JP2008133779A - Diagnosis device for differential pressure sensor - Google Patents

Diagnosis device for differential pressure sensor Download PDF

Info

Publication number
JP2008133779A
JP2008133779A JP2006320836A JP2006320836A JP2008133779A JP 2008133779 A JP2008133779 A JP 2008133779A JP 2006320836 A JP2006320836 A JP 2006320836A JP 2006320836 A JP2006320836 A JP 2006320836A JP 2008133779 A JP2008133779 A JP 2008133779A
Authority
JP
Japan
Prior art keywords
pressure sensor
differential pressure
exhaust
dpf
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006320836A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大介 柴田
Yutaka Sawada
裕 澤田
Keisuke Fukuoka
圭輔 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006320836A priority Critical patent/JP2008133779A/en
Publication of JP2008133779A publication Critical patent/JP2008133779A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diagnosis device for a differential pressure sensor capable of easily and accurately diagnosing the differential pressure sensor. <P>SOLUTION: An exhaust emission control device for an internal combustion engine is provided with DPF 136 installed in an exhaust passage 122 of the internal combustion engine; and the differential pressure sensor 138 arranged so as to be communicated with an upstream side pressure leading passage 137 communicated with an upstream side of the DPF 136 and a downstream side pressure leading passage 139 communicated with a downstream side of the DPF 136 respectively. In this case, the device is provided with a communication switching valve 142 capable of switching the communication of the downstream side pressure leading passage 139 communicated with the differential pressure sensor 138 to the downstream side of the DPF 136 or an atmosphere; a pressure sensor 144 installed in the upstream side of the DPF 136; and a diagnosis means for switching the communication switching valve to the atmosphere communication side and diagnosing whether the differential pressure sensor 138 is abnormal or normal based on comparison of the detection pressure by the differential pressure sensor 138 at that time with the detection pressure by the pressure sensor 144. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、差圧センサの診断装置、特に、内燃機関の排気系に設けられた排気浄化用フィルタの上下流での圧力差を検出する差圧センサの診断装置に関する。   The present invention relates to a differential pressure sensor diagnostic device, and more particularly to a differential pressure sensor diagnostic device that detects a pressure difference between upstream and downstream of an exhaust purification filter provided in an exhaust system of an internal combustion engine.

一般に、内燃機関、特にディーゼルエンジンにおいては、排気中に含まれる粒子状物質(パティキュレートマター、以下、PMと称す)の除去が重要な課題となっている。このため大気中に粒子状物質が放出されないように内燃機関の排気系に粒子状物質の捕集を行う排気浄化フィルタ(例えば、ディーゼルパティキュレートフィルタ、以下、DPFとも称す)を設ける技術が存在する。   In general, in an internal combustion engine, particularly a diesel engine, removal of particulate matter (particulate matter, hereinafter referred to as PM) contained in exhaust gas is an important issue. For this reason, there is a technique for providing an exhaust purification filter (for example, diesel particulate filter, hereinafter also referred to as DPF) for collecting particulate matter in the exhaust system of the internal combustion engine so that particulate matter is not released into the atmosphere. .

また、内燃機関の排気通路に排気絞り弁を設け、必要に応じて排気通路を流れる排気の流量を絞る技術が知られている。これは、排気の流量を絞って背圧を上昇させることにより排気温度を上昇させるために用いられている。すなわち、排気系に設けられた排気浄化用触媒の早期暖機やPMを捕集するDPFの再生等のためである。   Further, a technique is known in which an exhaust throttle valve is provided in an exhaust passage of an internal combustion engine so that the flow rate of exhaust flowing through the exhaust passage is reduced as necessary. This is used to raise the exhaust gas temperature by reducing the flow rate of the exhaust gas and raising the back pressure. That is, for the purpose of early warming up of the exhaust gas purification catalyst provided in the exhaust system, regeneration of the DPF that collects PM, and the like.

このDPFでは、PMの堆積量が過大となるとフィルタに目詰まりを生じ、これに起因する出力低下により燃費の悪化を招いたり、フィルタの毀損を生じるおそれがある。そこで、このような目詰まりを判定する技術として、DPFの上下流の圧力差を差圧センサにより検出することにより目詰まりの有無を判定する技術が知られている。   In this DPF, if the amount of accumulated PM is excessive, the filter is clogged, and there is a possibility that the fuel consumption is deteriorated due to the output reduction resulting from this, or the filter is damaged. Therefore, as a technique for determining such clogging, a technique for determining the presence or absence of clogging by detecting a pressure difference between upstream and downstream of the DPF with a differential pressure sensor is known.

ところで、このような差圧センサを用いてDPFの上下流の圧力差を検出した場合、かかるDPFの上下流の圧力差は、PM堆積量が同じであっても、DPFを通過する排気流量により変化することがある。例えば、自動車が比較的低速で走行する市街地走行中には排気流量が少なく、DPFの上下流の圧力差も小さくなる、一方、高速道路で高速走行中には排気流量が多く、DPFの上下流の圧力差も大きくなる。   By the way, when the pressure difference between the upstream and downstream of the DPF is detected using such a differential pressure sensor, the pressure difference between the upstream and downstream of the DPF depends on the exhaust flow rate passing through the DPF even if the PM accumulation amount is the same. May change. For example, the exhaust flow rate is small during driving in an urban area where a car runs at a relatively low speed, and the pressure difference between the upstream and downstream of the DPF is also small. The pressure difference also increases.

また、DPFの上下流の圧力差を検出する差圧センサが異常な出力、例えば、実際の圧力差に対して過大または過小な差圧信号を出力する場合には、PM堆積量の正しい判定ができず、DPFに対して適切な時期に再生処理を実行することができない。   In addition, when the differential pressure sensor that detects the pressure difference between the upstream and downstream of the DPF outputs an abnormal output, for example, a differential pressure signal that is too large or too small relative to the actual pressure difference, the PM deposition amount is correctly determined. The regeneration process cannot be executed at an appropriate time for the DPF.

これに対処して、特許文献1には、複数の差圧センサを設けることで相互に検出値を評価して差圧センサの異常を判断することや、内燃機関の運転状態に基づいてDPFに堆積したPMの堆積量を推定すると共に、この推定堆積量に基づいて、DPFの上下流での圧力差を推定し、この推定圧力差と、差圧センサの検出値に基づいて得られた実測圧力差とを比較することにより、差圧センサの異常を検出する技術が開示されている。   In response to this, in Patent Document 1, a plurality of differential pressure sensors are provided, and the detected values are mutually evaluated to determine abnormality of the differential pressure sensors, or the DPF is determined based on the operating state of the internal combustion engine. The accumulated amount of accumulated PM is estimated, the pressure difference between the upstream and downstream of the DPF is estimated based on the estimated accumulated amount, and the actual measurement obtained based on the estimated pressure difference and the detection value of the differential pressure sensor. A technique for detecting an abnormality of a differential pressure sensor by comparing with a pressure difference is disclosed.

特開2005−307880号公報JP 2005-307880 A

しかしながら、複数の差圧センサを設けることは、特許文献1でも指摘されているように、コストアップの要因となる。また、特許文献1に記載の技術は、内燃機関の運転状態に基づくPMの推定堆積量、さらに、この推定堆積量に基づくDPFの上下流での推定圧力差と、差圧センサの実測圧力差とを比較して、差圧センサの異常を検出するようにしているので、PMの推定堆積量を得るのに、運転状態の変化にきめ細かく対応した情報の取得が必要であり、複雑な制御を必要とする。さらに、この推定堆積量に対応する推定圧力差を得るにも多大な実験データに基づくマップ等を必要とするにもかかわらず、その診断精度に信頼性が乏しいという問題があった。   However, providing a plurality of differential pressure sensors causes a cost increase as pointed out in Patent Document 1. Further, the technique described in Patent Document 1 is based on the estimated accumulation amount of PM based on the operating state of the internal combustion engine, the estimated pressure difference between the upstream and downstream of the DPF based on the estimated accumulation amount, and the actually measured pressure difference of the differential pressure sensor. Therefore, in order to obtain the estimated accumulation amount of PM, it is necessary to acquire information that closely corresponds to changes in the operating state, and complicated control is performed. I need. Further, there is a problem that the diagnostic accuracy is not reliable, although a map based on a large amount of experimental data is required to obtain the estimated pressure difference corresponding to the estimated accumulation amount.

本発明はかかる事情に鑑みなされたもので、その目的は、簡単に精度よく差圧センサを診断することのできる差圧センサの診断装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a differential pressure sensor diagnosis apparatus that can easily and accurately diagnose a differential pressure sensor.

上記目的を達成する本発明の一形態に係る差圧センサの診断装置は、内燃機関の排気通路に設置された排気浄化フィルタと、該排気浄化フィルタの上流側に連通された上流側導圧路および該排気浄化フィルタの下流側に連通された下流側導圧路にそれぞれ連通して配置された差圧センサを含む差圧検出手段とを備える内燃機関の排気浄化装置において、前記差圧センサに連通された下流側導圧路の連通を、前記排気浄化フィルタの下流側または大気へと切替え可能な連通切替え手段と、前記排気浄化フィルタの上流側に設置された圧力センサを含む圧力検出手段と、所定時に、前記連通切替え手段を大気連通側に切替え、そのときの前記差圧検出手段による検出圧力と前記圧力検出手段による検出圧力との比較に基づき、前記差圧センサが異常か正常かを診断する診断手段と、を備えることを特徴とする。   An apparatus for diagnosing a differential pressure sensor according to an aspect of the present invention that achieves the above object includes an exhaust purification filter installed in an exhaust passage of an internal combustion engine, and an upstream pressure guiding path communicated upstream of the exhaust purification filter. And an exhaust gas purification apparatus for an internal combustion engine comprising differential pressure detection means including a differential pressure sensor arranged in communication with a downstream pressure guiding path communicated with a downstream side of the exhaust purification filter. A communication switching means capable of switching the communication of the downstream downstream pressure guiding path to the downstream side of the exhaust purification filter or the atmosphere; and a pressure detection means including a pressure sensor installed on the upstream side of the exhaust purification filter; The communication switching means is switched to the atmosphere communication side at a predetermined time, and the differential pressure sensor is different based on the comparison between the pressure detected by the differential pressure detection means and the pressure detected by the pressure detection means at that time. And diagnosis means for diagnosing whether normal, characterized in that it comprises a.

ここで、前記排気浄化フィルタの上流で且つ前記圧力センサの下流に排気絞り弁を備え、前記診断手段による診断の際には、前記排気絞り弁を全開作動させる排気絞り弁全開手段を備えることが好ましい。   Here, an exhaust throttle valve is provided upstream of the exhaust purification filter and downstream of the pressure sensor, and an exhaust throttle valve full opening means for fully opening the exhaust throttle valve is provided in the diagnosis by the diagnostic means. preferable.

上記本発明の一形態に係る差圧センサの診断装置においては、所定時に、差圧センサに連通された下流側導圧路の連通が連通切替え手段において大気連通側に切替えられると、差圧検出手段により上流側導圧路に連通された排気浄化フィルタの上流側の圧力と下流側導圧路が連通された大気圧との差圧、すなわち、排気浄化フィルタの上流側の圧力が絶対圧として検出される。同時に、排気浄化フィルタの上流側に設置された圧力センサを含む圧力検出手段により排気浄化フィルタの上流側の圧力が検出される。そして、これらの差圧検出手段による検出圧力と圧力検出手段による検出圧力とが比較され、差圧センサが異常か正常かが診断される。詳しくは、両者の差が所定値より小さいときは、差圧センサが正常に機能していると診断される。逆に、両者の差が所定値より大きいときは、差圧センサが正常に機能していない、すなわち、異常であると診断される。従って、上記一形態の構成によれば、絶対圧同士の比較で診断されるので、簡単に精度よく差圧センサを診断することができる。   In the differential pressure sensor diagnostic device according to the aspect of the present invention, when the communication of the downstream pressure guide path communicated with the differential pressure sensor is switched to the atmosphere communication side by the communication switching means at a predetermined time, the differential pressure detection is performed. The pressure difference between the upstream pressure of the exhaust purification filter communicated with the upstream pressure guiding path by the means and the atmospheric pressure communicated with the downstream pressure guiding path, that is, the upstream pressure of the exhaust purification filter is the absolute pressure. Detected. At the same time, the pressure on the upstream side of the exhaust purification filter is detected by pressure detection means including a pressure sensor installed on the upstream side of the exhaust purification filter. Then, the pressure detected by these differential pressure detecting means and the pressure detected by the pressure detecting means are compared to diagnose whether the differential pressure sensor is abnormal or normal. Specifically, when the difference between the two is smaller than a predetermined value, it is diagnosed that the differential pressure sensor is functioning normally. Conversely, when the difference between the two is greater than a predetermined value, it is diagnosed that the differential pressure sensor is not functioning normally, that is, is abnormal. Therefore, according to the configuration of the above embodiment, since the diagnosis is performed by comparing the absolute pressures, the differential pressure sensor can be easily and accurately diagnosed.

ここで、前記排気浄化フィルタの上流で且つ前記圧力センサの下流に排気絞り弁を備え、前記診断手段による診断の際には、前記排気絞り弁を全開作動させる排気絞り弁全開手段を備える形態によれば、排気絞り弁が存在したとしても、その上下流での圧力検出の障害とならない。   Here, an exhaust throttle valve is provided upstream of the exhaust purification filter and downstream of the pressure sensor, and an exhaust throttle valve full opening means for fully opening the exhaust throttle valve is provided in the diagnosis by the diagnostic means. Therefore, even if there is an exhaust throttle valve, it does not become an obstacle to pressure detection upstream and downstream.

以下、添付図面を用いて本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明を自動車用ディーゼルエンジンに適用した実施形態の概略構成を説明する模式図である。   FIG. 1 is a schematic diagram illustrating a schematic configuration of an embodiment in which the present invention is applied to an automobile diesel engine.

図1において、100はディーゼルエンジン本体、102はエンジン100の吸気通路、104は吸気通路102に設けられたサージタンク、106はサージタンク104と各気筒の吸気ポートとを接続する吸気枝管である。本実施形態では、吸気通路102には吸気通路102を流れる吸入空気の流量を絞る吸気絞り弁108、および吸気を冷却するインタクーラ110が設けられている。吸気絞り弁108はソレノイド、バキュームアクチュエータ等の適宜な形式のアクチュエータ108Aを備え、後述する電子制御ユニット(ECU)200からの制御信号に応じた開度をとる。本実施形態では、吸気絞り弁108は、例えば機関低回転時等に吸気圧力を低下させて、後述するEGR通路152を通ってサージタンク104に還流する排気(EGRガス)量を増大させるために用いられる。   In FIG. 1, 100 is a diesel engine body, 102 is an intake passage of the engine 100, 104 is a surge tank provided in the intake passage 102, and 106 is an intake branch pipe connecting the surge tank 104 and the intake port of each cylinder. . In the present embodiment, the intake passage 102 is provided with an intake throttle valve 108 that restricts the flow rate of intake air flowing through the intake passage 102 and an intercooler 110 that cools intake air. The intake throttle valve 108 includes an actuator 108A of an appropriate type such as a solenoid or a vacuum actuator, and takes an opening degree according to a control signal from an electronic control unit (ECU) 200 described later. In the present embodiment, the intake throttle valve 108 reduces the intake pressure, for example, at the time of low engine rotation, and increases the amount of exhaust gas (EGR gas) that returns to the surge tank 104 through the EGR passage 152 described later. Used.

図1に112で示すのは、吸気通路102の吸気入口近傍に設けられたエアフローメータである。本実施形態では、エアフローメータ112は熱線式流量計等のように、吸気通路102を流れる吸入空気の質量流量を測定可能な形式のものが使用されている。吸気通路102に流入した大気は、エアフローメータ112を通過した後、ターボチャージャ130のタービン130Tで駆動されるコンプレッサ130Cにより昇圧され、吸気通路102に設けられたインタクーラ110により冷却された後サージタンク104、枝管106を経て各気筒に吸入される。   In FIG. 1, an air flow meter 112 is provided near the intake inlet of the intake passage 102. In the present embodiment, the air flow meter 112 is of a type that can measure the mass flow rate of the intake air flowing through the intake passage 102, such as a hot-wire flow meter. After the air flowing into the intake passage 102 passes through the air flow meter 112, it is pressurized by the compressor 130C driven by the turbine 130T of the turbocharger 130, cooled by the intercooler 110 provided in the intake passage 102, and then the surge tank 104. Then, it is sucked into each cylinder through the branch pipe 106.

図1に114で示すのは、各気筒内に燃料を直接に噴射する燃料噴射弁である。燃料噴射弁114は、高圧燃料を貯留する共通の蓄圧室(コモンレール)116に接続されている。機関100の燃料は高圧燃料ポンプ118により昇圧されてコモンレール116に供給され、コモンレール116から各燃料噴射弁114を介して直接各気筒内に噴射される。   Reference numeral 114 in FIG. 1 denotes a fuel injection valve that directly injects fuel into each cylinder. The fuel injection valve 114 is connected to a common pressure accumulation chamber (common rail) 116 that stores high-pressure fuel. The fuel of the engine 100 is boosted by a high-pressure fuel pump 118, supplied to the common rail 116, and injected directly into each cylinder from the common rail 116 via each fuel injection valve 114.

また、図1に120で示すのは各気筒の排気ポートと排気通路122とを接続する排気マニホルドであり、その後流に上述のターボチャージャ130が配置されている。ターボチャージャ130は排気通路122の排気により駆動される排気タービン130Tと、この排気タービン130Tにより駆動される吸気コンプレッサ130Cとを備えていること前述の通りである。   Further, reference numeral 120 in FIG. 1 is an exhaust manifold that connects the exhaust port of each cylinder and the exhaust passage 122, and the turbocharger 130 described above is disposed downstream thereof. As described above, the turbocharger 130 includes the exhaust turbine 130T driven by the exhaust gas in the exhaust passage 122 and the intake compressor 130C driven by the exhaust turbine 130T.

また、本実施形態では、ターボチャージャ130下流側の排気通路122に、触媒装置(例えば、酸化触媒または三元触媒)132が配置されると共に、その下流に排気通路122を流れる排気流量を制御するための排気絞り弁134が配置されている。排気絞り弁134は、吸気絞り弁108と同様なアクチュエータ134Aを備え、ECU200からの制御信号に応じて全開位置と所定の開度の閉弁位置とをとる。本実施形態では排気絞り弁134は、触媒装置132の早期活性化や後述するDPFの再生のために排気温度を上昇させる際に用いられる。そして、本実施形態では、排気絞り弁134の下流に上述のDPF136が配置されている。   Further, in the present embodiment, a catalyst device (for example, an oxidation catalyst or a three-way catalyst) 132 is disposed in the exhaust passage 122 on the downstream side of the turbocharger 130 and the exhaust flow rate flowing through the exhaust passage 122 is controlled downstream thereof. An exhaust throttle valve 134 is provided for this purpose. The exhaust throttle valve 134 includes an actuator 134A similar to the intake throttle valve 108, and takes a fully open position and a closed position with a predetermined opening according to a control signal from the ECU 200. In the present embodiment, the exhaust throttle valve 134 is used when raising the exhaust temperature for early activation of the catalyst device 132 and regeneration of the DPF described later. In the present embodiment, the above-described DPF 136 is disposed downstream of the exhaust throttle valve 134.

さらに、本実施形態では、排気通路122に設置された排気絞り弁134の下流で且つDPF136の上流側に連通された上流側導圧路137およびDPF136の下流側に連通された下流側導圧路139にそれぞれ連通して配置された差圧センサ138を備えている。そして、下流側導圧路139はその途中で分岐された大気連通路140に連通され、この分岐部には、差圧センサ138とDPF136の下流側とを連通状態に維持する第1の位置および差圧センサ138と大気連通路140とを連通させる第2の位置に、不図示のアクチュエータにより切替え可能な切替え弁142が設けられている。   Further, in the present embodiment, the upstream side pressure guiding path 137 communicated with the downstream side of the DPF 136 and the upstream side pressure guiding path 137 communicated with the downstream side of the DPF 136 and the downstream side of the exhaust throttle valve 134 installed in the exhaust passage 122. 139 is provided with a differential pressure sensor 138 disposed in communication with each other. The downstream side pressure guiding path 139 communicates with the atmospheric communication path 140 branched in the middle thereof, and a first position for maintaining the differential pressure sensor 138 and the downstream side of the DPF 136 in a communicating state is connected to the branched portion. A switching valve 142 that can be switched by an actuator (not shown) is provided at a second position where the differential pressure sensor 138 communicates with the atmosphere communication path 140.

また、排気絞り弁134の上流側の排気通路122には圧力センサ144が設けられている。   A pressure sensor 144 is provided in the exhaust passage 122 upstream of the exhaust throttle valve 134.

さらに、本実施形態ではエンジン排気の一部を吸気系に還流させるEGR装置150が設けられている。EGR装置150は、排気マニホルド120と吸気サージタンク104とを連通する前述のEGR通路152、およびEGR通路152に配置されたEGR制御弁(以下、EGR弁という)154、およびEGR弁154の上流側のEGR通路152に設けられたEGRクーラ156を備えている。EGR弁154は図示しないステッパモータ、ソレノイドアクチュエータ等のアクチュエータを備え、ECU200からの制御信号に応じた開度をとり、EGR通路152を通って吸気サージタンク104に還流されるEGRガス流量を制御する。なお、EGRガスは気筒から排出された高温の排気であるため、多量のEGRガスを吸気に還流させると吸気温度が上昇してしまい、エンジンの吸気体積効率が低下することになる。本実施形態では、これを防止するために、EGR弁154上流側のEGR通路152には水冷または空冷のEGRクーラ156が設けられている。本実施形態では、EGRクーラ156を用いて吸気系に還流するEGRガス温度を低下させることにより、エンジンの吸気体積効率の低下を抑制して比較的多量のEGRガスを還流させることが可能となっている。   Further, in the present embodiment, an EGR device 150 that recirculates part of the engine exhaust to the intake system is provided. The EGR device 150 includes the EGR passage 152 that connects the exhaust manifold 120 and the intake surge tank 104, an EGR control valve (hereinafter referred to as an EGR valve) 154 disposed in the EGR passage 152, and an upstream side of the EGR valve 154. The EGR cooler 156 provided in the EGR passage 152 is provided. The EGR valve 154 includes actuators such as stepper motors and solenoid actuators (not shown), takes an opening degree according to a control signal from the ECU 200, and controls an EGR gas flow rate recirculated to the intake surge tank 104 through the EGR passage 152. . Since the EGR gas is a high-temperature exhaust gas discharged from the cylinder, when a large amount of EGR gas is recirculated to the intake air, the intake air temperature rises, and the intake volume efficiency of the engine decreases. In the present embodiment, in order to prevent this, a water-cooled or air-cooled EGR cooler 156 is provided in the EGR passage 152 upstream of the EGR valve 154. In the present embodiment, by using the EGR cooler 156 to reduce the temperature of the EGR gas recirculated to the intake system, it is possible to recirculate a relatively large amount of EGR gas while suppressing a decrease in the intake volume efficiency of the engine. ing.

さらに、図1に200で示すのは、エンジン100の電子制御ユニット(ECU)である。本実施形態のECU200は、公知の構成のマイクロコンピュータとして構成され、CPU、RAM、ROM、入力ポート、出力ポートを双方向性バスで相互に接続した構成とされている。ECU200はエンジン100の燃料噴射制御、回転数制御等の基本制御を行うほか、本実施形態では後述するように、差圧センサ138が正常に機能しているか否かの診断を行なう。   Further, an electronic control unit (ECU) of the engine 100 is indicated by 200 in FIG. The ECU 200 according to the present embodiment is configured as a microcomputer having a known configuration, and is configured such that a CPU, a RAM, a ROM, an input port, and an output port are connected to each other via a bidirectional bus. The ECU 200 performs basic control such as fuel injection control and rotation speed control of the engine 100, and in this embodiment, diagnoses whether or not the differential pressure sensor 138 is functioning normally, as will be described later.

これらの制御を行うため、ECU200の入力ポートには、エンジン100のクランク軸近傍に配置された回転数センサ160からエンジン回転数NEに対応する信号が入力されている他、エアフローメータ112からエンジン吸入空気量Gnに相当する信号が、また、不図示のアクセルペダル近傍に配置されたアクセル開度センサ162から運転者のアクセルペダル踏み込み量(アクセル開度)に対応する信号とEGR弁154に配置されたEGR弁開度センサ164からEGR弁開度を表す信号および差圧センサ138と圧力センサ144からの出力信号等が、それぞれ入力されている。   In order to perform these controls, a signal corresponding to the engine rotational speed NE is input to the input port of the ECU 200 from the rotational speed sensor 160 disposed in the vicinity of the crankshaft of the engine 100. A signal corresponding to the air amount Gn is also disposed in the EGR valve 154 and a signal corresponding to the accelerator pedal depression amount (accelerator opening) of the driver from an accelerator opening sensor 162 disposed in the vicinity of an unillustrated accelerator pedal. The EGR valve opening sensor 164 receives a signal representing the EGR valve opening, output signals from the differential pressure sensor 138 and the pressure sensor 144, and the like.

ECU200の出力ポートは、図示しない燃料噴射回路を介してエンジン100の燃料噴射弁114に接続され、燃料噴射弁114からの燃料噴射量と燃料噴射時期とを制御している。また、ECU200の出力ポートは図示しない駆動回路を介してEGR弁154、吸気絞り弁108、排気絞り弁134および切替え弁142のアクチュエータに接続され、それぞれの弁開度を制御している。   The output port of the ECU 200 is connected to the fuel injection valve 114 of the engine 100 via a fuel injection circuit (not shown), and controls the fuel injection amount from the fuel injection valve 114 and the fuel injection timing. Further, the output port of the ECU 200 is connected to the actuators of the EGR valve 154, the intake throttle valve 108, the exhaust throttle valve 134, and the switching valve 142 via a drive circuit (not shown) to control the respective valve openings.

前述したように、DPF136にはエンジン運転中排気中のPMが捕集され、徐々にDPF136のPM捕集量が増大する。本実施形態では、差圧センサ136によりDPF136のPM捕集量の増大が検出された場合には、排気絞り弁134を閉弁して機関吸気量を低下させ、排気温度を上昇させることによりDPF136の再生操作を行なうようにしている。   As described above, PM in the exhaust gas during engine operation is collected in the DPF 136, and the amount of PM collected by the DPF 136 gradually increases. In the present embodiment, when an increase in the amount of PM trapped by the DPF 136 is detected by the differential pressure sensor 136, the exhaust throttle valve 134 is closed to decrease the engine intake amount, and the exhaust temperature is increased to increase the DPF 136. The playback operation is performed.

ところで、差圧センサ136は排気絞り弁134の下流で且つDPF136の上流側に連通された上流側導圧路137およびDPF136の下流側に連通された下流側導圧路139にそれぞれ連通されている閉鎖系内に配置されており、DPF136の上下流の相対的圧力差は容易に検出可能であるが、絶対圧は検出できないので、DPF136へのPMの堆積による詰まりの程度を正しく反映していないときがある。このため、差圧センサ136は特性のずれが無く正しく機能しているか、換言すると、ラッショナリティが担保されているかを確実に診断することが重要である。   By the way, the differential pressure sensor 136 is communicated with the upstream pressure guiding path 137 communicated with the downstream side of the DPF 136 and the downstream pressure guiding path 139 communicated with the downstream side of the exhaust throttle valve 134 and the upstream side of the DPF 136. Located in a closed system, the relative pressure difference between the upstream and downstream of the DPF 136 can be easily detected, but the absolute pressure cannot be detected, so it does not correctly reflect the degree of clogging due to PM accumulation on the DPF 136. There is a time. For this reason, it is important to reliably diagnose whether the differential pressure sensor 136 is functioning correctly without any deviation in characteristics, in other words, whether the laterality is ensured.

以下、上記構成になる本実施形態の差圧センサ136の診断の処理手順について図2のフローチャートを参照して説明する。なお、この診断はエンジン100がスタートされてから停止されるまでの、いわゆる、ワントリップにおいて、例えば、エンジン100の暖機完了後の比較的早い時期に少なくとも一回ないしは所定の周期で数回実行されればよい。従って、診断が正常に完了したときは、診断完了フラグを立てることにより、ワントリップ中における無用な診断を避けるようにしてもよい。この診断の時期ないしは回数については、予めECU200におけるプログラムに設定され得る。   Hereinafter, the diagnostic processing procedure of the differential pressure sensor 136 of the present embodiment having the above-described configuration will be described with reference to the flowchart of FIG. Note that this diagnosis is executed at least once in a so-called one trip from when the engine 100 is started to when it is stopped, for example, at a relatively early time after completion of warm-up of the engine 100 or several times at a predetermined cycle. It only has to be done. Therefore, when diagnosis is completed normally, useless diagnosis during one trip may be avoided by setting a diagnosis completion flag. The timing or number of times of the diagnosis can be set in advance in a program in the ECU 200.

そこで、ECU200において設定された時期に診断がスタートすると、この診断ルーチンのステップS201において、排気絞り弁134が全開にされる。すなわち、通常走行状態で所定の開度に維持されていた場合には、この診断ルーチンの実行の際に、強制的に全開にする駆動指令がアクチュエータ134Aに対して送られるのである。   Therefore, when diagnosis starts at a time set in the ECU 200, the exhaust throttle valve 134 is fully opened in step S201 of this diagnosis routine. That is, when the predetermined opening degree is maintained in the normal traveling state, a drive command for forcibly opening it fully is sent to the actuator 134A when this diagnosis routine is executed.

さらに、次のステップS202において、下流側導圧路139の分岐部に設けられた切替え弁142が、差圧センサ138とDPF136の下流側とを連通状態に維持する第1の位置から、差圧センサ138と大気連通路140とを連通させる第2の位置に切替えられるべく、駆動指令が不図示のアクチュエータに対して送られる。   Furthermore, in the next step S202, the switching valve 142 provided at the branch portion of the downstream pressure guiding path 139 starts from the first position where the differential pressure sensor 138 and the downstream side of the DPF 136 are kept in communication with each other. A drive command is sent to an actuator (not shown) so as to be switched to the second position where the sensor 138 and the atmosphere communication path 140 communicate with each other.

そして、次のステップS203において、圧力検出手段としての圧力センサ144による、DPF136の上流側の出力圧力(P1)が検出され取得される。また、ステップS204において、差圧検出手段としての差圧センサ138による、DPF136の上流側の圧力と下流側導圧路139が連通された大気圧との出力差圧(P2)、すなわち、DPF136の上流側の圧力が絶対圧として検出され取得される。   Then, in the next step S203, the output pressure (P1) on the upstream side of the DPF 136 is detected and acquired by the pressure sensor 144 as pressure detecting means. In step S204, the output pressure difference (P2) between the upstream pressure of the DPF 136 and the atmospheric pressure with which the downstream pressure guiding path 139 is communicated by the differential pressure sensor 138 as a differential pressure detecting means, that is, the DPF 136 The upstream pressure is detected and acquired as an absolute pressure.

さらに、次のステップS205において、これらの圧力センサ144による出力圧力(P1)と差圧センサ138による出力差圧(P2)との差が所定の閾値αと比較され、差圧センサが異常か正常かが診断される。詳しくは、両者の差(P1−P2)が所定の閾値αより大きいときは、ステップS206に進み差圧センサ138が正常に機能していない、すなわち、異常であると診断される。切替え弁142が第2の位置に切替えられた状態では、圧力センサ144と差圧センサ138とは実質的に同一部位の絶対圧力を検出しているに他ならないから、これらに所定の閾値αより大きい差があるということは、出力が正しくないからである。一方、両者の差(P1−P2)が所定の閾値αより小さいときは、ステップS207に進み差圧センサ138が正常に機能していると診断される。   Further, in the next step S205, the difference between the output pressure (P1) from these pressure sensors 144 and the output differential pressure (P2) from the differential pressure sensor 138 is compared with a predetermined threshold value α, and the differential pressure sensor is abnormal or normal. Is diagnosed. Specifically, when the difference (P1−P2) between the two is larger than the predetermined threshold value α, the process proceeds to step S206, and it is diagnosed that the differential pressure sensor 138 is not functioning normally, that is, is abnormal. In the state where the switching valve 142 is switched to the second position, the pressure sensor 144 and the differential pressure sensor 138 are merely detecting the absolute pressure of the same part, and therefore, based on a predetermined threshold value α. A large difference is because the output is not correct. On the other hand, when the difference between the two (P1−P2) is smaller than the predetermined threshold value α, the process proceeds to step S207 and it is diagnosed that the differential pressure sensor 138 is functioning normally.

本発明に係る差圧センサの診断装置の実施形態の概略を示す模式図である。It is a schematic diagram which shows the outline of embodiment of the diagnostic apparatus of the differential pressure sensor which concerns on this invention. 本発明に係る差圧センサの診断装置の実施形態の診断処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the diagnostic processing procedure of embodiment of the diagnostic apparatus of the differential pressure sensor which concerns on this invention.

符号の説明Explanation of symbols

100 エンジン本体
122 排気通路
134 排気絞り弁
136 排気浄化フィルタ(DPF)
137 上流側導圧路
138 差圧センサ
139 下流側導圧路
140 大気連通路
142 切替え弁
144 圧力センサ
200 電子制御ユニット(ECU)
100 Engine Body 122 Exhaust Passage 134 Exhaust Throttle Valve 136 Exhaust Purification Filter (DPF)
137 Upstream side pressure guiding path 138 Differential pressure sensor 139 Downstream side pressure guiding path 140 Atmospheric communication path 142 Switching valve 144 Pressure sensor 200 Electronic control unit (ECU)

Claims (2)

内燃機関の排気通路に設置された排気浄化フィルタと、該排気浄化フィルタの上流側に連通された上流側導圧路および該排気浄化フィルタの下流側に連通された下流側導圧路にそれぞれ連通して配置された差圧センサを含む差圧検出手段とを備える内燃機関の排気浄化装置において、
前記差圧センサに連通された下流側導圧路の連通を、前記排気浄化フィルタの下流側または大気へと切替え可能な連通切替え手段と、
前記排気浄化フィルタの上流側に設置された圧力センサを含む圧力検出手段と、
所定時に、前記連通切替え手段を大気連通側に切替え、そのときの前記差圧検出手段による検出圧力と前記圧力検出手段による検出圧力との比較に基づき、前記差圧センサが異常か正常かを診断する診断手段と、
を備えることを特徴とする差圧センサの診断装置。
An exhaust purification filter installed in the exhaust passage of the internal combustion engine, an upstream pressure guiding path communicated with the upstream side of the exhaust purification filter, and a downstream pressure guiding path communicated with the downstream side of the exhaust purification filter An exhaust gas purification apparatus for an internal combustion engine, comprising: a differential pressure detecting means including a differential pressure sensor arranged in a
Communication switching means capable of switching the communication of the downstream pressure guiding path communicated with the differential pressure sensor to the downstream side of the exhaust purification filter or the atmosphere;
Pressure detecting means including a pressure sensor installed upstream of the exhaust purification filter;
At a predetermined time, the communication switching means is switched to the atmosphere communication side, and whether the differential pressure sensor is abnormal or normal is diagnosed based on a comparison between the detected pressure by the differential pressure detecting means and the detected pressure by the pressure detecting means at that time Diagnostic means to
A differential pressure sensor diagnostic apparatus comprising:
前記排気浄化フィルタの上流で且つ前記圧力センサの下流に排気絞り弁を備え、
前記診断手段による診断の際には、前記排気絞り弁を全開作動させる排気絞り弁全開手段を備えることを特徴とする請求項1に記載の差圧センサの診断装置。
An exhaust throttle valve upstream of the exhaust purification filter and downstream of the pressure sensor;
2. The differential pressure sensor diagnostic device according to claim 1, further comprising an exhaust throttle valve full opening means for fully opening the exhaust throttle valve when performing the diagnosis by the diagnostic means.
JP2006320836A 2006-11-28 2006-11-28 Diagnosis device for differential pressure sensor Pending JP2008133779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320836A JP2008133779A (en) 2006-11-28 2006-11-28 Diagnosis device for differential pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320836A JP2008133779A (en) 2006-11-28 2006-11-28 Diagnosis device for differential pressure sensor

Publications (1)

Publication Number Publication Date
JP2008133779A true JP2008133779A (en) 2008-06-12

Family

ID=39558796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320836A Pending JP2008133779A (en) 2006-11-28 2006-11-28 Diagnosis device for differential pressure sensor

Country Status (1)

Country Link
JP (1) JP2008133779A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170978A (en) * 2012-02-22 2013-09-02 Azbil Corp Method for diagnosing abnormality of differential pressure-pressure composite sensor
JP2013170979A (en) * 2012-02-22 2013-09-02 Azbil Corp Method of determining replacement period of differential pressure-pressure composite sensor
JP2013190295A (en) * 2012-03-13 2013-09-26 Mitsubishi Heavy Ind Ltd Pressure measuring instrument and control system
JP2013234643A (en) * 2012-05-11 2013-11-21 Denso Corp Diagnosis method
JP2013234642A (en) * 2012-05-11 2013-11-21 Denso Corp Exhaust gas purifying system for internal combustion engine
JP2019112953A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
CN110160555A (en) * 2019-05-17 2019-08-23 陕西飞机工业(集团)有限公司 A kind of aircraft differential pressure pickup detection device
DE102011003740B4 (en) 2011-02-08 2022-10-13 Robert Bosch Gmbh Method and device for monitoring a differential pressure sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272419A (en) * 1991-02-26 1992-09-29 Toyota Motor Corp Filter regeneration controlling device for internal combustion engine
JPH0559931A (en) * 1991-09-03 1993-03-09 Nissan Motor Co Ltd Exhaust purifying device of diesel engine
JP2003214146A (en) * 2002-01-23 2003-07-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005023884A (en) * 2003-07-04 2005-01-27 Isuzu Motors Ltd Dpf clogging detection method and exhaust emission control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272419A (en) * 1991-02-26 1992-09-29 Toyota Motor Corp Filter regeneration controlling device for internal combustion engine
JPH0559931A (en) * 1991-09-03 1993-03-09 Nissan Motor Co Ltd Exhaust purifying device of diesel engine
JP2003214146A (en) * 2002-01-23 2003-07-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005023884A (en) * 2003-07-04 2005-01-27 Isuzu Motors Ltd Dpf clogging detection method and exhaust emission control system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003740B4 (en) 2011-02-08 2022-10-13 Robert Bosch Gmbh Method and device for monitoring a differential pressure sensor
JP2013170978A (en) * 2012-02-22 2013-09-02 Azbil Corp Method for diagnosing abnormality of differential pressure-pressure composite sensor
JP2013170979A (en) * 2012-02-22 2013-09-02 Azbil Corp Method of determining replacement period of differential pressure-pressure composite sensor
JP2013190295A (en) * 2012-03-13 2013-09-26 Mitsubishi Heavy Ind Ltd Pressure measuring instrument and control system
JP2013234643A (en) * 2012-05-11 2013-11-21 Denso Corp Diagnosis method
JP2013234642A (en) * 2012-05-11 2013-11-21 Denso Corp Exhaust gas purifying system for internal combustion engine
US9074539B2 (en) 2012-05-11 2015-07-07 Denso Corporation Diagnosis method for determining the condition of an exhaust sensor
JP2019112953A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
CN110160555A (en) * 2019-05-17 2019-08-23 陕西飞机工业(集团)有限公司 A kind of aircraft differential pressure pickup detection device

Similar Documents

Publication Publication Date Title
JP5222715B2 (en) Sensor abnormality detection device
JP4415963B2 (en) Exhaust gas purification device for internal combustion engine
JP2008133779A (en) Diagnosis device for differential pressure sensor
US6993908B2 (en) Failure detection apparatus for an internal combustion engine
JP4748396B2 (en) Exhaust throttle valve failure diagnosis device for internal combustion engine
US6962145B2 (en) Failure detection apparatus for an internal combustion engine
US6842690B2 (en) Failure detection apparatus for an internal combustion engine
CN101490399A (en) Exhaust gas recirculation system of internal combustion engine
JP2008128114A (en) Exhaust throttle valve failure diagnostic device for internal combustion engine
JP2013096372A (en) Control device of internal combustion engine with supercharger
JP2006342720A (en) Abnormality diagnostic system of upstream intake pressure sensor
US8397700B2 (en) Abnormality diagnosis device for exhaust gas recirculation device
JP4941458B2 (en) Fault diagnosis device for internal combustion engine
JP3463642B2 (en) Exhaust throttle valve abnormality detector
JP4893383B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4760671B2 (en) Fault detection system for differential pressure sensor
JP4556800B2 (en) Engine back pressure control device
JP2010242617A (en) Abnormality detection system for internal combustion engine
WO2014188246A1 (en) Control apparatus and control method for internal combustion engine
JP2012122336A (en) Clogging determination device of air filter for internal combustion engine
JP2011094570A (en) Exhaust emission control device for internal combustion engine
JP2009270510A (en) Device and method for diagnosing abnormality of fuel system
JP4706977B2 (en) Deterioration diagnosis device for exhaust gas purification device of internal combustion engine
JP2010209826A (en) Failure diagnostic device for engine with supercharger
JP4919056B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419