JP4748396B2 - Exhaust throttle valve failure diagnosis device for internal combustion engine - Google Patents

Exhaust throttle valve failure diagnosis device for internal combustion engine Download PDF

Info

Publication number
JP4748396B2
JP4748396B2 JP2006327017A JP2006327017A JP4748396B2 JP 4748396 B2 JP4748396 B2 JP 4748396B2 JP 2006327017 A JP2006327017 A JP 2006327017A JP 2006327017 A JP2006327017 A JP 2006327017A JP 4748396 B2 JP4748396 B2 JP 4748396B2
Authority
JP
Japan
Prior art keywords
throttle valve
exhaust throttle
exhaust
pressure
reference pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006327017A
Other languages
Japanese (ja)
Other versions
JP2008138621A (en
Inventor
大介 柴田
裕 澤田
圭輔 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006327017A priority Critical patent/JP4748396B2/en
Publication of JP2008138621A publication Critical patent/JP2008138621A/en
Application granted granted Critical
Publication of JP4748396B2 publication Critical patent/JP4748396B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、内燃機関の排気絞り弁故障診断装置、特に、排気通路に排気浄化フィルタを備えると共に、その上流に配設された排気絞り弁を備える内燃機関の排気絞り弁故障診断装置に関する。   The present invention relates to an exhaust throttle valve failure diagnosis device for an internal combustion engine, and more particularly to an exhaust throttle valve failure diagnosis device for an internal combustion engine that includes an exhaust purification filter in an exhaust passage and an exhaust throttle valve disposed upstream thereof.

一般に、内燃機関、特にディーゼルエンジンにおいては、排気中に含まれる粒子状物質(パティキュレートマター、以下、PMとも称す)の除去が重要な課題となっている。このため大気中に粒子状物質が放出されないように内燃機関の排気系に粒子状物質の捕集を行う排気浄化フィルタ(例えば、ディーゼルパティキュレートフィルタ、以下、DPFとも称す)を設ける技術が存在する。   In general, in internal combustion engines, particularly diesel engines, removal of particulate matter (particulate matter, hereinafter also referred to as PM) contained in exhaust gas is an important issue. For this reason, there is a technique for providing an exhaust purification filter (for example, diesel particulate filter, hereinafter also referred to as DPF) for collecting particulate matter in the exhaust system of the internal combustion engine so that particulate matter is not released into the atmosphere. .

また、内燃機関の排気通路に排気絞り弁を設け、必要に応じて排気通路を流れる排気の流量を絞る技術が知られている。これは、排気の流量を絞って背圧を上昇させることにより排気温度を上昇させるために用いられている。すなわち、排気系に設けられた排気浄化用触媒の早期暖機やPMを捕集するDPFの再生等のためである。   Further, a technique is known in which an exhaust throttle valve is provided in an exhaust passage of an internal combustion engine so that the flow rate of exhaust flowing through the exhaust passage is reduced as necessary. This is used to raise the exhaust gas temperature by reducing the flow rate of the exhaust gas and raising the back pressure. That is, for the purpose of early warming up of the exhaust gas purification catalyst provided in the exhaust system, regeneration of the DPF that collects PM, and the like.

このDPFでは、PMの堆積量が過大となるとフィルタに目詰まりを生じ、これに起因する出力低下により燃費の悪化を招いたり、フィルタの毀損を生じるおそれがある。そこで、このような目詰まりを判定する技術として、DPFの上下流の圧力差を差圧センサにより検出することにより目詰まりの有無を判定する技術が知られている。   In this DPF, if the amount of accumulated PM is excessive, the filter is clogged, and there is a possibility that the fuel consumption is deteriorated due to the output reduction resulting from this, or the filter is damaged. Therefore, as a technique for determining such clogging, a technique for determining the presence or absence of clogging by detecting a pressure difference between upstream and downstream of the DPF with a differential pressure sensor is known.

ところで、排気絞り弁は常に排気に曝されているために排気中の油分や未燃燃料成分等が付着しやすく、付着した成分により固着が生じ作動不能となる場合がある。排気絞り弁が開弁位置に固着すると排気温度上昇作用を奏させることができず、また、排気絞り弁が閉弁位置で固着すると、機関は排気背圧の高い状態で運転されることになり、機関出力の低下や加速性の悪化が継続的に生じるようになる。このため、排気絞り弁の異常(固着)の有無を確実に診断することが重要である。   By the way, since the exhaust throttle valve is always exposed to the exhaust, oil components in the exhaust, unburned fuel components, and the like are likely to adhere to the exhaust throttle valve. If the exhaust throttle valve sticks to the open position, the exhaust temperature rise action cannot be achieved, and if the exhaust throttle valve sticks to the closed position, the engine is operated with a high exhaust back pressure. The engine output decreases and the acceleration performance deteriorates continuously. For this reason, it is important to reliably diagnose whether or not the exhaust throttle valve is abnormal (fixed).

このような排気通路に排気絞り弁を設けた内燃機関において、排気絞り弁の上流側に温度センサまたは圧力センサを設置し、正常時と異常時とに生じる温度差または圧力差に基づき排気絞り弁の故障を検出する装置が知られている。   In such an internal combustion engine provided with an exhaust throttle valve in the exhaust passage, a temperature sensor or a pressure sensor is installed on the upstream side of the exhaust throttle valve, and the exhaust throttle valve is based on the temperature difference or pressure difference that occurs between normal and abnormal conditions. An apparatus for detecting a fault in the system is known.

また、例えば、特許文献1に記載の技術においては、排気絞り弁の上下流の差圧を検出する差圧センサが設けられており、排気絞り弁の開弁または閉弁操作を行い、この操作前後の圧力差の変化量に基づいて排気絞り弁の異常の有無を検出することも考えられる。   Further, for example, in the technique described in Patent Document 1, a differential pressure sensor that detects a differential pressure upstream and downstream of the exhaust throttle valve is provided, and the exhaust throttle valve is opened or closed. It may be possible to detect the presence or absence of an abnormality in the exhaust throttle valve based on the amount of change in the pressure difference between the front and rear.

特開2003−269147号公報JP 2003-269147 A

しかしながら、排気絞り弁の上流側に温度センサまたは圧力センサを設置したものにおいては、故障検出のために排気絞り弁専用のセンサを設けなければならないことから、コストアップの要因となり、また、温度センサの場合にはその上下流の温度差が小さいので故障を確実に診断するのが困難であるという問題があった。   However, in the case where a temperature sensor or pressure sensor is installed upstream of the exhaust throttle valve, a sensor dedicated to the exhaust throttle valve must be provided for failure detection. In this case, since the temperature difference between the upstream and downstream sides is small, there is a problem that it is difficult to reliably diagnose the failure.

また、特許文献1に記載の技術においても、排気絞り弁に関しての専用のセンサであり、コストアップの要因となるという問題があった。   Further, the technique described in Patent Document 1 is also a dedicated sensor for the exhaust throttle valve, which causes a problem of cost increase.

本発明はかかる事情に鑑みなされたもので、その目的は、コストアップを伴うことなく排気絞り弁の故障を診断することのできる内燃機関の排気絞り弁故障診断装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide an exhaust throttle valve failure diagnosis device for an internal combustion engine that can diagnose a failure of the exhaust throttle valve without increasing the cost.

上記目的を達成する本発明の一形態に係る内燃機関の排気絞り弁故障診断装置は、内燃機関の排気通路にそれぞれ設置された排気浄化フィルタおよび該排気浄化フィルタの上流の排気絞り弁と、前記排気浄化フィルタの上流側で前記排気絞り弁の下流側に連通された上流側導圧路および前記排気浄化フィルタの下流側に連通された下流側導圧路にそれぞれ連通して配置された差圧センサを含む差圧検出手段と、を備える内燃機関の排気浄化装置において、前記差圧センサに連通された上流側導圧路の連通を、第1の位置において前記排気浄化フィルタの上流側で前記排気絞り弁の下流側または第2の位置において前記排気絞り弁の上流側へと切替え可能な第1の連通切替え手段と、前記差圧センサに連通された下流側導圧路の連通を、第1の位置において前記排気浄化フィルタの下流側または第2の位置において大気へと切替え可能な第2の連通切替え手段と、前記排気絞り弁への指示開度および吸入空気量に対応した基準圧力を求める基準圧力取得手段と、所定時に、前記第1および第2の連通切替え手段を、それぞれ、第2の位置に切替え、前記差圧検出手段により得られる検出圧力と、前記基準圧力取得手段により得られる基準圧力との差に基づき、前記排気絞り弁が異常か正常かを診断する診断手段と、を備えることを特徴とする。   An exhaust throttle valve failure diagnosis device for an internal combustion engine according to an aspect of the present invention that achieves the above object, an exhaust purification filter installed in an exhaust passage of the internal combustion engine, an exhaust throttle valve upstream of the exhaust purification filter, Differential pressure disposed in communication with an upstream pressure guiding path communicating with the downstream side of the exhaust throttle valve and a downstream pressure guiding path communicated with the downstream side of the exhaust purification filter on the upstream side of the exhaust purification filter An exhaust purification device for an internal combustion engine comprising a differential pressure detecting means including a sensor, wherein the upstream side pressure guiding path communicated with the differential pressure sensor is communicated with the upstream side of the exhaust purification filter at a first position. First communication switching means capable of switching to the upstream side of the exhaust throttle valve at the downstream side or the second position of the exhaust throttle valve, and the communication of the downstream side pressure guiding path communicated with the differential pressure sensor, 1's And a second communication switching means capable of switching to the atmosphere downstream of the exhaust purification filter or at a second position, and a reference for obtaining a reference pressure corresponding to an indicated opening to the exhaust throttle valve and an intake air amount The pressure acquisition means, and at a predetermined time, the first and second communication switching means are respectively switched to the second position, the detected pressure obtained by the differential pressure detection means, and the reference obtained by the reference pressure acquisition means Diagnostic means for diagnosing whether the exhaust throttle valve is abnormal or normal based on a difference with pressure.

ここで、前記診断手段は、前記基準圧力と前記検出圧力との差が所定値の絶対値未満のときは、前記排気絞り弁は正常であると診断することを特徴とする。   Here, the diagnostic means diagnoses that the exhaust throttle valve is normal when the difference between the reference pressure and the detected pressure is less than an absolute value of a predetermined value.

また、前記診断手段は、前記基準圧力と前記検出圧力との差が正で、所定値の絶対値を越えるときは、前記排気絞り弁を所定角度閉作動させる指示を発し、さらに、前記差圧検出手段により得られる検出圧力と、前記基準圧力取得手段により得られる基準圧力との差に基づき、前記排気絞り弁が開固着か否かを診断することを特徴とする。   When the difference between the reference pressure and the detected pressure is positive and exceeds an absolute value of a predetermined value, the diagnostic means issues an instruction to close the exhaust throttle valve by a predetermined angle, and further, the differential pressure Whether the exhaust throttle valve is stuck open is diagnosed based on a difference between a detection pressure obtained by the detection means and a reference pressure obtained by the reference pressure acquisition means.

さらに、前記診断手段は、前記検出圧力と前記基準圧力との差が負で、所定値の絶対値を越えるときは、前記排気絞り弁を所定角度開作動させる指示を発し、さらに、前記差圧検出手段により得られる検出圧力と、前記基準圧力取得手段により得られる基準圧力との差に基づき、前記排気絞り弁が閉固着か否かを診断することを特徴とする。   Further, when the difference between the detected pressure and the reference pressure is negative and exceeds an absolute value of a predetermined value, the diagnostic means issues an instruction to open the exhaust throttle valve at a predetermined angle, and further, the differential pressure Whether or not the exhaust throttle valve is closed and stuck is diagnosed based on a difference between a detection pressure obtained by the detection means and a reference pressure obtained by the reference pressure acquisition means.

さらに、前記所定時は、車両の減速状態であることが好ましい。   Furthermore, it is preferable that the predetermined time is a deceleration state of the vehicle.

上記本発明の一形態に係る内燃機関の排気絞り弁故障診断装置によれば、診断手段により、所定時に、第1の連通切替え手段および第2の連通切替え手段が、それぞれ、第2の位置に切替えられ、差圧センサに連通された上流側導圧路の連通が排気絞り弁の上流側へ、および、差圧センサに連通された下流側導圧路の連通が大気へと切替えられる。そして、上流側導圧路および下流側導圧路にそれぞれ連通して配置された差圧センサを含む差圧検出手段により排気絞り弁の上流側と大気間の圧力が検出される。同時に、基準圧力取得手段により排気絞り弁の指示開度および吸入空気量に対応した基準圧力が求められ、上記の検出圧力と基準圧力との差に基づき、前記排気絞り弁が異常か正常かが診断される。すなわち、両者の差が所定値を超える程、乖離しているときは異常と、また、それ以外のときは正常と診断されるのである。かくて、排気浄化フィルタ用の差圧センサを用いることにより、コストアップを伴うことなく排気絞り弁の故障診断ができる。   According to the exhaust throttle valve failure diagnosis device for an internal combustion engine according to one aspect of the present invention, the first communication switching unit and the second communication switching unit are respectively set to the second position by the diagnostic unit at a predetermined time. The communication of the upstream pressure guiding path communicated with the differential pressure sensor is switched to the upstream side of the exhaust throttle valve, and the communication of the downstream pressure guiding path communicated to the differential pressure sensor is switched to the atmosphere. Then, the pressure between the upstream side of the exhaust throttle valve and the atmosphere is detected by a differential pressure detecting means including a differential pressure sensor arranged in communication with the upstream side pressure guiding path and the downstream side pressure guiding path. At the same time, the reference pressure obtaining means obtains a reference pressure corresponding to the indicated opening of the exhaust throttle valve and the intake air amount, and based on the difference between the detected pressure and the reference pressure, whether the exhaust throttle valve is abnormal or normal. Diagnosed. That is, when the difference between the two exceeds a predetermined value, it is diagnosed as abnormal when the difference is present, and normal otherwise. Thus, by using the differential pressure sensor for the exhaust purification filter, failure diagnosis of the exhaust throttle valve can be performed without increasing the cost.

ここで、前記診断手段が、前記基準圧力と前記検出圧力との差が所定値の絶対値未満のときは、前記排気絞り弁は正常であると診断する形態によれば、より確実に排気絞り弁の故障診断ができる。   Here, when the difference between the reference pressure and the detected pressure is less than an absolute value of the predetermined value, the diagnosis means diagnoses that the exhaust throttle valve is normal, and the exhaust throttle is more reliably performed. Valve failure diagnosis is possible.

また、前記診断手段が、前記基準圧力と前記検出圧力との差が正で、所定値の絶対値を越えるときは、前記排気絞り弁を所定角度閉作動させる指示を発し、さらに、前記差圧検出手段により得られる検出圧力と、前記基準圧力取得手段により得られる基準圧力との差に基づき、前記排気絞り弁が開固着か否かを診断する形態によれば、排気絞り弁が如何なる状態の固着によって故障しているのかをも診断することができる。   When the difference between the reference pressure and the detected pressure is positive and exceeds a predetermined absolute value, the diagnostic means issues an instruction to close the exhaust throttle valve by a predetermined angle, and further, the differential pressure According to the form of diagnosing whether or not the exhaust throttle valve is stuck open based on the difference between the detection pressure obtained by the detection means and the reference pressure obtained by the reference pressure acquisition means, the exhaust throttle valve is in any state. It is also possible to diagnose whether a failure has occurred due to sticking.

さらに、前記診断手段が、前記検出圧力と前記基準圧力との差が負で、所定値の絶対値を越えるときは、前記排気絞り弁を所定角度開作動させる指示を発し、さらに、前記差圧検出手段により得られる検出圧力と、前記基準圧力取得手段により得られる基準圧力との差に基づき、前記排気絞り弁が閉固着か否かを診断する形態によれば、上記と同様に、排気絞り弁が如何なる状態の固着によって故障しているのかをも診断することができる。   Further, when the difference between the detected pressure and the reference pressure is negative and exceeds an absolute value of a predetermined value, the diagnostic means issues an instruction to open the exhaust throttle valve at a predetermined angle, and further, the differential pressure According to the embodiment for diagnosing whether or not the exhaust throttle valve is closed and closed based on the difference between the detection pressure obtained by the detection means and the reference pressure obtained by the reference pressure acquisition means, the exhaust throttle It is also possible to diagnose what state the valve has failed due to sticking.

さらに、前記所定時が、車両の減速状態である形態によれば、排気絞り弁の故障診断に起因するエミッションの悪化を防止することができる。   Furthermore, according to the mode in which the predetermined time is the deceleration state of the vehicle, it is possible to prevent the deterioration of the emission due to the failure diagnosis of the exhaust throttle valve.

なお、本明細書の説明において、排気絞り弁の「閉固着」および「開固着」とは、排気絞り弁がその全閉状態および全開状態で移動不能にある状態、且つ、半開位置から閉側および開側で移動不能にある状態のみならず、これらの閉側および開側からのそれぞれの逆側への移動ないしは回動が作動指示通りに行われない状態をも含む意味で用いる。   In the description of the present specification, “closed sticking” and “open sticking” of the exhaust throttle valve means that the exhaust throttle valve is in a state where the exhaust throttle valve cannot move in the fully closed state and the fully opened state, and the closed side from the half-open position. In addition to the state incapable of moving on the open side, the term also includes a state in which the movement or rotation from the closed side and the open side to the opposite sides is not performed in accordance with the operation instruction.

以下、添付図面を用いて本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明を自動車用ディーゼルエンジンに適用した実施形態の概略構成を説明する模式図である。   FIG. 1 is a schematic diagram illustrating a schematic configuration of an embodiment in which the present invention is applied to an automobile diesel engine.

図1において、100はディーゼルエンジン本体、102はエンジン100の吸気通路、104は吸気通路102に設けられたサージタンク、106はサージタンク104と各気筒の吸気ポートとを接続する吸気枝管である。本実施形態では、吸気通路102には吸気通路102を流れる吸入空気の流量を絞る吸気絞り弁108、および吸気を冷却するインタクーラ110が設けられている。吸気絞り弁108はソレノイド、バキュームアクチュエータ等の適宜な形式のアクチュエータ108Aを備え、後述する電子制御ユニット(ECU)200からの制御信号に応じた開度をとる。本実施形態では、吸気絞り弁108は、例えば機関低回転時等に吸気圧力を低下させて、後述するEGR通路152を通ってサージタンク104に還流する排気(EGRガス)量を増大させるために用いられる。   In FIG. 1, 100 is a diesel engine body, 102 is an intake passage of the engine 100, 104 is a surge tank provided in the intake passage 102, and 106 is an intake branch pipe connecting the surge tank 104 and the intake port of each cylinder. . In the present embodiment, the intake passage 102 is provided with an intake throttle valve 108 that restricts the flow rate of intake air flowing through the intake passage 102 and an intercooler 110 that cools intake air. The intake throttle valve 108 includes an actuator 108A of an appropriate type such as a solenoid or a vacuum actuator, and takes an opening degree according to a control signal from an electronic control unit (ECU) 200 described later. In the present embodiment, the intake throttle valve 108 reduces the intake pressure, for example, at the time of low engine rotation, and increases the amount of exhaust gas (EGR gas) that returns to the surge tank 104 through the EGR passage 152 described later. Used.

図1に112で示すのは、吸気通路102の吸気入口近傍に設けられたエアフローメータである。本実施形態では、エアフローメータ112は熱線式流量計等のように、吸気通路102を流れる吸入空気の質量流量を測定可能な形式のものが使用されている。吸気通路102に流入した大気は、エアフローメータ112を通過した後、ターボチャージャ130のタービン130Tで駆動されるコンプレッサ130Cにより昇圧され、吸気通路102に設けられたインタクーラ110により冷却された後サージタンク104、枝管106を経て各気筒に吸入される。   In FIG. 1, an air flow meter 112 is provided near the intake inlet of the intake passage 102. In the present embodiment, the air flow meter 112 is of a type that can measure the mass flow rate of the intake air flowing through the intake passage 102, such as a hot-wire flow meter. After the air flowing into the intake passage 102 passes through the air flow meter 112, the air is pressurized by the compressor 130 </ b> C driven by the turbine 130 </ b> T of the turbocharger 130, cooled by the intercooler 110 provided in the intake passage 102, and then the surge tank 104. Then, it is sucked into each cylinder through the branch pipe 106.

図1に114で示すのは、各気筒内に燃料を直接に噴射する燃料噴射弁である。燃料噴射弁114は、高圧燃料を貯留する共通の蓄圧室(コモンレール)116に接続されている。機関100の燃料は高圧燃料ポンプ118により昇圧されてコモンレール116に供給され、コモンレール116から各燃料噴射弁114を介して直接各気筒内に噴射される。   Reference numeral 114 in FIG. 1 denotes a fuel injection valve that directly injects fuel into each cylinder. The fuel injection valve 114 is connected to a common pressure accumulation chamber (common rail) 116 that stores high-pressure fuel. The fuel of the engine 100 is boosted by a high-pressure fuel pump 118, supplied to the common rail 116, and injected directly into each cylinder from the common rail 116 via each fuel injection valve 114.

また、図1に120で示すのは各気筒の排気ポートと排気通路122とを接続する排気マニホルドであり、その後流に上述のターボチャージャ130が配置されている。ターボチャージャ130は排気通路122の排気により駆動される排気タービン130Tと、この排気タービン130Tにより駆動される吸気コンプレッサ130Cとを備えていること前述の通りである。   Further, reference numeral 120 in FIG. 1 is an exhaust manifold that connects the exhaust port of each cylinder and the exhaust passage 122, and the turbocharger 130 described above is disposed downstream thereof. As described above, the turbocharger 130 includes the exhaust turbine 130T driven by the exhaust gas in the exhaust passage 122 and the intake compressor 130C driven by the exhaust turbine 130T.

また、本実施形態では、ターボチャージャ130下流側の排気通路122に、触媒装置(例えば、酸化触媒または三元触媒)132が配置されると共に、その下流に排気通路122を流れる排気流量を制御するための排気絞り弁134が配置されている。排気絞り弁134は、吸気絞り弁108と同様なアクチュエータ134Aを備え、ECU200からの制御信号に応じて全開位置と所定の開度の閉弁位置と全閉位置とをとる。本実施形態では排気絞り弁134は、触媒装置132の早期活性化や後述するDPFの再生のために排気温度を上昇させる際に用いられる。そして、本実施形態では、排気絞り弁134の下流に上述のDPF136が配置されている。   Further, in the present embodiment, a catalyst device (for example, an oxidation catalyst or a three-way catalyst) 132 is disposed in the exhaust passage 122 on the downstream side of the turbocharger 130 and the exhaust flow rate flowing through the exhaust passage 122 is controlled downstream thereof. An exhaust throttle valve 134 is provided for this purpose. The exhaust throttle valve 134 includes an actuator 134A similar to the intake throttle valve 108, and takes a fully open position, a closed position with a predetermined opening degree, and a fully closed position in accordance with a control signal from the ECU 200. In the present embodiment, the exhaust throttle valve 134 is used when raising the exhaust temperature for early activation of the catalyst device 132 and regeneration of the DPF described later. In the present embodiment, the above-described DPF 136 is disposed downstream of the exhaust throttle valve 134.

さらに、本実施形態では、排気通路122に設置された排気絞り弁134の下流で且つDPF136の上流側に連通された第1の上流側導圧路137およびDPF136の下流側に連通された下流側導圧路139にそれぞれ連通して配置された差圧センサ138を備えている。そして、第1の上流側導圧路137にはその途中で排気絞り弁134の上流側に連通された第2の上流側導圧路140が合流され、この合流部には、差圧センサ138と排気絞り弁134の下流で且つDPF136の上流側とを連通状態に維持する第1の位置および差圧センサ138と排気絞り弁134の上流側とを連通させる第2の位置に不図示のアクチュエータにより切替え可能な第1の切替え弁142が設けられている。また、下流側導圧路139はその途中で分岐された大気連通路141に連通され、この分岐部には、差圧センサ138とDPF136の下流側とを連通状態に維持する第1の位置および差圧センサ138と大気連通路141とを連通させる第2の位置に、不図示のアクチュエータにより切替え可能な第2の切替え弁143が設けられている。   Furthermore, in the present embodiment, the first upstream pressure guiding path 137 communicated with the downstream side of the DPF 136 and the downstream side of the first upstream pressure guiding path 137 communicated with the upstream side of the DPF 136 downstream of the exhaust throttle valve 134 installed in the exhaust passage 122. A differential pressure sensor 138 is provided in communication with the pressure guiding path 139. Then, the second upstream pressure guiding path 140 connected to the upstream side of the exhaust throttle valve 134 is joined to the first upstream pressure guiding path 137 in the middle thereof, and the differential pressure sensor 138 is connected to this joining portion. And a second position where the differential pressure sensor 138 and the upstream side of the exhaust throttle valve 134 are communicated with each other, and a first position where the downstream side of the exhaust throttle valve 134 and the upstream side of the DPF 136 are in communication with each other. The 1st switching valve 142 which can be switched by is provided. Further, the downstream-side pressure guiding path 139 communicates with the atmospheric communication path 141 branched in the middle thereof, and a first position for maintaining the differential pressure sensor 138 and the downstream side of the DPF 136 in a communicating state is connected to the branched portion. A second switching valve 143 that can be switched by an actuator (not shown) is provided at a second position where the differential pressure sensor 138 communicates with the atmospheric communication path 141.

さらに、本実施形態ではエンジン排気の一部を吸気系に還流させるEGR装置150が設けられている。EGR装置150は、排気マニホルド120と吸気サージタンク104とを連通する前述のEGR通路152、およびEGR通路152に配置されたEGR制御弁(以下、EGR弁という)154、およびEGR弁154の上流側のEGR通路152に設けられたEGRクーラ156を備えている。EGR弁154は図示しないステッパモータ、ソレノイドアクチュエータ等のアクチュエータを備え、ECU200からの制御信号に応じた開度をとり、EGR通路152を通って吸気サージタンク104に還流されるEGRガス流量を制御する。なお、EGRガスは気筒から排出された高温の排気であるため、多量のEGRガスを吸気に還流させると吸気温度が上昇してしまい、エンジンの吸気体積効率が低下することになる。本実施形態では、これを防止するために、EGR弁154上流側のEGR通路152には水冷または空冷のEGRクーラ156が設けられている。本実施形態では、EGRクーラ156を用いて吸気系に還流するEGRガス温度を低下させることにより、エンジンの吸気体積効率の低下を抑制して比較的多量のEGRガスを還流させることが可能となっている。   Further, in the present embodiment, an EGR device 150 that recirculates part of the engine exhaust to the intake system is provided. The EGR device 150 includes the EGR passage 152 that connects the exhaust manifold 120 and the intake surge tank 104, an EGR control valve (hereinafter referred to as an EGR valve) 154 disposed in the EGR passage 152, and an upstream side of the EGR valve 154. The EGR cooler 156 provided in the EGR passage 152 is provided. The EGR valve 154 includes actuators such as stepper motors and solenoid actuators (not shown), takes an opening degree according to a control signal from the ECU 200, and controls an EGR gas flow rate recirculated to the intake surge tank 104 through the EGR passage 152. . Since the EGR gas is a high-temperature exhaust gas discharged from the cylinder, when a large amount of EGR gas is recirculated to the intake air, the intake air temperature rises, and the intake volume efficiency of the engine decreases. In the present embodiment, in order to prevent this, a water-cooled or air-cooled EGR cooler 156 is provided in the EGR passage 152 upstream of the EGR valve 154. In the present embodiment, by using the EGR cooler 156 to reduce the temperature of the EGR gas recirculated to the intake system, it is possible to recirculate a relatively large amount of EGR gas while suppressing a decrease in the intake volume efficiency of the engine. ing.

さらに、図1に200で示すのは、エンジン100の電子制御ユニット(ECU)である。本実施形態のECU200は、公知の構成のマイクロコンピュータとして構成され、CPU、RAM、ROM、入力ポート、出力ポートを双方向性バスで相互に接続した構成とされている。ECU200はエンジン100の燃料噴射制御、回転数制御等の基本制御を行うほか、本実施形態では後述するように、排気絞り弁134の故障診断を行なう。   Further, an electronic control unit (ECU) of the engine 100 is indicated by 200 in FIG. The ECU 200 according to the present embodiment is configured as a microcomputer having a known configuration, and is configured such that a CPU, a RAM, a ROM, an input port, and an output port are connected to each other via a bidirectional bus. The ECU 200 performs basic control such as fuel injection control and rotation speed control of the engine 100, and in this embodiment, performs failure diagnosis of the exhaust throttle valve 134 as described later.

これらの制御を行うため、ECU200の入力ポートには、エンジン100のクランク軸近傍に配置された回転数センサ160からエンジン回転数NEに対応する信号が入力されている他、エアフローメータ112からエンジン一回転当たりの吸入空気量Gnに相当する信号が、また、不図示のアクセルペダル近傍に配置されたアクセル開度センサ162から運転者のアクセルペダル踏み込み量(アクセル開度)に対応する信号とEGR弁154に配置されたEGR弁開度センサ164からEGR弁開度を表す信号等が、それぞれ入力されている。   In order to perform these controls, a signal corresponding to the engine rotational speed NE is input to the input port of the ECU 200 from the rotational speed sensor 160 disposed in the vicinity of the crankshaft of the engine 100, and the engine flow from the air flow meter 112 is A signal corresponding to the intake air amount Gn per rotation, a signal corresponding to the accelerator pedal depression amount (accelerator opening) of the driver from an accelerator opening sensor 162 arranged in the vicinity of an unillustrated accelerator pedal, and an EGR valve A signal indicating the EGR valve opening degree is input from an EGR valve opening degree sensor 164 arranged at 154.

ECU200の出力ポートは、図示しない燃料噴射回路を介してエンジン100の燃料噴射弁114に接続され、燃料噴射弁114からの燃料噴射量と燃料噴射時期とを制御している。また、ECU200の出力ポートは図示しない駆動回路を介してEGR弁154、吸気絞り弁108および排気絞り弁134のアクチュエータ108Aおよび134Aや第1および第2の切替え弁142,143のアクチュエータに接続され、それぞれの弁開度を制御したり、切替えている。   The output port of the ECU 200 is connected to the fuel injection valve 114 of the engine 100 via a fuel injection circuit (not shown), and controls the fuel injection amount from the fuel injection valve 114 and the fuel injection timing. Further, the output port of the ECU 200 is connected to the actuators 108A and 134A of the EGR valve 154, the intake throttle valve 108 and the exhaust throttle valve 134 and the actuators of the first and second switching valves 142 and 143 through a drive circuit (not shown). Each valve opening is controlled or switched.

前述したように、DPF136にはエンジン運転中排気中のPMが捕集され、徐々にDPF136のPM捕集量が増大する。本実施形態ではDPF136のPM捕集量が増大した場合には、排気絞り弁134を閉弁して機関吸気量を低下させ、排気温度を上昇させることによりDPF136の再生操作を行なう。   As described above, PM in the exhaust gas during engine operation is collected in the DPF 136, and the amount of PM collected by the DPF 136 gradually increases. In this embodiment, when the PM collection amount of the DPF 136 increases, the regeneration operation of the DPF 136 is performed by closing the exhaust throttle valve 134 to decrease the engine intake amount and increasing the exhaust temperature.

以下、上記構成になる本実施形態の排気絞り弁の故障診断の制御手順について図2のフローチャートを参照して説明する。なお、この故障診断ルーチンは所定の周期で実行される。   Hereinafter, a control procedure for failure diagnosis of the exhaust throttle valve of the present embodiment configured as described above will be described with reference to the flowchart of FIG. This failure diagnosis routine is executed at a predetermined cycle.

そこで、故障診断ルーチンがスタートすると、ステップS201において車両が減速状態にあるか否かが判定される。この車両が減速状態にあるか否かの判定は、本実施形態においては、アクセル開度センサ162により検出されるアクセル開度が0%であり、かつ、燃料噴射弁114から噴射される燃料量が0以下であるかにより行われ、これらの条件が満たされた車両の減速状態のときのみ次のステップS202に進む。換言すると、車両が減速状態になるとステップS202が実行される。車両の減速状態であれば、通常、燃料噴射弁114からの燃料噴射が停止されるので、排気絞り弁134の故障診断に起因するエミッションの悪化を防止することができるからである。   Therefore, when the failure diagnosis routine starts, it is determined in step S201 whether or not the vehicle is in a decelerating state. In this embodiment, it is determined whether or not the vehicle is in a deceleration state. In this embodiment, the accelerator opening detected by the accelerator opening sensor 162 is 0%, and the amount of fuel injected from the fuel injection valve 114 is determined. The process proceeds to the next step S202 only when the vehicle is in a deceleration state where these conditions are satisfied. In other words, step S202 is executed when the vehicle is decelerated. This is because the fuel injection from the fuel injection valve 114 is normally stopped when the vehicle is in a deceleration state, so that it is possible to prevent the emission from deteriorating due to the failure diagnosis of the exhaust throttle valve 134.

車両が減速状態になると、次のステップS202において、第1の切替え弁142を第1の位置に維持したまま、第2の切替え弁143が、差圧センサ138とDPF136の下流側とを連通状態に維持する第1の位置から、差圧センサ138と大気連通路141とを連通させる第2の位置に切替えられ、差圧センサ138の下流側導圧路139が大気に連通される。そして、次のステップS203では、第1の切替え弁142が、差圧センサ138と排気絞り弁134の下流で且つDPF136の上流側とを連通状態に維持する第1の位置から、差圧センサ138と排気絞り弁134の上流側とを連通させる第2の位置に切替えられる。そして、次のステップS204において、排気絞り弁134の上流側と大気とに連通されている差圧センサ138により、所定の開度θにある排気絞り弁134の上流側と大気との差圧が現状の検出圧力値Pθとして求められ記憶される。   When the vehicle is decelerated, in the next step S202, the second switching valve 143 communicates between the differential pressure sensor 138 and the downstream side of the DPF 136 while maintaining the first switching valve 142 at the first position. Is switched to the second position where the differential pressure sensor 138 and the atmospheric communication path 141 are communicated, and the downstream pressure guiding path 139 of the differential pressure sensor 138 is communicated with the atmosphere. In the next step S203, the differential pressure sensor 138 is moved from the first position where the first switching valve 142 maintains the downstream side of the differential pressure sensor 138 and the exhaust throttle valve 134 and the upstream side of the DPF 136 in communication. And the second position where the upstream side of the exhaust throttle valve 134 communicates. Then, in the next step S204, the differential pressure sensor 138 communicating with the upstream side of the exhaust throttle valve 134 and the atmosphere causes the differential pressure between the upstream side of the exhaust throttle valve 134 and the atmosphere at a predetermined opening degree θ. It is calculated | required and memorize | stored as the present detected pressure value P (theta).

さらに、次のステップS205においては、排気絞り弁134が上述の所定の開度θにあるときに本来的に発生する差圧が基準圧力値Pθrefとして求められる。この基準圧力値Pθrefは、本実施の形態では、次のようにして求められる。すなわち、排気絞り弁134の所定の開度θがECU200から排気絞り弁134のアクチュエータ134Aに送られている指令信号Sθに基づいて求められ、且つ、吸入空気量Gnがエアフローメータ112の検出信号に基づいて求められる。そして、これらの指令信号Sθおよび吸入空気量Gnをパラメータとして、ECU200のROMに予め実験等により求められて保管されているマップから、開度θにおける基準圧力値Pθrefが取得される。   Further, in the next step S205, the differential pressure that is inherently generated when the exhaust throttle valve 134 is at the predetermined opening degree θ is obtained as the reference pressure value Pθref. In the present embodiment, the reference pressure value Pθref is obtained as follows. That is, the predetermined opening degree θ of the exhaust throttle valve 134 is obtained based on the command signal Sθ sent from the ECU 200 to the actuator 134A of the exhaust throttle valve 134, and the intake air amount Gn is used as a detection signal of the air flow meter 112. Based on. Then, using these command signal Sθ and intake air amount Gn as parameters, a reference pressure value Pθref at the opening θ is obtained from a map that has been obtained and stored in advance in the ROM of ECU 200 through experiments or the like.

そして、ステップS206に進み、上のステップS205で求められた基準圧力値PθrefとステップS204で求められた検出圧力値Pθとの差、換言すると、基準圧力値との正側ないしは負側への乖離量±ΔPθ(=Pθref−Pθ)が算出される。そして、次のステップS207において、この基準圧力との正側ないしは負側への乖離量±ΔPθが所定値の絶対値|α|を超えているか否か、且つ、超えているときは正側または負側のいずれであるかが判定され、乖離量±ΔPθが所定値の絶対値|α|を超えていない、すなわち、「1」のときは、ステップS214およびステップS215に順に進み、排気絞り弁134は正常に機能しているとして、「開固着検出フラグ」および「閉固着検出フラグ」をそれぞれ「OFF」として、この診断ルーチンは終了される。   Then, the process proceeds to step S206, and the difference between the reference pressure value Pθref obtained in step S205 above and the detected pressure value Pθ obtained in step S204, in other words, the deviation from the reference pressure value to the positive side or the negative side. The quantity ± ΔPθ (= Pθref−Pθ) is calculated. In the next step S207, whether or not the deviation ± ΔPθ from the reference pressure to the positive side or the negative side exceeds a predetermined absolute value | α | It is determined which is the negative side, and when the deviation amount ± ΔPθ does not exceed the predetermined absolute value | α |, ie, “1”, the process proceeds to step S214 and step S215 in order, and the exhaust throttle valve Assuming that 134 is functioning normally, the “open sticking detection flag” and the “close sticking detection flag” are set to “OFF”, and this diagnosis routine is ended.

一方、正側への乖離量+ΔPθが所定値の絶対値|α|を超えているとき、すなわち、「2」のときは、排気絞り弁134の上述の所定の開度θを得るべく、ECU200から指令信号Sθが排気絞り弁134のアクチュエータ134Aに送られているにもかかわらず、排気絞り弁134はその所定の開度θよりも大きく開いている可能性があるので、ステップS208に進み、開き側で固着していないかが診断される。   On the other hand, when the deviation amount + ΔPθ to the positive side exceeds the absolute value | α | of the predetermined value, that is, “2”, the ECU 200 obtains the above-described predetermined opening degree θ of the exhaust throttle valve 134. Although the command signal Sθ is sent to the actuator 134A of the exhaust throttle valve 134, the exhaust throttle valve 134 may be opened larger than the predetermined opening θ, so the process proceeds to step S208. It is diagnosed whether it is stuck on the open side.

他方、負側への乖離量−ΔPθが所定値の絶対値|α|を超えているとき、換言すると、所定値−αを負側に超えているとき、すなわち、「3」のときは、排気絞り弁134の上述の所定の開度θを得るべく、ECU200から指令信号Sθが排気絞り弁134のアクチュエータ134Aに送られているにもかかわらず、排気絞り弁134はその所定の開度θよりも小さく開いている可能性があるので、後述するステップS216に進み、閉じ側で固着していないかが診断される。   On the other hand, when the deviation amount −ΔPθ to the negative side exceeds the absolute value | α | of the predetermined value, in other words, when the predetermined value −α exceeds the negative side, that is, “3”, Despite the command signal Sθ being sent from the ECU 200 to the actuator 134A of the exhaust throttle valve 134 in order to obtain the aforementioned predetermined opening degree θ of the exhaust throttle valve 134, the exhaust throttle valve 134 has its predetermined opening degree θ. Therefore, the process proceeds to step S216, which will be described later, and it is diagnosed whether it is not fixed on the closed side.

そこで、基準圧力との正側の乖離量+ΔPθが所定値αを超えているときに進むステップS208において、本実施形態では、排気絞り弁134を全閉作動させる全閉指令信号Scが排気絞り弁134のアクチュエータ134Aに送られる。そして、次のステップS209において、排気絞り弁134の上流側と大気とに連通されている差圧センサ138により、全閉指示され所定の開度にある排気絞り弁134の上流側と大気との現状の差圧が全閉検出圧力値Pθcとして求められ記憶される。   Therefore, in step S208 that proceeds when the positive deviation + ΔPθ from the reference pressure exceeds the predetermined value α, in the present embodiment, the fully closed command signal Sc for fully closing the exhaust throttle valve 134 is the exhaust throttle valve. 134 is sent to the actuator 134A. Then, in the next step S209, the differential pressure sensor 138 communicating with the upstream side of the exhaust throttle valve 134 and the atmosphere is instructed to fully close and the upstream side of the exhaust throttle valve 134 at a predetermined opening degree and the atmosphere. The current differential pressure is obtained and stored as the fully closed detection pressure value Pθc.

なお、本明細書の説明において、排気絞り弁134の「全閉」とは、排気通路122を流れる排気ガスの流通抵抗が最大になる最小開度状態を、また、排気絞り弁134の「全開」とは、排気通路122を流れる排気ガスの流通抵抗が最小になる最大開度状態をいう。   In the description of the present specification, “fully closed” of the exhaust throttle valve 134 means a minimum opening state in which the flow resistance of the exhaust gas flowing through the exhaust passage 122 is maximized, and “fully opened” of the exhaust throttle valve 134. "Means a maximum opening state in which the flow resistance of the exhaust gas flowing through the exhaust passage 122 is minimized.

そして、次のステップS210において、排気絞り弁134が上述の全閉の開度θcにあるときに本来的に発生する差圧が全閉基準圧力値Pθcrefとして求められる。この全閉基準圧力値Pθcrefは、前述の基準圧力値Pθrefの場合と同様に、排気絞り弁134のアクチュエータ134Aに送られている全閉指令信号Scおよびエアフローメータ112の検出信号に基づく吸入空気量Gnをパラメータとして、ECU200のROMに予め実験等により求められて保管されているマップから、全閉の開度θcにおける全閉基準圧力値Pθcrefが取得される。   Then, in the next step S210, the differential pressure that is inherently generated when the exhaust throttle valve 134 is at the fully closed opening degree θc is obtained as the fully closed reference pressure value Pθcref. This fully closed reference pressure value Pθcref is the intake air amount based on the fully closed command signal Sc sent to the actuator 134A of the exhaust throttle valve 134 and the detection signal of the air flow meter 112, as in the case of the above-described reference pressure value Pθref. Using Gn as a parameter, the fully closed reference pressure value Pθcref at the fully closed opening θc is obtained from a map that is obtained and stored in advance in the ROM of the ECU 200 by experiments or the like.

そして、ステップS211に進み、上のステップS210で求められた全閉基準圧力値PθcrefとステップS209で求められた全閉検出圧力値Pθcとの差、換言すると、全閉基準圧力との乖離量ΔPθc(=Pθcref−Pθc)が算出される。そして、次のステップS212において、この全閉基準圧力との乖離量ΔPθcが所定値βを超えているか否かが判定され、超えているとき、すなわち、「Yes」のときはステップS213に進む。全閉基準圧力との乖離量ΔPθcが所定値βを超えているときは、上述の排気絞り弁134を全閉作動させる全閉指令信号Scが排気絞り弁134のアクチュエータ134Aに送られたにもかかわらず、排気絞り弁134が正常に閉作動していないことを意味するので、排気絞り弁134が開固着状態にあるとして、「開固着検出フラグ」を「ON」にして、この診断ルーチンを終了する。   In step S211, the difference between the fully closed reference pressure value Pθcref obtained in step S210 above and the fully closed detected pressure value Pθc obtained in step S209, in other words, the deviation ΔPθc from the fully closed reference pressure. (= Pθcref−Pθc) is calculated. Then, in the next step S212, it is determined whether or not the deviation amount ΔPθc from the fully closed reference pressure exceeds a predetermined value β. If it exceeds, that is, if “Yes”, the process proceeds to step S213. When the deviation amount ΔPθc from the fully closed reference pressure exceeds a predetermined value β, the fully closed command signal Sc for fully closing the exhaust throttle valve 134 is sent to the actuator 134A of the exhaust throttle valve 134. Regardless, this means that the exhaust throttle valve 134 is not normally closed. Therefore, assuming that the exhaust throttle valve 134 is in the open stuck state, the “open stuck detection flag” is set to “ON”, and this diagnostic routine is executed. finish.

なお、全閉基準圧力との乖離量ΔPθcが所定値βを超えていないときは、上述の排気絞り弁ス134を全閉作動させる全閉指令信号Scが排気絞り弁134のアクチュエータ134Aに送られ、排気絞り弁134が正常に閉作動した結果とみなせるので、排気絞り弁134は正常に機能しているとして、前述のステップS214およびステップS215に順に進み、「開固着検出フラグ」および「閉固着検出フラグ」をそれぞれ「OFF」として、この診断ルーチンは終了される。   When the deviation amount ΔPθc from the fully closed reference pressure does not exceed the predetermined value β, a fully closed command signal Sc for fully closing the exhaust throttle valve 134 is sent to the actuator 134A of the exhaust throttle valve 134. Since the exhaust throttle valve 134 can be regarded as a result of the normal closing operation, it is assumed that the exhaust throttle valve 134 is functioning normally, and the process proceeds to the above-described steps S214 and S215 in order. The “detection flag” is set to “OFF”, and the diagnosis routine is terminated.

他方、上述のステップS207における判定で、負側への乖離量−ΔPθが所定値の絶対値|α|を超えているとき、換言すると、所定値−αを負側に超えているとき、すなわち、「3」のときに進むステップS216において、本実施形態では、排気絞り弁134を全開作動させる全開指令信号Soが排気絞り弁134のアクチュエータ134Aに送られる。そして、次のステップS217において、排気絞り弁134の上流側と大気とに連通されている差圧センサ138により、全開指示され所定の開度にある排気絞り弁134の上流側と大気との現状の差圧が全開検出圧力値Pθoとして求められ記憶される。   On the other hand, in the determination in step S207 described above, when the deviation amount −ΔPθ to the negative side exceeds the absolute value | α | of the predetermined value, in other words, when the predetermined value −α exceeds the negative side, that is, In step S 216, which proceeds when “3”, in the present embodiment, a fully open command signal So for fully opening the exhaust throttle valve 134 is sent to the actuator 134 A of the exhaust throttle valve 134. In the next step S217, the upstream side of the exhaust throttle valve 134 that is instructed to be fully opened by the differential pressure sensor 138 communicating with the upstream side of the exhaust throttle valve 134 and the atmosphere, and the current state of the atmosphere. Is obtained and stored as a fully open detection pressure value Pθo.

そして、次のステップS218において、排気絞り弁134が上述の全開の開度θoにあるときに本来的に発生する差圧が全開基準圧力値Pθorefとして求められる。この全開基準圧力値Pθorefは、前述の基準圧力値Pθrefの場合と同様に、排気絞り弁134のアクチュエータ134Aに送られている全開指令信号Soおよびエアフローメータ112の検出信号に基づく吸入空気量Gnをパラメータとして、ECU200のROMに予め実験等により求められて保管されているマップから、全開の開度θoにおける全開基準圧力値Pθorefが取得される。   Then, in the next step S218, a differential pressure that is inherently generated when the exhaust throttle valve 134 is at the fully opened opening degree θo is obtained as the fully opened reference pressure value Pθoref. The full open reference pressure value Pθoref is the same as the reference pressure value Pθref described above, and is the intake air amount Gn based on the full open command signal So sent to the actuator 134A of the exhaust throttle valve 134 and the detection signal of the air flow meter 112. As a parameter, the fully open reference pressure value Pθoref at the fully open degree θo is acquired from a map that is obtained and stored in advance in the ROM of the ECU 200 by experiments or the like.

そして、ステップS219に進み、上のステップS218で求められた全開基準圧力値PθorefとステップS217で求められた全開検出圧力値Pθoとの差、換言すると、全開基準圧力との乖離量ΔPθo(=Pθoref−Pθo)が算出される。そして、次のステップS212において、この全開基準圧力との乖離量ΔPθoの絶対値が所定値γを超えているか否かが判定され、超えているとき、すなわち、「Yes」のときはステップS221に進む。全開基準圧力との乖離量ΔPθoが所定値γを超えているときは、上述の排気絞り弁134を全開作動させる全開指令信号Soが排気絞り弁134のアクチュエータ134Aに送られたにもかかわらず、排気絞り弁134が正常に開作動していないことを意味するので、排気絞り弁134が閉固着状態にあるとして、「閉固着検出フラグ」を「ON」にして、この診断ルーチンを終了する。   Then, the process proceeds to step S219, and the difference between the fully open reference pressure value Pθoref obtained in step S218 above and the fully open detected pressure value Pθo obtained in step S217, in other words, the deviation amount ΔPθo (= Pθoref from the fully open reference pressure). -Pθo) is calculated. Then, in the next step S212, it is determined whether or not the absolute value of the deviation amount ΔPθo from the fully open reference pressure exceeds a predetermined value γ. If it exceeds, ie, “Yes”, the process proceeds to step S221. move on. When the amount of deviation ΔPθo from the fully open reference pressure exceeds a predetermined value γ, the fully open command signal So for fully opening the exhaust throttle valve 134 is sent to the actuator 134A of the exhaust throttle valve 134. This means that the exhaust throttle valve 134 is not normally opened. Therefore, assuming that the exhaust throttle valve 134 is in the closed fixed state, the “closed fixed detection flag” is set to “ON”, and this diagnosis routine is ended.

なお、全開基準圧力との乖離量ΔPθoが所定値γを超えていないときは、上述の排気絞り弁134を全開作動させる全開指令信号Soが排気絞り弁134のアクチュエータ134Aに送られ、排気絞り弁134が正常に開作動した結果とみなせるので、排気絞り弁134は正常に機能しているとして、前述のステップS214およびステップS215に順に進み、「開固着検出フラグ」および「閉固着検出フラグ」をそれぞれ「OFF」として、この診断ルーチンは終了される。   When the deviation amount ΔPθo from the fully open reference pressure does not exceed the predetermined value γ, the fully open command signal So for fully opening the exhaust throttle valve 134 is sent to the actuator 134A of the exhaust throttle valve 134, and the exhaust throttle valve Since the exhaust throttle valve 134 is functioning normally, the process proceeds to the above-described steps S214 and S215 in order, and the “open sticking detection flag” and the “close sticking detection flag” are displayed. The diagnosis routine is terminated with “OFF” for each.

以上の説明から明らかなように,本実施の形態によれば、DPF136用の差圧センサ138を用いることにより、コストアップを伴うことなく排気絞り弁134の故障診断を行なうことができる。さらに、排気絞り弁134が如何なる状態の固着によって故障しているのかをも診断することができる。   As is clear from the above description, according to the present embodiment, the use of the differential pressure sensor 138 for the DPF 136 makes it possible to diagnose a failure of the exhaust throttle valve 134 without increasing the cost. Furthermore, it is possible to diagnose what state the exhaust throttle valve 134 is malfunctioning.

なお、上述の実施形態では、基準圧力との正側ないしは負側への乖離量±ΔPθが所定値の絶対値|α|を超えているときには、排気絞り弁134を全閉または全開作動させる全閉または全開指令信号ScまたはSoを発するようにしたが、これは必ずしも全閉または全開作動させる必要は無く、所定の角度だけ閉側または開側に作動させる指示を発するようにしてもよい。但し、排気絞り弁134を全閉または全開作動させる全閉または全開指令信号ScまたはSoを発するようにすれば、マップへの基準圧力の保管量が低減できると共に、制御が簡略化される。   In the above-described embodiment, when the deviation ± ΔPθ from the reference pressure to the positive side or the negative side exceeds the absolute value | α | of the predetermined value, the exhaust throttle valve 134 is fully closed or fully opened. Although the close or full open command signal Sc or So is generated, it is not always necessary to perform the full close or full open operation, and an instruction to operate the closed side or the open side by a predetermined angle may be issued. However, if the fully-closed or fully-open command signal Sc or So that causes the exhaust throttle valve 134 to be fully closed or fully opened is generated, the amount of reference pressure stored in the map can be reduced and the control is simplified.

本発明の一実施の形態が適用される内燃機関及び制御装置の概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of an internal combustion engine and a control device to which an embodiment of the present invention is applied. 同実施の形態にかかる異常診断処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the abnormality diagnosis process concerning the embodiment.

符号の説明Explanation of symbols

100 エンジン
102 吸気通路
112 エアフローメータ
122 排気通路
134 排気絞り弁
134A アクチュエータ
136 DPF
137 第1の上流側導圧路
138 差圧センサ
139 下流側導圧路
140 第2の上流側導圧路
141 大気連通路
142 第1の切替え弁
143 第2の切替え弁
200 ECU
DESCRIPTION OF SYMBOLS 100 Engine 102 Intake passage 112 Air flow meter 122 Exhaust passage 134 Exhaust throttle valve 134A Actuator 136 DPF
137 First upstream side pressure guiding path 138 Differential pressure sensor 139 Downstream side pressure guiding path 140 Second upstream side pressure guiding path 141 Atmospheric communication path 142 First switching valve 143 Second switching valve 200 ECU

Claims (5)

内燃機関の排気通路にそれぞれ設置された排気浄化フィルタおよび該排気浄化フィルタの上流の排気絞り弁と、前記排気浄化フィルタの上流側で前記排気絞り弁の下流側に連通された上流側導圧路および前記排気浄化フィルタの下流側に連通された下流側導圧路にそれぞれ連通して配置された差圧センサを含む差圧検出手段と、を備える内燃機関の排気浄化装置において、
前記差圧センサに連通された上流側導圧路の連通を、第1の位置において前記排気浄化フィルタの上流側で前記排気絞り弁の下流側または第2の位置において前記排気絞り弁の上流側へと切替え可能な第1の連通切替え手段と、
前記差圧センサに連通された下流側導圧路の連通を、第1の位置において前記排気浄化フィルタの下流側または第2の位置において大気へと切替え可能な第2の連通切替え手段と、
前記排気絞り弁への指示開度および吸入空気量に対応した基準圧力を求める基準圧力取得手段と、
所定時に、前記第1および第2の連通切替え手段を、それぞれ、第2の位置に切替え、前記差圧検出手段により得られる検出圧力と、前記基準圧力取得手段により得られる基準圧力との差の正側または負側への乖離量に基づき、前記排気絞り弁が異常か正常かを診断する診断手段と、
を備えることを特徴とする内燃機関の排気絞り弁故障診断装置。
An exhaust purification filter installed in an exhaust passage of the internal combustion engine, an exhaust throttle valve upstream of the exhaust purification filter, and an upstream pressure guiding path communicated upstream of the exhaust purification filter and downstream of the exhaust throttle valve And an exhaust gas purification apparatus for an internal combustion engine, comprising differential pressure detection means including differential pressure sensors respectively arranged in communication with downstream pressure guiding paths communicated with the downstream side of the exhaust purification filter.
The upstream side pressure guiding path communicated with the differential pressure sensor is connected upstream of the exhaust purification filter at the first position downstream of the exhaust throttle valve or upstream of the exhaust throttle valve at the second position. First communication switching means capable of switching to
A second communication switching means capable of switching the communication of the downstream pressure guiding path communicated with the differential pressure sensor to the atmosphere at the first position downstream of the exhaust purification filter or at the second position;
A reference pressure obtaining means for obtaining a reference pressure corresponding to the indicated opening and the intake air amount to the exhaust throttle valve;
At a predetermined time, the first and second communication switching means are respectively switched to the second position, and a detected pressure value obtained by the differential pressure detecting means and a reference pressure value obtained by the reference pressure acquiring means Diagnosing means for diagnosing whether the exhaust throttle valve is abnormal or normal based on a deviation amount of the difference to the positive side or the negative side ;
An exhaust throttle valve failure diagnosis device for an internal combustion engine, comprising:
前記診断手段は、前記基準圧力と前記検出圧力との差の正側または負側への乖離量の絶対値が所定値の絶対値未満のときは、前記排気絞り弁は正常であると診断することを特徴とする請求項1に記載の内燃機関の排気絞り弁故障診断装置。 The diagnostic means determines that the exhaust throttle valve is normal when the absolute value of the deviation amount to the positive side or the negative side of the difference between the reference pressure value and the detected pressure value is less than an absolute value of a predetermined value. The exhaust throttle valve failure diagnosis device for an internal combustion engine according to claim 1, wherein diagnosis is performed. 前記診断手段は、前記基準圧力と前記検出圧力との差の乖離量が正で、所定値の絶対値を越えるときは、前記排気絞り弁を所定角度閉作動させる指示を発し、さらに、前記差圧検出手段により得られる検出圧力と、前記基準圧力取得手段により得られる前記排気絞り弁の所定角度閉時の基準圧力との差に基づき、前記排気絞り弁が開固着か否かを診断することを特徴とする請求項1または2に記載の内燃機関の排気絞り弁故障診断装置。 When the difference between the reference pressure value and the detected pressure value is positive and exceeds a predetermined absolute value, the diagnostic means issues an instruction to close the exhaust throttle valve by a predetermined angle, and and the detected pressure value obtained by the differential pressure detection means, based on the difference between the reference pressure value of a predetermined angle closing of the exhaust throttle valve obtained by said reference pressure obtaining means, the exhaust throttle valve is whether open sticking or The exhaust throttle valve failure diagnosis device for an internal combustion engine according to claim 1 or 2, characterized in that 前記診断手段は、前記基準圧力値と前記検出圧力値との差の乖離量が負で、その絶対値が所定値の絶対値を越えるときは、前記排気絞り弁を所定角度開作動させる指示を発し、さらに、前記差圧検出手段により得られる検出圧力と、前記基準圧力取得手段により得られる前記排気絞り弁の所定角度開時の基準圧力との差に基づき、前記排気絞り弁が閉固着か否かを診断することを特徴とする請求項1ないし3のいずれかに記載の内燃機関の排気絞り弁故障診断装置。 The diagnostic means gives an instruction to open the exhaust throttle valve at a predetermined angle when the difference between the reference pressure value and the detected pressure value is negative and the absolute value exceeds a predetermined absolute value. issued, further comprising detecting the pressure value obtained by the differential pressure detection means, based on the difference between the reference pressure value at a predetermined angle to open the exhaust throttle valve obtained by said reference pressure obtaining means, the exhaust throttle valve is closed The exhaust throttle valve failure diagnosis device for an internal combustion engine according to any one of claims 1 to 3, characterized in that it is diagnosed whether or not it is stuck. 前記所定時は、車両の減速状態であることを特徴とする請求項1ないし4のいずれかに記載の内燃機関の排気絞り弁故障診断装置。   5. The exhaust throttle valve failure diagnosis apparatus for an internal combustion engine according to claim 1, wherein the predetermined time is a deceleration state of the vehicle.
JP2006327017A 2006-12-04 2006-12-04 Exhaust throttle valve failure diagnosis device for internal combustion engine Expired - Fee Related JP4748396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327017A JP4748396B2 (en) 2006-12-04 2006-12-04 Exhaust throttle valve failure diagnosis device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327017A JP4748396B2 (en) 2006-12-04 2006-12-04 Exhaust throttle valve failure diagnosis device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008138621A JP2008138621A (en) 2008-06-19
JP4748396B2 true JP4748396B2 (en) 2011-08-17

Family

ID=39600348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327017A Expired - Fee Related JP4748396B2 (en) 2006-12-04 2006-12-04 Exhaust throttle valve failure diagnosis device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4748396B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543725B2 (en) * 2009-04-30 2014-07-09 日野自動車株式会社 Exhaust purification device
GB2476964A (en) 2010-01-15 2011-07-20 Anatoly Verenchikov Electrostatic trap mass spectrometer
JP5847030B2 (en) * 2012-06-29 2016-01-20 愛三工業株式会社 Exhaust throttle valve control device and exhaust throttle valve control method
US10107222B2 (en) 2014-02-06 2018-10-23 Carrier Corporation Particulate filter test system and method
JP6901963B2 (en) * 2017-12-20 2021-07-14 株式会社クボタ engine
JP2019112953A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP6867278B2 (en) * 2017-12-20 2021-04-28 株式会社クボタ engine
CN117432533B (en) * 2023-12-18 2024-03-19 潍柴动力股份有限公司 Exhaust throttle valve control method, device, equipment and automobile

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257452A (en) * 1999-03-10 2000-09-19 Toyota Motor Corp Diagnostic system for exhaust valve of internal combustion engine
JP3463642B2 (en) * 2000-01-21 2003-11-05 トヨタ自動車株式会社 Exhaust throttle valve abnormality detector
JP3911408B2 (en) * 2001-11-27 2007-05-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3849553B2 (en) * 2002-03-15 2006-11-22 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2008138621A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4748396B2 (en) Exhaust throttle valve failure diagnosis device for internal combustion engine
US8336291B2 (en) Exhaust throttle valve diagnosing device and method
JP5196036B2 (en) Control device for internal combustion engine
EP2376759B1 (en) Diagnostic method and apparatus for an exhaust pressure regulator
JP6107677B2 (en) Abnormality diagnosis device and abnormality diagnosis method for variable valve mechanism
US6993908B2 (en) Failure detection apparatus for an internal combustion engine
JP2008051049A (en) Supercharger of engine
EP3569847B1 (en) Method for controlling internal combustion engine and device for controlling internal combustion engine
EP2674597A1 (en) Control device for internal combustion engine
JP2008128114A (en) Exhaust throttle valve failure diagnostic device for internal combustion engine
JP2018105244A (en) Control device for internal combustion engine and abnormality diagnosis system for control device for internal combustion engine
JP2008133779A (en) Diagnosis device for differential pressure sensor
JP2008240576A (en) Failure diagnosis device for turbocharging system
JP2013096372A (en) Control device of internal combustion engine with supercharger
JP5218669B2 (en) Control device for internal combustion engine
JP4941458B2 (en) Fault diagnosis device for internal combustion engine
JP3463642B2 (en) Exhaust throttle valve abnormality detector
JP4893383B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4760671B2 (en) Fault detection system for differential pressure sensor
JP4556800B2 (en) Engine back pressure control device
JP5332674B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4900004B2 (en) EGR system for internal combustion engine
JP2009121362A (en) Filter regeneration control device for internal combustion engine
JP4736978B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2014227844A (en) Controller of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110505

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees