the reducing agent. When a reducing agent that gasifies at a relatively high temperature, such as urea, is used, the reducing gas generator 30 may be configured with an electric heater or the like to gasify the reducing agent. Further, heating may be performed using heat of the engine lubricating oil.

【0069】次に、このような構成の還元剤供給装置を
採用したエンジンの作用効果について述べる。前述した
ように、ECU15は、NOx の排出量に応じた還元剤
添加弁50のデューティ比制御を行い、目標供給量に見
合った還元剤を適宜のタイミングにてNOx 触媒9に添
加する。このとき本発明の還元剤供給装置16では、固
体状のカルバミン酸アンモニウムを還元ガス発生部30
にて加熱ガス化して、予め副還元剤貯蔵タンク40内に
貯蔵・準備しているため、還元剤の添加命令に即座に対
応できる。また、副還元剤貯蔵タンク40内に還元ガス
を常時貯蔵しているため、大量の還元剤を要する場合に
おいても、安定した還元剤の供給を行える。
Next, the operation and effect of the engine employing the reducing agent supply device having such a configuration will be described. As described above, the ECU 15 controls the duty ratio of the reducing agent addition valve 50 according to the NOx emission amount, and adds the reducing agent corresponding to the target supply amount to the NOx catalyst 9 at an appropriate timing. At this time, in the reducing agent supply device 16 of the present invention, solid ammonium carbamate is supplied to the reducing gas generating section 30.
Since it is heated and gasified in advance and stored and prepared in advance in the auxiliary reducing agent storage tank 40, it is possible to immediately respond to a reducing agent addition command. Further, since the reducing gas is always stored in the auxiliary reducing agent storage tank 40, even when a large amount of reducing agent is required, a stable supply of the reducing agent can be performed.

【0070】また、還元剤添加弁50におけるデューテ
ィ比制御は、還元剤の供給圧力を考慮して制御されてい
る。しかも、ガス化された還元剤は、副還元剤貯蔵タン
ク40内に一時期貯蔵された後に添加されるため、還元
剤添加弁50に対する還元ガスの供給圧力は常に安定し
ている。従って、ECU15では、還元剤添加弁50に
おけるデューティ比制御を容易になしえ、目標供給量に
見合った還元剤を確実にNOx 触媒9に供給できる。
The duty ratio control in the reducing agent addition valve 50 is controlled in consideration of the reducing agent supply pressure. Moreover, since the gasified reducing agent is added after being temporarily stored in the auxiliary reducing agent storage tank 40, the supply pressure of the reducing gas to the reducing agent addition valve 50 is always stable. Therefore, the ECU 15 can easily control the duty ratio in the reducing agent addition valve 50, and can reliably supply the NOx catalyst 9 with the reducing agent corresponding to the target supply amount.

【0071】また、還元ガスの残量は、副還元剤貯蔵タ
ンク40内の圧力変化を利用してECU15にて把握さ
れている。このためECU15では、還元ガスの残量に
基づいて固体状還元剤のガス化を制御でき、必要以上に
還元剤をガス化させることもない。従って、還元剤供給
装置16内に大きな容積を確保せずとも安定した還元剤
の供給をなし得る。
The remaining amount of the reducing gas is grasped by the ECU 15 by using the pressure change in the auxiliary reducing agent storage tank 40. Therefore, the ECU 15 can control the gasification of the solid reducing agent based on the remaining amount of the reducing gas, and does not unnecessarily gasify the reducing agent. Therefore, a stable supply of the reducing agent can be achieved without securing a large volume in the reducing agent supply device 16.

【0072】このように本発明の還元剤供給装置16を
採用したエンジンでは、適切量、且つ適宜のタイミング
にて還元剤の供給がなされるため、NOx 触媒9におけ
るNOx の浄化効率を飛躍的に高めることができる。ま
た、還元剤供給装置16内に大きな容積を確保せずとも
安定した還元剤の添加をなし得るため、装置本体を小型
化に製作でき車両への搭載性を大幅に向上させることが
できる。
As described above, in the engine employing the reducing agent supply device 16 of the present invention, the reducing agent is supplied at an appropriate amount and at an appropriate timing, so that the NOx purification efficiency of the NOx catalyst 9 is dramatically improved. Can be enhanced. Further, since a stable addition of the reducing agent can be performed without securing a large volume in the reducing agent supply device 16, the device main body can be manufactured in a small size, and the mountability to the vehicle can be greatly improved.

【0073】なお、上記したエンジン1では、NOx を
浄化する触媒として、選択還元型NOx 触媒を適用して
いるが、本発明の還元剤供給装置16は、勿論、吸蔵還
元型NOx 触媒にも有用である。なお、吸蔵還元型NO
x 触媒とは、酸素過剰雰囲気下でNOx を吸蔵し、酸素
濃度が低下したときに吸蔵したNOx を放出して還元浄
化せしめる触媒である。
In the engine 1 described above, a selective reduction type NOx catalyst is applied as a catalyst for purifying NOx. However, the reducing agent supply device 16 of the present invention is, of course, also useful for a storage reduction type NOx catalyst. It is. The storage reduction type NO
The x catalyst is a catalyst that stores NOx in an oxygen-excess atmosphere and releases and releases the stored NOx when the oxygen concentration decreases.

【0074】また、上記した実施の形態では、ディーゼ
ルエンジンを例として説明したが、本発明の還元剤供給
装置16は、ディーゼルエンジンのみならず、希薄燃焼
可能なリーンバーンガソリンエンジンなどにおいても、
極めて有用である。
In the above-described embodiment, a diesel engine has been described as an example. However, the reducing agent supply device 16 of the present invention is applicable not only to a diesel engine but also to a lean burn gasoline engine capable of lean burn.
Extremely useful.

【0075】[0075]

【発明の効果】以上のように本発明によれば、還元剤の
供給命令に対して、遅延することなく即座に所定量の還
元剤を供給し得る内燃機関の還元剤供給装置を提供でき
る。
As described above, according to the present invention, it is possible to provide a reducing agent supply apparatus for an internal combustion engine which can immediately supply a predetermined amount of reducing agent without delay in response to a reducing agent supply command.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施の形態に係る還元剤供給装置を採用し
たディーゼルエンジンの概略構成図である。
FIG. 1 is a schematic configuration diagram of a diesel engine employing a reducing agent supply device according to the present embodiment.

【図2】 本実施の形態に係る還元剤供給装置の概略構
成図。
FIG. 2 is a schematic configuration diagram of a reducing agent supply device according to the present embodiment.

【符号の説明】[Explanation of symbols]

1 ディーゼルエンジン(エンジン) 2 燃焼室 3 ピストン 4 シリンダ 5 シリンダヘッド 6 燃料噴射弁 7 エアフローメータ 8 吸気管 9 選択還元型NOx 触媒(NOx 触媒) 10 排気管 11 NOx センサ 12 入りガス圧センサ 13 排気温度センサ 14 還元剤センサ 15 エンジンコントロール用電子制御ユニット(EC
U) 16 還元剤供給装置 18 インジケータパネル 19 警告ランプ 20 主還元剤貯蔵タンク 21 タンク本体 22 断熱部材 30 還元ガス生成部 31 加熱室 32 外壁 33 空間 34 機関冷却水制御弁 40 副還元剤貯蔵タンク 41 タンク本体 42 断熱部材 43 圧力センサ 50 還元剤添加弁 51 弁体 52 ガイド 53 ノズル部 54 ソレノイド 55 導入通路 60 連結管
Reference Signs List 1 diesel engine (engine) 2 combustion chamber 3 piston 4 cylinder 5 cylinder head 6 fuel injection valve 7 air flow meter 8 intake pipe 9 selective reduction type NOx catalyst (NOx catalyst) 10 exhaust pipe 11 NOx sensor 12 gas pressure sensor 13 exhaust gas temperature Sensor 14 Reducing agent sensor 15 Electronic control unit for engine control (EC
U) 16 reducing agent supply device 18 indicator panel 19 warning lamp 20 main reducing agent storage tank 21 tank body 22 heat insulating member 30 reducing gas generation unit 31 heating chamber 32 outer wall 33 space 34 engine cooling water control valve 40 auxiliary reducing agent storage tank 41 Tank body 42 Insulating member 43 Pressure sensor 50 Reducing agent addition valve 51 Valve body 52 Guide 53 Nozzle part 54 Solenoid 55 Introductory passage 60 Connecting pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大道 重樹 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 大山 尚久 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 Fターム(参考) 3G091 AA18 AB04 BA01 BA14 CA17 DA08 DC05 EA00 EA01 EA03 EA05 EA07 EA16 EA18 EA32 EA33 GB05W GB09W GB09X GB10X GB17X HA36  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeki Omichi 14 Iwatani, Shimowakakucho, Nishio City, Aichi Prefecture Inside Japan Automotive Parts Research Institute (72) Inventor Naohisa Oyama 14 Iwatani, Shimowakakucho, Nishio City, Aichi Prefecture Stock Company F-term in the Japan Auto Parts Research Institute (reference) 3G091 AA18 AB04 BA01 BA14 CA17 DA08 DC05 EA00 EA01 EA03 EA05 EA07 EA16 EA18 EA32 EA33 GB05W GB09W GB09X GB10X GB17X HA36

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気系に設けられ該内燃機関よ
り排出される窒素酸化物を浄化するNOx 触媒に、還元
剤を供給する還元剤供給装置であって、 固体状の還元剤を貯蔵する主還元剤貯蔵手段と、 前記主還元剤貯蔵手段に貯蔵された固体状の還元剤を供
給可能に流動化させる還元剤流動化手段と、 前記還元剤流動化手段によって流動化された還元剤を一
時期貯蔵する副還元剤貯蔵手段と、 機関本体の運転状態に基づき前記NOx 触媒に供給する
還元剤の供給量を算出する還元剤供給量算出手段と、 前記副還元剤貯蔵手段に貯蔵される還元剤を、前記還元
剤供給量算出手によって算出された供給量に基づき前記
内燃機関の排気系におけるNOx 触媒上流に添加する還
元剤添加手段と、 を有することを特徴とする内燃機関の還元剤供給装置。
A reducing agent supply device for supplying a reducing agent to a NOx catalyst provided in an exhaust system of an internal combustion engine for purifying nitrogen oxides discharged from the internal combustion engine, wherein the reducing agent supply device stores a solid reducing agent. Main reducing agent storage means, a reducing agent fluidizing means for fluidizing the solid reducing agent stored in the main reducing agent storing means so as to be supplied, and a reducing agent fluidized by the reducing agent fluidizing means. A reducing agent supply means for temporarily storing the reducing agent, a reducing agent supply amount calculating means for calculating a supply amount of the reducing agent to be supplied to the NOx catalyst based on an operation state of the engine body, and a reducing agent storage means for storing the reducing agent. Reducing agent adding means for adding a reducing agent upstream of the NOx catalyst in the exhaust system of the internal combustion engine based on the supply amount calculated by the reducing agent supply amount calculator. Supply device
【請求項2】前記還元剤流動化手段は、前記固体状の還
元剤をガス化して該還元剤に流動性を持たせることを特
徴とする請求項1に記載の内燃機関の還元剤供給装置。
2. The reducing agent supply device for an internal combustion engine according to claim 1, wherein said reducing agent fluidizing means gasifies said solid reducing agent to give said reducing agent fluidity. .
【請求項3】前記副還元剤貯蔵手段は、該副還元剤貯蔵
手段に貯蔵されている還元剤の残量を算出する残量算出
手段を備え、 前記還元剤流動化手段は、前記残量算出手段によって算
出される残量が所定値未満になったことを受けて、前記
主還元剤貯蔵手段に貯蔵される固体状の還元剤を流動化
して副還元剤貯蔵手段に補給することを特徴とする請求
項1又は2に記載の内燃機関の還元剤供給装置。
3. The sub-reducing agent storing means includes a remaining amount calculating means for calculating a remaining amount of the reducing agent stored in the sub-reducing agent storing means, and the reducing agent fluidizing means includes: When the remaining amount calculated by the calculating means is less than a predetermined value, the solid reducing agent stored in the main reducing agent storing means is fluidized and supplied to the sub-reducing agent storing means. The reducing agent supply device for an internal combustion engine according to claim 1 or 2, wherein
【請求項4】前記副還元剤貯蔵手段は、前記流動化され
た還元剤を一時期貯蔵する副還元剤貯蔵室と、この副還
元剤貯蔵室内の圧力を検知する圧力検知手段と、を備
え、 前記残量算出手段は、前記圧力検知手段によって検知さ
れる圧力が高いとき、還元剤の残量を多いと判断し、前
記圧力検知手段によって検知される圧力が低いとき、還
元剤の残量を少ないと判断することを特徴とする請求項
3に記載の内燃機関の還元剤供給装置。
4. The sub-reducing agent storage means includes: a sub-reducing agent storage chamber for temporarily storing the fluidized reducing agent; and pressure detection means for detecting a pressure in the sub-reducing agent storage chamber. The remaining amount calculating unit determines that the remaining amount of the reducing agent is large when the pressure detected by the pressure detecting unit is high, and determines the remaining amount of the reducing agent when the pressure detected by the pressure detecting unit is low. The reducing agent supply device for an internal combustion engine according to claim 3, wherein it is determined that the amount is small.
【請求項5】前記副還元剤貯蔵手段は、前記流動化され
た還元剤を一時期貯蔵する副還元剤貯蔵室と、この副還
元剤貯蔵室内の圧力を検知する圧力検知手段と、を備
え、 前記還元剤添加手段は、前記NOx 触媒上流の排気系に
設けられ開弁時に前記副還元剤貯蔵室に貯蔵される還元
剤を前記NOx 触媒上流に添加する還元剤添加弁と、前
記圧力検知手段によって検知される圧力に基づいて前記
還元剤添加弁の開弁時間を制御する添加弁制御手段と、
を有することを特徴とする請求項1から4の何れかに記
載の内燃機関の還元剤供給装置。
5. The sub-reducing agent storage means includes: a sub-reducing agent storage chamber for temporarily storing the fluidized reducing agent; and pressure detection means for detecting a pressure in the sub-reducing agent storage chamber. The reducing agent adding means is provided in an exhaust system upstream of the NOx catalyst, and adds a reducing agent stored in the auxiliary reducing agent storage chamber to the upstream of the NOx catalyst when the valve is opened. Addition valve control means for controlling the opening time of the reducing agent addition valve based on the pressure detected by
The reducing agent supply device for an internal combustion engine according to any one of claims 1 to 4, comprising:
【請求項6】前記添加弁制御手段は、前記副還元剤貯蔵
室内の圧力が高いとき、前記還元剤添加弁の開弁時間を
短くし、前記副還元剤貯蔵内の圧力が低いとき、前記還
元剤添加弁の開弁時間を長くすることを特徴とする請求
項5に記載の内燃機関の還元剤供給装置。
6. The addition valve control means, when the pressure in the secondary reducing agent storage chamber is high, shortens the valve opening time of the reducing agent addition valve, and when the pressure in the secondary reducing agent storage is low, The reducing agent supply device for an internal combustion engine according to claim 5, wherein a valve opening time of the reducing agent addition valve is lengthened.
【請求項7】前記NOx 触媒は、還元剤の存在下で、窒
素酸化物を分解又は還元せしめる選択還元型NOx 触媒
であることを特徴とする請求項1から6の何れかに記載
の内燃機関の還元剤供給装置。
7. The internal combustion engine according to claim 1, wherein said NOx catalyst is a selective reduction type NOx catalyst which decomposes or reduces nitrogen oxides in the presence of a reducing agent. Reducing agent supply device.
【請求項8】前記固体状の還元剤は、前記還元剤流動化
手段によるガス化時に、アンモニアを基調とする還元ガ
スを生成することを特徴とする請求項1から7の何れか
に記載の内燃機関の還元剤供給装置。
8. The method according to claim 1, wherein said solid reducing agent generates a reducing gas based on ammonia when gasified by said reducing agent fluidizing means. A reducing agent supply device for an internal combustion engine.
JP2000353057A 2000-11-20 2000-11-20 Reducing agent supply device for internal combustion engine Expired - Fee Related JP3600522B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000353057A JP3600522B2 (en) 2000-11-20 2000-11-20 Reducing agent supply device for internal combustion engine
FR0114945A FR2816986B1 (en) 2000-11-20 2001-11-19 REDUCTION AGENT FEEDING DEVICE FOR INTERNAL COMBUSTION ENGINE
DE10156714A DE10156714B4 (en) 2000-11-20 2001-11-19 Reductant supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353057A JP3600522B2 (en) 2000-11-20 2000-11-20 Reducing agent supply device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002155732A true JP2002155732A (en) 2002-05-31
JP3600522B2 JP3600522B2 (en) 2004-12-15

Family

ID=18825876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353057A Expired - Fee Related JP3600522B2 (en) 2000-11-20 2000-11-20 Reducing agent supply device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP3600522B2 (en)
DE (1) DE10156714B4 (en)
FR (1) FR2816986B1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024194A1 (en) * 2003-09-05 2005-03-17 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
WO2005028826A1 (en) * 2003-09-19 2005-03-31 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
WO2005093382A1 (en) * 2004-03-29 2005-10-06 Nissan Diesel Motor Co., Ltd. Structure for reducing agent container
JP2005283201A (en) * 2004-03-29 2005-10-13 Nissan Diesel Motor Co Ltd Water level meter mounting structure
WO2005106220A1 (en) * 2004-04-30 2005-11-10 Bosch Corporation Liquid feed device for exhaust gas aftertreatment device
WO2006046369A1 (en) * 2004-10-29 2006-05-04 Nissan Diesel Motor Co., Ltd. Exhaust gas purifier for engine
JP2006233936A (en) * 2005-02-28 2006-09-07 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
WO2007026901A1 (en) * 2005-09-02 2007-03-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
JP2007113446A (en) * 2005-10-19 2007-05-10 Mitsubishi Heavy Ind Ltd Exhaust emission control device
JP2008019868A (en) * 2006-07-12 2008-01-31 Delphi Technologies Inc Insulated reagent dosing device
US7467512B2 (en) 2003-10-28 2008-12-23 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus and exhaust gas purifying method of an engine
US7500356B2 (en) 2004-02-02 2009-03-10 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US7614213B2 (en) 2003-09-19 2009-11-10 Nissan Diesel Motor Co., Ltd. Engine exhaust emission purification apparatus
JP2010138883A (en) * 2008-12-15 2010-06-24 Denso Corp Control device for exhaust emission control system
US7743603B2 (en) 2004-11-05 2010-06-29 Nissan Diesel Motor Co., Ltd. Exhaust gas purification apparatus
JP2010180888A (en) * 2010-04-12 2010-08-19 Mitsubishi Heavy Ind Ltd Exhaust gas purification device
JP2011132919A (en) * 2009-12-25 2011-07-07 Nippon Soken Inc Exhaust emission control device
US8011176B2 (en) 2004-02-02 2011-09-06 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for internal combustion engine
US8033096B2 (en) 2005-06-10 2011-10-11 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus for engine
WO2013076814A1 (en) 2011-11-22 2013-05-30 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP2013185511A (en) * 2012-03-08 2013-09-19 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
KR101316272B1 (en) 2007-12-15 2013-10-08 현대자동차주식회사 Cartridge type selective catalytic reduction system
KR20140053993A (en) * 2011-06-24 2014-05-08 아아키위 & 아아키위 에스아 Method for determining the quantity of reducing agent in a tank

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861733B2 (en) * 2002-04-04 2006-12-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US7966811B2 (en) * 2007-11-30 2011-06-28 Perkins Engines Company Limited Exhaust treatment system having a diverter valve
DE102009012092A1 (en) * 2009-03-06 2010-09-09 Man Nutzfahrzeuge Ag Method for adjusting the metered amount of a reducing agent for selective catalytic reduction
FR2975432A1 (en) * 2011-05-20 2012-11-23 Peugeot Citroen Automobiles Sa Method for controlling storage system containing ammonia for post-processing exhaust gas of fuel injection engine of vehicle, involves determining amount of reagent remaining in tanks by measuring change in pressure of gas
US9222389B2 (en) 2012-02-02 2015-12-29 Cummins Inc. Systems and methods for controlling reductant delivery to an exhaust stream
WO2013117230A1 (en) 2012-02-09 2013-08-15 Toyota Motor Europe Nv/Sa Reduction agent injector
FR2991595B1 (en) * 2012-06-06 2014-08-08 Faurecia Systemes Dechappement AMMONIA STORAGE AND FEEDING DEVICE, EXHAUST LINE EQUIPPED WITH SUCH A DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272331A (en) 1992-03-25 1993-10-19 Hino Motors Ltd Exhaust emission control device and reducing agent supply method and device used therein
US5809774A (en) * 1996-11-19 1998-09-22 Clean Diesel Technologies, Inc. System for fueling and feeding chemicals to internal combustion engines for NOx reduction
JP3580163B2 (en) * 1998-06-04 2004-10-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19825148A1 (en) * 1998-06-05 1999-12-09 Bayerische Motoren Werke Ag Process and device for nitrogen oxide reduction using urea in exhaust gas systems of internal combustion engines equipped with catalytic converters, in particular on motor vehicles

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7647767B2 (en) 2003-09-05 2010-01-19 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus in engine
CN100441835C (en) * 2003-09-05 2008-12-10 日产柴油机车工业株式会社 Exhaust gas purification device of engine
WO2005024194A1 (en) * 2003-09-05 2005-03-17 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
WO2005028826A1 (en) * 2003-09-19 2005-03-31 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
US7849674B2 (en) 2003-09-19 2010-12-14 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US8209958B2 (en) 2003-09-19 2012-07-03 Nissan Diesel Motor Co., Ltd. Engine exhaust emission purification apparatus
US7614213B2 (en) 2003-09-19 2009-11-10 Nissan Diesel Motor Co., Ltd. Engine exhaust emission purification apparatus
US7467512B2 (en) 2003-10-28 2008-12-23 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus and exhaust gas purifying method of an engine
US8578703B2 (en) 2004-02-02 2013-11-12 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for internal combustion engine
US8011176B2 (en) 2004-02-02 2011-09-06 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for internal combustion engine
US7500356B2 (en) 2004-02-02 2009-03-10 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
CN100406859C (en) * 2004-03-29 2008-07-30 日产柴油机车工业株式会社 Structure for reducing agent container
US7943101B2 (en) 2004-03-29 2011-05-17 Nissan Diesel Motor Co., Ltd. Structure for reducing agent container
WO2005093382A1 (en) * 2004-03-29 2005-10-06 Nissan Diesel Motor Co., Ltd. Structure for reducing agent container
JP2005283201A (en) * 2004-03-29 2005-10-13 Nissan Diesel Motor Co Ltd Water level meter mounting structure
JP4519497B2 (en) * 2004-03-29 2010-08-04 Udトラックス株式会社 Water level gauge mounting structure
US7544328B2 (en) 2004-03-29 2009-06-09 Nissan Diesel Motor Co., Ltd. Structure for reducing agent container
WO2005106220A1 (en) * 2004-04-30 2005-11-10 Bosch Corporation Liquid feed device for exhaust gas aftertreatment device
KR100805096B1 (en) * 2004-04-30 2008-02-20 봇슈 가부시키가이샤 Liquid supply device for exhaust gas post-treatment device
CN100451304C (en) * 2004-04-30 2009-01-14 博世株式会社 Liquid feed device for exhaust gas aftertreatment device
JP2006125331A (en) * 2004-10-29 2006-05-18 Nissan Diesel Motor Co Ltd Exhaust emission control device
WO2006046369A1 (en) * 2004-10-29 2006-05-04 Nissan Diesel Motor Co., Ltd. Exhaust gas purifier for engine
US7805930B2 (en) 2004-10-29 2010-10-05 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US7743603B2 (en) 2004-11-05 2010-06-29 Nissan Diesel Motor Co., Ltd. Exhaust gas purification apparatus
KR100797503B1 (en) * 2005-02-28 2008-01-24 미츠비시 후소 트럭 앤드 버스 코포레이션 Exhaust gas purifying apparatus for internal combustion engine
JP2006233936A (en) * 2005-02-28 2006-09-07 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
WO2006093035A1 (en) * 2005-02-28 2006-09-08 Mitsubishi Fuso Truck And Bus Corporation Exhaust gas purifier of internal combustion engine
US8033096B2 (en) 2005-06-10 2011-10-11 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus for engine
WO2007026901A1 (en) * 2005-09-02 2007-03-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
JP2007113446A (en) * 2005-10-19 2007-05-10 Mitsubishi Heavy Ind Ltd Exhaust emission control device
JP4533832B2 (en) * 2005-10-19 2010-09-01 三菱重工業株式会社 Exhaust gas purification device
US7980063B2 (en) 2006-07-12 2011-07-19 Delphi Technologies Holdings S.arl Insulated reagent dosing device
JP2008019868A (en) * 2006-07-12 2008-01-31 Delphi Technologies Inc Insulated reagent dosing device
KR101316272B1 (en) 2007-12-15 2013-10-08 현대자동차주식회사 Cartridge type selective catalytic reduction system
JP2010138883A (en) * 2008-12-15 2010-06-24 Denso Corp Control device for exhaust emission control system
JP2011132919A (en) * 2009-12-25 2011-07-07 Nippon Soken Inc Exhaust emission control device
JP2010180888A (en) * 2010-04-12 2010-08-19 Mitsubishi Heavy Ind Ltd Exhaust gas purification device
KR20140053993A (en) * 2011-06-24 2014-05-08 아아키위 & 아아키위 에스아 Method for determining the quantity of reducing agent in a tank
JP2014517216A (en) * 2011-06-24 2014-07-17 アークイス アンド アークイス エス アー Method for determining the amount of reducing agent in a tank
KR101908097B1 (en) 2011-06-24 2018-10-16 아아키위 & 아아키위 에스아 Method for determining the quantity of reducing agent in a tank
WO2013076814A1 (en) 2011-11-22 2013-05-30 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP2013185511A (en) * 2012-03-08 2013-09-19 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
FR2816986A1 (en) 2002-05-24
DE10156714A1 (en) 2002-06-27
JP3600522B2 (en) 2004-12-15
FR2816986B1 (en) 2007-06-01
DE10156714B4 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP3600522B2 (en) Reducing agent supply device for internal combustion engine
KR102309229B1 (en) Combustion engine
US7726118B2 (en) Engine-off ammonia vapor management system and method
CN101220761B (en) Management of a plurality of reductants for selective catalytic reduction
JP3580163B2 (en) Exhaust gas purification device for internal combustion engine
US7770384B2 (en) Ammonia vapor storage and purge system and method
CN104769244B (en) Exhaust gas purification device for internal-combustion engine
JP2004197746A (en) Advanced ammonia feed control for selective catalytic reduction
JP4710863B2 (en) Exhaust gas purification device for internal combustion engine
JP2008303821A (en) Exhaust emission control device for internal combustion engine
JP2008223763A (en) Method for managing ammonia vapor
US20100236225A1 (en) Exhaust posttreatment arrangement with reducing agent reservoir, and method for posttreatment of exhaust gases
US8409536B2 (en) Exhaust gas purification apparatus of an internal combustion engine
GB2451933A (en) A method for operating an emission control system in a vehicle exhaust system.
CN102834594B (en) Exhaust gas purifying system of internal combustion engine
CN103061854A (en) Method for controlling an injection device for feeding an ammonia-releasing reducing agent into an exhaust-gas purification system of an internal combustion engine
JP4447142B2 (en) Exhaust gas purification device for internal combustion engine
Johannessen et al. Ammonia storage and delivery systems for automotive NOx aftertreatment
GB2396834A (en) Reductant injection controlled by engine acceleration
US11149608B2 (en) Method for selective catalytic reduction with desorption of ammonia from a cartridge in an exhaust line
JP2008303786A (en) Exhaust emission control device of internal combustion engine
US10746071B2 (en) Engine aftertreatment system
JP3521798B2 (en) Exhaust gas purification device for internal combustion engine
CN103154454B (en) Exhaust gas purifying device for internal combustion engine
JP2010053813A (en) Hydrogen internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees