JP2003269147A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2003269147A
JP2003269147A JP2002072674A JP2002072674A JP2003269147A JP 2003269147 A JP2003269147 A JP 2003269147A JP 2002072674 A JP2002072674 A JP 2002072674A JP 2002072674 A JP2002072674 A JP 2002072674A JP 2003269147 A JP2003269147 A JP 2003269147A
Authority
JP
Japan
Prior art keywords
exhaust
throttle valve
reducing agent
exhaust gas
exhaust throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002072674A
Other languages
Japanese (ja)
Other versions
JP3849553B2 (en
Inventor
Shinji Kamoshita
伸治 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002072674A priority Critical patent/JP3849553B2/en
Publication of JP2003269147A publication Critical patent/JP2003269147A/en
Application granted granted Critical
Publication of JP3849553B2 publication Critical patent/JP3849553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of restraining adhesion of a reducer to a wall surface in an exhaust passage. <P>SOLUTION: This exhaust emission control device is characterized by disposing an exhaust throttle valve 20 between a reducer addition valve 21 and a catalyst converter 50, and by comprising an electronic control unit 22 for controlling the throttle valve 20 to the closing side along with the addition of the reducer. By controlling the throttle valve 20 to the closing side along with the addition of the reducer, the flow velocity in the vicinity of the wall surface in the exhaust passage is increased to blow off the adhering reducer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気浄
化装置に関し、より詳細には、内燃機関の排気系に排気
浄化触媒および還元剤供給装置を備える排気浄化装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device provided with an exhaust gas purification catalyst and a reducing agent supply device in an exhaust system of the internal combustion engine.

【0002】[0002]

【従来の技術】この種類の排気浄化装置としては、例え
ば特開平6−200740号公報に開示されたものがあ
る。この装置は、ディーゼル機関の排気通路に、酸素過
剰雰囲気下で窒素酸化物(NOx)を吸蔵するリーンN
Ox触媒を備え、このリーンNOx触媒で排気ガス中の
窒素酸化物(NOx)を吸蔵し、リーンNOx触媒の窒
素酸化物(NOx)の吸蔵効率が低下した場合にリーン
NOx触媒への排気ガスの流量を減少させ、液状の還元
剤を微粒子化して添加することにより、リーンNOx触
媒から窒素酸化物(NOx)を放出させるとともに放出
された窒素酸化物(NOx)を還元浄化するものであ
る。即ち、この装置では、供給された還元剤はリーンN
Ox触媒の触媒作用により燃焼して排気ガス中の酸素を
消費し、リーンNOx触媒の雰囲気酸素濃度を低下させ
ることにより、リーンNOx触媒から吸蔵された窒素酸
化物(NOx)が放出されて還元剤により還元浄化され
る。
2. Description of the Related Art As an exhaust emission control device of this type, there is one disclosed in, for example, Japanese Patent Application Laid-Open No. 6-200740. This device is a lean N that stores nitrogen oxides (NOx) in an exhaust passage of a diesel engine under an oxygen excess atmosphere.
The lean NOx catalyst is equipped with an Ox catalyst, and the lean NOx catalyst occludes nitrogen oxides (NOx) in the exhaust gas, and when the lean NOx catalyst's occluding efficiency of nitrogen oxides (NOx) decreases, the exhaust gas to the lean NOx catalyst is reduced. By reducing the flow rate and adding the reducing agent in liquid form into fine particles, nitrogen oxides (NOx) are released from the lean NOx catalyst and the released nitrogen oxides (NOx) are reduced and purified. That is, in this device, the supplied reducing agent is lean N
By burning due to the catalytic action of the Ox catalyst to consume oxygen in the exhaust gas and lowering the atmospheric oxygen concentration of the lean NOx catalyst, the nitrogen oxides (NOx) occluded from the lean NOx catalyst are released to reduce the reducing agent. It is reduced and purified by.

【0003】上記従来の排気浄化装置においては、リー
ンNOx触媒の雰囲気酸素濃度を下げてリーンNOx触
媒から吸蔵した窒素酸化物(NOx)を放出させ還元浄
化する時に、少ない還元剤の消費量でリーンNOx触媒
の還元浄化を効率よく行うために、リーンNOx触媒よ
りも上流の排気管において排気上流側から順に排気絞り
弁、還元剤添加弁を設置し、還元剤の添加時には、この
排気絞り弁の開度を減少させて排気ガスの流量を減少さ
せた後に還元剤を添加して、極力、少量の還元剤でリー
ンNOx触媒に流れ込む排気ガスの酸素濃度を局所的に
低下させている。
In the above-mentioned conventional exhaust gas purification apparatus, when the atmospheric oxygen concentration of the lean NOx catalyst is lowered to release the nitrogen oxides (NOx) stored from the lean NOx catalyst for reduction purification, the lean NOx catalyst consumes a small amount of reducing agent. In order to efficiently reduce and purify the NOx catalyst, an exhaust throttle valve and a reducing agent addition valve are installed in this order from the exhaust upstream side in the exhaust pipe upstream of the lean NOx catalyst. The reducing agent is added after the opening degree is reduced to reduce the flow rate of the exhaust gas, and the oxygen concentration of the exhaust gas flowing into the lean NOx catalyst is locally reduced by a small amount of the reducing agent as much as possible.

【0004】[0004]

【発明が解決しようとする課題】上記従来の排気浄化装
置においては、排気浄化触媒であるリーンNOx触媒の
雰囲気酸素濃度を下げて、リーンNOx触媒の還元浄化
作用を促進させるために、還元剤をリーンNOx触媒に
供給する。
SUMMARY OF THE INVENTION In the above conventional exhaust purification system, a reducing agent is added in order to reduce the atmospheric oxygen concentration of the lean NOx catalyst, which is an exhaust purification catalyst, so as to accelerate the reduction purification action of the lean NOx catalyst. Supply to lean NOx catalyst.

【0005】しかしながら、本発明者等の鋭意研究によ
れば、上記した排気浄化触媒に対する還元剤の添加にお
いて、種々の改善すべき点が見いだされた。
However, according to the earnest studies by the present inventors, various improvements have been found in the addition of the reducing agent to the above-mentioned exhaust purification catalyst.

【0006】まず、還元剤添加弁の排気下流では、排気
通路内壁面に対する還元剤の付着が見られるため、上記
排気浄化作用を促進するために必要とされる適切量の還
元剤を添加したにも拘わらず、依然として排気ガスの酸
素濃度は高い値を示す場合がある。すなわち、還元剤の
実質的添加量が減少し、排気浄化率の低下を招く虞があ
る。
First, since the reducing agent adheres to the inner wall surface of the exhaust passage in the exhaust gas downstream of the reducing agent addition valve, it is necessary to add an appropriate amount of the reducing agent required to promote the above-mentioned exhaust gas purification action. Nevertheless, the oxygen concentration of the exhaust gas may still show a high value. That is, the substantial amount of the reducing agent added may decrease, which may lead to a reduction in the exhaust gas purification rate.

【0007】また、排気通路内壁面に対する還元剤の付
着に絡み、還元剤の付着を見越して予め多めに還元剤を
添加すれば、上記下排気浄化率の低下は回避されるが、
還元剤の消費量を増やすことになる。とりわけ、還元剤
として機関燃料(例えば、軽油)を添加する場合には、
燃料消費量の悪化に繋がる。
Further, if the reducing agent is added in advance in anticipation of the reducing agent adhesion in relation to the adhesion of the reducing agent to the inner wall surface of the exhaust passage, the lowering of the lower exhaust gas purification rate can be avoided,
This will increase the consumption of reducing agents. In particular, when adding engine fuel (for example, light oil) as a reducing agent,
It leads to deterioration of fuel consumption.

【0008】また、還元剤の添加回数が増えるにつれ、
排気通路内壁面に付着した還元剤は徐々に凝縮して液滴
になるため、時として、この液滴の還元剤がリーンNO
x触媒に流れ込み、リーンNOx触媒を局所的に昇温さ
せ、リーンNOx触媒を局所的に劣化させる虞がある。
Further, as the number of times the reducing agent is added increases,
Since the reducing agent attached to the inner wall surface of the exhaust passage gradually condenses into droplets, the reducing agent of the droplets sometimes becomes lean NO.
It may flow into the x-catalyst, locally raise the temperature of the lean NOx catalyst, and locally deteriorate the lean NOx catalyst.

【0009】本発明は、このような技術的背景を考慮し
てなされたもので、排気通路内壁面に対する還元剤の付
着を抑制可能な内燃機関の排気浄化装置を提供すること
を課題とする。
The present invention has been made in view of the above technical background, and an object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine capable of suppressing the adhesion of the reducing agent to the inner wall surface of the exhaust passage.

【0010】[0010]

【課題を解決するための手段】上記した技術的課題を解
決するため本発明では、以下の構成とした。
In order to solve the above technical problems, the present invention has the following configuration.

【0011】本発明は、排気通路に配置された排気浄化
触媒と、前記排気通路の前記排気浄化触媒より上流に配
置され、前記排気通路内に還元剤を添加する還元剤供給
手段とを備える内燃機関において、前記還元剤添加弁と
前記排気浄化触媒との間に排気絞り弁を配置すると共
に、還元剤の添加に伴い前記排気絞り弁を閉じ側に制御
する排気絞り弁制御手段を備えることを特徴とする。
The present invention comprises an internal combustion engine comprising an exhaust gas purification catalyst arranged in an exhaust passage, and a reducing agent supply means arranged upstream of the exhaust purification catalyst in the exhaust passage and adding a reducing agent into the exhaust passage. In the engine, an exhaust throttle valve is arranged between the reducing agent addition valve and the exhaust purification catalyst, and an exhaust throttle valve control means for controlling the exhaust throttle valve to the closing side in accordance with the addition of the reducing agent is provided. Characterize.

【0012】このように構成された本発明では、還元剤
添加弁と排気浄化触媒との間に排気絞り弁を備え、排気
絞り弁は、還元剤の添加に伴い閉じ側に制御される。こ
のため、排気絞り弁の閉じ側への制御によって、排気通
路内壁面近傍の流速が局所的に上昇し、既に付着してい
る還元剤の霧化が促される。また、排気通路内壁面に対
する還元剤の付着も抑制される。
In the present invention thus constructed, the exhaust throttle valve is provided between the reducing agent addition valve and the exhaust purification catalyst, and the exhaust throttle valve is controlled to the closing side as the reducing agent is added. Therefore, by controlling the exhaust throttle valve to the closing side, the flow velocity near the inner wall surface of the exhaust passage is locally increased, and atomization of the reducing agent already attached is promoted. Further, the adhesion of the reducing agent to the inner wall surface of the exhaust passage is also suppressed.

【0013】なお、上記で「還元剤の添加に伴い排気絞
り弁を閉じ側に制御する」とは、現に還元剤が添加され
ている状況、または、還元剤を添加してもよいとみなせ
る状況において、排気絞り弁を閉じ側に制御することを
意図し、排気絞り弁の制御時は、実際の還元剤添加の有
無を問題にするものではない。また、上記排気浄化触媒
とは、還元剤の添加によって排気浄化作用が回復する排
気浄化触媒全般を意図する。
In the above description, "to control the exhaust throttle valve to the closing side with the addition of the reducing agent" means that the reducing agent is actually added or that the reducing agent may be added. In the above, the intention is to control the exhaust throttle valve to the closing side, and it does not matter whether or not the reducing agent is actually added when controlling the exhaust throttle valve. Further, the exhaust purification catalyst means all exhaust purification catalysts whose exhaust purification action is restored by addition of a reducing agent.

【0014】また、排気絞り弁制御手段は、還元剤添加
量の積算値に応じて前記排気絞り弁を閉じ側に制御して
もよい。
Further, the exhaust throttle valve control means may control the exhaust throttle valve to the closing side according to the integrated value of the reducing agent addition amount.

【0015】この構成では、還元剤の添加量が積算値に
達したときに排気絞り弁を閉じ側に制御する。つまり、
排気通路内壁面に対する還元剤の付着がある程度進行し
たときに排気絞り弁を制御し、排気通路内壁面に付着し
ている還元剤の霧化を促す。よって、機関出力の変動を
招く排気絞り制御の実行頻度減らすことができる。
In this configuration, the exhaust throttle valve is controlled to the closing side when the added amount of the reducing agent reaches the integrated value. That is,
When the reducing agent adheres to the inner wall surface of the exhaust passage to some extent, the exhaust throttle valve is controlled to promote atomization of the reducing agent adhered to the inner wall surface of the exhaust passage. Therefore, it is possible to reduce the execution frequency of the exhaust throttle control that causes a change in the engine output.

【0016】また、排気絞り弁付近の排気ガス温度を測
定または推定する排気ガス温度検出手段を備え、前記排
気絞り弁制御手段は、前記排気ガス温度に応じて前記排
気絞り弁を閉じ側に制御してもよい。
Further, the exhaust gas temperature detecting means for measuring or estimating the exhaust gas temperature near the exhaust throttle valve is provided, and the exhaust throttle valve control means controls the exhaust throttle valve to the closing side according to the exhaust gas temperature. You may.

【0017】この構成では、排気ガス温度検出手段によ
って排気ガス温度を測定または推定し、その排気ガス温
度に応じて排気絞り弁を制御する。つまり、還元剤は、
排気ガス温度が低下するほど、排気通路内壁面に対して
付着し易くなるため、本構成では、このような状況で排
気絞り弁を閉じ側に制御する。
In this structure, the exhaust gas temperature detecting means measures or estimates the exhaust gas temperature, and the exhaust throttle valve is controlled according to the exhaust gas temperature. That is, the reducing agent is
The lower the exhaust gas temperature, the easier it becomes to adhere to the inner wall surface of the exhaust passage. Therefore, in this configuration, the exhaust throttle valve is controlled to the closing side in such a situation.

【0018】さらに、排気絞り弁制御手段は、前記還元
剤添加量の積算値または排気ガス温度の少なくともいず
れか一方に応じて、前記排気絞り弁の開度および/また
は閉じ時間を変更できるとしてもよい。
Further, even if the exhaust throttle valve control means can change the opening degree and / or the closing time of the exhaust throttle valve according to at least one of the integrated value of the reducing agent addition amount and the exhaust gas temperature. Good.

【0019】この構成では、還元剤添加量の積算値また
は排気ガス温度の少なくとも一方に応じて、排気絞り弁
の制御に相関のある開度および/または閉じ時間を制御
するため、その時々の状況に応じた最適の開度や閉じ時
間が得られる。
In this configuration, the opening and / or the closing time correlated with the control of the exhaust throttle valve is controlled in accordance with at least one of the integrated value of the reducing agent addition amount and the exhaust gas temperature. The optimum opening and closing time can be obtained according to

【0020】また、排気絞り弁制御手段は前記排気絞り
弁の上流と下流の差圧を測定する差圧センサを備え、前
記差圧センサにより前記差圧が一定になるように前記排
気絞り弁を制御してもよい。
Further, the exhaust throttle valve control means includes a differential pressure sensor for measuring a differential pressure between the upstream and downstream of the exhaust throttle valve, and the exhaust throttle valve is controlled by the differential pressure sensor so that the differential pressure becomes constant. You may control.

【0021】この構成では、排気絞り弁の閉弁制御によ
って生じる差圧を差圧センサにて検出し、その差圧を排
気絞り弁の閉弁制御にフィードバックする。つまり、排
気絞り弁の上流と下流との間に生じる差圧を一定に維持
し、排気絞り弁の制御中における排気ガス流量の急激な
変化に伴う機関出力の変動を抑制する。
In this configuration, the differential pressure generated by the closing control of the exhaust throttle valve is detected by the differential pressure sensor, and the differential pressure is fed back to the closing control of the exhaust throttle valve. That is, the differential pressure generated between the upstream side and the downstream side of the exhaust throttle valve is maintained constant, and the fluctuation of the engine output due to the abrupt change of the exhaust gas flow rate during the control of the exhaust throttle valve is suppressed.

【0022】[0022]

【発明の実施の形態】続いて、本発明に係る内燃機関の
排気浄化装置に関し、その好適な実施形態について説明
する。なお、以下に示す排気浄化触媒の構造は、あくま
でも本発明の一実施形態にすぎず、その詳細は、内燃機
関の各種仕様等に応じて変更可能である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a preferred embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described. Note that the structure of the exhaust purification catalyst shown below is merely one embodiment of the present invention, and the details thereof can be changed according to various specifications of the internal combustion engine.

【0023】まず、本実施の形態では、ディーゼル機関
等に代表される希薄燃焼式内燃機関1の排気系に触媒コ
ンバータ50、及び還元剤供給装置を備えて排気浄化装
置を構成している。
First, in the present embodiment, an exhaust purification system is constructed by providing the exhaust system of the lean-burn internal combustion engine 1 represented by a diesel engine or the like with the catalytic converter 50 and the reducing agent supply device.

【0024】触媒コンバータ50は、ケーシング、及び
そのケーシング内に設けられる種々の排気浄化触媒50
a,50bを備え、機関本体1から排出される排気ガス中
の有害物質を浄化する排気浄化作用を有する。より詳し
くは、内燃機関1のタービンハウジング下流にケーシン
グが配置され、ケーシング内には、排気上流側から吸蔵
還元型NOx触媒50a、パティキュレートフィルタ
(以下、単にフィルタと称する)50bの順に排気浄化
触媒が内蔵されている。
The catalytic converter 50 includes a casing and various exhaust purification catalysts 50 provided in the casing.
It is provided with a and 50b and has an exhaust gas purification action for purifying harmful substances in the exhaust gas discharged from the engine body 1. More specifically, a casing is disposed downstream of the turbine housing of the internal combustion engine 1, and an exhaust gas purification catalyst is arranged in the casing in the order of an exhaust reduction NOx catalyst 50a and a particulate filter (hereinafter simply referred to as a filter) 50b from the exhaust upstream side. Is built in.

【0025】吸蔵還元型NOx触媒50aは、希薄燃焼
式内燃機関の排気系に設けられるリーンNOx触媒の代
表例であり、排気ガス中の窒素酸化物(NOx)を主と
して浄化する排気浄化作用を有している。
The NOx storage reduction catalyst 50a is a representative example of a lean NOx catalyst provided in the exhaust system of a lean-burn internal combustion engine, and has an exhaust gas purification function for mainly purifying nitrogen oxides (NOx) in the exhaust gas. is doing.

【0026】より詳しくは、排気ガスの酸素濃度が高い
ときにその排気ガス中の窒素酸化物(NOx)を吸蔵
し、排気ガス中の酸素濃度が低いとき、すなわち吸蔵還
元型NOx触媒に流れ込む排気ガスの空燃比が低いとき
にその吸蔵していた窒素酸化物(NOx)を排気ガス中
に含まれている未燃燃料成分(CO、HC)と反応させ
ることで、無害な窒素(N2)に浄化する排気浄化能を
有する。
More specifically, when the oxygen concentration of the exhaust gas is high, nitrogen oxides (NOx) in the exhaust gas are stored, and when the oxygen concentration of the exhaust gas is low, that is, the exhaust gas flowing into the NOx storage reduction catalyst. By reacting the stored nitrogen oxides (NOx) with the unburned fuel components (CO, HC) contained in the exhaust gas when the air-fuel ratio of the gas is low, harmless nitrogen (N 2 ) It has the ability to purify exhaust gas.

【0027】また、その構成は、例えばアルミナ(Al
23)を担体とし、その担体上にカリウム(K)、ナト
リウム(Na)、リチウム(Li)、セシウム(Cs)
等のアルカリ金属、若しくはバリウム(Ba)、カルシ
ウム(Ca)等のアルカリ土類、又はランタン(L
a)、イットリウム(Y)等の希土類から選ばれた少な
くとも一つと、白金(Pt)のような貴金属とを担持し
てなる。
The structure is, for example, alumina (Al
2 O 3 ) as a carrier, and potassium (K), sodium (Na), lithium (Li), cesium (Cs) on the carrier.
Alkali metal such as, or alkaline earth such as barium (Ba), calcium (Ca) or lanthanum (L
a), at least one selected from rare earths such as yttrium (Y), and a noble metal such as platinum (Pt).

【0028】なお、ここで上記した排気浄化作用の補足
説明を行うと、希薄燃焼式内燃機関1では、通常、酸素
過剰雰囲気下で燃焼が行われている。このため燃焼に伴
い排出される排気ガスの酸素濃度は、上記の還元・放出
作用を促す迄に低下することは殆どなく、また、排気ガ
ス中に含まれる未燃燃料成分(CO,HC)も極僅かで
ある。
Incidentally, to give a supplementary explanation of the above-mentioned exhaust gas purification action, in the lean-burn internal combustion engine 1, combustion is usually performed in an oxygen excess atmosphere. Therefore, the oxygen concentration of the exhaust gas discharged along with the combustion hardly decreases until the reduction / release action is promoted, and the unburned fuel components (CO, HC) contained in the exhaust gas are also reduced. Very few.

【0029】したがって、本実施の形態では、還元剤た
る機関燃料(HC)を排気ガス中に噴射供給することで
酸素濃度の低下を促し、また、未燃燃料成分たる炭化水
素(HC)を排気ガス中に補給して上記の排気浄化作用
を促進させている。なお、この浄化時における還元剤の
供給は、後述の還元剤供給装置によって行われている。
本実施の形態では、この還元剤添加装置によって本発明
に係る還元剤供給手段が構成されている。なお、還元剤
供給装置の説明は後に詳述する。なお、触媒コンバータ
50は吸蔵還元型NOx触媒がない構造、即ちフィルタ5
0bのみでも適用可能である。
Therefore, in this embodiment, the engine fuel (HC) that is a reducing agent is injected and supplied into the exhaust gas to promote the reduction of the oxygen concentration, and the hydrocarbon (HC) that is an unburned fuel component is exhausted. It is replenished in the gas to promote the above-mentioned exhaust gas purification action. The supply of the reducing agent at the time of purification is performed by a reducing agent supply device described later.
In the present embodiment, the reducing agent adding device constitutes the reducing agent supply means according to the present invention. The description of the reducing agent supply device will be given later. The catalytic converter 50 has a structure without the NOx storage reduction catalyst, that is, the filter 5
It is also applicable to 0b only.

【0030】一方のフィルタ50bは、排気ガス中に含
まれる煤などの微粒子を触媒物質の働きで酸化燃焼させ
る排気浄化触媒の一種である。より詳しくは、触媒物質
として活性化酸素放出剤を担持したフィルタ基材58を
備え、そのフィルタ基材58上に捕集した微粒子を活性
化酸素の酸化力にて酸化燃焼させることで浄化(除去)
する排気浄化作用を備えている。
The one filter 50b is a type of exhaust gas purification catalyst that oxidizes and burns particulates such as soot contained in the exhaust gas by the action of a catalytic substance. More specifically, a filter base material 58 carrying an activated oxygen releasing agent as a catalyst substance is provided, and the fine particles collected on the filter base material 58 are oxidatively burned by the oxidizing power of the activated oxygen for purification (removal). )
It has a function of purifying exhaust gas.

【0031】フィルタ基材58は、図2に示されるよう
にコージライトのような多孔質材料から形成されたハニ
カム形状をなし、互いに平行をなして延びる複数個の流
路55,56を具備している。より具体的には、下流端
が栓55aにより閉塞された排気ガス流入通路55と、
上流端が栓56aにより閉塞された排気ガス流出通路5
6と、を備え、各排気ガス流入通路55及び排気ガス流
出通路56は薄肉の隔壁57を介してフィルタ基材58
における縦方向及び横方向に並んで配置されている。
As shown in FIG. 2, the filter substrate 58 has a honeycomb shape formed of a porous material such as cordierite and has a plurality of channels 55 and 56 extending in parallel with each other. ing. More specifically, an exhaust gas inflow passage 55 whose downstream end is closed by a plug 55a,
Exhaust gas outflow passage 5 whose upstream end is closed by a plug 56a
6 and the exhaust gas inflow passage 55 and the exhaust gas outflow passage 56 are provided with a filter base 58 through a thin partition wall 57.
Are arranged side by side in the vertical and horizontal directions.

【0032】また、壁57の面および内部の細孔には、
アルミナ(Al23)等によって形成された担体の層が
設けられ、担体上には、白金(Pt)等の貴金属触媒の
他、周囲に過剰酸素が存在するとその過剰酸素を吸蔵
し、逆に酸素濃度が低下すると、その吸蔵した酸素を活
性酸素の形で放出する活性酸素放出剤が担持されてい
る。
Further, in the surface of the wall 57 and the pores inside,
A carrier layer formed of alumina (Al 2 O 3 ) or the like is provided. On the carrier, in addition to a precious metal catalyst such as platinum (Pt), if excess oxygen exists in the surroundings, the excess oxygen is occluded and When the oxygen concentration decreases, an active oxygen releasing agent that releases the stored oxygen in the form of active oxygen is carried.

【0033】なお、活性酸素放出剤としては、カリウム
(K)、ナトリウム(Na)、リチウム(Li)、セシ
ウム(Cs)、ルビジウム(Rb)のようなアルカリ金
属、バリウム(Ba)、カルシウム(Ca)、ストロン
チウム(Sr)のようなアルカリ土類金属、ランタン
(La)、イットリウム(Y)のような希土類、および
セリウム(Ce)、錫(Sn)のような遷移金属から選
ばれた少なくとも一つを用いるとよい。
As the active oxygen releasing agent, alkali metals such as potassium (K), sodium (Na), lithium (Li), cesium (Cs) and rubidium (Rb), barium (Ba), calcium (Ca). ), At least one selected from alkaline earth metals such as strontium (Sr), rare earths such as lanthanum (La) and yttrium (Y), and transition metals such as cerium (Ce) and tin (Sn). Should be used.

【0034】また、好ましくは、カルシウム(Ca)よ
りもイオン化傾向の高いアルカリ金属又はアルカリ土類
金属、即ちカリウム(K)、リチウム(Li)、セシウ
ム(Cs)、ルビジウム(Rb)、バリウム(Ba)、
ストロンチウム(Sr)などを用いるとよい。
Also, preferably, an alkali metal or alkaline earth metal having a higher ionization tendency than calcium (Ca), that is, potassium (K), lithium (Li), cesium (Cs), rubidium (Rb), barium (Ba). ),
It is preferable to use strontium (Sr) or the like.

【0035】このように構成されたフィルタ50bで
は、まず、排気ガス流入通路55→隔壁57→排気ガス
流出通路56の順に排気ガスが流れ(図2矢印a)、排
気ガス中に含まれる煤などの微粒子は、その隔壁57を
通過する過程で、隔壁57の表面及び内部に捕集され
る。そして、隔壁57に捕集された微粒子は、隔壁57
(フィルタ基材)に流れ込む排気ガスの酸素濃度を複数
回に亘り変化させることで増加する活性化酸素によって
酸化され、ついには輝炎を発することなく燃え尽きてフ
ィルタ基材58上から除去される。なお、本実施の形態
では、活性酸素放出剤を担持したパティキュレートフィ
ルタ50bに代え、NOx触媒やNOx吸蔵剤を担持したフ
ィルタ、あるいはNOx触媒やNOx吸蔵剤を担持したモノ
リス担体を適用してもよい。
In the filter 50b thus constructed, the exhaust gas first flows in the order of the exhaust gas inflow passage 55, the partition wall 57, and the exhaust gas outflow passage 56 (arrow a in FIG. 2), soot contained in the exhaust gas, etc. The fine particles are collected on the surface and inside of the partition wall 57 while passing through the partition wall 57. The fine particles collected in the partition wall 57 are separated from each other by the partition wall 57.
The oxygen concentration of the exhaust gas flowing into the (filter substrate) is changed a plurality of times to be oxidized by activated oxygen, which is finally burned out and removed from the filter substrate 58 without emitting a bright flame. In the present embodiment, instead of the particulate filter 50b carrying the active oxygen releasing agent, a filter carrying a NOx catalyst or a NOx storage agent, or a monolith carrier carrying a NOx catalyst or a NOx storage agent may be applied. Good.

【0036】また、本実施の形態では、フィルタ50b
に流れ込む排気ガスの酸素濃度を変化させるにあたり、
吸蔵還元型NOx触媒50a同様、還元剤供給手段から還
元剤たる機関燃料(炭化水素:HC)を排気ガス中に噴
射供給することで排気ガスの酸素濃度を変化させてい
る。つまり、本実施の形態では、吸蔵還元型NOx触媒
50aおよびフィルタ50bを内蔵した触媒コンバータ5
0を排気管11に配置することで排気ガス中に含まれる
窒素酸化物(NOx)および煤などの微粒子を浄化して
いる。
Further, in this embodiment, the filter 50b is used.
When changing the oxygen concentration of the exhaust gas flowing into the
Similarly to the NOx storage reduction catalyst 50a, the reducing agent supply means injects and supplies the engine fuel (hydrocarbon: HC) as the reducing agent into the exhaust gas to change the oxygen concentration of the exhaust gas. That is, in the present embodiment, the catalytic converter 5 having the NOx storage reduction catalyst 50a and the filter 50b built therein.
By arranging 0 in the exhaust pipe 11, fine particles such as nitrogen oxides (NOx) and soot contained in the exhaust gas are purified.

【0037】続いて、上記した吸蔵還元型NOx触媒5
0a、及びフィルタ50bの排気浄化作用を促す還元剤供
給装置について説明する。
Subsequently, the above-mentioned storage reduction type NOx catalyst 5
0a and the reducing agent supply device that promotes the exhaust gas purification action of the filter 50b will be described.

【0038】還元剤供給装置は、触媒コンバータ50上
流の排気管11に取り付けられた還元剤添加弁21、及
び内燃機関1の制御系に設けられる電子制御ユニット2
2等にて構成されている。
The reducing agent supply device includes a reducing agent addition valve 21 attached to the exhaust pipe 11 upstream of the catalytic converter 50, and an electronic control unit 2 provided in the control system of the internal combustion engine 1.
It is composed of 2 etc.

【0039】還元剤添加弁21は、電気式の開閉弁であ
り、電子制御ユニット22に準備される還元剤供給プロ
グラムのもと、適切量の還元剤を適宜のタイミングで排
気ガス中に噴射供給している。また、還元剤添加弁21
は、内燃機関の燃料供給系に接続されており、その燃焼
供給系から供給される機関燃料を還元剤として触媒コン
バータ50に供給している。
The reducing agent addition valve 21 is an electric type on-off valve, and under the reducing agent supply program prepared in the electronic control unit 22, an appropriate amount of the reducing agent is injected and supplied into the exhaust gas at an appropriate timing. is doing. Also, the reducing agent addition valve 21
Is connected to the fuel supply system of the internal combustion engine and supplies the engine fuel supplied from the combustion supply system to the catalytic converter 50 as a reducing agent.

【0040】また、電子制御ユニット22は、触媒コン
バータ50下流に設けられた空燃比センサの出力、およ
びフィルタ50bの排気上流側および排気下流側に設け
られた排気ガス温度センサ24a,24bの出力、さら
に機関運転に即して変化する各種機関運転履歴などに基
づき還元剤の供給量や供給時期を算出し、その算出した
供給量および供給タイミングに基づき、還元剤添加弁2
1の開閉を制御している。なお、電子制御ユニット22
では、その還元剤添加弁21の開弁制御において、一供
給過程につき、複数回の供給動作(開弁動作)を実施さ
せることで所定量の還元剤を排気浄化触媒に供給するよ
うにしている。
Further, the electronic control unit 22 outputs the output of the air-fuel ratio sensor provided downstream of the catalytic converter 50 and the outputs of the exhaust gas temperature sensors 24a and 24b provided upstream and downstream of the filter 50b. Further, the reducing agent supply amount and the supplying timing of the reducing agent are calculated based on various engine operating histories that change according to the engine operation, and the reducing agent addition valve 2 is calculated based on the calculated supplying amount and supply timing.
The opening and closing of 1 is controlled. The electronic control unit 22
Then, in the valve opening control of the reducing agent addition valve 21, a predetermined amount of reducing agent is supplied to the exhaust purification catalyst by performing a plurality of supply operations (valve opening operation) in one supply process. .

【0041】このように本実施の形態では、還元剤供給
手段にて還元剤たる機関燃料を排気ガス中に噴射供給
し、上記した吸蔵還元型NOx触媒50a、およびフィ
ルタ50bの排気浄化作用を促している。
As described above, in the present embodiment, the reducing agent supply means injects and supplies the engine fuel, which is a reducing agent, into the exhaust gas, and promotes the exhaust gas purification action of the above-described storage reduction NOx catalyst 50a and the filter 50b. ing.

【0042】なお、上記触媒コンバータ50の下流に酸
化触媒コンバータ(図示せず)を設け、触媒コンバータ
50で浄化されずに流れ出た排気ガス中の未燃燃料成分
(HC,CO)を浄化してもよい。
An oxidation catalytic converter (not shown) is provided downstream of the catalytic converter 50 to purify unburned fuel components (HC, CO) in the exhaust gas that has flowed without being purified by the catalytic converter 50. Good.

【0043】また、本実施の形態では、上記した還元剤
供給装置に絡み、還元剤添加弁21の排気下流に排気絞
り弁20を備えている。すなわち、還元剤添加弁21と
触媒コンバータ50との間に排気絞り弁20が設けられ
ている。
Further, in the present embodiment, the exhaust throttle valve 20 is provided downstream of the reducing agent addition valve 21 in the exhaust gas, which is entangled with the above-mentioned reducing agent supply device. That is, the exhaust throttle valve 20 is provided between the reducing agent addition valve 21 and the catalytic converter 50.

【0044】排気絞り弁20は、還元剤添加弁21と触
媒コンバータ50との間に設けられるバタフライ弁であ
り、その開閉制御は、電子制御ユニット22で処理され
ている。より詳しくは、排気通路内壁面に付着した還元
剤を吹き飛ばすのに適した流速が得られる制御量を算出
し、排気絞り弁20を最適な開度に制御する。つぎに、
排気絞り弁20が閉じ側に制御されたことにより、排気
絞り弁20近傍の流速は上昇し、還元剤の添加に伴い排
気通路内壁面に付着した還元剤の霧化を促す。また、添
加された還元剤が排気通路内壁面に付着することを抑制
する。
The exhaust throttle valve 20 is a butterfly valve provided between the reducing agent addition valve 21 and the catalytic converter 50, and its opening / closing control is processed by the electronic control unit 22. More specifically, a control amount for obtaining a flow velocity suitable for blowing off the reducing agent adhering to the inner wall surface of the exhaust passage is calculated, and the exhaust throttle valve 20 is controlled to an optimum opening degree. Next,
By controlling the exhaust throttle valve 20 to the closing side, the flow velocity in the vicinity of the exhaust throttle valve 20 increases and promotes atomization of the reducing agent adhering to the inner wall surface of the exhaust passage as the reducing agent is added. In addition, the added reducing agent is suppressed from adhering to the inner wall surface of the exhaust passage.

【0045】ここで排気絞り弁20の制御量は、排気絞
り弁20の開度、排気絞り弁20の閉じ時間、またはそ
の両方としてもよい。排気絞り弁20の開度は、図3に
示すようなエンジン回転数と還元剤添加量の積算値と排
気絞り弁20の開度との関係を表す二次元マップから設
定される。
Here, the control amount of the exhaust throttle valve 20 may be the opening degree of the exhaust throttle valve 20, the closing time of the exhaust throttle valve 20, or both. The opening degree of the exhaust throttle valve 20 is set from a two-dimensional map showing the relationship between the engine speed, the integrated value of the reducing agent addition amount, and the opening degree of the exhaust throttle valve 20, as shown in FIG.

【0046】ここで、二次元マップについて説明する。
排気通路内壁面に付着する還元剤を吹き飛ばすための流
速は、排気絞り弁20の開度を調整することにより制御
することができる。つまり、還元剤を吹き飛ばすための
流速を速くするには、排気絞り弁20の開度を閉じ側に
制御し、流速を遅くするには、排気絞り弁20の開度を
開き側に制御する。
The two-dimensional map will be described here.
The flow velocity for blowing off the reducing agent adhering to the inner wall surface of the exhaust passage can be controlled by adjusting the opening degree of the exhaust throttle valve 20. That is, in order to increase the flow velocity for blowing off the reducing agent, the opening degree of the exhaust throttle valve 20 is controlled to the closed side, and to reduce the flow rate, the opening degree of the exhaust throttle valve 20 is controlled to the open side.

【0047】また、還元剤を吹き飛ばすための流速は、
排気通路内に添加された還元剤の積算値と排気絞り弁2
0の閉弁制御以前における排気通路内の流速に相関があ
る。つまり、還元剤の添加量の積算値がわずかであれ
ば、還元剤を吹き飛ばすために必要とされる流速は遅く
てよく、排気絞り弁20の開度をわずかに閉じ側に制御
するか、あるいは全開状態でよい。一方、還元剤の添加
量の積算値が大きければ、還元剤を吹き飛ばすために必
要とされる流速は速くなり、排気絞り弁20の開度を大
きく閉じ側に制御しなければならない。
The flow velocity for blowing off the reducing agent is
Integrated value of reducing agent added to the exhaust passage and exhaust throttle valve 2
There is a correlation with the flow velocity in the exhaust passage before the zero valve closing control. That is, if the integrated value of the added amount of the reducing agent is small, the flow velocity required to blow off the reducing agent may be slow, and the opening degree of the exhaust throttle valve 20 may be controlled slightly to the closing side, or Fully open. On the other hand, if the integrated value of the added amount of the reducing agent is large, the flow velocity required to blow off the reducing agent becomes high, and the opening degree of the exhaust throttle valve 20 must be largely controlled to the closing side.

【0048】また、エンジン回転数が大きいならば、排
気通路を流れる排気流量が多いため、排気通路内の流速
は速い。そのため、還元剤を吹き飛ばすのに必要とされ
る流速を得るには、排気絞り弁20の開度をわずかに閉
じ側に制御するか、あるいは全開状態でよい。一方、エ
ンジン回転数が小さいならば、排気通路を流れる流量が
少ない。そのため、還元剤を吹き飛ばすのに必要とする
流速を得るため、排気絞り弁20の開度を大きく全閉側
に制御しなければならない。
Further, when the engine speed is high, the flow rate of exhaust gas flowing through the exhaust passage is large, so that the flow velocity in the exhaust passage is high. Therefore, in order to obtain the flow velocity required to blow off the reducing agent, the opening degree of the exhaust throttle valve 20 may be controlled slightly to the closing side or may be in the fully opened state. On the other hand, if the engine speed is low, the flow rate through the exhaust passage is low. Therefore, in order to obtain the flow velocity required to blow off the reducing agent, the opening degree of the exhaust throttle valve 20 has to be largely controlled to the fully closed side.

【0049】すなわち、この排気絞り弁20の開度は、
図3に示すようなエンジン回転数と還元剤添加量の積算
値と排気絞り弁20の開度との二次元マップから設定す
ることができる。なお、この2次元マップは各種予備実
験により把握可能である。このような二次元マップは、
電子制御ユニット22が備えるROMに予め記憶してお
く。
That is, the opening degree of the exhaust throttle valve 20 is
It can be set from a two-dimensional map of the engine speed, the integrated value of the reducing agent addition amount, and the opening degree of the exhaust throttle valve 20 as shown in FIG. This two-dimensional map can be grasped by various preliminary experiments. Such a two-dimensional map is
It is stored in advance in the ROM provided in the electronic control unit 22.

【0050】また一方で、上記した制御により排気絞り
弁20の開度を所定開度に設定した後であっても、排気
通路内壁面の流速を一定に保持することができない状況
もある。すなわち、排気流量は運転状態の変化によって
変動するため、排気絞り弁20を所定開度に若干の補正
をする必要が生じる場合がある。その際に差圧センサ2
3を用いて、排気絞り弁20の上流と下流との間に生じ
る圧力差を一定に保持するように制御することにより、
排気流量の変動に対して適宜に排気絞り弁20の開度を
制御することができる。
On the other hand, there is also a situation in which the flow velocity on the inner wall surface of the exhaust passage cannot be kept constant even after the opening of the exhaust throttle valve 20 is set to the predetermined opening by the above control. That is, since the exhaust gas flow rate fluctuates due to changes in operating conditions, it may be necessary to slightly correct the exhaust throttle valve 20 to a predetermined opening degree. At that time, the differential pressure sensor 2
3 is used to control the pressure difference generated between the upstream side and the downstream side of the exhaust throttle valve 20 so as to be kept constant,
The opening degree of the exhaust throttle valve 20 can be appropriately controlled with respect to the fluctuation of the exhaust flow rate.

【0051】また、排気絞り弁20を一度に急激に閉じ
側に制御した場合、排気絞り弁20と内燃機関との間の
排気通路内の圧力が高くなりすぎ、トルクショックを招
くおそれがある。その際、差圧センサ23を用いること
により、排気絞り弁20の上流と下流との間に生じる差
圧を一定維持しすることでトルクショックを抑制しなが
ら、排気絞り弁20を制御できる。
Further, when the exhaust throttle valve 20 is suddenly controlled to the closing side at one time, the pressure in the exhaust passage between the exhaust throttle valve 20 and the internal combustion engine becomes too high, which may cause a torque shock. At this time, by using the differential pressure sensor 23, it is possible to control the exhaust throttle valve 20 while suppressing the torque shock by maintaining a constant differential pressure between the upstream side and the downstream side of the exhaust throttle valve 20.

【0052】続いて、上記した内容をふまえ、排気絞り
弁20の制御について図5に示す処理ルーチンを参照し
て説明する。なお、本実施の形態では、下記処理ルーチ
ンの実行に必要とされる先の電子制御ユニット22、お
よび各種センサ類にて、本発明に係る排気絞り弁制御手
段を構成している。
Next, based on the above contents, the control of the exhaust throttle valve 20 will be described with reference to the processing routine shown in FIG. It should be noted that in the present embodiment, the exhaust throttle valve control means according to the present invention is configured by the electronic control unit 22 and various sensors required to execute the following processing routine.

【0053】まず、電子制御ユニット22では、種々の
センサ類から内燃機関の運転状況を読み込み(ステップ
110)、還元剤を添加すべき状況か否かを判定する
(ステップ120)。
First, the electronic control unit 22 reads the operating condition of the internal combustion engine from various sensors (step 110) and determines whether or not the reducing agent should be added (step 120).

【0054】なお、ステップ120では、還元剤を添加
すべき状況として、上記した排気浄化作用を促進させる
状況の他、排気浄化触媒を昇温させる昇温制御の要求
時、また、フィルタ50bのSOx被毒を回復するSO
x被毒回復制御の要求時において、還元剤を添加すべき
状況として判定している。また、上記した還元剤の添加
要求は、ステップ110にて読み込まれる運転状況のう
ち、例えば、走行距離数、走行時間等が所定条件を満た
す時に出力されるものである。
In step 120, the reducing agent should be added in addition to the above-mentioned situation in which the exhaust gas purification action is promoted, when temperature raising control is required to raise the temperature of the exhaust gas purification catalyst, and in the SOx of the filter 50b. SO to recover poisoning
x When the poisoning recovery control is requested, it is determined that the reducing agent should be added. Further, the reducing agent addition request is output when, for example, the number of miles traveled, the traveling time, and the like satisfy the predetermined conditions among the driving conditions read in step 110.

【0055】また、上記昇温制御とは、排気浄化触媒に
還元剤を供給し、その還元剤とフィルタ50bに担持さ
れる触媒物質との反応熱によって排気浄化触媒を強制的
に昇温させる周知の制御である。また、一方のSOx被
毒回復制御は、排気ガス中に含まれる硫黄酸化物(SO
x)の吸蔵に起因したフィルタ50bの排気浄化率の低
下即ち「SOx被毒」を回復(解消)するための制御で
あり、SOx被毒回復時には、フィルタ50bを約60
0℃以上に昇温させた後に還元剤を供給して、SOx被
毒の原因となる硫黄酸化物(SOx)の熱分解および放
出を促す。
The above-mentioned temperature raising control is well known in which a reducing agent is supplied to the exhaust purification catalyst and the exhaust purification catalyst is forcibly heated by the heat of reaction between the reducing agent and the catalyst substance carried on the filter 50b. Control. On the other hand, SOx poisoning recovery control is performed on the basis of sulfur oxide (SO
x) is a control for recovering (eliminating) a decrease in exhaust gas purification rate of the filter 50b, that is, "SOx poisoning" caused by the occlusion of the filter 50b.
After the temperature is raised to 0 ° C. or higher, a reducing agent is supplied to promote thermal decomposition and release of sulfur oxide (SOx) that causes SOx poisoning.

【0056】続いて、電子制御ユニット22では、ステ
ップ120の判定において、還元剤を添加すべきとの判
定結果の成立を受け、排気絞り弁20を閉じ側に制御す
るか否かを還元剤添加量の積算値に基づき判定する(ス
テップ130)。
Subsequently, the electronic control unit 22 determines whether or not to control the exhaust throttle valve 20 to the closing side in response to the establishment of the determination result that the reducing agent should be added in the determination of step 120. A determination is made based on the integrated value of the amount (step 130).

【0057】つまり、排気通路内壁面に付着した還元剤
は、度重なる還元剤の噴射に応じて徐々に増え、やがて
液滴となって触媒コンバータ50に流れ込みフィルタ5
0b等の劣化原因となるが、その付着量は、これまでに
添加した還元剤の積算値によって概ね把握できる。この
ため本実施の形態では、この還元剤添加量の積算値に応
じて排気絞り制御の有無を決定する。より詳しくは、還
元剤の付着量が許容量に達したか否かの判定基準となる
所定の積算値(R)を定め、還元剤添加量の積算値が所
定の積算値(R)に達したことを受け、排気絞り制御を
実施すべき状況と判定する。なお、判定基準に相当する
所定の積算値(R)は、還元剤の付着に相関のある添加
弁の形状、噴射圧力等を加味して実施した各種予備実験
にて把握可能である。
That is, the reducing agent adhering to the inner wall surface of the exhaust passage gradually increases in response to repeated injections of the reducing agent, and eventually becomes droplets which flow into the catalytic converter 50 and flow into the filter 5.
Although it causes deterioration such as 0b, the amount of the adhesion can be roughly grasped by the integrated value of the reducing agents added so far. Therefore, in the present embodiment, the presence or absence of exhaust throttle control is determined according to the integrated value of the reducing agent addition amount. More specifically, a predetermined integrated value (R), which serves as a criterion for determining whether or not the amount of the reducing agent attached reaches the allowable amount, is set, and the integrated value of the reducing agent addition amount reaches the predetermined integrated value (R). Therefore, it is determined that the exhaust throttle control should be performed. It should be noted that the predetermined integrated value (R) corresponding to the criterion can be grasped by various preliminary experiments carried out in consideration of the shape of the addition valve, the injection pressure, etc., which are correlated with the adhesion of the reducing agent.

【0058】続いて、電子制御ユニット22では、所定
の積算値(R)に還元剤の添加量が達したことを受け、
排気絞り弁20を閉じ側に制御して排気通路内壁面近傍
の流速を上昇させる(ステップ140)。即ち、本ステ
ップ140では、排気絞り弁20を閉じ側に制御するこ
とで、排気通路内壁面近傍の流速を上げ、既に付着して
いる還元材の霧化を促進しつつ吹き飛ばす。よって、付
着した還元剤が液滴になる以前に排気通路内壁面から離
脱する。その後、本処理ルーチンを一旦終了する。
Subsequently, in the electronic control unit 22, when the addition amount of the reducing agent reaches the predetermined integrated value (R),
The exhaust throttle valve 20 is controlled to the closing side to increase the flow velocity near the inner wall surface of the exhaust passage (step 140). That is, in this step 140, by controlling the exhaust throttle valve 20 to the closing side, the flow velocity near the inner wall surface of the exhaust passage is increased, and the reducing material that has already adhered is blown off while being promoted. Therefore, the attached reducing agent is separated from the inner wall surface of the exhaust passage before becoming a droplet. Then, this processing routine is once ended.

【0059】一方、ステップ120で、還元剤を添加す
べき状況でないと判定したときには、還元剤が添加され
ないとみなせ、ステップ130を経ることなく本ルーチ
ンを一旦終了する。また、ステップ130で、未だ還元
剤の添加量が所定の積算値(R)に達していないときに
も、還元剤の付着量が許容量にあるとみなせ、ステップ
140を経ることなく本処理ルーチンを一旦終了する。
On the other hand, when it is determined in step 120 that the reducing agent should not be added, it can be considered that the reducing agent is not added, and the routine is temporarily terminated without passing through step 130. Further, even if the addition amount of the reducing agent has not reached the predetermined integrated value (R) in step 130, it can be considered that the attached amount of the reducing agent is within the allowable amount, and the processing routine does not pass through step 140. Ends once.

【0060】このように本実施の形態に示す排気浄化装
置では、還元剤の添加に伴い排気絞り弁20を閉じ側に
制御し、排気通路内壁面近傍の流速を強制的に上昇させ
ることで、排気通路内壁面に付着していた還元剤の霧化
を促進しつつ吹き飛ばす。よって霧化が促進された還元
剤が触媒コンバータ50に流れ込むため、液滴の還元剤
の流入に伴う触媒コンバータ50の劣化が防止される。
As described above, in the exhaust gas purifying apparatus according to the present embodiment, the exhaust throttle valve 20 is controlled to the closing side as the reducing agent is added, and the flow velocity near the inner wall surface of the exhaust passage is forcibly increased, Blows off while promoting atomization of the reducing agent that has adhered to the inner wall surface of the exhaust passage. Therefore, the reducing agent whose atomization has been promoted flows into the catalytic converter 50, so that deterioration of the catalytic converter 50 due to the inflow of the reducing agent in droplets is prevented.

【0061】また、還元剤を吹き飛ばす排気絞り制御
は、還元剤を添加すべき状況において実施されるため、
吹き飛ばされた還元剤は、排気浄化作用の促進等に有効
に作用し、もって、還元剤の無駄な消費等を防止でき
る。
Further, since the exhaust throttling control for blowing off the reducing agent is carried out in the situation where the reducing agent should be added,
The blown-off reducing agent effectively acts to promote the exhaust gas purifying action and the like, and thus wasteful consumption of the reducing agent can be prevented.

【0062】また、上記した処理ルーチンは、あくまで
本発明の一実施例でありその詳細は、所望に応じて変更
可能である。以下、図6から図8を参照して、その変更
例について説明する。なお、以下に示すフローチャート
において、上記した処理ルーチンと重複する部分につい
ては、省略して説明する。
The above-described processing routine is merely an embodiment of the present invention, and the details thereof can be changed as desired. Hereinafter, the modified example will be described with reference to FIGS. 6 to 8. It should be noted that, in the flowcharts shown below, the description of the same parts as those of the above-described processing routine will be omitted.

【0063】まず、実施例1として図6に示す処理ルー
チンでは、排気絞り弁20を閉じ側に制御するか否かの
判定において、排気ガス温度に基づいて排気絞り弁制御
の有無を決定するフローに変更した。つまり、 排気ガ
ス温度が低いときには、排気通路内壁面の温度も低く、
添加した還元剤は、排気通路内壁面において急激に冷却
され、排気通路内壁面に付着する傾向にあるため、本実
施例1では排気ガス温度に関連づけて排気絞り弁20を
制御する。
First, in the processing routine shown in FIG. 6 as the first embodiment, in determining whether or not to control the exhaust throttle valve 20 to the closing side, a flow for determining whether or not exhaust throttle valve control is performed based on the exhaust gas temperature. Changed to. That is, when the exhaust gas temperature is low, the temperature of the exhaust passage inner wall surface is also low,
The added reducing agent is rapidly cooled on the inner wall surface of the exhaust passage and tends to adhere to the inner wall surface of the exhaust passage. Therefore, in the first embodiment, the exhaust throttle valve 20 is controlled in association with the exhaust gas temperature.

【0064】ここで、本実施の形態における排気ガス温
度は、フィルタ50b上流側に取り付けられた排気ガス
温度センサ24aで検出される温度、即ちフィルタ50b
に流入する排気ガス温度とする。すなわち、排気通路内
壁面における排気ガス温度をフィルタ50bに流入する
排気ガス温度として推定する。
Here, the exhaust gas temperature in this embodiment is the temperature detected by the exhaust gas temperature sensor 24a mounted on the upstream side of the filter 50b, that is, the filter 50b.
The temperature of the exhaust gas flowing into That is, the temperature of the exhaust gas on the inner wall surface of the exhaust passage is estimated as the temperature of the exhaust gas flowing into the filter 50b.

【0065】まず、電子制御ユニット22では、ステッ
プ120の判定において、還元剤を添加すべきとの判定
結果の成立を受け、排気絞り弁20を閉じ側に制御する
か否かを排気ガス温度に基づき判定する(ステップ23
0)。すなわち、ステップ230では、噴射した還元剤
が排気通路内壁面に付着しやすい状況にあるか否かを判
定すべく所定の温度(T)を閾値として、還元剤の付着
状況を判定する。なお、判定基準に相当する所定の温度
(T)は、還元剤添加量等を加味して実施した各種予備
実験にて把握可能である。
First, the electronic control unit 22 determines whether or not to control the exhaust throttle valve 20 to the closing side in accordance with the determination result that the reducing agent should be added in the determination in step 120, depending on the exhaust gas temperature. Judgment based on step 23
0). That is, in step 230, the adhering condition of the reducing agent is determined using the predetermined temperature (T) as a threshold in order to determine whether or not the injected reducing agent is likely to adhere to the inner wall surface of the exhaust passage. It should be noted that the predetermined temperature (T) corresponding to the criterion can be grasped by various preliminary experiments carried out in consideration of the reducing agent addition amount and the like.

【0066】続いて、電子制御ユニット22では、未だ
所定の温度(T)に排気ガス温度が達していないことを
受け、還元剤が付着しやすい状況にあるとみなし、排気
絞り弁20を閉じ側に制御して排気通路内壁面近傍の流
速を上昇させる(ステップ140)。即ち、本ステップ
140では、排気絞り弁20を閉じ側に制御すること
で、排気通路内壁面近傍の流速を上げ、既に付着してい
る還元剤の霧化を促進しつつ吹き飛ばす。よって、付着
した還元剤が液滴になる以前に排気通路内壁面から離脱
する。
Subsequently, in the electronic control unit 22, the exhaust gas temperature has not yet reached the predetermined temperature (T), and it is considered that the reducing agent is easily attached, and the exhaust throttle valve 20 is closed. Is controlled to increase the flow velocity near the inner wall surface of the exhaust passage (step 140). That is, in this step 140, by controlling the exhaust throttle valve 20 to the closing side, the flow velocity near the inner wall surface of the exhaust passage is increased, and the reducing agent already adhering is blown off while being promoted. Therefore, the attached reducing agent is separated from the inner wall surface of the exhaust passage before becoming a droplet.

【0067】また、ステップ230で、排気ガス温度が
所定の温度(T)に達したときには、還元剤が付着しに
くい状況であるとみなせ、ステップ140を経ることな
く本処理ルーチンを一旦終了する。
Further, when the exhaust gas temperature reaches the predetermined temperature (T) in step 230, it can be considered that the reducing agent is hard to adhere, and this processing routine is once ended without passing through step 140.

【0068】続いて、実施例2として、図7に示す処理
ルーチンを参照にして説明する。なお、本実施例は、排
気絞り弁20を閉じ側に制御するか否かの判定におい
て、上記した実施例を組み合わせ、さらに、排気絞り制
御を実施した後に排気絞り弁20を通常の開度に戻す制
御を加えたものである。
A second embodiment will be described with reference to the processing routine shown in FIG. In the present embodiment, in determining whether or not to control the exhaust throttle valve 20 to the closing side, the above-described embodiments are combined, and further, after the exhaust throttle control is performed, the exhaust throttle valve 20 is set to the normal opening degree. It is added with control to return.

【0069】すなわち、電子制御ユニット22では、ス
テップ320において還元剤を添加すべきとの判定結果
の成立を受け、還元剤の添加量の積算値が所定の積算値
(R)に達し(ステップ330)、さらに、排気ガス温
度が所定温度(T)に達していない(ステップ340)
ことを受けて、排気絞り弁20を閉じ側に制御する。な
お、本実施例では、ステップ330で還元剤の積算値に
基づく判定の後にステップ340で排気ガス温度に基づ
いて判定を実施するが、ステップ330とステップ34
0の順序を入れ替えることも可能である。すなわち、排
気ガス温度に基づく判定の後に還元剤の積算値に基づく
判定を実施してもよい。
That is, in the electronic control unit 22, the integrated value of the reducing agent addition amount reaches the predetermined integrated value (R) in response to the establishment of the determination result that the reducing agent should be added in step 320 (step 330). ), And the exhaust gas temperature has not reached the predetermined temperature (T) (step 340).
Accordingly, the exhaust throttle valve 20 is controlled to the closing side. In this embodiment, the determination based on the integrated value of the reducing agent is performed in step 330 and then the determination is performed in step 340 based on the exhaust gas temperature.
It is also possible to switch the order of 0s. That is, the determination based on the integrated value of the reducing agent may be performed after the determination based on the exhaust gas temperature.

【0070】続いて、電子制御ユニット22では、排気
絞り弁20を閉じ側に制御(ステップ350)した後、
閉弁時間が所定時間経過した否かを判定する(ステップ
360)。すなわち、ステップ360では、排気通路内
壁面に付着している還元剤の吹き飛ばしが十分であるか
否かを所定時間を基準として判定する。なお、判定基準
に相当する所定時間は、還元剤の付着に相関のある還元
剤添加量や排気ガス温度等を加味して実施した各種予備
実験にて把握可能である。
Then, in the electronic control unit 22, after controlling the exhaust throttle valve 20 to the closing side (step 350),
It is determined whether or not the valve closing time has passed a predetermined time (step 360). That is, in step 360, it is determined whether or not the reducing agent adhering to the inner wall surface of the exhaust passage is sufficiently blown off, based on the predetermined time. It should be noted that the predetermined time corresponding to the determination standard can be grasped by various preliminary experiments carried out in consideration of the reducing agent addition amount, the exhaust gas temperature, etc., which are correlated with the reducing agent adhesion.

【0071】そして、電子制御ユニット22では、排気
絞り弁20の制御後、所定時間経過したことを受け、排
気通路内壁面に付着している還元剤の吹き飛ばしが終了
したとみなし、排気絞り弁20を通常の開度に戻す(ス
テップ370)。その後、本処理ルーチンを一旦終了す
る。
Then, the electronic control unit 22 considers that the blowing of the reducing agent adhering to the inner wall surface of the exhaust passage has ended after the elapse of a predetermined time after the control of the exhaust throttle valve 20, and the exhaust throttle valve 20 To the normal opening degree (step 370). Then, this processing routine is once ended.

【0072】また、未だ所定時間経過していないときに
は、排気通路内壁面に付着している還元剤の吹き飛ばし
が不十分であるとみなし、引き続き排気絞り弁20を閉
じ側に維持して、排気通路内壁面に付着している還元剤
の吹き飛ばしを維持する。
Further, when the predetermined time has not yet passed, it is considered that the reducing agent adhering to the inner wall surface of the exhaust passage is not sufficiently blown off, and the exhaust throttle valve 20 is continuously maintained on the closed side to exhaust the exhaust passage. Maintains the blowing-off of the reducing agent adhering to the inner wall surface.

【0073】続いて、実施例3では、図7に示す実施例
2のステップ350の処理に代えて、その時々において
最適とされる排気絞り弁20の開度、および/または閉
弁時間を算出しつつ、その算出値に応じて排気絞り弁2
0を閉じ側に制御する処理に変更し、また、排気絞り弁
20の制御量が電子制御ユニット22上にて設定した制
御量(開度、閉じ時間)に達したか否かを判定する処理
を追加した(図8参照)。
Subsequently, in the third embodiment, instead of the process of step 350 of the second embodiment shown in FIG. 7, the optimum opening degree and / or closing time of the exhaust throttle valve 20 at each time is calculated. The exhaust throttle valve 2 according to the calculated value
0 is changed to a process of controlling to the closing side, and a process of determining whether or not the control amount of the exhaust throttle valve 20 has reached the control amount (opening degree, closing time) set on the electronic control unit 22. Was added (see FIG. 8).

【0074】すなわち、本実施例3では、排気絞り弁2
0を閉じ側にするだけでなく、その時々に応じた適宜の
開度や閉じ時間に変更することができる。
That is, in the third embodiment, the exhaust throttle valve 2
It is possible to change not only 0 to the closing side but also an appropriate opening degree and closing time according to the occasion.

【0075】以下、図8に示す処理ルーチンの詳細につ
いて説明する。
The details of the processing routine shown in FIG. 8 will be described below.

【0076】まず、実施例2と同様に、電子制御ユニッ
ト22では、還元剤の添加量の積算値が、所定の積算値
(R)に達し(ステップ330)、排気ガス温度が所定
温度(T)に達していない(ステップ340)ことを受
け、排気絞り弁20の開度、また閉じ時間を、例えば、
図3に示すマップ等を用いて算出しながら、その算出値
に併せて排気絞り弁20を制御する(ステップ45
0)。
First, similarly to the second embodiment, in the electronic control unit 22, the integrated value of the reducing agent addition amount reaches the predetermined integrated value (R) (step 330), and the exhaust gas temperature is set to the predetermined temperature (T). ) Is not reached (step 340), the opening degree of the exhaust throttle valve 20 and the closing time are set to, for example,
While calculating using the map shown in FIG. 3, etc., the exhaust throttle valve 20 is controlled in accordance with the calculated value (step 45).
0).

【0077】続いて、電子制御ユニット22では、ステ
ップ460において排気絞り弁20の制御後、その開度
や閉じ時間が制御上の算出値(制御値)に達したことを
受け、適切な開度や閉じ時間に制御したと見なし、排気
絞り弁20を通常の開度に戻して(ステップ370)、
本処理ルーチンを一旦終了する。
Next, in step S460, the electronic control unit 22 controls the exhaust throttle valve 20 and then, when the opening degree and the closing time reach the calculated value (control value) for control, the appropriate opening degree is received. It is assumed that the exhaust throttle valve 20 is controlled to the normal opening degree (step 370),
This processing routine is once ended.

【0078】なお、ステップ460で、未だ実際の制御
量(開度、閉じ時間)が、制御上の算出値に達していな
いときには、還元剤の吹き飛ばしが不十分であるとみな
し引き続き、排気絞り弁20の開度変更、及び開じ時間
をその時々の算出値に応じて変更する。このように実施
例3では、排気絞り弁20を閉じ側にするだけでなく、
その時々に応じた最適な開度や閉じ時間に変更する。
In step 460, when the actual control amount (opening degree, closing time) has not reached the calculated value for control, it is considered that the reducing agent is not sufficiently blown off, and the exhaust throttle valve continues. The opening degree of 20 and the opening time are changed according to the calculated value at each time. As described above, in the third embodiment, not only is the exhaust throttle valve 20 closed,
Change to the optimum opening and closing time according to the occasion.

【0079】[0079]

【発明の効果】以上のように本発明によれば、排気通路
内壁面に対する還元剤の付着を抑制可能な内燃機関の排
気浄化装置を提供できる。
As described above, according to the present invention, it is possible to provide an exhaust gas purification apparatus for an internal combustion engine capable of suppressing the adhesion of the reducing agent to the inner wall surface of the exhaust passage.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施の形態に係る内燃機関の概略構造図。FIG. 1 is a schematic structural diagram of an internal combustion engine according to the present embodiment.

【図2】 本実施の形態に係るパティキュレートフィル
タの内部構造を示す図。
FIG. 2 is a diagram showing an internal structure of a particulate filter according to the present embodiment.

【図3】 エンジン回転数と還元剤添加量の積算値と排
気絞り弁の開度との関係を表す二次元マップ。
FIG. 3 is a two-dimensional map showing the relationship between the integrated value of the engine speed, the reducing agent addition amount, and the opening degree of the exhaust throttle valve.

【図4】 差圧センサを用いた排気絞り弁制御の概略構
成図。
FIG. 4 is a schematic configuration diagram of exhaust throttle valve control using a differential pressure sensor.

【図5】 本実施の形態に係る排気絞り弁の制御プログ
ラムの処理ルーチンを示すフローチャート。
FIG. 5 is a flowchart showing a processing routine of an exhaust throttle valve control program according to the present embodiment.

【図6】 実施例1に係る排気絞り弁の制御プログラム
の処理ルーチンを示すフローチャート。
FIG. 6 is a flowchart showing a processing routine of an exhaust throttle valve control program according to the first embodiment.

【図7】 実施例2に係る排気絞り弁の制御プログラム
の処理ルーチンを示すフローチャート。
FIG. 7 is a flowchart showing a processing routine of an exhaust throttle valve control program according to the second embodiment.

【図8】 実施例3に係る排気絞り弁の制御プログラム
の処理ルーチンを示すフローチャート。
FIG. 8 is a flowchart showing a processing routine of an exhaust throttle valve control program according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 内燃機関 11 排気管 20 排気絞り弁 21 還元剤添加弁 22 電子制御ユニット 23 差圧センサ 24a、24b 排気ガス温度センサ 50 触媒コンバータ 50a 吸蔵還元型NOx触媒 50b パティキュレートフィルタ 55 排気ガス流入通路 55a 栓 56 排気ガス流出通路 56a 栓 57 隔壁 58 フィルタ基材 1 Internal combustion engine 11 exhaust pipe 20 Exhaust throttle valve 21 Reductant addition valve 22 Electronic control unit 23 Differential pressure sensor 24a, 24b Exhaust gas temperature sensor 50 catalytic converter 50a Storage reduction type NOx catalyst 50b particulate filter 55 Exhaust gas inflow passage 55a stopper 56 Exhaust gas outflow passage 56a stopper 57 partitions 58 Filter base material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 9/04 F02D 41/04 305A 41/04 305 B01D 53/36 101A Fターム(参考) 3G065 AA00 AA01 AA09 CA12 DA04 GA06 GA08 3G091 AA02 AA12 AA17 AA24 AA28 AB03 AB06 BA04 BA11 BA14 CA12 CA13 CB02 DA01 DA02 DA04 DB10 EA01 EA05 EA07 EA16 EA17 EA33 FB02 FB10 FB11 FB12 FC07 HA11 HA12 HA36 HA37 HB02 HB03 3G301 HA01 HA06 JA15 JA25 JA26 JB09 LA03 LB04 MA01 MA11 MA18 NE01 NE06 NE13 NE14 NE15 PA01B PA01Z PA11B PA11Z PD01B PD01Z PD11B PD11Z PE02B PE02Z PE08B PE08Z PF03B PF03Z 4D048 AA06 AB02 AB07 AC02 BA03X BA14Y BA15Y BA18Y BA19Y BA30X BA41X BB02 BB14 CC24 CC61 CD05 CD08 CD10 DA01 DA02 DA03 DA05 DA06 DA07 DA10 EA04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 9/04 F02D 41/04 305A 41/04 305 B01D 53/36 101A F term (reference) 3G065 AA00 AA01 AA09 CA12 DA04 GA06 GA08 3G091 AA02 AA12 AA17 AA24 AA28 AB03 AB06 BA04 BA11 BA14 CA12 CA13 CB02 DA01 DA02 DA04 DB10 EA01 EA05 EA07 EA16 EA17 EA33 FB02 LAFB JA JA11 MA25 JA01 HA25 HA06 HA15 HA01 HA01 HA01 HB02 HA01 HA03 H15G02B01 HA03 HA15 HB02 H01 MA18 NE01 NE06 NE13 NE14 NE15 PA01B PA01Z PA11B PA11Z PD01B PD01Z PD11B PD11Z PE02B PE02Z PE08B PE08Z PF03B PF03Z 4D048 AA06 AB02 AB07 AC02 BA03X BA14Y BA15Y BA18Y CD18 DA01 DA05 CD04 DA05 CD05 DA01 DA05 CD01 CD05 CD11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 排気通路に配置された排気浄化触媒と、
前記排気通路の前記排気浄化触媒より上流に配置され、
前記排気通路内に還元剤を添加する還元剤供給手段とを
備える内燃機関において、 前記還元剤供給手段と前記排気浄化触媒との間に排気絞
り弁を配置すると共に、還元剤の添加に伴い前記排気絞
り弁を閉じ側に制御する排気絞り弁制御手段を備えるこ
とを特徴とする内燃機関の排気浄化装置。
1. An exhaust purification catalyst disposed in an exhaust passage,
Is arranged upstream of the exhaust purification catalyst in the exhaust passage,
In an internal combustion engine provided with a reducing agent supply means for adding a reducing agent into the exhaust passage, an exhaust throttle valve is arranged between the reducing agent supply means and the exhaust purification catalyst, and the reducing agent is added as the reducing agent is added. An exhaust emission control device for an internal combustion engine, comprising exhaust throttle valve control means for controlling the exhaust throttle valve to a closed side.
【請求項2】 前記排気絞り弁制御手段は、還元剤添加
量の積算値に応じて前記排気絞り弁を閉じ側に制御する
ことを特徴とする請求項1に記載の内燃機関の排気浄化
装置。
2. The exhaust gas purification device for an internal combustion engine according to claim 1, wherein the exhaust throttle valve control means controls the exhaust throttle valve to a closing side in accordance with an integrated value of the reducing agent addition amount. .
【請求項3】 前記排気絞り弁付近の排気ガス温度を測
定または推定する排気ガス温度検出手段を備え、 前記排気絞り弁制御手段は、前記排気ガス温度に応じて
前記排気絞り弁を閉じ側に制御することを特徴とする請
求項1に記載の内燃機関の排気浄化装置。
3. An exhaust gas temperature detecting means for measuring or estimating an exhaust gas temperature near the exhaust throttle valve, wherein the exhaust throttle valve control means closes the exhaust throttle valve according to the exhaust gas temperature. The exhaust emission control device for an internal combustion engine according to claim 1, which is controlled.
【請求項4】 前記排気絞り弁制御手段は、前記還元剤
添加量の積算値または排気ガス温度の少なくともいずれ
か一方に応じて、前記排気絞り弁の開度および/または
閉じ時間を変更できることを特徴とする請求項1に記載
の内燃機関の排気浄化装置。
4. The exhaust throttle valve control means is capable of changing the opening degree and / or closing time of the exhaust throttle valve according to at least one of the integrated value of the reducing agent addition amount and the exhaust gas temperature. The exhaust emission control device for an internal combustion engine according to claim 1, characterized in that
【請求項5】 前記排気絞り弁制御手段は前記排気絞り
弁の上流と下流の差圧を測定する差圧センサを備え、前
記差圧センサにより前記差圧が一定になるように前記排
気絞り弁を制御することを特徴とする請求項1から4の
何れかに記載の内燃機関の排気浄化装置。
5. The exhaust throttle valve control means includes a differential pressure sensor for measuring a differential pressure between an upstream side and a downstream side of the exhaust throttle valve, and the exhaust throttle valve so that the differential pressure becomes constant by the differential pressure sensor. The exhaust gas purification device for an internal combustion engine according to any one of claims 1 to 4, wherein
JP2002072674A 2002-03-15 2002-03-15 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3849553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002072674A JP3849553B2 (en) 2002-03-15 2002-03-15 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002072674A JP3849553B2 (en) 2002-03-15 2002-03-15 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003269147A true JP2003269147A (en) 2003-09-25
JP3849553B2 JP3849553B2 (en) 2006-11-22

Family

ID=29202607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002072674A Expired - Fee Related JP3849553B2 (en) 2002-03-15 2002-03-15 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3849553B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233906A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008138621A (en) * 2006-12-04 2008-06-19 Toyota Motor Corp Exhaust gas throttle valve failure diagnosis device of internal combustion engine
JP2009257190A (en) * 2008-04-16 2009-11-05 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2010101237A (en) * 2008-10-23 2010-05-06 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2010150941A (en) * 2008-12-24 2010-07-08 Ud Trucks Corp Exhaust emission control device
US7895830B2 (en) 2006-07-03 2011-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine and exhaust gas purification method therefor
US7934369B2 (en) 2006-06-21 2011-05-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
JP2013241860A (en) * 2012-05-18 2013-12-05 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
WO2016148205A1 (en) * 2015-03-18 2016-09-22 いすゞ自動車株式会社 Exhaust purification system
WO2016148250A1 (en) * 2015-03-18 2016-09-22 いすゞ自動車株式会社 Exhaust purification system
JP2020012424A (en) * 2018-07-19 2020-01-23 株式会社Subaru Vehicular exhaust emission control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233906A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US7934369B2 (en) 2006-06-21 2011-05-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
US7895830B2 (en) 2006-07-03 2011-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine and exhaust gas purification method therefor
JP2008138621A (en) * 2006-12-04 2008-06-19 Toyota Motor Corp Exhaust gas throttle valve failure diagnosis device of internal combustion engine
JP2009257190A (en) * 2008-04-16 2009-11-05 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2010101237A (en) * 2008-10-23 2010-05-06 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2010150941A (en) * 2008-12-24 2010-07-08 Ud Trucks Corp Exhaust emission control device
JP2013241860A (en) * 2012-05-18 2013-12-05 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
WO2016148205A1 (en) * 2015-03-18 2016-09-22 いすゞ自動車株式会社 Exhaust purification system
WO2016148250A1 (en) * 2015-03-18 2016-09-22 いすゞ自動車株式会社 Exhaust purification system
US10052587B2 (en) 2015-03-18 2018-08-21 Isuzu Motors Limited Exhaust purification system
US10480437B2 (en) 2015-03-18 2019-11-19 Isuzu Motors Limited Exhaust purification system
JP2020012424A (en) * 2018-07-19 2020-01-23 株式会社Subaru Vehicular exhaust emission control device
JP7169106B2 (en) 2018-07-19 2022-11-10 株式会社Subaru Exhaust gas purification device for vehicles

Also Published As

Publication number Publication date
JP3849553B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
EP1793099B1 (en) Method of exhaust gas purification and exhaust gas purification system
JP4304539B2 (en) NOx purification system control method and NOx purification system
JP3861746B2 (en) Exhaust gas purification device for internal combustion engine
EP1788212B1 (en) Guide structure and exhaust emission control device
JP2005155374A (en) Exhaust emission control method and exhaust emission control system
JP2006316757A (en) Exhaust emission control method and exhaust emission control system
JP2010112345A (en) Exhaust emission control device
WO2007123011A1 (en) Exhaust gas purification method and exhaust gas purification system
JP2004218475A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP2004239218A (en) Exhaust gas purging system of internal combustion engine
JP2003314255A (en) Exhaust emission control device for internal combustion engine
JP2007255342A (en) METHOD OF CONTROLLING NOx EMISSION CONTROL SYSTEM AND NOx EMISSION CONTROL SYSTEM
JP2003269147A (en) Exhaust emission control device for internal combustion engine
JP2003269146A (en) Exhaust emission control device for internal combustion engine
JP3800080B2 (en) Exhaust gas purification device for internal combustion engine
JP2009174445A (en) Exhaust emission control device for internal combustion engine
JP3826824B2 (en) Exhaust gas purification apparatus for internal combustion engine and catalyst function management method
JP2002295298A (en) Exhaust emission control system and its recovery control method
JP3861733B2 (en) Exhaust gas purification device for internal combustion engine
JP2003286878A (en) Device and method for exhaust-emission control of internal combustion engine
JP2010031730A (en) Exhaust emission control device for internal combustion engine
JP4626439B2 (en) Exhaust gas purification device for internal combustion engine
JP4341351B2 (en) How to recover the purification capacity of an exhaust purifier
JP2006233874A (en) Exhaust emission control device for internal combustion engine
JP2004036405A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R151 Written notification of patent or utility model registration

Ref document number: 3849553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees