JP4447142B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4447142B2
JP4447142B2 JP2000308293A JP2000308293A JP4447142B2 JP 4447142 B2 JP4447142 B2 JP 4447142B2 JP 2000308293 A JP2000308293 A JP 2000308293A JP 2000308293 A JP2000308293 A JP 2000308293A JP 4447142 B2 JP4447142 B2 JP 4447142B2
Authority
JP
Japan
Prior art keywords
reducing agent
melting
urea
amount
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000308293A
Other languages
Japanese (ja)
Other versions
JP2002115533A (en
Inventor
和浩 伊藤
俊明 田中
信也 広田
好一郎 中谷
重樹 大道
尚久 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2000308293A priority Critical patent/JP4447142B2/en
Priority to DE10148880A priority patent/DE10148880B4/en
Priority to FR0112928A priority patent/FR2814966B1/en
Publication of JP2002115533A publication Critical patent/JP2002115533A/en
Application granted granted Critical
Publication of JP4447142B2 publication Critical patent/JP4447142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/12Adding substances to exhaust gases the substance being in solid form, e.g. pellets or powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1814Tank level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関から排出される排気ガスを浄化する内燃機関の排気ガス浄化装置に関する。
【0002】
【従来の技術】
酸素過剰の雰囲気で、還元剤により有害なNOxを還元または分解する選択還元型NOx触媒は、リーン空燃比で燃焼可能な内燃機関(例えばディーゼルエンジンやリーンバーンガソリンエンジン)から排出される排気ガス中の主にNOxを浄化する排気浄化装置として多用されている。
【0003】
還元触媒は、還元剤を必要とし、固体尿素を還元剤として用いる技術が開発されている。貯蔵装置内固体尿素の排出手段の例として、特開2000−27626号公報に記載の還元剤供給装置がある。
【0004】
特開2000−27626号公報に示される装置では、貯蔵装置上壁に固定されたバネ部材と、バネ部材の下方先端部に固定された粉砕機構とからなる粉砕手段が配置されている。この粉砕機構は、垂直棒材から貯蔵装置の側壁近傍まで半径方向に延在する複数の粉砕アームを有し、この垂直棒材の下方先端部は、貯蔵装置の底壁から内側に延在するガイド部材によって上下方向に摺動可能にガイドされている。貯蔵装置への尿素の供給に際して、粉砕手段のバネ部材は自由に伸縮可能なように、尿素に埋没しないようにされている。
【0005】
尿素は貯蔵装置内で塊状となり易いが、貯蔵装置内にこのような粉砕手段が配置されていると、ガイド部材により上下方向に摺動可能にガイドされた粉砕機構は車両振動によって、バネ部材を介して上下に振動するために、尿素の塊を貯蔵装置内の全体に渡り粉砕させる。それにより、貯蔵装置内の粉砕された尿素を、連続的に排出できる。
【0006】
【発明が解決しようとする課題】
しかし、特開2000−27626号公報に示される装置では、固体還元剤を貯蔵装置から排出させるためにバネ部材と粉砕機構を必要とし、貯蔵装置が複雑であった。また固体還元剤貯蔵装置から排出された固体還元剤の具体的な供給手段については示されていない。
【0007】
特に固体還元剤を液化させて使用する場合、溶融した尿素等の還元剤が供給経路内に残存していると、時間が経過して温度が低下すれば、これらが再び固化して次回の供給が不可能となる虞もある。
【0008】
したがって選択還元型NOx触媒上流の位置に、所定量の還元剤を確実に供給できる装置の提供が望まれる。
【0009】
本発明はかかる問題点に鑑みてされたものであり、本発明が解決しようとする課題は、小型で制御性に優れ、固体状の還元剤を加熱溶融して選択還元型NOx触媒よりも上流の排気ガス通路に、所定量を供給することができる排気ガス浄化装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明は前記課題を解決するために、以下の手段を採用した。即ち、本発明は、内燃機関の排気ガス通路に設けられ、アンモニア由来の還元剤の存在下でNOxを還元または分解する選択還元型NOx触媒と、
固体状の還元剤を貯蔵する固体還元剤貯蔵手段と、
前記固体還元剤を加熱溶融する加熱溶融手段と、
前記固体還元剤貯蔵手段から導かれた溶融還元剤を保存する溶融還元剤保存手段と、
前記溶融還元剤を前記選択還元型NOx触媒よりも上流の前記排気ガス通路に供給する溶融還元剤供給手段と、
前記溶融還元剤供給手段により供給される溶融還元剤の供給量を運転状態により算出する溶融還元剤供給量算出手段と、
前記溶融還元剤供給量算出手段により算出された還元剤供給量に基づいて前記加熱溶融手段を制御する還元剤加熱制御手段と、を備えることを特徴とする。
【0011】
前記固体還元剤貯蔵手段に貯蔵された固体状の還元剤は、運転状況により必要量が算出され、固体還元剤貯蔵手段の底面に設置された加熱溶融手段により加熱溶融され、溶融還元剤保存手段に貯蔵される。貯蔵された溶融還元剤は還元剤供給手段によって選択還元型NOx触媒よりも上流の排気通路に供給される。
【0012】
本発明においては、前記溶融還元剤保存手段には溶融還元剤の残量を検出する検出手段を設け、この検出手段により検出される溶融還元剤の残量と、前記溶融還元剤供給量算出手段により算出された還元剤供給量とが等しくなるように前記還元剤加熱制御手段を制御するようにできる。
【0013】
以上のように固体還元剤の溶融量、及び溶融還元剤量の供給量を制御することで、使用されずに残留した溶融還元剤が装置内で再度固体状になり、装置内の溶融還元剤の通路等に詰まることを防止できる。
本発明においては、前記加熱溶融手段の加熱温度を固体還元剤が変質しない温度とすることができる。
【0014】
また、本発明においては、前記溶融還元剤保存手段の温度を固体還元剤が変質しない温度に保持する温度保持手段を備えることができる。
【0015】
なお前記固体還元剤を溶融するときのヒータ面温度は、およそ摂氏133度ないし摂氏200度までの範囲内にすることが望ましい。この温度範囲においては尿素の変質が生じにくいからである。
【0016】
本発明では液状の還元剤を流量制御するので、装置を小型、簡略化することができ、また制御性もよいため、還元剤の供給量を高精度に制御することができる。
【0017】
前記内燃機関としては、筒内直接噴射式のリーンバーンガソリンエンジンやディーゼルエンジンを例示することができる。
【0018】
前記選択還元型NOx触媒には、ゼオライトにCu等の遷移金属をイオン交換して担持した触媒、ゼオライトまたはアルミナに貴金属を担持した触媒、チタニア/バナジウム触媒、等が含まれる。
【0019】
前記還元剤は、例えば球状に形成することで固体還元剤貯蔵手段からの取り出しを容易にすることができる。また還元剤としては尿素を例示することができる。
【0020】
前記加熱溶融手段は、前記固体還元剤貯蔵手段の底面に設置したヒータとすることができる。
【0021】
【発明の実施の形態】
以下、本発明に係る内燃機関の排気浄化装置の実施の形態を図1から図3の図面に基づいて説明する。なお、以下に記載の各実施形態は、本発明を車両駆動用ディーゼルエンジンに適用した態様である。
【0022】
車両用ディーゼルエンジン1の各気筒の燃焼室2には、エアクリーナ3を経て吸気管4から空気が導入されると共に、燃料噴射弁5から各燃焼室2に燃料が噴射され、この燃料はリーン空燃比で燃焼する。なお図1において、符号6はピストンを示す。
【0023】
各燃焼室2から排気された排気ガスは、その下流の排気管7、NOx触媒コンバータ8、及びNOx触媒コンバータ8よりも下流の排気管9を通って、大気中に排気される。NOx触媒コンバータ8には、還元剤の存在下で、NOxを還元または分解するゼオライト・シリカ系やTiNの選択還元型NOx触媒10が収容されている。
【0024】
この選択還元型NOx触媒10によって排気ガス中のNOxを浄化するには還元剤の存在が必要であり、そのために、この排気浄化装置には、NOx触媒コンバータ8よりも上流の排気管7内に、還元剤を添加する還元剤添加装置(還元剤添加手段)11が設けられている。
[第1の実施の形態]
本発明に係る内燃機関の排気ガス浄化装置の第1の形態について図1と図2を参照して説明する。
【0025】
図2は本実施の形態における還元剤添加装置11である。これは還元剤として球状に形成された多数の固体尿素Aを液化した後、前記排気管7内に供給するものである。この還元剤添加装置11は、固体尿素Aを収容するための収納容器12と、この収納容器12の内部底面12cに設置したヒータ31を備えている。このヒータ31が設置されている内部底面12cは、排出口12dが最も低い位置にあり、中央に向かって下降するように傾斜して形成されている。
【0026】
なお前記固体尿素Aは、固着防止剤で被覆することにより互いに固着して大きな塊状になることが防止できる。
【0027】
また前記固体尿素Aは吸湿して固着し易い性質を有するため、収納容器12には、図示しないシリカゲル等による除湿手段を設けることもできる。この場合、除湿手段15はシリカゲル等を収納した容器として、固体尿素Aが供給される収納容器12に通路15aを介して連通するように構成できる。
【0028】
前記収納容器12の排出口12dには連通路12eが接続され、この連通路12eを介して、その下方に液体尿素収納室13が設置され、この液体尿素収納室13の下部には溶融還元剤搬送路33が設けられている。この溶融還元剤搬送路33には添加制御弁14が連結されている。
【0029】
前記収納容器12は、その上部に還元剤投入口12aを有し、この還元剤投入口12aは蓋12bによって開閉可能である。収納容器12の底面中央に排出口12dがあり、これは液体尿素収納室13に通じている。
【0030】
図2に示すように、傾斜した底面12cはその表面を加熱するヒータ31を備え、このヒータ31はECU16によって通電制御される。
【0031】
前記液体尿素収納室13は、上部の収納容器12から連通路12eを介して供給された液体尿素Uを保存する。この液体尿素Uは、添加制御弁14により流量制御されて排気管7内に添加される。
【0032】
添加制御弁14は、先端がニードルバルブ14aとなっており、軸方向に軸状の弁体14cが貫通した供給路14dに液体尿素収納室13からの連通路12cが接続され、弁体14cは往復動可能なように支持体14eにより案内されている。添加制御弁14の後端には、貫通した弁体14cの後部に装着したストッパ14fが設けられ、これは添加制御弁14の本体の後端面に係止している。このストッパ14fの後方にはソレノイド37が配置されており、これが励磁するとストッパ14fを後方に引き寄せるようになっている。また弁体14cの支持体14eの外周面には、供給された液体尿素Uが漏出しないようにシール14bが設けられている。
【0033】
前記還元剤添加装置11は以上のような構成であるので、固体尿素Aは前記ヒータ31で加熱溶融され、加熱溶融された固体尿素Aは液化して低面12cを流下し、排出口12dから液体尿素収納室13に連続して落下する。この液体尿素Uは添加制御弁14により流量制御され、排気管7内に添加される。すなわち、添加制御弁14は、その開閉時間をECU16によってデューティ比制御され、これによって液体尿素Uの流量や添加タイミングが制御されている。
【0034】
より具体的には、ECU16からの命令によって添加制御弁14のソレノイド37が通電によって励磁し、ストッパ14fが後方に移動し、弁体14cがこれに伴って後方に移動して先端のニードルバルブ14aが開くと、開弁中の所定時間にわたって所定量の尿素が排気通路内に添加される。
【0035】
一方、ソレノイド37への通電が停止すると、ストッパ14fはスプリング38により原位置に戻されてニードルバルブ14aが閉じられ、尿素の添加が終了する。
【0036】
なお、この添加制御弁14と液体尿素収納室13の間には、液体尿素Uを加圧してこれを調圧部に送るポンプ(図示せず)と、調圧部において液体尿素Uを一定圧力に加圧するプレッシャレギュレータ39を備えている。
【0037】
ところで前記固体尿素の収納容器12に備えられた電気ヒータ31等の加熱源は、固体尿素Aが液化して液体尿素収納室13内に液体で保存されるのに最適な温度(例えば133℃〜230℃)となるように、ECU16によってその加熱状態が制御される。これは固体尿素Aを前記最適温度以上の高温に加熱すると、これが液化せずにガス化してしまう虞があるからである。ただし上記温度は、固体尿素の変質やガス化等の不都合がなければ230℃以上に設定しても差し支えない。
【0038】
また、収納容器12には、固体尿素Aの残量を検出する残量センサ17(図1)が設けられ、この残量センサ17は検出した固体尿素Aの残量に比例した出力信号をECU16に出力する。
【0039】
ECU16は、残量センサ17から所定の残量値(以下、これを警報残量値と称す)を示す入力信号を入力したときに、メータパネル22の警報ランプ23を点灯し、固体尿素Aの残量が少なくなったことを知らせる。
【0040】
また、ECU16は、残量センサ17から警報残量値よりもさらに少ない下限値を示す入力信号を入力したときに、還元剤添加装置11の稼動を停止し、添加制御弁14を全閉にして、液体尿素Uの添加を停止する。
【0041】
一方、NOx触媒コンバータ8より上流の排気管7には、NOx触媒コンバータ8に流入する排気ガスの温度を検出する入りガス温センサ19が設けられており、検出した入りガス温度に比例した出力信号をECU16に出力する。
【0042】
ECU16はデジタルコンピュータからなり、双方向バスによって相互に接続されたROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、CPU(セントラルプロセッサユニット)、入出力ポート、出力ポートを具備し、エンジン1の燃料噴射量制御等の基本制御を行うほか、この実施の形態では液体尿素Uの添加量制御およびヒータ31の通電制御を行っている。
【0043】
これらの制御のために、ECU16の入力ポートには、エアフロメータ20からの入力信号がA/Dコンバータを介して入力される。エアフロメータ20は吸気量に比例した出力信号をECU16に出力し、ECU16はエアフロメータ20の出力信号に基づいて吸気量を演算する。
【0044】
NOx触媒コンバータ8より上流の排気管7には、NOx触媒コンバータ8に流入するNOx量を検出するNOxセンサ21が設けられており、検出したNOx量に比例した出力信号をECU16に出力する。
【0045】
ECU16は、検出したNOx量を基にNOxを浄化するのに必要な液体尿素Uの目標添加量を演算し、この目標添加量に対応するヒータ31の通電時間を演算し、ヒータ31に通電する。また、この目標添加量に対応する流量が得られる添加制御弁14のデューティ比を演算し、添加制御弁14をデューティ比制御する。このように必要な量の固体尿素Aだけを液化して添加するので、この装置11内、特に液体尿素収納室13内に残留した余分な液体尿素Uが再び固体化して装置内に詰まることを防止できる。
【0046】
次に、この内燃機関の排気浄化装置の作用を説明する。前述したように、ECU16は、エンジン1の運転状態に応じて、即ちNOx排出量に応じて、ヒータ31の通電制御と添加制御弁14のデューティ比制御を行い、排気管7内に適正量の液体尿素Uを添加する。排気管7内に添加された液体尿素Uは排気ガスによって加熱される結果、直ちに気化して還元ガス(アンモニアガス)となり、排気ガスと共にNOx触媒コンバータ8に流入する。
【0047】
還元ガスは選択還元型NOx触媒10上において排気ガスに含まれるNOxを還元あるいは分解する。浄化された排気ガスは排気管9を通って大気に放出される。
【0048】
なお、この選択還元型NOx触媒10は排気ガス温がある所定の温度以下のときにはNOx浄化率が低く、排気ガス温が前記所定温度を越えると急激にNOx浄化率が高くなる性質がある。そのため、排気ガス温が低いときに還元ガスを添加しても、添加された還元ガスはNOxの還元反応に利用されないままNOxコンバータ8を素通りし、大気に放出されてしまう。そこで、この実施の形態では、入りガス温センサ19で検出した入りガス温度が前記所定温度以下のときには、ECU16が添加制御弁14を全閉に制御し、これにより液体尿素Uの添加を停止して、還元ガスのリークを未然に防止するようにしている。
【0049】
なお、上述した実施の形態では、NOx触媒コンバータ8の上流側の排気管7に、排気ガスのNOx濃度を検出するNOxセンサを設け、このNOxセンサで検出したNOx濃度とエアフロメータ20で検出した吸気量から、NOx排出量を演算するようにしているが、これに代えて、エンジン1の運転状態とNOx排出量との関係を予めマップ化しておき、このマップを参照して実際の個々のエンジン運転状態におけるNOx排出量を推定算出するよにしてもよい。
【0050】
また、液体尿素収納室13と添加制御弁14に貯蔵されている溶融還元剤を全て前記排気管7内へ供給するのにかかる時間が、固体還元剤をヒータ31で加熱溶融し添加制御弁14に搬送する時間よりも長くなるように液体要素収納室13と、添加制御弁14と、液体要素収納室13から添加制御弁14までの溶融還元剤搬送通路33と、の還元剤貯蔵容量およびヒータ31の還元剤溶融性能を設定するようにしてもよい。
【0051】
また、固体還元剤を全て溶融した後に排気管7に添加しても良いが、溶融量と添加量を常に把握しておき、溶融と同時に添加を開始させて最終的に算出量と添加量が同じになるようにフィードバック制御しても良い。
【0052】
次に、この還元剤供給装置による還元剤供給のフローチャートを説明する。
【0053】
ステップ100ではECU16は、検出したNOx量を基にNOxを浄化するのに必要な液体尿素Uの目標添加量を演算する。
【0054】
演算後はステップ101に進み、固体尿素を加熱するヒータに通電して固体尿素を液化させ、目的添加量の液体尿素Uを生成する。生成された液体尿素Uは液体尿素収納室13保存される(ステップ102)。
【0055】
次にステップ103では、還元剤としての液体尿素Uを排気管7内に添加する時期であるかどうかを判断する。添加時期であればステップ104に進み液体尿素Uを排気管7内に添加する。他方、添加時期でなければステップ102に戻り、液体尿素収納室13内に液体尿素Uを保存しておく。ステップ103で再度、添加時期であるかどうか判断され、添加時期であれば液体尿素Uを添加する。
【0056】
この実施の形態の排気浄化装置では、上述のようじ固体尿素Aを加熱液化して液体尿素Uとし、この液体尿素Uを添加制御弁14によって所定量を排気管7内に添加している。この場合、固体尿素を液化するのに必要な熱量は、固体尿素を気化するのに必要な熱量よりも小さくて済むので、ガス化した尿素を使用するよりも加熱源(電気ヒータ)が小さくて済む。 また、液体尿素Uは、固体尿素を直接に加熱液化して生成するので100%濃度になり、精度のよい添加量制御が必要になるが、制御対象が気体ではなく液体であるため、添加制御弁14により高精度の流量制御が十分可能である。
[第2の実施の形態]
次に、本発明に係る内燃機関の排気ガス浄化装置の第2の形態について説明する。図3は本実施の形態における還元剤添加装置30である。還元剤としての固体尿素Aを液化し、排気管7内に供給することは第1の実施の形態と装置と同様である。
【0057】
収納容器12は上面に還元剤投入口12aを有し、その底部には排出口12dがあり、連通路12eを介して液体尿素収納室13に通じている。排出口12dには格子状のヒータ31を設置し、固体尿素Aをこのヒータ31で加熱溶融する。生成された液体尿素Uは、排出口12dから液体尿素収納室13内に流下して保存される。
【0058】
この液体尿素Uは添加制御弁14により所定量が排気管7内に添加される。また添加制御弁14は、第1の実施の形態における場合と同様に、開閉時間をECU16によってデューティ比制御され、これによって液体尿素Uの流量や添加タイミングが制御されている。
【0059】
この実施の形態では、液体尿素Uを保存しておく液体尿素収納室13内に、溶融還元剤検出する液量センサ32と、液量センサ32からの信号に基づいて前記ヒータ31を制御するECU16が設けられている。
【0060】
前記液量センサ32は検出した液体尿素Uの残量を出力信号としてECU16に出力する。ECU16は、溶融還元剤検出手段32から所定の残量値を示す入力信号を受けたときに、ヒータ31に通電し固体尿素Aを溶融して液体尿素Uとし、これを液体尿素収納室13内に流下させる。
【0061】
前記所定の残量値、すなわちしきい値は固体尿素Aが、液化され収納室12から液体尿素収納室13を経て添加制御弁14から排気管7内に添加されるまでの間に、液体尿素Uが消失しない(液体尿素収納室13が空にならない)量となる値とし、この値の液体尿素Uを常に液体尿素収納室13内に保存しておくようにする。多量の液体尿素Uを保存しておくことは、時間の経過による温度低下により、液体尿素が再度固化するので避けなければならない。しかし、もし液体尿素収納室13が空になる場合があると、選択還元型NOx触媒10よるNOx還元作用が停止してしまい、排気ガス中のNOxが大気中に放出される虞が生じてくる。
【0062】
よって固体尿素Aが加熱により溶融して液体尿素Uとなり排気管7内に添加されるまでの時間を考慮し、液体尿素Uのレベルがしきい値以下になったらこれを補充する。このようにすれば液体尿素Uが固化する前に、次回の還元剤の添加がされるので、液体尿素Uが長時間にわたり液体尿素収納室13内に残存することはない。
【0063】
なお、液体尿素Uの残量の検出手段としての液量センサ32は、所定のレベル以下になった場合に信号をECU16に出力するもの、または液体尿素収納室13内の液体尿素Uの残量を常に計測できるものが使用できる。
【0064】
なお、固体尿素Aを液化する際には、ECU16によって最適な温度(尿素の変質等が起こらない範囲で、例えば133ないし200℃)となるように、ヒータ31の温度が制御される。
【0065】
また液体尿素収納室13には、液体尿素Uの液温を検出する温度センサ18が設けられており、温度センサ18は検出した液体尿素Uの液温に比例した出力信号をECU16に出力する。
【0066】
一方、NOx触媒コンバータ8より上流の排気管7には、NOx触媒コンバータ8に流入する排気ガスの温度を検出する入りガス温センサ19が設けられており、検出した入りガス温度に比例した出力信号をECU16に出力する。
【0067】
ECU16は、この実施の形態では液体尿素Uの添加量制御とヒータ31の通電制御を行っているので、これらの制御のために、ECU16の入力ポートには、エアフロメータ20からの入力信号がA/Dコンバータを介して入力される。このようにエアフロメータ20は、吸気量に比例した出力信号をECU16に出力し、ECU16はエアフロメータ20の出力信号に基づいて吸気量を演算する。
【0068】
さらにNOx触媒コンバータ8より上流の排気管7には、NOx触媒コンバータ8に流入するNOx量を検出するNOxセンサ21が設けられており、検出したNOx量に比例した出力信号をECU16に出力する。
【0069】
ECU16は、検出したNOx量を基にNOxを浄化するのに必要な液体尿素Uの目標添加量を演算し、液量センサ32により検出される液体尿素Uの量がこの演算値と等しくなるまでヒータ31に通電を行い、固体尿素を溶融させる。また、この目標添加量に対応する流量が得られる添加制御弁14のデューティ比を演算し、添加制御弁14をデューティ比制御する。
【0070】
次に図4に従ってこの装置による還元剤供給のフローチャートを説明する。
【0071】
最初に、ステップ200ではECU16は、検出したNOx量を基にNOxを浄化するのに必要な液体尿素Uの目標添加量を演算する。
【0072】
ステップ201に進み、液量センサ32により検出した液体尿素Uの量と液体尿素収納室13に保存されている尿素の量を比較する。保存されている液体尿素Uの量が目標添加量よりも少なければ、ステップ201に進み液体尿素Uの保存量が目標添加量と等しくなるまでヒータ31に通電し、固体尿素Aを液化させて液体尿素Uを液体尿素収納室13に供給する。
【0073】
一方、保存されている液体尿素Uの量が目標添加量よりも多ければ、液体尿素Uの補充はしない。
【0074】
次にステップ203では還元剤としての液体尿素Uを排気管7内に添加する時期であるかどうかを判断する。添加時期であればステップ204に進み液体尿素Uを添加する。他方、添加時期でなければステップ208にジャンプし、液体尿素収納室13内に液体尿素Uを保存する。
【0075】
ステップ204で液体尿素Uを添加したときは、ステップ205に進みその残量を検出する。ステップ206では、この残量がしきい値以下か否かを判断し、しきい値以下のときはステップ207に進み、固定尿素を加熱溶融させて液体尿素Uの量をしきい値以上として、ステップ208でこれを保存する。
【0076】
一方、液体尿素がしきい値以下でなければ、ステップ208にジャンプしてその液体尿素Uを保存する。
【0077】
本発明の排気ガス浄化装置装置では、このようにして運転状況に応じて必要な量の固体尿素だけをその都度液化して添加するので、装置内に残留した余分な液体尿素Uが固体化して装置に詰まることを防止できる。
【0078】
また固体尿素を液化して排気管7に添加できる状態になる前に、装置内の液体尿素Uを使い果たしてしまい、液体還元剤の不足が発生することも防止できる。
【0079】
【発明の効果】
以上のように本発明に係る内燃機関の排気浄化装置によれば、固体尿素を保存してこれを液化して使用することによって装置を小型、簡略化し、かつ還元剤の供給量を高精度に制御することができる。
【0080】
また本発明では、前記内燃機関の運転状況に応じて必要量の溶融還元剤を供給するようにしたので、貯蔵されている固体還元剤のうち、選択還元型NOx触媒に必要な量がその都度、加熱溶融される。よって排気浄化装置内に残留した余分な溶融還元剤が再び固体状となって装置内に詰まり、次回の還元剤供給に不都合が生じることを防止できる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関排気浄化装置における概略構成図である。
【図2】本発明の第1の実施の形態における還元剤添加装置の概略構成を示す図である。
【図3】本発明の第2の実施の形態における還元剤添加装置の概略構成を示す図である。
【図4】第1の実施の形態における還元剤添加のフローチャートを示す図である。
【図5】第2の実施の形態における還元剤添加のフローチャートを示す図である。
【符号の説明】
1 ディーゼルエンジン(内燃機関)
7 排気管
8 NOx触媒コンバータ
9 排気管(排気通路)
10 選択還元型NOx触媒
11 還元剤添加装置
12 収納容器
13 液体尿素収納室
14 添加制御弁(供給量制御手段)
16 ECU
17 残量センサ
18 温度センサ
19 入りガス温センサ
20 エアフロメータ
21 NOxセンサ
22 メータパネル
23 警報ランプ
31 ヒータ
32 液量センサ
33 溶融還元剤搬送通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine that purifies exhaust gas discharged from the internal combustion engine.
[0002]
[Prior art]
A selective reduction type NOx catalyst that reduces or decomposes harmful NOx with a reducing agent in an oxygen-excess atmosphere is an exhaust gas discharged from an internal combustion engine (for example, a diesel engine or a lean burn gasoline engine) that can burn at a lean air-fuel ratio. Often used as an exhaust purification device for purifying NOx.
[0003]
The reduction catalyst requires a reducing agent, and a technique using solid urea as a reducing agent has been developed. As an example of the means for discharging the solid urea in the storage device, there is a reducing agent supply device described in JP 2000-27626 A.
[0004]
In the apparatus disclosed in Japanese Patent Laid-Open No. 2000-27626, there is disposed a pulverizing means including a spring member fixed to the upper wall of the storage device and a pulverizing mechanism fixed to the lower end portion of the spring member. The crushing mechanism has a plurality of crushing arms extending radially from the vertical bar to the vicinity of the side wall of the storage device, and the lower tip of the vertical bar extends inward from the bottom wall of the storage device. The guide member is guided so as to be slidable in the vertical direction. When supplying urea to the storage device, the spring member of the pulverizing means is not buried in urea so that it can freely expand and contract.
[0005]
Urea tends to be agglomerated in the storage device, but when such a crushing means is arranged in the storage device, the crushing mechanism guided so as to be slidable in the vertical direction by the guide member causes the spring member to move due to vehicle vibration. In order to vibrate up and down, the mass of urea is crushed throughout the storage device. Thereby, the pulverized urea in the storage device can be discharged continuously.
[0006]
[Problems to be solved by the invention]
However, the apparatus disclosed in Japanese Patent Application Laid-Open No. 2000-27626 requires a spring member and a crushing mechanism to discharge the solid reducing agent from the storage apparatus, and the storage apparatus is complicated. Further, there is no specific supply means for the solid reducing agent discharged from the solid reducing agent storage device.
[0007]
In particular, when a solid reducing agent is used after being liquefied, if a reducing agent such as molten urea remains in the supply path, if the temperature decreases with time, these solidify again and are supplied next time. May not be possible.
[0008]
Therefore, it is desired to provide an apparatus that can reliably supply a predetermined amount of reducing agent to a position upstream of the selective reduction type NOx catalyst.
[0009]
The present invention has been made in view of such problems, and the problem to be solved by the present invention is that it is small and excellent in controllability, and is heated upstream from a selective reduction type NOx catalyst by heating and melting a solid reducing agent. Another object of the present invention is to provide an exhaust gas purifying apparatus capable of supplying a predetermined amount to the exhaust gas passage.
[0010]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems. That is, the present invention provides a selective reduction type NOx catalyst that is provided in an exhaust gas passage of an internal combustion engine and that reduces or decomposes NOx in the presence of an ammonia-derived reducing agent,
A solid reducing agent storage means for storing a solid reducing agent;
A heating and melting means for heating and melting the solid reducing agent;
A melt reducing agent storage means for storing the melt reducing agent derived from the solid reducing agent storage means;
A melt reducing agent supply means for supplying the melt reducing agent to the exhaust gas passage upstream of the selective reduction type NOx catalyst;
A melting reducing agent supply amount calculating means for calculating a supply amount of the melting reducing agent supplied by the melting reducing agent supply means according to an operating state;
And a reducing agent heating control means for controlling the heating and melting means based on the reducing agent supply amount calculated by the melting and reducing agent supply amount calculating means.
[0011]
The required amount of the solid reducing agent stored in the solid reducing agent storage means is calculated according to the operating conditions, and is heated and melted by the heating and melting means installed at the bottom of the solid reducing agent storage means, and the molten reducing agent storage means Stored in. The stored molten reducing agent is supplied to the exhaust passage upstream of the selective reduction type NOx catalyst by the reducing agent supply means.
[0012]
In the present invention, the melting reducing agent storage means is provided with detecting means for detecting the remaining amount of the melting reducing agent, the remaining amount of the melting reducing agent detected by the detecting means, and the melting reducing agent supply amount calculating means. The reducing agent heating control means can be controlled such that the reducing agent supply amount calculated by the above is equal.
[0013]
By controlling the melting amount of the solid reducing agent and the supply amount of the melting reducing agent as described above, the molten reducing agent remaining without being used becomes solid again in the apparatus, and the melting reducing agent in the apparatus Can be blocked.
In the present invention, the heating temperature of the heating and melting means can be set to a temperature at which the solid reducing agent is not altered.
[0014]
Moreover, in this invention, the temperature holding means which hold | maintains the temperature of the said melt | dissolution reducing agent preservation | save means to the temperature which a solid reducing agent does not change can be provided.
[0015]
The heater surface temperature when melting the solid reducing agent is preferably in the range of about 133 degrees Celsius to 200 degrees Celsius. This is because urea is unlikely to deteriorate in this temperature range.
[0016]
In the present invention, since the flow rate of the liquid reducing agent is controlled, the apparatus can be reduced in size and simplified, and the controllability is good, so that the supply amount of the reducing agent can be controlled with high accuracy.
[0017]
Examples of the internal combustion engine include an in-cylinder direct injection type lean burn gasoline engine and a diesel engine.
[0018]
Examples of the selective reduction NOx catalyst include a catalyst in which a transition metal such as Cu is ion-exchanged and supported on zeolite, a catalyst in which a noble metal is supported on zeolite or alumina, a titania / vanadium catalyst, and the like.
[0019]
The reducing agent can be easily taken out from the solid reducing agent storage means by forming a spherical shape, for example. An example of the reducing agent is urea.
[0020]
The heating and melting means may be a heater installed on the bottom surface of the solid reducing agent storage means.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described below based on the drawings of FIGS. In addition, each embodiment described below is an aspect in which the present invention is applied to a vehicle driving diesel engine.
[0022]
Air is introduced into the combustion chamber 2 of each cylinder of the vehicle diesel engine 1 through the air cleaner 3 from the intake pipe 4 and fuel is injected into the combustion chamber 2 from the fuel injection valve 5. Burns at fuel ratio. In FIG. 1, reference numeral 6 denotes a piston.
[0023]
Exhaust gas exhausted from each combustion chamber 2 is exhausted into the atmosphere through an exhaust pipe 7 downstream thereof, a NOx catalytic converter 8, and an exhaust pipe 9 downstream of the NOx catalytic converter 8. The NOx catalytic converter 8 contains a zeolite-silica-based or TiN selective reduction type NOx catalyst 10 that reduces or decomposes NOx in the presence of a reducing agent.
[0024]
In order to purify NOx in the exhaust gas by the selective reduction type NOx catalyst 10, the presence of a reducing agent is necessary. For this reason, the exhaust purification device has an exhaust pipe 7 upstream of the NOx catalytic converter 8. A reducing agent adding device (reducing agent adding means) 11 for adding a reducing agent is provided.
[First Embodiment]
A first embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with reference to FIGS.
[0025]
FIG. 2 shows the reducing agent addition apparatus 11 in the present embodiment. This is to liquefy a large number of solid urea A formed in a spherical shape as a reducing agent and then supply it into the exhaust pipe 7. The reducing agent adding device 11 includes a storage container 12 for storing solid urea A, and a heater 31 installed on the inner bottom surface 12 c of the storage container 12. The inner bottom surface 12c where the heater 31 is installed is formed so as to incline so that the discharge port 12d is at the lowest position and descends toward the center.
[0026]
The solid urea A can be prevented from sticking to each other and becoming a large lump by coating with an anti-sticking agent.
[0027]
Since the solid urea A has a property of absorbing moisture and fixing easily, the storage container 12 can be provided with a dehumidifying means such as silica gel (not shown). In this case, the dehumidifying means 15 can be configured as a container containing silica gel or the like so as to communicate with the storage container 12 to which the solid urea A is supplied via the passage 15a.
[0028]
A communication passage 12e is connected to the discharge port 12d of the storage container 12, and a liquid urea storage chamber 13 is installed below the communication passage 12e. A melt reducing agent is disposed below the liquid urea storage chamber 13. A conveyance path 33 is provided. The addition control valve 14 is connected to the melt reducing agent conveyance path 33.
[0029]
The storage container 12 has a reducing agent inlet 12a at an upper portion thereof, and the reducing agent inlet 12a can be opened and closed by a lid 12b. There is a discharge port 12 d at the center of the bottom surface of the storage container 12, which communicates with the liquid urea storage chamber 13.
[0030]
As shown in FIG. 2, the inclined bottom surface 12 c includes a heater 31 that heats the surface, and the heater 31 is energized and controlled by the ECU 16.
[0031]
The liquid urea storage chamber 13 stores the liquid urea U supplied from the upper storage container 12 through the communication path 12e. The liquid urea U is added to the exhaust pipe 7 with the flow rate controlled by the addition control valve 14.
[0032]
The addition control valve 14 has a needle valve 14a at the tip, and a communication path 12c from the liquid urea storage chamber 13 is connected to a supply path 14d through which an axial valve body 14c penetrates in the axial direction. It is guided by the support 14e so that it can reciprocate. At the rear end of the addition control valve 14, a stopper 14f mounted on the rear portion of the penetrating valve body 14c is provided, which is locked to the rear end surface of the main body of the addition control valve 14. A solenoid 37 is disposed behind the stopper 14f, and when it is excited, the stopper 14f is pulled backward. A seal 14b is provided on the outer peripheral surface of the support 14e of the valve body 14c so that the supplied liquid urea U does not leak.
[0033]
Since the reducing agent addition device 11 has the above-described configuration, the solid urea A is heated and melted by the heater 31, and the heated and melted solid urea A is liquefied and flows down the lower surface 12c, from the discharge port 12d. It continuously falls into the liquid urea storage chamber 13. The flow rate of the liquid urea U is controlled by the addition control valve 14 and is added into the exhaust pipe 7. That is, the opening / closing time of the addition control valve 14 is duty ratio controlled by the ECU 16, thereby controlling the flow rate and addition timing of the liquid urea U.
[0034]
More specifically, the solenoid 37 of the addition control valve 14 is excited by energization according to a command from the ECU 16, the stopper 14f moves rearward, and the valve body 14c moves rearward along with this, and the needle valve 14a at the distal end is moved. When is opened, a predetermined amount of urea is added into the exhaust passage for a predetermined time during the valve opening.
[0035]
On the other hand, when the energization to the solenoid 37 is stopped, the stopper 14f is returned to the original position by the spring 38, the needle valve 14a is closed, and the addition of urea is completed.
[0036]
Between the addition control valve 14 and the liquid urea storage chamber 13, a pump (not shown) that pressurizes the liquid urea U and sends it to the pressure regulator, and the liquid urea U is kept at a constant pressure in the pressure regulator. There is provided a pressure regulator 39 that pressurizes the pressure.
[0037]
By the way, the heating source such as the electric heater 31 provided in the solid urea storage container 12 is at an optimum temperature (for example, 133 ° C. to 3 ° C.) at which the solid urea A is liquefied and stored in the liquid urea storage chamber 13 as a liquid. The heating state is controlled by the ECU 16 so as to be 230 ° C. This is because when the solid urea A is heated to a temperature higher than the optimum temperature, it may be gasified without being liquefied. However, the temperature may be set to 230 ° C. or higher if there is no inconvenience such as deterioration or gasification of solid urea.
[0038]
Further, the storage container 12 is provided with a remaining amount sensor 17 (FIG. 1) for detecting the remaining amount of the solid urea A. The remaining amount sensor 17 outputs an output signal proportional to the detected remaining amount of the solid urea A to the ECU 16. Output to.
[0039]
When an input signal indicating a predetermined remaining amount value (hereinafter referred to as an alarm remaining amount value) is input from the remaining amount sensor 17, the ECU 16 lights the alarm lamp 23 of the meter panel 22, and the solid urea A Notify that the remaining amount is low.
[0040]
Further, when the ECU 16 receives an input signal indicating a lower limit value lower than the alarm remaining amount value from the remaining amount sensor 17, the ECU 16 stops the operation of the reducing agent adding device 11 and fully closes the addition control valve 14. Then, the addition of the liquid urea U is stopped.
[0041]
On the other hand, the exhaust pipe 7 upstream of the NOx catalytic converter 8 is provided with an incoming gas temperature sensor 19 for detecting the temperature of the exhaust gas flowing into the NOx catalytic converter 8, and an output signal proportional to the detected incoming gas temperature. Is output to the ECU 16.
[0042]
The ECU 16 is composed of a digital computer, and includes a ROM (Read Only Memory), a RAM (Random Access Memory), a CPU (Central Processor Unit), an input / output port, and an output port that are connected to each other via a bidirectional bus. In addition to performing basic control such as fuel injection amount control, in this embodiment, addition amount control of liquid urea U and energization control of the heater 31 are performed.
[0043]
For these controls, an input signal from the air flow meter 20 is input to the input port of the ECU 16 via the A / D converter. The air flow meter 20 outputs an output signal proportional to the intake air amount to the ECU 16, and the ECU 16 calculates the intake air amount based on the output signal of the air flow meter 20.
[0044]
The exhaust pipe 7 upstream of the NOx catalytic converter 8 is provided with a NOx sensor 21 that detects the amount of NOx flowing into the NOx catalytic converter 8, and outputs an output signal proportional to the detected NOx amount to the ECU 16.
[0045]
The ECU 16 calculates the target addition amount of the liquid urea U necessary for purifying NOx based on the detected NOx amount, calculates the energization time of the heater 31 corresponding to this target addition amount, and energizes the heater 31. . Further, the duty ratio of the addition control valve 14 that obtains a flow rate corresponding to the target addition amount is calculated, and the addition control valve 14 is controlled by the duty ratio. Since only the necessary amount of solid urea A is liquefied and added in this way, the excess liquid urea U remaining in the apparatus 11, particularly the liquid urea storage chamber 13, is solidified again and clogged in the apparatus. Can be prevented.
[0046]
Next, the operation of the exhaust gas purification apparatus for the internal combustion engine will be described. As described above, the ECU 16 performs energization control of the heater 31 and duty ratio control of the addition control valve 14 according to the operating state of the engine 1, that is, according to the NOx emission amount, and an appropriate amount is set in the exhaust pipe 7. Add liquid urea U. As a result of being heated by the exhaust gas, the liquid urea U added into the exhaust pipe 7 is immediately vaporized to become a reducing gas (ammonia gas) and flows into the NOx catalytic converter 8 together with the exhaust gas.
[0047]
The reducing gas reduces or decomposes NOx contained in the exhaust gas on the selective reduction type NOx catalyst 10. The purified exhaust gas is discharged to the atmosphere through the exhaust pipe 9.
[0048]
The selective reduction type NOx catalyst 10 has a property that the NOx purification rate is low when the exhaust gas temperature is equal to or lower than a predetermined temperature, and the NOx purification rate is rapidly increased when the exhaust gas temperature exceeds the predetermined temperature. Therefore, even if the reducing gas is added when the exhaust gas temperature is low, the added reducing gas passes through the NOx converter 8 without being used for the NOx reduction reaction and is released to the atmosphere. Therefore, in this embodiment, when the incoming gas temperature detected by the incoming gas temperature sensor 19 is equal to or lower than the predetermined temperature, the ECU 16 controls the addition control valve 14 to be fully closed, thereby stopping the addition of the liquid urea U. Therefore, leakage of reducing gas is prevented in advance.
[0049]
In the above-described embodiment, the NOx sensor for detecting the NOx concentration of the exhaust gas is provided in the exhaust pipe 7 upstream of the NOx catalytic converter 8, and the NOx concentration detected by the NOx sensor and the air flow meter 20 are used for detection. The NOx emission amount is calculated from the intake air amount. Instead of this, the relationship between the operating state of the engine 1 and the NOx emission amount is mapped in advance, and the actual individual values are referenced with reference to this map. The NOx emission amount in the engine operating state may be estimated and calculated.
[0050]
Further, the time taken to supply all of the molten reducing agent stored in the liquid urea storage chamber 13 and the addition control valve 14 into the exhaust pipe 7 is obtained by heating and melting the solid reducing agent with the heater 31 and adding the control valve 14. Reducing agent storage capacity and heater of the liquid element storage chamber 13, the addition control valve 14, and the molten reductant transfer passage 33 from the liquid element storage chamber 13 to the addition control valve 14 so as to be longer than the time required for the transfer. You may make it set 31 reducing agent melting performance.
[0051]
Further, the solid reducing agent may be added to the exhaust pipe 7 after all of the solid reducing agent has been melted, but the amount of addition and the amount of addition are always grasped, and the addition is started simultaneously with melting, and finally the calculated amount and amount of addition are Feedback control may be performed so as to be the same.
[0052]
Next, a flow chart of reducing agent supply by this reducing agent supply device will be described.
[0053]
In step 100, the ECU 16 calculates a target addition amount of liquid urea U necessary for purifying NOx based on the detected NOx amount.
[0054]
After the calculation, the process proceeds to step 101, where the heater for heating the solid urea is energized to liquefy the solid urea, and the target amount of liquid urea U is generated. The generated liquid urea U is stored in the liquid urea storage chamber 13 (step 102).
[0055]
Next, in step 103, it is determined whether it is time to add liquid urea U as a reducing agent into the exhaust pipe 7. If it is the addition time, the routine proceeds to step 104 where liquid urea U is added into the exhaust pipe 7. On the other hand, if it is not the addition time, the process returns to step 102 and the liquid urea U is stored in the liquid urea storage chamber 13. In step 103, it is determined again whether it is the addition time. If it is the addition time, liquid urea U is added.
[0056]
In the exhaust purification apparatus of this embodiment, the solid urea A as described above is heated and liquefied to form liquid urea U, and a predetermined amount of this liquid urea U is added into the exhaust pipe 7 by the addition control valve 14. In this case, the amount of heat required to liquefy the solid urea can be smaller than the amount of heat required to vaporize the solid urea, so that the heating source (electric heater) is smaller than using gasified urea. That's it. In addition, since liquid urea U is produced by directly liquefying solid urea, it becomes 100% concentration and precise addition amount control is required, but because the controlled object is liquid, not addition control, The valve 14 can sufficiently control the flow rate with high accuracy.
[Second Embodiment]
Next, a second embodiment of the exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described. FIG. 3 shows a reducing agent addition apparatus 30 in the present embodiment. The solid urea A as the reducing agent is liquefied and supplied into the exhaust pipe 7 as in the first embodiment and the apparatus.
[0057]
The storage container 12 has a reducing agent input port 12a on the top surface, and a discharge port 12d at the bottom thereof, which communicates with the liquid urea storage chamber 13 through the communication path 12e. A lattice-shaped heater 31 is installed at the discharge port 12 d, and solid urea A is heated and melted by the heater 31. The generated liquid urea U flows down into the liquid urea storage chamber 13 from the discharge port 12d and is stored.
[0058]
A predetermined amount of this liquid urea U is added into the exhaust pipe 7 by the addition control valve 14. In addition, as in the case of the first embodiment, the addition control valve 14 is duty ratio-controlled by the ECU 16 for the opening and closing time, thereby controlling the flow rate and addition timing of the liquid urea U.
[0059]
In this embodiment, in the liquid urea storage chamber 13 in which the liquid urea U is stored, a liquid amount sensor 32 that detects a melting reducing agent, and an ECU 16 that controls the heater 31 based on a signal from the liquid amount sensor 32. Is provided.
[0060]
The liquid amount sensor 32 outputs the detected remaining amount of liquid urea U to the ECU 16 as an output signal. When the ECU 16 receives an input signal indicating a predetermined remaining amount value from the melt reducing agent detection means 32, the ECU 16 energizes the heater 31 to melt the solid urea A into liquid urea U, which is converted into the liquid urea storage chamber 13. To flow down.
[0061]
The predetermined remaining amount value, that is, the threshold value, is the liquid urea until the solid urea A is liquefied and added from the storage chamber 12 through the liquid urea storage chamber 13 to the exhaust pipe 7 from the addition control valve 14. The value is such that U does not disappear (the liquid urea storage chamber 13 does not become empty), and the liquid urea U of this value is always stored in the liquid urea storage chamber 13. Preserving a large amount of liquid urea U must be avoided because the liquid urea re-solidifies due to a temperature drop over time. However, if the liquid urea storage chamber 13 is emptied, the NOx reduction action by the selective reduction type NOx catalyst 10 stops, and there is a risk that NOx in the exhaust gas is released into the atmosphere. .
[0062]
Therefore, considering the time until the solid urea A is melted by heating and becomes liquid urea U and is added into the exhaust pipe 7, it is replenished when the level of the liquid urea U becomes lower than the threshold value. In this way, since the next reducing agent is added before the liquid urea U solidifies, the liquid urea U does not remain in the liquid urea storage chamber 13 for a long time.
[0063]
The liquid amount sensor 32 serving as a means for detecting the remaining amount of liquid urea U outputs a signal to the ECU 16 when the liquid urea U falls below a predetermined level, or the remaining amount of liquid urea U in the liquid urea storage chamber 13. Can always be used.
[0064]
Note that when the solid urea A is liquefied, the temperature of the heater 31 is controlled by the ECU 16 so that the temperature becomes an optimum temperature (for example, 133 to 200 ° C. within a range in which no alteration of urea occurs).
[0065]
The liquid urea storage chamber 13 is provided with a temperature sensor 18 for detecting the liquid temperature of the liquid urea U. The temperature sensor 18 outputs an output signal proportional to the detected liquid temperature of the liquid urea U to the ECU 16.
[0066]
On the other hand, the exhaust pipe 7 upstream of the NOx catalytic converter 8 is provided with an incoming gas temperature sensor 19 for detecting the temperature of the exhaust gas flowing into the NOx catalytic converter 8, and an output signal proportional to the detected incoming gas temperature. Is output to the ECU 16.
[0067]
In this embodiment, the ECU 16 performs the addition control of the liquid urea U and the energization control of the heater 31. For these controls, the input signal from the air flow meter 20 is supplied to the input port of the ECU 16 as A. Input via / D converter. Thus, the air flow meter 20 outputs an output signal proportional to the intake air amount to the ECU 16, and the ECU 16 calculates the intake air amount based on the output signal of the air flow meter 20.
[0068]
Further, the exhaust pipe 7 upstream of the NOx catalytic converter 8 is provided with a NOx sensor 21 that detects the amount of NOx flowing into the NOx catalytic converter 8, and outputs an output signal proportional to the detected NOx amount to the ECU 16.
[0069]
The ECU 16 calculates a target addition amount of the liquid urea U necessary for purifying NOx based on the detected NOx amount, and until the amount of the liquid urea U detected by the liquid amount sensor 32 becomes equal to this calculated value. The heater 31 is energized to melt the solid urea. Further, the duty ratio of the addition control valve 14 that obtains a flow rate corresponding to the target addition amount is calculated, and the addition control valve 14 is controlled by the duty ratio.
[0070]
Next, the flow chart of reducing agent supply by this apparatus will be described with reference to FIG.
[0071]
First, at step 200, the ECU 16 calculates a target addition amount of liquid urea U necessary for purifying NOx based on the detected NOx amount.
[0072]
In step 201, the amount of liquid urea U detected by the liquid amount sensor 32 is compared with the amount of urea stored in the liquid urea storage chamber 13. If the stored amount of liquid urea U is less than the target addition amount, the process proceeds to step 201, where the heater 31 is energized until the stored amount of liquid urea U becomes equal to the target addition amount, and the solid urea A is liquefied to liquid. Urea U is supplied to the liquid urea storage chamber 13.
[0073]
On the other hand, if the amount of liquid urea U stored is larger than the target addition amount, the liquid urea U is not replenished.
[0074]
Next, in step 203, it is determined whether or not it is time to add liquid urea U as a reducing agent into the exhaust pipe 7. If it is the addition time, the process proceeds to step 204 where liquid urea U is added. On the other hand, if it is not the addition time, the process jumps to step 208 and the liquid urea U is stored in the liquid urea storage chamber 13.
[0075]
When the liquid urea U is added in step 204, the process proceeds to step 205 and the remaining amount is detected. In step 206, it is determined whether or not the remaining amount is equal to or less than the threshold value. This is saved at step 208.
[0076]
On the other hand, if the liquid urea is not less than or equal to the threshold value, the process jumps to step 208 to store the liquid urea U.
[0077]
In the exhaust gas purifying apparatus of the present invention, only a necessary amount of solid urea is liquefied and added each time depending on the operating condition in this way, so that excess liquid urea U remaining in the apparatus is solidified. It is possible to prevent clogging of the device.
[0078]
Further, it is possible to prevent the liquid urea U in the apparatus from being used up and the shortage of the liquid reducing agent before the solid urea is liquefied and can be added to the exhaust pipe 7.
[0079]
【The invention's effect】
As described above, according to the exhaust gas purification apparatus for an internal combustion engine according to the present invention, the solid urea is stored, liquefied and used, thereby miniaturizing and simplifying the apparatus, and reducing the supply amount of the reducing agent with high accuracy. Can be controlled.
[0080]
In the present invention, since the required amount of the melt reducing agent is supplied in accordance with the operating condition of the internal combustion engine, the amount required for the selective reduction type NOx catalyst among the stored solid reducing agents is increased each time. It is heated and melted. Therefore, it is possible to prevent excess melt reducing agent remaining in the exhaust purification device from becoming solid again and clogging the device, and causing inconvenience in the next supply of reducing agent.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an internal combustion engine exhaust gas purification apparatus according to the present invention.
FIG. 2 is a diagram showing a schematic configuration of a reducing agent addition apparatus according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a schematic configuration of a reducing agent addition apparatus according to a second embodiment of the present invention.
FIG. 4 is a diagram showing a flowchart of adding a reducing agent in the first embodiment.
FIG. 5 is a diagram showing a flowchart of adding a reducing agent in the second embodiment.
[Explanation of symbols]
1 Diesel engine (internal combustion engine)
7 Exhaust pipe
8 NOx catalytic converter
9 Exhaust pipe (exhaust passage)
10 Selective reduction type NOx catalyst
11 Reducing agent addition device
12 Storage container
13 Liquid urea storage room
14 Addition control valve (supply amount control means)
16 ECU
17 Remaining sensor
18 Temperature sensor
19 Gas temperature sensor
20 Air flow meter
21 NOx sensor
22 Meter panel
23 Alarm lamp
31 Heater
32 Liquid sensor
33. Melting agent transport passage

Claims (4)

内燃機関の排気ガス通路に設けられ、アンモニア由来の還元剤の存在下でNOxを還元または分解する選択還元型NOx触媒と、
固体状の還元剤を貯蔵する固体還元剤貯蔵手段と、
前記固体還元剤を加熱溶融する加熱溶融手段と、
前記固体還元剤貯蔵手段から導かれた溶融還元剤を保存する溶融還元剤保存手段と、
前記溶融還元剤を前記選択還元型NOx触媒よりも上流の前記排気ガス通路に供給する溶融還元剤供給手段と、
前記溶融還元剤供給手段により供給される溶融還元剤の供給量を運転状態により算出する溶融還元剤供給量算出手段と、
前記溶融還元剤供給量算出手段により算出された還元剤供給量に基づいて前記加熱溶融手段を制御する還元剤加熱制御手段と、
を備えることを特徴とする内燃機関の排気ガス浄化装置。
A selective reduction type NOx catalyst which is provided in an exhaust gas passage of an internal combustion engine and reduces or decomposes NOx in the presence of a reducing agent derived from ammonia;
A solid reducing agent storage means for storing a solid reducing agent;
A heating and melting means for heating and melting the solid reducing agent;
A melt reducing agent storage means for storing the melt reducing agent derived from the solid reducing agent storage means;
A melt reducing agent supply means for supplying the melt reducing agent to the exhaust gas passage upstream of the selective reduction type NOx catalyst;
A melting reducing agent supply amount calculating means for calculating a supply amount of the melting reducing agent supplied by the melting reducing agent supply means according to an operating state;
Reducing agent heating control means for controlling the heating and melting means based on the reducing agent supply amount calculated by the melting and reducing agent supply amount calculating means;
An exhaust gas purifying device for an internal combustion engine, comprising:
前記溶融還元剤保存手段には溶融還元剤の残量を検出する検出手段を設け、この検出手段により検出される溶融還元剤の残量と、前記溶融還元剤供給量算出手段により算出された還元剤供給量とが等しくなるように前記還元剤加熱制御手段を制御することを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。The melting reducing agent storage means is provided with detecting means for detecting the remaining amount of the melting reducing agent, the remaining amount of the melting reducing agent detected by the detecting means, and the reduction calculated by the melting reducing agent supply amount calculating means. 2. The exhaust gas purifying device for an internal combustion engine according to claim 1, wherein the reducing agent heating control means is controlled so that the amount of the agent supplied becomes equal. 前記加熱溶融手段の加熱温度を固体還元剤が変質しない温度とすることを特徴とする請求項1または2に記載の内燃機関の排気ガス浄化装置。The exhaust gas purifying device for an internal combustion engine according to claim 1 or 2, wherein the heating temperature of the heating and melting means is set to a temperature at which the solid reducing agent does not change. 前記溶融還元剤保存手段の温度を固体還元剤が変質しない温度に保持する温度保持手段を備えることを特徴とする請求項1から3のいずれかに記載の内燃機関の排気ガス浄化装置。The exhaust gas purifying device for an internal combustion engine according to any one of claims 1 to 3, further comprising temperature holding means for holding the temperature of the melting reducing agent storage means at a temperature at which the solid reducing agent does not change.
JP2000308293A 2000-10-06 2000-10-06 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4447142B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000308293A JP4447142B2 (en) 2000-10-06 2000-10-06 Exhaust gas purification device for internal combustion engine
DE10148880A DE10148880B4 (en) 2000-10-06 2001-10-04 Internal combustion engine exhaust control system and method
FR0112928A FR2814966B1 (en) 2000-10-06 2001-10-08 APPARATUS AND METHOD FOR CONTROLLING THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308293A JP4447142B2 (en) 2000-10-06 2000-10-06 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002115533A JP2002115533A (en) 2002-04-19
JP4447142B2 true JP4447142B2 (en) 2010-04-07

Family

ID=18788626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308293A Expired - Fee Related JP4447142B2 (en) 2000-10-06 2000-10-06 Exhaust gas purification device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP4447142B2 (en)
DE (1) DE10148880B4 (en)
FR (1) FR2814966B1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313998A1 (en) * 2003-03-27 2004-10-07 Hjs Fahrzeugtechnik Gmbh & Co. Assembly to break down ammonium carbonate to ammonium and surrender to an automotive diesel exhaust catalytic converter
DE10308288B4 (en) * 2003-02-26 2006-09-28 Umicore Ag & Co. Kg Process for the removal of nitrogen oxides from the exhaust gas of a lean-burned internal combustion engine and exhaust gas purification system for this purpose
DE602004006415T2 (en) 2003-06-18 2008-01-10 Johnson Matthey Public Ltd., Co. PROCESS FOR CONTROLLING THE REDUCTION ADDITIVE
DE102005017402A1 (en) * 2005-04-15 2006-10-19 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for the metered provision of a, in particular as a solid, reducing agent for exhaust systems
DE102005025724A1 (en) * 2005-06-04 2006-12-07 Eichenauer Heizelemente Gmbh & Co. Kg Carbamide supply system for catalytic converter has connecting line linked to thawed-out carbamide container
US7836684B2 (en) 2005-06-04 2010-11-23 Eichenauer Heizelemente Gmbh & Co. Kg Urea supply system for a waste gas cleaning catalyst and heating insert suitable therefor
DE102005032823A1 (en) * 2005-07-12 2007-01-18 Eichenauer Heizelemente Gmbh & Co. Kg tank heater
DE102005036430B4 (en) * 2005-08-03 2011-05-05 Eichenauer Heizelemente Gmbh & Co. Kg tank heater
DE102006004170A1 (en) * 2006-01-27 2007-08-02 Pierburg Gmbh Thermolysis assembly in exhaust pipe upstream of and heated by oxidation catalytic converter reduces automotive nitric oxide emissions
DE102006032399A1 (en) * 2006-07-07 2008-01-17 Ami-Agrolinz Melamine International Gmbh Apparatus and method for supplying urea in an exhaust system of an internal combustion engine
DE102006043954A1 (en) * 2006-09-14 2008-03-27 Volkswagen Ag Method of operating an SCR catalyst and SCR catalyst system
DE102008048798A1 (en) * 2008-09-24 2010-03-25 Emitec Gesellschaft Für Emissionstechnologie Mbh Tank for a reducing agent with heating devices
JP4978635B2 (en) * 2009-02-12 2012-07-18 株式会社デンソー Control device for exhaust purification system
DE102010035008A1 (en) 2010-08-20 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Urea container with ultrasonic sensor
JP5787090B2 (en) * 2012-01-18 2015-09-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CA2865495C (en) * 2012-02-28 2019-06-11 Norma U.S. Holding Llc Automotive selective catalytic reduction (scr) system sensor holder and assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19719998C2 (en) * 1997-05-13 2003-10-30 Daimler Chrysler Ag Method and device for nitrogen oxide reduction in the exhaust gas of a combustion device
JP3580163B2 (en) * 1998-06-04 2004-10-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19825148A1 (en) * 1998-06-05 1999-12-09 Bayerische Motoren Werke Ag Process and device for nitrogen oxide reduction using urea in exhaust gas systems of internal combustion engines equipped with catalytic converters, in particular on motor vehicles
JP2000027626A (en) * 1998-07-15 2000-01-25 Toyota Motor Corp Reducing agent supply device for internal combustion engine

Also Published As

Publication number Publication date
DE10148880B4 (en) 2006-07-13
FR2814966B1 (en) 2004-09-17
FR2814966A1 (en) 2002-04-12
DE10148880A1 (en) 2002-08-14
JP2002115533A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP4447142B2 (en) Exhaust gas purification device for internal combustion engine
JP3600522B2 (en) Reducing agent supply device for internal combustion engine
EP1210968B1 (en) Reducing-agent supply device, emission control system using the reducing agent supply device and method for reducing or removing NOx.
JP6114305B2 (en) Exhaust aftertreatment system and method for operating the system
CN101316993B (en) Method of controlling exhaust gas purification system and exhaust gas purification system
JP4904281B2 (en) Reductant metering system for NOx reduction in lean burn internal combustion engines
JP2007170383A (en) Autoexhaust posttreatment device monitoring method and apparatus
JP3580163B2 (en) Exhaust gas purification device for internal combustion engine
JP2009097438A (en) Exhaust emission control system
JP3600509B2 (en) Exhaust gas purification device for internal combustion engine
Johannessen et al. Ammonia storage and delivery systems for automotive NOx aftertreatment
JP3835269B2 (en) Control device for internal combustion engine
CN204225970U (en) A kind of emission control systems being coupled to motor
GB2396834A (en) Reductant injection controlled by engine acceleration
WO2014189454A1 (en) Method for distributing and storing urea upstream a catalytic device in an exhaust treatment system
JP2002038939A (en) Exhaust emission control device of internal combustion engine
JP5874968B2 (en) Exhaust gas purification device for internal combustion engine
JP3855444B2 (en) Reducing agent supply device for internal combustion engine
JP3849553B2 (en) Exhaust gas purification device for internal combustion engine
US20150267584A1 (en) Exhaust System For Dual Fuel Engines
JP2013130072A (en) Exhaust emission control device and method of internal combustion engine
JP2002242664A (en) Reducing agent supply device for internal combustion engine
US20040098976A1 (en) Diesel aftertreatment systems
US10288017B1 (en) Model based control to manage eDOC temperature
JP3571642B2 (en) Reducing agent for exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees