JP3849553B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3849553B2
JP3849553B2 JP2002072674A JP2002072674A JP3849553B2 JP 3849553 B2 JP3849553 B2 JP 3849553B2 JP 2002072674 A JP2002072674 A JP 2002072674A JP 2002072674 A JP2002072674 A JP 2002072674A JP 3849553 B2 JP3849553 B2 JP 3849553B2
Authority
JP
Japan
Prior art keywords
exhaust
reducing agent
throttle valve
exhaust gas
exhaust throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002072674A
Other languages
Japanese (ja)
Other versions
JP2003269147A (en
Inventor
伸治 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002072674A priority Critical patent/JP3849553B2/en
Publication of JP2003269147A publication Critical patent/JP2003269147A/en
Application granted granted Critical
Publication of JP3849553B2 publication Critical patent/JP3849553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関し、より詳細には、内燃機関の排気系に排気浄化触媒および還元剤供給装置を備える排気浄化装置に関する。
【0002】
【従来の技術】
この種類の排気浄化装置としては、例えば特開平6−200740号公報に開示されたものがある。この装置は、ディーゼル機関の排気通路に、酸素過剰雰囲気下で窒素酸化物(NOx)を吸蔵するリーンNOx触媒を備え、このリーンNOx触媒で排気ガス中の窒素酸化物(NOx)を吸蔵し、リーンNOx触媒の窒素酸化物(NOx)の吸蔵効率が低下した場合にリーンNOx触媒への排気ガスの流量を減少させ、液状の還元剤を微粒子化して添加することにより、リーンNOx触媒から窒素酸化物(NOx)を放出させるとともに放出された窒素酸化物(NOx)を還元浄化するものである。即ち、この装置では、供給された還元剤はリーンNOx触媒の触媒作用により燃焼して排気ガス中の酸素を消費し、リーンNOx触媒の雰囲気酸素濃度を低下させることにより、リーンNOx触媒から吸蔵された窒素酸化物(NOx)が放出されて還元剤により還元浄化される。
【0003】
上記従来の排気浄化装置においては、リーンNOx触媒の雰囲気酸素濃度を下げてリーンNOx触媒から吸蔵した窒素酸化物(NOx)を放出させ還元浄化する時に、少ない還元剤の消費量でリーンNOx触媒の還元浄化を効率よく行うために、リーンNOx触媒よりも上流の排気管において排気上流側から順に排気絞り弁、還元剤添加弁を設置し、還元剤の添加時には、この排気絞り弁の開度を減少させて排気ガスの流量を減少させた後に還元剤を添加して、極力、少量の還元剤でリーンNOx触媒に流れ込む排気ガスの酸素濃度を局所的に低下させている。
【0004】
【発明が解決しようとする課題】
上記従来の排気浄化装置においては、排気浄化触媒であるリーンNOx触媒の雰囲気酸素濃度を下げて、リーンNOx触媒の還元浄化作用を促進させるために、還元剤をリーンNOx触媒に供給する。
【0005】
しかしながら、本発明者等の鋭意研究によれば、上記した排気浄化触媒に対する還元剤の添加において、種々の改善すべき点が見いだされた。
【0006】
まず、還元剤添加弁の排気下流では、排気通路内壁面に対する還元剤の付着が見られるため、上記排気浄化作用を促進するために必要とされる適切量の還元剤を添加したにも拘わらず、依然として排気ガスの酸素濃度は高い値を示す場合がある。すなわち、還元剤の実質的添加量が減少し、排気浄化率の低下を招く虞がある。
【0007】
また、排気通路内壁面に対する還元剤の付着に絡み、還元剤の付着を見越して予め多めに還元剤を添加すれば、上記下排気浄化率の低下は回避されるが、還元剤の消費量を増やすことになる。とりわけ、還元剤として機関燃料(例えば、軽油)を添加する場合には、燃料消費量の悪化に繋がる。
【0008】
また、還元剤の添加回数が増えるにつれ、排気通路内壁面に付着した還元剤は徐々に凝縮して液滴になるため、時として、この液滴の還元剤がリーンNOx触媒に流れ込み、リーンNOx触媒を局所的に昇温させ、リーンNOx触媒を局所的に劣化させる虞がある。
【0009】
本発明は、このような技術的背景を考慮してなされたもので、排気通路内壁面に対する還元剤の付着を抑制可能な内燃機関の排気浄化装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
上記した技術的課題を解決するため本発明では、以下の構成とした。
【0011】
本発明は、排気通路に配置された排気浄化触媒と、前記排気通路の前記排気浄化触媒より上流に配置され、前記排気通路内に還元剤を添加する還元剤供給手段とを備える内燃機関において、前記還元剤添加弁と前記排気浄化触媒との間に排気絞り弁を配置すると共に、還元剤の添加に伴い前記排気絞り弁を閉じ側に制御する排気絞り弁制御手段を備えることを特徴とする。
【0012】
このように構成された本発明では、還元剤添加弁と排気浄化触媒との間に排気絞り弁を備え、排気絞り弁は、還元剤の添加に伴い閉じ側に制御される。このため、排気絞り弁の閉じ側への制御によって、排気通路内壁面近傍の流速が局所的に上昇し、既に付着している還元剤の霧化が促される。また、排気通路内壁面に対する還元剤の付着も抑制される。
【0013】
なお、上記で「還元剤の添加に伴い排気絞り弁を閉じ側に制御する」とは、現に還元剤が添加されている状況、または、還元剤を添加してもよいとみなせる状況において、排気絞り弁を閉じ側に制御することを意図し、排気絞り弁の制御時は、実際の還元剤添加の有無を問題にするものではない。また、上記排気浄化触媒とは、還元剤の添加によって排気浄化作用が回復する排気浄化触媒全般を意図する。
【0014】
また、排気絞り弁制御手段は、還元剤添加量の積算値に応じて前記排気絞り弁を閉じ側に制御してもよい。
【0015】
この構成では、還元剤の添加量が積算値に達したときに排気絞り弁を閉じ側に制御する。つまり、排気通路内壁面に対する還元剤の付着がある程度進行したときに排気絞り弁を制御し、排気通路内壁面に付着している還元剤の霧化を促す。よって、機関出力の変動を招く排気絞り制御の実行頻度減らすことができる。
【0016】
また、排気絞り弁付近の排気ガス温度を測定または推定する排気ガス温度検出手段を備え、前記排気絞り弁制御手段は、前記排気ガス温度に応じて前記排気絞り弁を閉じ側に制御してもよい。
【0017】
この構成では、排気ガス温度検出手段によって排気ガス温度を測定または推定し、その排気ガス温度に応じて排気絞り弁を制御する。つまり、還元剤は、排気ガス温度が低下するほど、排気通路内壁面に対して付着し易くなるため、本構成では、このような状況で排気絞り弁を閉じ側に制御する。
【0018】
さらに、排気絞り弁制御手段は、前記還元剤添加量の積算値または排気ガス温度の少なくともいずれか一方に応じて、前記排気絞り弁の開度および/または閉じ時間を変更できるとしてもよい。
【0019】
この構成では、還元剤添加量の積算値または排気ガス温度の少なくとも一方に応じて、排気絞り弁の制御に相関のある開度および/または閉じ時間を制御するため、その時々の状況に応じた最適の開度や閉じ時間が得られる。
【0020】
また、排気絞り弁制御手段は前記排気絞り弁の上流と下流の差圧を測定する差圧センサを備え、前記差圧センサにより前記差圧が一定になるように前記排気絞り弁を制御してもよい。
【0021】
この構成では、排気絞り弁の閉弁制御によって生じる差圧を差圧センサにて検出し、その差圧を排気絞り弁の閉弁制御にフィードバックする。つまり、排気絞り弁の上流と下流との間に生じる差圧を一定に維持し、排気絞り弁の制御中における排気ガス流量の急激な変化に伴う機関出力の変動を抑制する。
【0022】
【発明の実施の形態】
続いて、本発明に係る内燃機関の排気浄化装置に関し、その好適な実施形態について説明する。なお、以下に示す排気浄化触媒の構造は、あくまでも本発明の一実施形態にすぎず、その詳細は、内燃機関の各種仕様等に応じて変更可能である。
【0023】
まず、本実施の形態では、ディーゼル機関等に代表される希薄燃焼式内燃機関1の排気系に触媒コンバータ50、及び還元剤供給装置を備えて排気浄化装置を構成している。
【0024】
触媒コンバータ50は、ケーシング、及びそのケーシング内に設けられる種々の排気浄化触媒50a,50bを備え、機関本体1から排出される排気ガス中の有害物質を浄化する排気浄化作用を有する。より詳しくは、内燃機関1のタービンハウジング下流にケーシングが配置され、ケーシング内には、排気上流側から吸蔵還元型NOx触媒50a、パティキュレートフィルタ(以下、単にフィルタと称する)50bの順に排気浄化触媒が内蔵されている。
【0025】
吸蔵還元型NOx触媒50aは、希薄燃焼式内燃機関の排気系に設けられるリーンNOx触媒の代表例であり、排気ガス中の窒素酸化物(NOx)を主として浄化する排気浄化作用を有している。
【0026】
より詳しくは、排気ガスの酸素濃度が高いときにその排気ガス中の窒素酸化物(NOx)を吸蔵し、排気ガス中の酸素濃度が低いとき、すなわち吸蔵還元型NOx触媒に流れ込む排気ガスの空燃比が低いときにその吸蔵していた窒素酸化物(NOx)を排気ガス中に含まれている未燃燃料成分(CO、HC)と反応させることで、無害な窒素(N2)に浄化する排気浄化能を有する。
【0027】
また、その構成は、例えばアルミナ(Al23)を担体とし、その担体上にカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)等のアルカリ金属、若しくはバリウム(Ba)、カルシウム(Ca)等のアルカリ土類、又はランタン(La)、イットリウム(Y)等の希土類から選ばれた少なくとも一つと、白金(Pt)のような貴金属とを担持してなる。
【0028】
なお、ここで上記した排気浄化作用の補足説明を行うと、希薄燃焼式内燃機関1では、通常、酸素過剰雰囲気下で燃焼が行われている。このため燃焼に伴い排出される排気ガスの酸素濃度は、上記の還元・放出作用を促す迄に低下することは殆どなく、また、排気ガス中に含まれる未燃燃料成分(CO,HC)も極僅かである。
【0029】
したがって、本実施の形態では、還元剤たる機関燃料(HC)を排気ガス中に噴射供給することで酸素濃度の低下を促し、また、未燃燃料成分たる炭化水素(HC)を排気ガス中に補給して上記の排気浄化作用を促進させている。なお、この浄化時における還元剤の供給は、後述の還元剤供給装置によって行われている。本実施の形態では、この還元剤添加装置によって本発明に係る還元剤供給手段が構成されている。なお、還元剤供給装置の説明は後に詳述する。なお、触媒コンバータ50は吸蔵還元型NOx触媒がない構造、即ちフィルタ50bのみでも適用可能である。
【0030】
一方のフィルタ50bは、排気ガス中に含まれる煤などの微粒子を触媒物質の働きで酸化燃焼させる排気浄化触媒の一種である。より詳しくは、触媒物質として活性化酸素放出剤を担持したフィルタ基材58を備え、そのフィルタ基材58上に捕集した微粒子を活性化酸素の酸化力にて酸化燃焼させることで浄化(除去)する排気浄化作用を備えている。
【0031】
フィルタ基材58は、図2に示されるようにコージライトのような多孔質材料から形成されたハニカム形状をなし、互いに平行をなして延びる複数個の流路55,56を具備している。より具体的には、下流端が栓55aにより閉塞された排気ガス流入通路55と、上流端が栓56aにより閉塞された排気ガス流出通路56と、を備え、各排気ガス流入通路55及び排気ガス流出通路56は薄肉の隔壁57を介してフィルタ基材58における縦方向及び横方向に並んで配置されている。
【0032】
また、壁57の面および内部の細孔には、アルミナ(Al23)等によって形成された担体の層が設けられ、担体上には、白金(Pt)等の貴金属触媒の他、周囲に過剰酸素が存在するとその過剰酸素を吸蔵し、逆に酸素濃度が低下すると、その吸蔵した酸素を活性酸素の形で放出する活性酸素放出剤が担持されている。
【0033】
なお、活性酸素放出剤としては、カリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)、ルビジウム(Rb)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)、ストロンチウム(Sr)のようなアルカリ土類金属、ランタン(La)、イットリウム(Y)のような希土類、およびセリウム(Ce)、錫(Sn)のような遷移金属から選ばれた少なくとも一つを用いるとよい。
【0034】
また、好ましくは、カルシウム(Ca)よりもイオン化傾向の高いアルカリ金属又はアルカリ土類金属、即ちカリウム(K)、リチウム(Li)、セシウム(Cs)、ルビジウム(Rb)、バリウム(Ba)、ストロンチウム(Sr)などを用いるとよい。
【0035】
このように構成されたフィルタ50bでは、まず、排気ガス流入通路55→隔壁57→排気ガス流出通路56の順に排気ガスが流れ(図2矢印a)、排気ガス中に含まれる煤などの微粒子は、その隔壁57を通過する過程で、隔壁57の表面及び内部に捕集される。そして、隔壁57に捕集された微粒子は、隔壁57(フィルタ基材)に流れ込む排気ガスの酸素濃度を複数回に亘り変化させることで増加する活性化酸素によって酸化され、ついには輝炎を発することなく燃え尽きてフィルタ基材58上から除去される。なお、本実施の形態では、活性酸素放出剤を担持したパティキュレートフィルタ50bに代え、NOx触媒やNOx吸蔵剤を担持したフィルタ、あるいはNOx触媒やNOx吸蔵剤を担持したモノリス担体を適用してもよい。
【0036】
また、本実施の形態では、フィルタ50bに流れ込む排気ガスの酸素濃度を変化させるにあたり、吸蔵還元型NOx触媒50a同様、還元剤供給手段から還元剤たる機関燃料(炭化水素:HC)を排気ガス中に噴射供給することで排気ガスの酸素濃度を変化させている。つまり、本実施の形態では、吸蔵還元型NOx触媒50aおよびフィルタ50bを内蔵した触媒コンバータ50を排気管11に配置することで排気ガス中に含まれる窒素酸化物(NOx)および煤などの微粒子を浄化している。
【0037】
続いて、上記した吸蔵還元型NOx触媒50a、及びフィルタ50bの排気浄化作用を促す還元剤供給装置について説明する。
【0038】
還元剤供給装置は、触媒コンバータ50上流の排気管11に取り付けられた還元剤添加弁21、及び内燃機関1の制御系に設けられる電子制御ユニット22等にて構成されている。
【0039】
還元剤添加弁21は、電気式の開閉弁であり、電子制御ユニット22に準備される還元剤供給プログラムのもと、適切量の還元剤を適宜のタイミングで排気ガス中に噴射供給している。また、還元剤添加弁21は、内燃機関の燃料供給系に接続されており、その燃焼供給系から供給される機関燃料を還元剤として触媒コンバータ50に供給している。
【0040】
また、電子制御ユニット22は、触媒コンバータ50下流に設けられた空燃比センサの出力、およびフィルタ50bの排気上流側および排気下流側に設けられた排気ガス温度センサ24a,24bの出力、さらに機関運転に即して変化する各種機関運転履歴などに基づき還元剤の供給量や供給時期を算出し、その算出した供給量および供給タイミングに基づき、還元剤添加弁21の開閉を制御している。なお、電子制御ユニット22では、その還元剤添加弁21の開弁制御において、一供給過程につき、複数回の供給動作(開弁動作)を実施させることで所定量の還元剤を排気浄化触媒に供給するようにしている。
【0041】
このように本実施の形態では、還元剤供給手段にて還元剤たる機関燃料を排気ガス中に噴射供給し、上記した吸蔵還元型NOx触媒50a、およびフィルタ50bの排気浄化作用を促している。
【0042】
なお、上記触媒コンバータ50の下流に酸化触媒コンバータ(図示せず)を設け、触媒コンバータ50で浄化されずに流れ出た排気ガス中の未燃燃料成分(HC,CO)を浄化してもよい。
【0043】
また、本実施の形態では、上記した還元剤供給装置に絡み、還元剤添加弁21の排気下流に排気絞り弁20を備えている。すなわち、還元剤添加弁21と触媒コンバータ50との間に排気絞り弁20が設けられている。
【0044】
排気絞り弁20は、還元剤添加弁21と触媒コンバータ50との間に設けられるバタフライ弁であり、その開閉制御は、電子制御ユニット22で処理されている。より詳しくは、排気通路内壁面に付着した還元剤を吹き飛ばすのに適した流速が得られる制御量を算出し、排気絞り弁20を最適な開度に制御する。つぎに、排気絞り弁20が閉じ側に制御されたことにより、排気絞り弁20近傍の流速は上昇し、還元剤の添加に伴い排気通路内壁面に付着した還元剤の霧化を促す。また、添加された還元剤が排気通路内壁面に付着することを抑制する。
【0045】
ここで排気絞り弁20の制御量は、排気絞り弁20の開度、排気絞り弁20の閉じ時間、またはその両方としてもよい。排気絞り弁20の開度は、図3に示すようなエンジン回転数と還元剤添加量の積算値と排気絞り弁20の開度との関係を表す二次元マップから設定される。
【0046】
ここで、二次元マップについて説明する。排気通路内壁面に付着する還元剤を吹き飛ばすための流速は、排気絞り弁20の開度を調整することにより制御することができる。つまり、還元剤を吹き飛ばすための流速を速くするには、排気絞り弁20の開度を閉じ側に制御し、流速を遅くするには、排気絞り弁20の開度を開き側に制御する。
【0047】
また、還元剤を吹き飛ばすための流速は、排気通路内に添加された還元剤の積算値と排気絞り弁20の閉弁制御以前における排気通路内の流速に相関がある。つまり、還元剤の添加量の積算値がわずかであれば、還元剤を吹き飛ばすために必要とされる流速は遅くてよく、排気絞り弁20の開度をわずかに閉じ側に制御するか、あるいは全開状態でよい。一方、還元剤の添加量の積算値が大きければ、還元剤を吹き飛ばすために必要とされる流速は速くなり、排気絞り弁20の開度を大きく閉じ側に制御しなければならない。
【0048】
また、エンジン回転数が大きいならば、排気通路を流れる排気流量が多いため、排気通路内の流速は速い。そのため、還元剤を吹き飛ばすのに必要とされる流速を得るには、排気絞り弁20の開度をわずかに閉じ側に制御するか、あるいは全開状態でよい。一方、エンジン回転数が小さいならば、排気通路を流れる流量が少ない。そのため、還元剤を吹き飛ばすのに必要とする流速を得るため、排気絞り弁20の開度を大きく全閉側に制御しなければならない。
【0049】
すなわち、この排気絞り弁20の開度は、図3に示すようなエンジン回転数と還元剤添加量の積算値と排気絞り弁20の開度との二次元マップから設定することができる。なお、この2次元マップは各種予備実験により把握可能である。このような二次元マップは、電子制御ユニット22が備えるROMに予め記憶しておく。
【0050】
また一方で、上記した制御により排気絞り弁20の開度を所定開度に設定した後であっても、排気通路内壁面の流速を一定に保持することができない状況もある。すなわち、排気流量は運転状態の変化によって変動するため、排気絞り弁20を所定開度に若干の補正をする必要が生じる場合がある。その際に差圧センサ23を用いて、排気絞り弁20の上流と下流との間に生じる圧力差を一定に保持するように制御することにより、排気流量の変動に対して適宜に排気絞り弁20の開度を制御することができる。
【0051】
また、排気絞り弁20を一度に急激に閉じ側に制御した場合、排気絞り弁20と内燃機関との間の排気通路内の圧力が高くなりすぎ、トルクショックを招くおそれがある。その際、差圧センサ23を用いることにより、排気絞り弁20の上流と下流との間に生じる差圧を一定維持しすることでトルクショックを抑制しながら、排気絞り弁20を制御できる。
【0052】
続いて、上記した内容をふまえ、排気絞り弁20の制御について図5に示す処理ルーチンを参照して説明する。なお、本実施の形態では、下記処理ルーチンの実行に必要とされる先の電子制御ユニット22、および各種センサ類にて、本発明に係る排気絞り弁制御手段を構成している。
【0053】
まず、電子制御ユニット22では、種々のセンサ類から内燃機関の運転状況を読み込み(ステップ110)、還元剤を添加すべき状況か否かを判定する(ステップ120)。
【0054】
なお、ステップ120では、還元剤を添加すべき状況として、上記した排気浄化作用を促進させる状況の他、排気浄化触媒を昇温させる昇温制御の要求時、また、フィルタ50bのSOx被毒を回復するSOx被毒回復制御の要求時において、還元剤を添加すべき状況として判定している。また、上記した還元剤の添加要求は、ステップ110にて読み込まれる運転状況のうち、例えば、走行距離数、走行時間等が所定条件を満たす時に出力されるものである。
【0055】
また、上記昇温制御とは、排気浄化触媒に還元剤を供給し、その還元剤とフィルタ50bに担持される触媒物質との反応熱によって排気浄化触媒を強制的に昇温させる周知の制御である。また、一方のSOx被毒回復制御は、排気ガス中に含まれる硫黄酸化物(SOx)の吸蔵に起因したフィルタ50bの排気浄化率の低下即ち「SOx被毒」を回復(解消)するための制御であり、SOx被毒回復時には、フィルタ50bを約600℃以上に昇温させた後に還元剤を供給して、SOx被毒の原因となる硫黄酸化物(SOx)の熱分解および放出を促す。
【0056】
続いて、電子制御ユニット22では、ステップ120の判定において、還元剤を添加すべきとの判定結果の成立を受け、排気絞り弁20を閉じ側に制御するか否かを還元剤添加量の積算値に基づき判定する(ステップ130)。
【0057】
つまり、排気通路内壁面に付着した還元剤は、度重なる還元剤の噴射に応じて徐々に増え、やがて液滴となって触媒コンバータ50に流れ込みフィルタ50b等の劣化原因となるが、その付着量は、これまでに添加した還元剤の積算値によって概ね把握できる。このため本実施の形態では、この還元剤添加量の積算値に応じて排気絞り制御の有無を決定する。より詳しくは、還元剤の付着量が許容量に達したか否かの判定基準となる所定の積算値(R)を定め、還元剤添加量の積算値が所定の積算値(R)に達したことを受け、排気絞り制御を実施すべき状況と判定する。なお、判定基準に相当する所定の積算値(R)は、還元剤の付着に相関のある添加弁の形状、噴射圧力等を加味して実施した各種予備実験にて把握可能である。
【0058】
続いて、電子制御ユニット22では、所定の積算値(R)に還元剤の添加量が達したことを受け、排気絞り弁20を閉じ側に制御して排気通路内壁面近傍の流速を上昇させる(ステップ140)。即ち、本ステップ140では、排気絞り弁20を閉じ側に制御することで、排気通路内壁面近傍の流速を上げ、既に付着している還元材の霧化を促進しつつ吹き飛ばす。よって、付着した還元剤が液滴になる以前に排気通路内壁面から離脱する。その後、本処理ルーチンを一旦終了する。
【0059】
一方、ステップ120で、還元剤を添加すべき状況でないと判定したときには、還元剤が添加されないとみなせ、ステップ130を経ることなく本ルーチンを一旦終了する。また、ステップ130で、未だ還元剤の添加量が所定の積算値(R)に達していないときにも、還元剤の付着量が許容量にあるとみなせ、ステップ140を経ることなく本処理ルーチンを一旦終了する。
【0060】
このように本実施の形態に示す排気浄化装置では、還元剤の添加に伴い排気絞り弁20を閉じ側に制御し、排気通路内壁面近傍の流速を強制的に上昇させることで、排気通路内壁面に付着していた還元剤の霧化を促進しつつ吹き飛ばす。よって霧化が促進された還元剤が触媒コンバータ50に流れ込むため、液滴の還元剤の流入に伴う触媒コンバータ50の劣化が防止される。
【0061】
また、還元剤を吹き飛ばす排気絞り制御は、還元剤を添加すべき状況において実施されるため、吹き飛ばされた還元剤は、排気浄化作用の促進等に有効に作用し、もって、還元剤の無駄な消費等を防止できる。
【0062】
また、上記した処理ルーチンは、あくまで本発明の一実施例でありその詳細は、所望に応じて変更可能である。以下、図6から図8を参照して、その変更例について説明する。なお、以下に示すフローチャートにおいて、上記した処理ルーチンと重複する部分については、省略して説明する。
【0063】
まず、実施例1として図6に示す処理ルーチンでは、排気絞り弁20を閉じ側に制御するか否かの判定において、排気ガス温度に基づいて排気絞り弁制御の有無を決定するフローに変更した。つまり、 排気ガス温度が低いときには、排気通路内壁面の温度も低く、添加した還元剤は、排気通路内壁面において急激に冷却され、排気通路内壁面に付着する傾向にあるため、本実施例1では排気ガス温度に関連づけて排気絞り弁20を制御する。
【0064】
ここで、本実施の形態における排気ガス温度は、フィルタ50b上流側に取り付けられた排気ガス温度センサ24aで検出される温度、即ちフィルタ50bに流入する排気ガス温度とする。すなわち、排気通路内壁面における排気ガス温度をフィルタ50bに流入する排気ガス温度として推定する。
【0065】
まず、電子制御ユニット22では、ステップ120の判定において、還元剤を添加すべきとの判定結果の成立を受け、排気絞り弁20を閉じ側に制御するか否かを排気ガス温度に基づき判定する(ステップ230)。すなわち、ステップ230では、噴射した還元剤が排気通路内壁面に付着しやすい状況にあるか否かを判定すべく所定の温度(T)を閾値として、還元剤の付着状況を判定する。なお、判定基準に相当する所定の温度(T)は、還元剤添加量等を加味して実施した各種予備実験にて把握可能である。
【0066】
続いて、電子制御ユニット22では、未だ所定の温度(T)に排気ガス温度が達していないことを受け、還元剤が付着しやすい状況にあるとみなし、排気絞り弁20を閉じ側に制御して排気通路内壁面近傍の流速を上昇させる(ステップ140)。即ち、本ステップ140では、排気絞り弁20を閉じ側に制御することで、排気通路内壁面近傍の流速を上げ、既に付着している還元剤の霧化を促進しつつ吹き飛ばす。よって、付着した還元剤が液滴になる以前に排気通路内壁面から離脱する。
【0067】
また、ステップ230で、排気ガス温度が所定の温度(T)に達したときには、還元剤が付着しにくい状況であるとみなせ、ステップ140を経ることなく本処理ルーチンを一旦終了する。
【0068】
続いて、実施例2として、図7に示す処理ルーチンを参照にして説明する。なお、本実施例は、排気絞り弁20を閉じ側に制御するか否かの判定において、上記した実施例を組み合わせ、さらに、排気絞り制御を実施した後に排気絞り弁20を通常の開度に戻す制御を加えたものである。
【0069】
すなわち、電子制御ユニット22では、ステップ320において還元剤を添加すべきとの判定結果の成立を受け、還元剤の添加量の積算値が所定の積算値(R)に達し(ステップ330)、さらに、排気ガス温度が所定温度(T)に達していない(ステップ340)ことを受けて、排気絞り弁20を閉じ側に制御する。なお、本実施例では、ステップ330で還元剤の積算値に基づく判定の後にステップ340で排気ガス温度に基づいて判定を実施するが、ステップ330とステップ340の順序を入れ替えることも可能である。すなわち、排気ガス温度に基づく判定の後に還元剤の積算値に基づく判定を実施してもよい。
【0070】
続いて、電子制御ユニット22では、排気絞り弁20を閉じ側に制御(ステップ350)した後、閉弁時間が所定時間経過した否かを判定する(ステップ360)。すなわち、ステップ360では、排気通路内壁面に付着している還元剤の吹き飛ばしが十分であるか否かを所定時間を基準として判定する。なお、判定基準に相当する所定時間は、還元剤の付着に相関のある還元剤添加量や排気ガス温度等を加味して実施した各種予備実験にて把握可能である。
【0071】
そして、電子制御ユニット22では、排気絞り弁20の制御後、所定時間経過したことを受け、排気通路内壁面に付着している還元剤の吹き飛ばしが終了したとみなし、排気絞り弁20を通常の開度に戻す(ステップ370)。その後、本処理ルーチンを一旦終了する。
【0072】
また、未だ所定時間経過していないときには、排気通路内壁面に付着している還元剤の吹き飛ばしが不十分であるとみなし、引き続き排気絞り弁20を閉じ側に維持して、排気通路内壁面に付着している還元剤の吹き飛ばしを維持する。
【0073】
続いて、実施例3では、図7に示す実施例2のステップ350の処理に代えて、その時々において最適とされる排気絞り弁20の開度、および/または閉弁時間を算出しつつ、その算出値に応じて排気絞り弁20を閉じ側に制御する処理に変更し、また、排気絞り弁20の制御量が電子制御ユニット22上にて設定した制御量(開度、閉じ時間)に達したか否かを判定する処理を追加した(図8参照)。
【0074】
すなわち、本実施例3では、排気絞り弁20を閉じ側にするだけでなく、その時々に応じた適宜の開度や閉じ時間に変更することができる。
【0075】
以下、図8に示す処理ルーチンの詳細について説明する。
【0076】
まず、実施例2と同様に、電子制御ユニット22では、還元剤の添加量の積算値が、所定の積算値(R)に達し(ステップ330)、排気ガス温度が所定温度(T)に達していない(ステップ340)ことを受け、排気絞り弁20の開度、また閉じ時間を、例えば、図3に示すマップ等を用いて算出しながら、その算出値に併せて排気絞り弁20を制御する(ステップ450)。
【0077】
続いて、電子制御ユニット22では、ステップ460において排気絞り弁20の制御後、その開度や閉じ時間が制御上の算出値(制御値)に達したことを受け、適切な開度や閉じ時間に制御したと見なし、排気絞り弁20を通常の開度に戻して(ステップ370)、本処理ルーチンを一旦終了する。
【0078】
なお、ステップ460で、未だ実際の制御量(開度、閉じ時間)が、制御上の算出値に達していないときには、還元剤の吹き飛ばしが不十分であるとみなし
引き続き、排気絞り弁20の開度変更、及び開じ時間をその時々の算出値に応じて変更する。このように実施例3では、排気絞り弁20を閉じ側にするだけでなく、その時々に応じた最適な開度や閉じ時間に変更する。
【0079】
【発明の効果】
以上のように本発明によれば、排気通路内壁面に対する還元剤の付着を抑制可能な内燃機関の排気浄化装置を提供できる。
【図面の簡単な説明】
【図1】 本実施の形態に係る内燃機関の概略構造図。
【図2】 本実施の形態に係るパティキュレートフィルタの内部構造を示す図。
【図3】 エンジン回転数と還元剤添加量の積算値と排気絞り弁の開度との関係を表す二次元マップ。
【図4】 差圧センサを用いた排気絞り弁制御の概略構成図。
【図5】 本実施の形態に係る排気絞り弁の制御プログラムの処理ルーチンを示すフローチャート。
【図6】 実施例1に係る排気絞り弁の制御プログラムの処理ルーチンを示すフローチャート。
【図7】 実施例2に係る排気絞り弁の制御プログラムの処理ルーチンを示すフローチャート。
【図8】 実施例3に係る排気絞り弁の制御プログラムの処理ルーチンを示すフローチャート。
【符号の説明】
1 内燃機関
11 排気管
20 排気絞り弁
21 還元剤添加弁
22 電子制御ユニット
23 差圧センサ
24a、24b 排気ガス温度センサ
50 触媒コンバータ
50a 吸蔵還元型NOx触媒
50b パティキュレートフィルタ
55 排気ガス流入通路
55a 栓
56 排気ガス流出通路
56a 栓
57 隔壁
58 フィルタ基材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device including an exhaust gas purification catalyst and a reducing agent supply device in an exhaust system of the internal combustion engine.
[0002]
[Prior art]
An example of this type of exhaust purification device is disclosed in Japanese Patent Laid-Open No. 6-200740. This device is provided with a lean NOx catalyst that stores nitrogen oxides (NOx) in an oxygen-excess atmosphere in an exhaust passage of a diesel engine, and this lean NOx catalyst stores nitrogen oxides (NOx) in exhaust gas, When the NOx storage efficiency of the lean NOx catalyst decreases, the flow rate of the exhaust gas to the lean NOx catalyst is decreased, and the liquid NOx catalyst is added in the form of fine particles, thereby adding nitrogen from the lean NOx catalyst. It releases substances (NOx) and reduces and purifies the released nitrogen oxides (NOx). That is, in this apparatus, the supplied reducing agent is burned by the catalytic action of the lean NOx catalyst, consumes oxygen in the exhaust gas, and is absorbed from the lean NOx catalyst by lowering the atmospheric oxygen concentration of the lean NOx catalyst. Nitrogen oxide (NOx) is released and reduced and purified by the reducing agent.
[0003]
In the above-described conventional exhaust purification device, when reducing the atmospheric oxygen concentration of the lean NOx catalyst to release nitrogen oxide (NOx) stored from the lean NOx catalyst for reduction purification, the lean NOx catalyst is consumed with a small amount of reducing agent consumption. In order to efficiently perform reduction purification, an exhaust throttle valve and a reducing agent addition valve are installed in order from the exhaust upstream side in the exhaust pipe upstream of the lean NOx catalyst. After reducing the exhaust gas flow rate, a reducing agent is added to locally reduce the oxygen concentration of the exhaust gas flowing into the lean NOx catalyst with a small amount of reducing agent as much as possible.
[0004]
[Problems to be solved by the invention]
In the conventional exhaust purification apparatus, a reducing agent is supplied to the lean NOx catalyst in order to reduce the atmospheric oxygen concentration of the lean NOx catalyst that is the exhaust purification catalyst and promote the reduction and purification action of the lean NOx catalyst.
[0005]
However, according to the intensive studies by the present inventors, various points to be improved have been found in the addition of the reducing agent to the exhaust purification catalyst described above.
[0006]
First, since the reducing agent adheres to the inner wall of the exhaust passage at the downstream side of the exhaust of the reducing agent addition valve, the appropriate amount of reducing agent necessary for promoting the exhaust purification action is added. The oxygen concentration in the exhaust gas may still show a high value. That is, the substantial addition amount of the reducing agent is reduced, and there is a possibility that the exhaust purification rate is lowered.
[0007]
In addition, if a large amount of reducing agent is added in advance in anticipation of the reducing agent adhering to the inner wall of the exhaust passage, the lower exhaust gas purification rate can be avoided, but the amount of reducing agent consumed can be reduced. Will increase. In particular, when engine fuel (for example, light oil) is added as a reducing agent, fuel consumption is deteriorated.
[0008]
Further, as the number of times the reducing agent is added increases, the reducing agent attached to the inner wall surface of the exhaust passage gradually condenses into droplets. Sometimes, the reducing agent in the droplets flows into the lean NOx catalyst, and the lean NOx. There is a possibility that the temperature of the catalyst is locally raised and the lean NOx catalyst is locally deteriorated.
[0009]
The present invention has been made in consideration of such a technical background, and an object of the present invention is to provide an exhaust purification device for an internal combustion engine that can suppress the attachment of the reducing agent to the inner wall surface of the exhaust passage.
[0010]
[Means for Solving the Problems]
In order to solve the above technical problem, the present invention has the following configuration.
[0011]
The present invention relates to an internal combustion engine comprising: an exhaust purification catalyst disposed in an exhaust passage; and a reducing agent supply means disposed upstream of the exhaust purification catalyst in the exhaust passage and adding a reducing agent into the exhaust passage. An exhaust throttle valve is disposed between the reducing agent addition valve and the exhaust purification catalyst, and further includes an exhaust throttle valve control means for controlling the exhaust throttle valve to the closed side in accordance with the addition of the reducing agent. .
[0012]
In the present invention configured as described above, an exhaust throttle valve is provided between the reducing agent addition valve and the exhaust purification catalyst, and the exhaust throttle valve is controlled to be closed with the addition of the reducing agent. For this reason, the control to the closing side of the exhaust throttle valve locally increases the flow velocity in the vicinity of the inner wall surface of the exhaust passage and promotes atomization of the reducing agent already attached. In addition, adhesion of the reducing agent to the inner wall surface of the exhaust passage is suppressed.
[0013]
In the above, “controlling the exhaust throttle valve to the closed side with the addition of the reducing agent” means that the exhaust gas is exhausted in the situation where the reducing agent is actually added or in which the reducing agent may be added. It is intended to control the throttle valve to the closed side, and it does not matter whether or not the actual reducing agent is added when controlling the exhaust throttle valve. The exhaust purification catalyst is intended to be an exhaust purification catalyst that recovers the exhaust purification action by adding a reducing agent.
[0014]
Further, the exhaust throttle valve control means may control the exhaust throttle valve to the closed side according to the integrated value of the reducing agent addition amount.
[0015]
In this configuration, the exhaust throttle valve is controlled to the closed side when the amount of reducing agent added reaches the integrated value. That is, when the reducing agent adheres to the inner wall surface of the exhaust passage to some extent, the exhaust throttle valve is controlled to promote atomization of the reducing agent attached to the inner wall surface of the exhaust passage. Therefore, it is possible to reduce the frequency of exhaust throttle control that causes fluctuations in engine output.
[0016]
Further, exhaust gas temperature detecting means for measuring or estimating the exhaust gas temperature in the vicinity of the exhaust throttle valve is provided, and the exhaust throttle valve control means controls the exhaust throttle valve to the closed side according to the exhaust gas temperature. Good.
[0017]
In this configuration, the exhaust gas temperature is measured or estimated by the exhaust gas temperature detection means, and the exhaust throttle valve is controlled according to the exhaust gas temperature. That is, the reducing agent is more likely to adhere to the inner wall surface of the exhaust passage as the exhaust gas temperature is lowered. In this configuration, the exhaust throttle valve is controlled to close in such a situation.
[0018]
Further, the exhaust throttle valve control means may be able to change the opening and / or closing time of the exhaust throttle valve according to at least one of the integrated value of the reducing agent addition amount and the exhaust gas temperature.
[0019]
In this configuration, the degree of opening and / or the closing time correlated with the control of the exhaust throttle valve is controlled in accordance with at least one of the integrated value of the reducing agent addition amount or the exhaust gas temperature. Optimum opening and closing time can be obtained.
[0020]
The exhaust throttle valve control means includes a differential pressure sensor for measuring a differential pressure upstream and downstream of the exhaust throttle valve, and controls the exhaust throttle valve so that the differential pressure becomes constant by the differential pressure sensor. Also good.
[0021]
In this configuration, the differential pressure generated by the exhaust throttle valve closing control is detected by the differential pressure sensor, and the differential pressure is fed back to the exhaust throttle valve closing control. That is, the differential pressure generated between the upstream and downstream sides of the exhaust throttle valve is kept constant, and fluctuations in engine output due to a sudden change in the exhaust gas flow rate during control of the exhaust throttle valve are suppressed.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described. Note that the structure of the exhaust purification catalyst shown below is merely an embodiment of the present invention, and details thereof can be changed according to various specifications of the internal combustion engine.
[0023]
First, in the present embodiment, an exhaust gas purification apparatus is configured by including a catalytic converter 50 and a reducing agent supply device in an exhaust system of a lean combustion internal combustion engine 1 typified by a diesel engine or the like.
[0024]
The catalytic converter 50 includes a casing and various exhaust purification catalysts 50a and 50b provided in the casing, and has an exhaust purification action of purifying harmful substances in the exhaust gas discharged from the engine body 1. More specifically, a casing is disposed downstream of the turbine housing of the internal combustion engine 1, and an exhaust purification catalyst is disposed in the casing in the order of the NOx storage reduction catalyst 50a and the particulate filter (hereinafter simply referred to as a filter) 50b from the exhaust upstream side. Is built-in.
[0025]
The NOx storage reduction catalyst 50a is a typical example of a lean NOx catalyst provided in an exhaust system of a lean combustion internal combustion engine, and has an exhaust purification action that mainly purifies nitrogen oxides (NOx) in exhaust gas. .
[0026]
More specifically, when the oxygen concentration of the exhaust gas is high, nitrogen oxide (NOx) in the exhaust gas is occluded, and when the oxygen concentration in the exhaust gas is low, that is, the exhaust gas empty flowing into the NOx storage reduction catalyst is exhausted. By reacting the nitrogen oxides (NOx) stored when the fuel ratio is low with unburned fuel components (CO, HC) contained in the exhaust gas, harmless nitrogen (N 2 ) Has an exhaust purification ability to purify.
[0027]
Moreover, the structure is, for example, alumina (Al 2 O Three ) As a carrier, and an alkali metal such as potassium (K), sodium (Na), lithium (Li), and cesium (Cs), or an alkaline earth such as barium (Ba) and calcium (Ca), At least one selected from rare earths such as lanthanum (La) and yttrium (Y) and a noble metal such as platinum (Pt) are supported.
[0028]
In addition, when supplementary explanation of the above-described exhaust purification action is performed, in the lean combustion internal combustion engine 1, combustion is usually performed in an oxygen-excess atmosphere. For this reason, the oxygen concentration of the exhaust gas discharged with combustion hardly decreases until the above reduction / release action is promoted, and unburned fuel components (CO, HC) contained in the exhaust gas are also reduced. Very few.
[0029]
Therefore, in the present embodiment, engine fuel (HC), which is a reducing agent, is injected and supplied into exhaust gas to promote a decrease in oxygen concentration, and hydrocarbon (HC), which is an unburned fuel component, is introduced into exhaust gas. It is replenished to promote the exhaust purification action. The supply of the reducing agent at the time of purification is performed by a reducing agent supply device described later. In the present embodiment, the reducing agent supply means according to the present invention is configured by this reducing agent addition device. The description of the reducing agent supply device will be made later. The catalytic converter 50 can be applied to a structure without the NOx storage reduction catalyst, that is, only the filter 50b.
[0030]
One filter 50b is a type of exhaust purification catalyst that oxidizes and burns particulates such as soot contained in exhaust gas by the action of a catalytic substance. More specifically, a filter base material 58 carrying an activated oxygen release agent as a catalyst material is provided, and the particulates collected on the filter base material 58 are purified (removed) by oxidative combustion using the oxidizing power of activated oxygen. ) Exhaust purification action.
[0031]
As shown in FIG. 2, the filter substrate 58 has a honeycomb shape formed of a porous material such as cordierite, and includes a plurality of flow paths 55 and 56 extending in parallel with each other. More specifically, an exhaust gas inflow passage 55 whose downstream end is closed by a plug 55a and an exhaust gas outflow passage 56 whose upstream end is closed by a plug 56a are provided, and each exhaust gas inflow passage 55 and exhaust gas are provided. The outflow passages 56 are arranged side by side in the vertical direction and the horizontal direction in the filter base material 58 via thin-walled partitions 57.
[0032]
In addition, the surface of the wall 57 and the internal pores have alumina (Al 2 O Three ) And the like, and a noble metal catalyst such as platinum (Pt) is present on the support, and if there is excess oxygen in the surroundings, the excess oxygen is occluded, and conversely the oxygen concentration decreases. An active oxygen release agent that releases the stored oxygen in the form of active oxygen is supported.
[0033]
In addition, as active oxygen release agents, potassium (K), sodium (Na), lithium (Li), cesium (Cs), alkali metals such as rubidium (Rb), barium (Ba), calcium (Ca), strontium When using at least one selected from alkaline earth metals such as (Sr), rare earths such as lanthanum (La) and yttrium (Y), and transition metals such as cerium (Ce) and tin (Sn) Good.
[0034]
Preferably, the alkali metal or alkaline earth metal has a higher ionization tendency than calcium (Ca), that is, potassium (K), lithium (Li), cesium (Cs), rubidium (Rb), barium (Ba), strontium. (Sr) or the like may be used.
[0035]
In the filter 50b configured in this way, first, exhaust gas flows in the order of the exhaust gas inflow passage 55 → the partition wall 57 → the exhaust gas outflow passage 56 (arrow a in FIG. 2), and particulates such as soot contained in the exhaust gas are removed. In the process of passing through the partition wall 57, it is collected on the surface and inside of the partition wall 57. The fine particles collected in the partition wall 57 are oxidized by the activated oxygen that increases by changing the oxygen concentration of the exhaust gas flowing into the partition wall 57 (filter base material) a plurality of times, and finally emits a bright flame. It burns out without being removed from the filter base material 58. In the present embodiment, instead of the particulate filter 50b carrying an active oxygen release agent, a filter carrying a NOx catalyst or NOx storage agent, or a monolith carrier carrying a NOx catalyst or NOx storage agent may be applied. Good.
[0036]
Further, in the present embodiment, when changing the oxygen concentration of the exhaust gas flowing into the filter 50b, the engine fuel (hydrocarbon: HC) as the reducing agent is supplied from the reducing agent supply means to the exhaust gas as in the NOx storage reduction catalyst 50a. The oxygen concentration of the exhaust gas is changed by injecting and supplying to the exhaust gas. In other words, in the present embodiment, the NOx storage reduction catalyst 50a and the catalytic converter 50 including the filter 50b are arranged in the exhaust pipe 11 to thereby remove particulates such as nitrogen oxides (NOx) and soot contained in the exhaust gas. Purifying.
[0037]
Next, a reducing agent supply device that promotes the exhaust purification action of the above-described storage reduction type NOx catalyst 50a and filter 50b will be described.
[0038]
The reducing agent supply device includes a reducing agent addition valve 21 attached to the exhaust pipe 11 upstream of the catalytic converter 50, an electronic control unit 22 provided in the control system of the internal combustion engine 1, and the like.
[0039]
The reducing agent addition valve 21 is an electrical on-off valve, and injects and supplies an appropriate amount of reducing agent into the exhaust gas at an appropriate timing under a reducing agent supply program prepared in the electronic control unit 22. . The reducing agent addition valve 21 is connected to a fuel supply system of the internal combustion engine, and supplies engine fuel supplied from the combustion supply system to the catalytic converter 50 as a reducing agent.
[0040]
Further, the electronic control unit 22 outputs the air-fuel ratio sensor provided downstream of the catalytic converter 50, the outputs of exhaust gas temperature sensors 24a and 24b provided upstream and downstream of the exhaust of the filter 50b, and engine operation. The supply amount and supply timing of the reducing agent are calculated on the basis of various engine operation histories that change in accordance with the engine operation history, and the opening and closing of the reducing agent addition valve 21 is controlled based on the calculated supply amount and supply timing. In the electronic control unit 22, in the valve opening control of the reducing agent addition valve 21, a predetermined amount of reducing agent is supplied to the exhaust purification catalyst by performing a plurality of supply operations (valve opening operations) per one supply process. I am trying to supply.
[0041]
As described above, in the present embodiment, the reducing agent supply means injects and supplies engine fuel as a reducing agent into the exhaust gas, and promotes the exhaust purification action of the above-described storage reduction type NOx catalyst 50a and filter 50b.
[0042]
An oxidation catalytic converter (not shown) may be provided downstream of the catalytic converter 50 to purify unburned fuel components (HC, CO) in the exhaust gas that has flowed out without being purified by the catalytic converter 50.
[0043]
In the present embodiment, an exhaust throttle valve 20 is provided downstream of the reducing agent addition valve 21 in connection with the reducing agent supply device described above. That is, the exhaust throttle valve 20 is provided between the reducing agent addition valve 21 and the catalytic converter 50.
[0044]
The exhaust throttle valve 20 is a butterfly valve provided between the reducing agent addition valve 21 and the catalytic converter 50, and its open / close control is processed by the electronic control unit 22. More specifically, a control amount that provides a flow velocity suitable for blowing off the reducing agent attached to the inner wall surface of the exhaust passage is calculated, and the exhaust throttle valve 20 is controlled to an optimum opening. Next, when the exhaust throttle valve 20 is controlled to the closed side, the flow velocity in the vicinity of the exhaust throttle valve 20 is increased, and the atomization of the reducing agent attached to the inner wall surface of the exhaust passage is promoted with the addition of the reducing agent. Further, the added reducing agent is prevented from adhering to the inner wall surface of the exhaust passage.
[0045]
Here, the control amount of the exhaust throttle valve 20 may be the opening degree of the exhaust throttle valve 20, the closing time of the exhaust throttle valve 20, or both. The opening degree of the exhaust throttle valve 20 is set from a two-dimensional map showing the relationship between the engine speed, the integrated value of the reducing agent addition amount, and the opening degree of the exhaust throttle valve 20 as shown in FIG.
[0046]
Here, the two-dimensional map will be described. The flow rate for blowing off the reducing agent attached to the inner wall surface of the exhaust passage can be controlled by adjusting the opening of the exhaust throttle valve 20. That is, in order to increase the flow rate for blowing the reducing agent, the opening degree of the exhaust throttle valve 20 is controlled to the closed side, and in order to decrease the flow rate, the opening degree of the exhaust throttle valve 20 is controlled to the open side.
[0047]
Further, the flow rate for blowing off the reducing agent has a correlation with the integrated value of the reducing agent added in the exhaust passage and the flow velocity in the exhaust passage before the exhaust throttle valve 20 is closed. That is, if the integrated value of the reducing agent addition amount is small, the flow rate required to blow off the reducing agent may be slow, and the opening of the exhaust throttle valve 20 is controlled slightly to the closed side, or It can be fully open. On the other hand, if the integrated value of the reducing agent addition amount is large, the flow rate required to blow off the reducing agent increases, and the opening degree of the exhaust throttle valve 20 must be largely controlled to the closed side.
[0048]
If the engine speed is high, the flow rate in the exhaust passage is fast because the exhaust flow rate through the exhaust passage is large. Therefore, in order to obtain a flow rate required to blow off the reducing agent, the opening degree of the exhaust throttle valve 20 may be controlled slightly to the closed side, or may be fully opened. On the other hand, if the engine speed is small, the flow rate through the exhaust passage is small. Therefore, in order to obtain a flow rate necessary to blow off the reducing agent, the opening degree of the exhaust throttle valve 20 must be largely controlled to the fully closed side.
[0049]
That is, the opening of the exhaust throttle valve 20 can be set from a two-dimensional map of the engine speed, the integrated value of the reducing agent addition amount, and the opening of the exhaust throttle valve 20 as shown in FIG. This two-dimensional map can be grasped by various preliminary experiments. Such a two-dimensional map is stored in advance in a ROM provided in the electronic control unit 22.
[0050]
On the other hand, even after the opening degree of the exhaust throttle valve 20 is set to a predetermined opening degree by the above-described control, there is a situation where the flow velocity of the inner wall surface of the exhaust passage cannot be kept constant. That is, since the exhaust flow rate varies depending on changes in the operating state, it may be necessary to slightly correct the exhaust throttle valve 20 to a predetermined opening degree. At that time, the differential pressure sensor 23 is used to control the pressure difference generated between the upstream and downstream of the exhaust throttle valve 20 to be constant, thereby appropriately adjusting the exhaust throttle valve with respect to fluctuations in the exhaust flow rate. The opening degree of 20 can be controlled.
[0051]
Further, when the exhaust throttle valve 20 is suddenly controlled to close at once, the pressure in the exhaust passage between the exhaust throttle valve 20 and the internal combustion engine becomes too high, which may cause a torque shock. At that time, by using the differential pressure sensor 23, the exhaust throttle valve 20 can be controlled while suppressing the torque shock by maintaining a constant differential pressure generated between the upstream and downstream of the exhaust throttle valve 20.
[0052]
Subsequently, the control of the exhaust throttle valve 20 will be described with reference to the processing routine shown in FIG. In the present embodiment, the exhaust throttle valve control means according to the present invention is constituted by the electronic control unit 22 and various sensors required for executing the following processing routine.
[0053]
First, the electronic control unit 22 reads the operating status of the internal combustion engine from various sensors (step 110), and determines whether or not the reducing agent should be added (step 120).
[0054]
In step 120, as a situation in which the reducing agent should be added, in addition to the situation in which the exhaust purification action is promoted, the temperature increase control for raising the temperature of the exhaust purification catalyst is requested, and the SOx poisoning of the filter 50b is performed. When the recovery SOx poisoning recovery control is requested, it is determined that the reducing agent should be added. In addition, the above-described reducing agent addition request is output when, for example, the number of travel distances, travel time, and the like satisfy the predetermined conditions among the driving conditions read in Step 110.
[0055]
The temperature increase control is a well-known control in which a reducing agent is supplied to the exhaust purification catalyst and the exhaust purification catalyst is forcibly heated by the reaction heat between the reducing agent and the catalyst material supported on the filter 50b. is there. On the other hand, the SOx poisoning recovery control is for recovering (resolving) the decrease in the exhaust gas purification rate of the filter 50b caused by the occlusion of sulfur oxide (SOx) contained in the exhaust gas, that is, "SOx poisoning". This is control, and at the time of SOx poisoning recovery, the reducing agent is supplied after raising the temperature of the filter 50b to about 600 ° C. or more to promote thermal decomposition and release of sulfur oxide (SOx) that causes SOx poisoning. .
[0056]
Subsequently, in the determination of step 120, the electronic control unit 22 determines whether or not the exhaust throttle valve 20 is controlled to the closed side in response to the determination result that the reducing agent should be added. A determination is made based on the value (step 130).
[0057]
That is, the reducing agent adhering to the inner wall surface of the exhaust passage gradually increases in response to repeated injections of the reducing agent and eventually flows into the catalytic converter 50 as a droplet, causing deterioration of the filter 50b and the like. Can generally be grasped by the integrated value of the reducing agent added so far. Therefore, in the present embodiment, the presence or absence of exhaust throttle control is determined according to the integrated value of the reducing agent addition amount. More specifically, a predetermined integrated value (R) serving as a criterion for determining whether or not the amount of the reducing agent attached has reached an allowable amount is determined, and the integrated value of the reducing agent addition amount reaches the predetermined integrated value (R). Accordingly, it is determined that the exhaust throttle control should be performed. Note that the predetermined integrated value (R) corresponding to the determination criterion can be grasped by various preliminary experiments conducted in consideration of the shape of the addition valve, the injection pressure, and the like that are correlated with the attachment of the reducing agent.
[0058]
Subsequently, the electronic control unit 22 increases the flow velocity in the vicinity of the inner wall surface of the exhaust passage by controlling the exhaust throttle valve 20 to the closed side in response to the addition amount of the reducing agent reaching the predetermined integrated value (R). (Step 140). That is, in this step 140, the exhaust throttle valve 20 is controlled to the closed side, thereby increasing the flow velocity in the vicinity of the inner wall surface of the exhaust passage and blowing off while promoting atomization of the reducing material already attached. Therefore, the adhering reducing agent separates from the inner wall surface of the exhaust passage before becoming droplets. Thereafter, this processing routine is temporarily terminated.
[0059]
On the other hand, when it is determined in step 120 that the reducing agent should not be added, it can be regarded that the reducing agent is not added, and this routine is temporarily terminated without passing through step 130. Further, even when the amount of reducing agent added has not yet reached the predetermined integrated value (R) at step 130, it can be considered that the amount of reducing agent adhering is within an allowable amount, and this processing routine is performed without passing through step 140. Is temporarily terminated.
[0060]
As described above, in the exhaust gas purification apparatus shown in the present embodiment, the exhaust throttle valve 20 is controlled to the closed side in accordance with the addition of the reducing agent, and the flow velocity in the vicinity of the inner wall surface of the exhaust passage is forcibly increased. Blow away while promoting atomization of the reducing agent attached to the wall. Therefore, since the reducing agent whose atomization is promoted flows into the catalytic converter 50, the catalytic converter 50 is prevented from being deteriorated due to the flow of the reducing agent in the droplets.
[0061]
Further, since the exhaust throttling control for blowing off the reducing agent is performed in a situation where the reducing agent is to be added, the blowing-off reducing agent effectively acts for promoting the exhaust gas purification action, etc. Consumption can be prevented.
[0062]
The processing routine described above is merely an embodiment of the present invention, and details thereof can be changed as desired. Hereinafter, the modified example will be described with reference to FIGS. Note that, in the flowchart shown below, the description overlapping with the above-described processing routine will be omitted.
[0063]
First, in the processing routine shown in FIG. 6 as Embodiment 1, in the determination of whether or not to control the exhaust throttle valve 20 to the closed side, the flow is changed to a flow for determining whether exhaust throttle valve control is performed based on the exhaust gas temperature. . That is, when the exhaust gas temperature is low, the temperature of the inner wall surface of the exhaust passage is also low, and the added reducing agent is rapidly cooled on the inner wall surface of the exhaust passage and tends to adhere to the inner wall surface of the exhaust passage. Then, the exhaust throttle valve 20 is controlled in association with the exhaust gas temperature.
[0064]
Here, the exhaust gas temperature in the present embodiment is the temperature detected by the exhaust gas temperature sensor 24a attached upstream of the filter 50b, that is, the exhaust gas temperature flowing into the filter 50b. That is, the exhaust gas temperature on the inner wall surface of the exhaust passage is estimated as the exhaust gas temperature flowing into the filter 50b.
[0065]
First, the electronic control unit 22 determines whether or not the exhaust throttle valve 20 is controlled to be closed based on the exhaust gas temperature in response to the determination that the reducing agent should be added in the determination of step 120. (Step 230). That is, in step 230, the state of attachment of the reducing agent is determined using a predetermined temperature (T) as a threshold value to determine whether or not the injected reducing agent is likely to adhere to the inner wall surface of the exhaust passage. Note that the predetermined temperature (T) corresponding to the determination criterion can be grasped by various preliminary experiments conducted in consideration of the reducing agent addition amount and the like.
[0066]
Subsequently, in response to the fact that the exhaust gas temperature has not yet reached the predetermined temperature (T), the electronic control unit 22 considers that the reducing agent is likely to adhere, and controls the exhaust throttle valve 20 to the closed side. Thus, the flow velocity in the vicinity of the inner wall surface of the exhaust passage is increased (step 140). That is, in this step 140, the exhaust throttle valve 20 is controlled to the closed side, thereby increasing the flow velocity in the vicinity of the inner wall surface of the exhaust passage and blowing it off while promoting atomization of the already attached reducing agent. Therefore, the adhering reducing agent separates from the inner wall surface of the exhaust passage before becoming droplets.
[0067]
In step 230, when the exhaust gas temperature reaches a predetermined temperature (T), it can be considered that the reducing agent is difficult to adhere, and the processing routine is temporarily terminated without passing through step 140.
[0068]
Next, the second embodiment will be described with reference to the processing routine shown in FIG. In the present embodiment, in determining whether or not the exhaust throttle valve 20 is controlled to be closed, the above-described embodiments are combined, and after the exhaust throttle control is performed, the exhaust throttle valve 20 is set to the normal opening degree. The control to return is added.
[0069]
That is, the electronic control unit 22 receives the determination result that the reducing agent should be added in step 320, the integrated value of the reducing agent addition amount reaches a predetermined integrated value (R) (step 330), and In response to the exhaust gas temperature not reaching the predetermined temperature (T) (step 340), the exhaust throttle valve 20 is controlled to the closed side. In this embodiment, after the determination based on the integrated value of the reducing agent in Step 330, the determination is performed based on the exhaust gas temperature in Step 340. However, the order of Step 330 and Step 340 can be switched. That is, the determination based on the integrated value of the reducing agent may be performed after the determination based on the exhaust gas temperature.
[0070]
Subsequently, the electronic control unit 22 controls the exhaust throttle valve 20 to the closed side (step 350), and then determines whether or not a predetermined time has elapsed (step 360). That is, in step 360, it is determined based on a predetermined time whether or not the reducing agent attached to the inner wall surface of the exhaust passage is sufficiently blown off. Note that the predetermined time corresponding to the determination criterion can be grasped by various preliminary experiments conducted in consideration of the reducing agent addition amount, the exhaust gas temperature, and the like that are correlated with the attachment of the reducing agent.
[0071]
The electronic control unit 22 considers that the blowing of the reducing agent adhering to the inner wall of the exhaust passage is completed after receiving a lapse of a predetermined time after the control of the exhaust throttle valve 20, and sets the exhaust throttle valve 20 to a normal state. The opening is returned (step 370). Thereafter, this processing routine is temporarily terminated.
[0072]
Further, when the predetermined time has not yet elapsed, it is considered that the reducing agent attached to the inner wall surface of the exhaust passage is insufficiently blown, and the exhaust throttle valve 20 is continuously maintained on the closed side so that the inner wall surface of the exhaust passage is closed. Maintain the blowing off of the reducing agent attached.
[0073]
Subsequently, in the third embodiment, instead of the process of step 350 of the second embodiment shown in FIG. 7, while calculating the opening degree of the exhaust throttle valve 20 and / or the valve closing time that is optimal at that time, In accordance with the calculated value, the processing is changed to a process for controlling the exhaust throttle valve 20 to the closing side, and the control amount of the exhaust throttle valve 20 is set to the control amount (opening, closing time) set on the electronic control unit 22. A process for determining whether or not it has been reached has been added (see FIG. 8).
[0074]
That is, in the third embodiment, the exhaust throttle valve 20 can be changed not only to the closing side but also to an appropriate opening degree and closing time according to the time.
[0075]
Details of the processing routine shown in FIG. 8 will be described below.
[0076]
First, similarly to the second embodiment, in the electronic control unit 22, the integrated value of the reducing agent addition amount reaches a predetermined integrated value (R) (step 330), and the exhaust gas temperature reaches a predetermined temperature (T). (Step 340), the exhaust throttle valve 20 is controlled in accordance with the calculated value while calculating the opening and closing time of the exhaust throttle valve 20 using, for example, the map shown in FIG. (Step 450).
[0077]
Subsequently, in the electronic control unit 22, after the exhaust throttle valve 20 is controlled in step 460, an appropriate opening degree or closing time is received in response to the fact that the opening degree or closing time has reached a calculated value (control value) for control. Therefore, the exhaust throttle valve 20 is returned to the normal opening degree (step 370), and this processing routine is temporarily ended.
[0078]
In step 460, when the actual control amount (opening, closing time) has not yet reached the control value, it is considered that the reducing agent is not sufficiently blown.
Subsequently, the opening degree change and opening time of the exhaust throttle valve 20 are changed according to the calculated value at that time. As described above, in the third embodiment, not only the exhaust throttle valve 20 is set to the closing side, but also the optimum opening degree and closing time according to the time are changed.
[0079]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an exhaust gas purification apparatus for an internal combustion engine that can suppress the adhesion of the reducing agent to the inner wall surface of the exhaust passage.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of an internal combustion engine according to an embodiment.
FIG. 2 is a diagram showing an internal structure of a particulate filter according to the present embodiment.
FIG. 3 is a two-dimensional map showing the relationship between the engine speed, the integrated value of the reducing agent addition amount, and the exhaust throttle valve opening.
FIG. 4 is a schematic configuration diagram of exhaust throttle valve control using a differential pressure sensor.
FIG. 5 is a flowchart showing a processing routine of an exhaust throttle valve control program according to the present embodiment.
6 is a flowchart showing a processing routine of an exhaust throttle valve control program according to Embodiment 1. FIG.
FIG. 7 is a flowchart showing a processing routine of an exhaust throttle valve control program according to the second embodiment.
FIG. 8 is a flowchart illustrating a processing routine of an exhaust throttle valve control program according to a third embodiment.
[Explanation of symbols]
1 Internal combustion engine
11 Exhaust pipe
20 Exhaust throttle valve
21 Reducing agent addition valve
22 Electronic control unit
23 Differential pressure sensor
24a, 24b Exhaust gas temperature sensor
50 catalytic converter
50a NOx storage reduction catalyst
50b Particulate filter
55 Exhaust gas inflow passage
55a stopper
56 Exhaust gas outflow passage
56a stopper
57 Bulkhead
58 Filter base material

Claims (5)

排気通路に配置された排気浄化触媒と、前記排気通路の前記排気浄化触媒より上流に配置され、前記排気通路内に還元剤を添加する還元剤供給手段とを備える内燃機関において、
前記還元剤供給手段と前記排気浄化触媒との間に排気絞り弁を配置すると共に、還元剤の添加に伴い前記排気絞り弁を閉じ側に制御する排気絞り弁制御手段を備えることを特徴とする内燃機関の排気浄化装置。
In an internal combustion engine comprising: an exhaust purification catalyst disposed in an exhaust passage; and a reducing agent supply means disposed upstream of the exhaust purification catalyst in the exhaust passage and adding a reducing agent into the exhaust passage.
An exhaust throttle valve is disposed between the reducing agent supply means and the exhaust purification catalyst, and further includes an exhaust throttle valve control means for controlling the exhaust throttle valve to the closed side in accordance with the addition of the reducing agent. An exhaust purification device for an internal combustion engine.
前記排気絞り弁制御手段は、還元剤添加量の積算値に応じて前記排気絞り弁を閉じ側に制御することを特徴とする請求項1に記載の内燃機関の排気浄化装置。The exhaust purification device for an internal combustion engine according to claim 1, wherein the exhaust throttle valve control means controls the exhaust throttle valve to the closed side in accordance with an integrated value of the reducing agent addition amount. 前記排気絞り弁付近の排気ガス温度を測定または推定する排気ガス温度検出手段を備え、
前記排気絞り弁制御手段は、前記排気ガス温度に応じて前記排気絞り弁を閉じ側に制御することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
Exhaust gas temperature detection means for measuring or estimating the exhaust gas temperature near the exhaust throttle valve,
2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust throttle valve control unit controls the exhaust throttle valve to a closed side in accordance with the exhaust gas temperature.
前記排気絞り弁制御手段は、前記還元剤添加量の積算値または排気ガス温度の少なくともいずれか一方に応じて、前記排気絞り弁の開度および/または閉じ時間を変更できることを特徴とする請求項1に記載の内燃機関の排気浄化装置。The exhaust throttle valve control means can change the opening and / or closing time of the exhaust throttle valve in accordance with at least one of the integrated value of the reducing agent addition amount and the exhaust gas temperature. 2. An exhaust emission control device for an internal combustion engine according to 1. 前記排気絞り弁制御手段は前記排気絞り弁の上流と下流の差圧を測定する差圧センサを備え、前記差圧センサにより前記差圧が一定になるように前記排気絞り弁を制御することを特徴とする請求項1から4の何れかに記載の内燃機関の排気浄化装置。The exhaust throttle valve control means includes a differential pressure sensor that measures a differential pressure upstream and downstream of the exhaust throttle valve, and controls the exhaust throttle valve so that the differential pressure becomes constant by the differential pressure sensor. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 4, wherein the exhaust gas purification device is an internal combustion engine.
JP2002072674A 2002-03-15 2002-03-15 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3849553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002072674A JP3849553B2 (en) 2002-03-15 2002-03-15 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002072674A JP3849553B2 (en) 2002-03-15 2002-03-15 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003269147A JP2003269147A (en) 2003-09-25
JP3849553B2 true JP3849553B2 (en) 2006-11-22

Family

ID=29202607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002072674A Expired - Fee Related JP3849553B2 (en) 2002-03-15 2002-03-15 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3849553B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233906A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4513785B2 (en) 2006-06-21 2010-07-28 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4304527B2 (en) 2006-07-03 2009-07-29 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4748396B2 (en) * 2006-12-04 2011-08-17 トヨタ自動車株式会社 Exhaust throttle valve failure diagnosis device for internal combustion engine
JP4986915B2 (en) * 2008-04-16 2012-07-25 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP4986973B2 (en) * 2008-10-23 2012-07-25 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP2010150941A (en) * 2008-12-24 2010-07-08 Ud Trucks Corp Exhaust emission control device
JP5846381B2 (en) * 2012-05-18 2016-01-20 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
JP2016173092A (en) 2015-03-18 2016-09-29 いすゞ自動車株式会社 Exhaust emission control system
JP6547347B2 (en) * 2015-03-18 2019-07-24 いすゞ自動車株式会社 Exhaust purification system
JP7169106B2 (en) * 2018-07-19 2022-11-10 株式会社Subaru Exhaust gas purification device for vehicles

Also Published As

Publication number Publication date
JP2003269147A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
JP3861746B2 (en) Exhaust gas purification device for internal combustion engine
EP1793099B1 (en) Method of exhaust gas purification and exhaust gas purification system
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
US8356470B2 (en) Method of controlling NOx purification system and NOx purification system
JP3873999B2 (en) Induction structure and exhaust gas purification device
JP2006316757A (en) Exhaust emission control method and exhaust emission control system
JP2004239218A (en) Exhaust gas purging system of internal combustion engine
JP3849553B2 (en) Exhaust gas purification device for internal combustion engine
JP2007255342A (en) METHOD OF CONTROLLING NOx EMISSION CONTROL SYSTEM AND NOx EMISSION CONTROL SYSTEM
JP2018053882A (en) Exhaust emission control system for internal combustion engine
JP2003269146A (en) Exhaust emission control device for internal combustion engine
KR20020008745A (en) System for purifying an exhaust gas of internal combustion engine
JP4567968B2 (en) Exhaust gas purification device and exhaust gas purification method
WO2013121520A1 (en) Exhaust purification device for internal combustion engine
JP2009174445A (en) Exhaust emission control device for internal combustion engine
JP3571660B2 (en) Reducing agent supply device for internal combustion engine
JP4001019B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP3861733B2 (en) Exhaust gas purification device for internal combustion engine
JP2006233874A (en) Exhaust emission control device for internal combustion engine
JP2004036405A (en) Exhaust emission control device
JP4626439B2 (en) Exhaust gas purification device for internal combustion engine
JP2007009810A (en) METHOD FOR CONTROLLING SULFUR PURGE OF NOx ELIMINATION SYSTEM AND NOx ELIMINATION SYSTEM
JP2007127069A (en) Exhaust emission control device
JP4175031B2 (en) Exhaust gas purification device for internal combustion engine
JP2003206793A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R151 Written notification of patent or utility model registration

Ref document number: 3849553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees