JPH0559931A - Exhaust purifying device of diesel engine - Google Patents

Exhaust purifying device of diesel engine

Info

Publication number
JPH0559931A
JPH0559931A JP3222779A JP22277991A JPH0559931A JP H0559931 A JPH0559931 A JP H0559931A JP 3222779 A JP3222779 A JP 3222779A JP 22277991 A JP22277991 A JP 22277991A JP H0559931 A JPH0559931 A JP H0559931A
Authority
JP
Japan
Prior art keywords
exhaust
filter
regeneration
amount
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3222779A
Other languages
Japanese (ja)
Inventor
Takashi Fukuda
隆 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3222779A priority Critical patent/JPH0559931A/en
Publication of JPH0559931A publication Critical patent/JPH0559931A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To judge regeneration inferiority of a filter and eliminate exhaust particles remaining after regeneration process properly. CONSTITUTION:Respective cumulated amounts of exhaust particles after/before a filter is regenerated, are estimated by a cumulated amount estimating circuit 41. When regeneration inferiority is judged from the difference between both cumulated amounts by a regeneration condition detecting circuit 50, an exhaust throttle valve 11 and a bypass valve 19 are closed by an exhaust particle eliminating circuit 51. Then, the exhaust throttle valve 11 is opened/closed bit by bit, and high pressure exhaust is allowed to flow into a filter little by little to eliminate the exhaust particles forcibly. When failure of forcibly eliminate is judged by a failure judging circuit 53, exhaust is stopped flowing into the filter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気微粒子を捕集する
フィルタを備えた、ディーゼル機関の排気浄化装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust emission control device for a diesel engine equipped with a filter for collecting exhaust particulates.

【0002】[0002]

【従来の技術】ディーゼル機関の排気中にはカーボンな
どの排気微粒子が含有されており、この排気微粒子を排
気中から取り除く方法のひとつとして、機関の排気通路
にフィルタを設け、排気をこのフィルタに通過させて排
気微粒子を捕集する方法が、従来からよく知られてい
る。この場合、排気微粒子はフィルタの排気流入部付近
に付着して徐々に堆積していくが、その堆積量が増大す
ると、排気圧力が増大して機関性能に悪影響を及ぼすの
で、捕集した排気微粒子を燃焼などにより除去するフィ
ルタの再生処理を定期的に行う必要がある。
2. Description of the Related Art Exhaust particles such as carbon are contained in the exhaust gas of a diesel engine. As one of the methods for removing the exhaust particle from the exhaust gas, a filter is provided in the exhaust passage of the engine and the exhaust gas is filtered by this filter. Conventionally, a method of collecting exhaust particulate matter by passing it is well known. In this case, exhaust particles adhere to the vicinity of the exhaust gas inflow part of the filter and gradually accumulate, but if the amount of accumulation increases, the exhaust pressure increases and the engine performance is adversely affected. It is necessary to periodically perform a regeneration process of a filter that removes by burning or the like.

【0003】堆積量が増大したまま再生処理をしない
と、機関が高負荷、高回転領域に達したときに、排気圧
力が急激に上昇して堆積している排気微粒子が一度に急
激に離脱する、いわゆるブローオフ現象が発生する。急
激なブローオフが発生すると、大気中に放出される排気
中に多量の排気微粒子が含有されることになり、排気が
顕著な可視黒煙状態で排出されてしまうので、周囲に対
して悪影響を及ぼしてしまう恐れがある。また、急激な
ブローオフにより、排気圧力が急に低下して機関性能の
悪化を招き、これが機関への負担となり機関の耐久性に
おいても好ましくない。
If the regeneration process is not carried out with the accumulated amount increasing, when the engine reaches a high load and high speed region, the exhaust pressure rises sharply and the accumulated exhaust fine particles suddenly separate at once. The so-called blow-off phenomenon occurs. If a sudden blow-off occurs, a large amount of exhaust particulates will be contained in the exhaust gas released into the atmosphere, and the exhaust gas will be emitted in a noticeable visible black smoke state, which will adversely affect the surroundings. There is a risk that Further, due to the sudden blow-off, the exhaust pressure suddenly drops and the engine performance is deteriorated, which imposes a burden on the engine and is not preferable in terms of durability of the engine.

【0004】フィルタの再生処理としては、フィルタの
直前に設けた電気ヒータにより排気微粒子を燃焼させる
もの、あるいは燃料噴射弁から噴射された燃料に点火し
て排気微粒子を燃焼させるものなどがある(特開昭59
−20513号公報及び特開昭59−122721号公
報参照)。
As the filter regeneration processing, there is a method of burning exhaust particulates by an electric heater provided immediately before the filter, or a method of igniting fuel injected from a fuel injection valve to burn the exhaust particulates. Kaisho 59
-20513 and JP-A-59-122721).

【0005】[0005]

【発明が解決しようとする課題】ところで、フィルタに
捕集された排気微粒子の堆積量が増大してフィルタの再
生処理を行った場合、捕集された排気微粒子が常時完全
に燃焼するとは限らず、排気微粒子の堆積状態や成分及
び再生時の機関の運転状態等によっては、排気微粒子が
燃焼しきれず、フィルタに残留してしまう可能性があ
る。再生処理して燃焼せずにフィルタに残留する排気微
粒子が多量になると、前述したブローオフ現象が発生す
る要因となる。
By the way, when the amount of accumulated exhaust particulate matter collected on the filter increases and the filter is regenerated, the collected exhaust particulate matter is not always completely burned. However, the exhaust particulates may not be completely burned and may remain in the filter depending on the accumulation state and the components of the exhaust particulates and the operating state of the engine during regeneration. If a large amount of exhaust particulates remain in the filter without being burnt after the regeneration process, the blow-off phenomenon described above may occur.

【0006】本発明は、このような従来の課題を解決す
るためになされたもので、その目的とするところは、排
気微粒子のフィルタへの堆積量の過大化を防止し、フィ
ルタに堆積した排気微粒子の排気圧力の上昇による急激
な離脱を防止することにある。
The present invention has been made to solve such a conventional problem, and an object thereof is to prevent an excessive amount of exhaust particulates from being deposited on a filter and to prevent exhaust gas deposited on the filter. The purpose of this is to prevent rapid separation of the particles due to an increase in exhaust pressure.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1のディーゼル機関の排気浄化装置は、機関の
排気通路に設けられ排気中の排気微粒子を捕集するフィ
ルタと、このフィルタに捕集される排気微粒子の堆積量
を検出する堆積量検出手段と、この堆積量検出手段によ
り検出された堆積量が所定値以上となったとき、前記フ
ィルタに捕集された排気微粒子を燃焼させてフィルタの
再生を行う再生手段と、前記フィルタ上流の排気通路に
設けられフィルタへの排気の流入を阻止してフィルタ上
流の排気圧力を上昇させる排気圧力制御手段と、前記再
生手段による再生の前後において前記堆積量検出手段に
より検出される排気微粒子の堆積量に基づき排気微粒子
の燃焼量を求め、この燃焼量が所定値以下であるときフ
ィルタの再生不良と判断する再生状態判断手段と、この
再生状態判断手段がフィルタの再生不良と判断したと
き、前記排気圧力制御手段による排気流入阻止の動作・
解除を繰り返し行ってフィルタ上流の排気圧力を制御
し、フィルタに堆積した排気微粒子を排気圧力により徐
々に除去する排気微粒子除去手段とを有することを特徴
とするものである。
In order to achieve the above object, an exhaust emission control device for a diesel engine according to a first aspect of the present invention includes a filter provided in an exhaust passage of the engine for collecting exhaust particulates in exhaust gas, and the filter. A deposition amount detection means for detecting the deposition amount of the collected exhaust particulates, and when the deposition amount detected by the deposition amount detection means becomes a predetermined value or more, burns the exhaust particulates collected by the filter. Means for regenerating the filter, exhaust pressure control means for preventing exhaust gas from flowing into the filter and increasing exhaust pressure upstream of the filter, and regeneration means before and after regeneration by the regeneration means. In step 1, the combustion amount of the exhaust particulates is obtained based on the deposition amount of the exhaust particulates detected by the deposition amount detecting means. A reproduction state determination means for determining for, when the reproduction state determination means determines that the filter aplastic, behavior-exhaust inlet blocked by the exhaust pressure control means
It is characterized in that it has an exhaust particulate removal means for controlling the exhaust pressure upstream of the filter by repeating the release and gradually removing the exhaust particulate accumulated on the filter by the exhaust pressure.

【0008】また、請求項2のディーゼル機関の排気浄
化装置は、機関の排気通路に設けられ排気中の排気微粒
子を捕集するフィルタと、このフィルタに捕集される排
気微粒子の堆積量を検出する堆積量検出手段と、機関の
運転状態を検出する運転状態検出手段と、前記堆積量検
出手段により検出される排気微粒子の堆積量と前記運転
状態検出手段により検出される運転状態とに基づき、堆
積している排気微粒子が離脱する条件を検出する離脱発
生条件検出手段と、この離脱発生条件検出手段により検
出された排気微粒子の離脱条件が所定頻度以上となった
とき、前記フィルタに捕集された排気微粒子を燃焼させ
てフィルタの再生を行う再生手段と、前記フィルタ上流
の排気通路に設けられフィルタへの排気の流入を阻止し
てフィルタ上流の排気圧力を上昇させる排気圧力制御手
段と、前記再生手段による再生の前後において前記堆積
量検出手段により検出される排気微粒子の堆積量に基づ
き排気微粒子の燃焼量を求め、この燃焼量が所定値以下
であるときフィルタの再生不良と判断する再生状態判断
手段と、この再生状態判断手段がフィルタの再生不良と
判断したとき、前記排気圧力制御手段による排気流入阻
止の動作・解除を繰り返し行ってフィルタ上流の排気圧
力を制御し、フィルタに堆積した排気微粒子を排気圧力
により徐々に除去する排気微粒子除去手段とを有するこ
とを特徴とするものである。
Further, an exhaust emission control device for a diesel engine according to a second aspect of the present invention detects a filter provided in an exhaust passage of the engine for collecting exhaust particulates in exhaust gas and a deposition amount of the exhaust particulates collected by the filter. Based on the operating state detection means for detecting the operating state of the engine, the operating state detection means for detecting the operating state of the engine, the amount of exhaust particulate matter detected by the deposition amount detection means and the operating state detection means, A separation occurrence condition detecting means for detecting the condition for the accumulated exhaust particulates to separate, and when the separation condition of the exhaust particulates detected by the separation occurrence condition detecting means becomes a predetermined frequency or more, is collected by the filter. And a regeneration means for regenerating the filter by burning the exhaust particulates and an exhaust passage upstream of the filter for preventing exhaust gas from flowing into the filter. Exhaust pressure control means for increasing the air pressure, and the combustion amount of exhaust particulates is obtained based on the deposition amount of exhaust particulates detected by the deposition amount detection means before and after regeneration by the regeneration means, and the combustion amount is less than or equal to a predetermined value. If the regeneration state judgment means determines that the regeneration of the filter is defective, and if the regeneration state determination means determines that the regeneration of the filter is defective, the exhaust pressure control means repeatedly performs the operation / cancellation of the exhaust gas inflow prevention to upstream the filter. And an exhaust particulate removing means for gradually removing the exhaust particulate accumulated on the filter by the exhaust pressure.

【0009】[0009]

【作用】請求項1のディーゼル機関の排気浄化装置によ
れば、堆積量検出手段の検出したフィルタに堆積する排
気微粒子量が所定値以上になると、再生手段がフィルタ
に捕集された排気微粒子を燃焼させてフィルタの再生を
行い、この再生の後、堆積量検出手段の検出した再生前
後の排気微粒子の堆積量に基づき、再生状態判断手段が
再生不良と判断すると、排気圧力制御手段がフィルタへ
の排気の流入阻止の動作・解除を繰り返し行う。排気の
流入を阻止すると、フィルタ上流の排気圧力が上昇し、
流入阻止を解除すると、この上昇した排気圧力によりフ
ィルタに堆積した排気微粒子は離脱するが、排気の流入
阻止の動作・解除を繰り返し行うことで、離脱は徐々に
行われ、一度の急激な離脱は回避される。
According to the exhaust gas purifying apparatus of the first aspect of the present invention, when the amount of exhaust particulate matter deposited on the filter detected by the deposit amount detecting means exceeds a predetermined value, the regenerating means removes the exhaust particulate matter collected on the filter. After the combustion, the filter is regenerated, and after this regeneration, when the regeneration state determination means determines that the regeneration is defective, based on the accumulated amount of exhaust particulate matter detected by the deposition amount detection means before and after regeneration, the exhaust pressure control means transfers to the filter. Repeat the operation and release of the exhaust gas inflow prevention. Blocking the inflow of exhaust increases the exhaust pressure upstream of the filter,
When the inflow prevention is released, the exhaust particulates deposited on the filter are released due to this increased exhaust pressure, but by repeatedly performing the operation and release of the exhaust inflow prevention, the release is gradually performed, and a single sudden release does not occur. Avoided.

【0010】また、請求項2のディーゼル機関の排気浄
化装置によれば、堆積量検出手段及び運転状態検出手段
の検出した排気微粒子の堆積量と機関の運転状態とに基
づき離脱発生条件検出手段が排気微粒子の離脱する条件
を検出し、この排気微粒子の離脱条件が所定回数以上に
なると、再生手段がフィルタに捕集された排気微粒子を
燃焼させてフィルタの再生を行い、この再生の後、堆積
量検出手段の検出した再生前後の排気微粒子の堆積量に
基づき、再生状態判断手段が再生不良と判断すると、排
気圧力制御手段がフィルタへの排気の流入阻止の動作・
解除を繰り返し行う。
According to the second aspect of the exhaust gas purifying apparatus for a diesel engine, the separation occurrence condition detecting means is based on the accumulation amount of exhaust particulate matter detected by the accumulation amount detecting means and the operating state detecting means and the operating state of the engine. When the condition for removing the exhaust particulates is detected, and when the condition for removing the exhaust particulates reaches a predetermined number of times or more, the regeneration means burns the exhaust particulates collected by the filter to regenerate the filter, and after the regeneration, the accumulation is performed. When the regeneration state determination means determines that the regeneration is defective based on the amount of exhaust particulate accumulation before and after regeneration detected by the amount detection means, the exhaust pressure control means operates to prevent the inflow of exhaust gas into the filter.
Repeat the release.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明の一実施例によるディーゼル機関
の排気浄化装置を示す全体構成図である。車両に搭載さ
れたディーゼル機関本体1に接続された排気通路3の途
中には、多孔質のセラミックなどからなるフィルタ5が
設けられている。このフィルタ5を排気が通過すること
により、排気中のカーボンなどの排気微粒子がフィルタ
5に付着によって捕集される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram showing an exhaust emission control device for a diesel engine according to an embodiment of the present invention. A filter 5 made of porous ceramic or the like is provided in the middle of an exhaust passage 3 connected to a diesel engine body 1 mounted on a vehicle. When the exhaust gas passes through the filter 5, exhaust gas particulates such as carbon in the exhaust gas are collected and attached to the filter 5.

【0012】フィルタ5の下流側直後には、フィルタ5
の下流側の排気温度を検出する温度センサ6が設けら
れ、反対側のフィルタ5の上流側直前には、フィルタ5
に捕集された排気微粒子を燃焼させる再生手段としての
電気ヒータ7が設けられ、さらにその上流には、通常開
放している排気通路3を適宜閉鎖してフィルタ5への排
気の流入を阻止させて排気圧力を上昇させる、駆動装置
9を備えた排気圧力制御手段としての排気絞り弁11が
設けられている。排気絞り弁11の上流には、フィルタ
5の上流側の排気通路3の圧力を検出する圧力センサ1
3が設けられ、圧力センサ13上流側の排気通路3とフ
ィルタ5の下流側の排気通路3とはバイパス通路15に
よって連通し、バイパス通路15には、通常閉鎖してい
るバイパス通路15を適宜開放してバイパス通路15へ
排気を流入させる、駆動装置17を備えたバイパス弁1
9が設けられている。
Immediately after the downstream side of the filter 5, the filter 5
A temperature sensor 6 for detecting the exhaust temperature on the downstream side of the filter 5 is provided.
An electric heater 7 as a regenerating means for burning the exhaust particulates collected in the filter is provided, and an exhaust passage 3 which is normally open is appropriately closed upstream thereof to prevent the exhaust gas from flowing into the filter 5. An exhaust throttle valve 11 as an exhaust pressure control means having a drive device 9 for increasing the exhaust pressure is provided. A pressure sensor 1 for detecting the pressure in the exhaust passage 3 upstream of the filter 5 is provided upstream of the exhaust throttle valve 11.
3, the exhaust passage 3 on the upstream side of the pressure sensor 13 communicates with the exhaust passage 3 on the downstream side of the filter 5 by a bypass passage 15, and the normally closed bypass passage 15 is opened in the bypass passage 15. By-pass valve 1 provided with drive device 17 for causing exhaust gas to flow into bypass passage 15
9 is provided.

【0013】機関を搭載した車両の室内には、運転者に
本装置の異常を報告する故障ランプ20が設けられ、ヒ
ータ7、排気絞り弁11の駆動装置9、バイパス弁19
の駆動装置17、及び故障ランプ20は、機関の運転状
態を検出する回転センサ23とコントロールレバーセン
サ25、排気通路3の圧力を検出する圧力センサ13、
及び排気温度を検出する温度センサ6の各信号入力を受
けるマイクロコンピュータなどで構成されるコントロー
ルユニット21からの出力信号に従って作動し、または
停止する。ここで、本実施例では、回転センサ23とコ
ントロールレバーセンサ25とにより運転状態検出手段
が構成されている。
A failure lamp 20 for reporting an abnormality of the present device to a driver is provided in the interior of a vehicle equipped with an engine, a heater 7, a drive device 9 for the exhaust throttle valve 11, a bypass valve 19
The drive device 17 and the failure lamp 20 are a rotation sensor 23 and a control lever sensor 25 for detecting the operating state of the engine, a pressure sensor 13 for detecting the pressure of the exhaust passage 3,
Also, it operates or stops according to an output signal from a control unit 21 including a microcomputer which receives each signal input of the temperature sensor 6 for detecting the exhaust gas temperature. Here, in the present embodiment, the rotation sensor 23 and the control lever sensor 25 constitute an operating state detecting means.

【0014】次に、コントロールユニット21の構成に
ついて説明する。図2は、本実施例のブロック構成図で
あり、運転条件検出回路27は、機関回転数Neを検出
する回転センサ23、及びコントロールレバー開度C/
Lを検出するコントロールレバーセンサ25からの検出
信号の入力を受け、機関回転数Ne及びコントロールレ
バー開度C/Lを逐次堆積量演算回路29及び離脱発生
条件検出手段としてのブロー発生条件判断回路31へ信
号出力する。
Next, the structure of the control unit 21 will be described. FIG. 2 is a block diagram of the present embodiment. The operating condition detection circuit 27 includes a rotation sensor 23 for detecting the engine speed Ne and a control lever opening C /
In response to the input of the detection signal from the control lever sensor 25 for detecting L, the engine speed Ne and the control lever opening C / L are successively accumulated amount calculation circuit 29 and blow generation condition determination circuit 31 as a separation generation condition detection means. Signal is output to.

【0015】堆積量演算回路29は、図3のように設定
された機関からの排気微粒子排出量マップに基づき、運
転条件検出回路27から信号入力された機関回転数Ne
及びコントロールレバー開度C/Lに応じて機関から排
出される単位時間当りの排気微粒子量を検索し、この検
索した値にフィルタ5への排気微粒子の捕集効率を掛け
て積算することによりフィルタ5に捕集された排気微粒
子の堆積量を求め、ブロー発生条件判断回路31、再生
制御回路32及び再生時期判断回路33へ信号出力す
る。ブロー発生条件判断回路31は、図4のように設定
されたブロー発生領域マップに基づき、堆積量演算回路
29が求めた排気微粒子の堆積量に対応したブロー発生
領域を求め、運転条件検出回路27から信号入力された
機関回転数Ne及びコントロールレバー開度C/Lによ
ってブロー発生領域内かどうか、すなわち排気微粒子が
フィルタ5から大量に離脱し易いブロー発生条件かどう
かを判断する。ここで、図4のブロー発生領域マップ
は、排気微粒子の堆積量が少量であれば高負荷高回転側
から、また堆積量が多量であれば低負荷低回転側からブ
ロー発生領域が設定されているので、排気微粒子の堆積
量に応じて的確にブロー発生条件を判断することができ
る。ブロー発生条件と判断すると、ブロー発生条件判断
回路31は、排気微粒子がフィルタ5から多量に離脱し
易い状態であるので、排気絞り出力回路35及びバイパ
ス出力回路37へ信号出力して、排気絞り弁11を閉弁
しバイパス弁19を開弁して排気をフィルタ5に対して
バイパスするブロー回避処理を行い、同時に再生時期判
断回路33へ信号出力する。
The deposit amount calculation circuit 29 receives the signal from the operating condition detection circuit 27 based on the exhaust particulate emission map from the engine set as shown in FIG.
Also, the amount of exhaust particulate matter discharged from the engine per unit time is searched according to the control lever opening C / L, and the retrieved value is multiplied by the exhaust particulate collection efficiency in the filter 5 to be integrated. The accumulated amount of exhaust particulates collected in 5 is obtained, and a signal is output to the blow generation condition determination circuit 31, the regeneration control circuit 32, and the regeneration timing determination circuit 33. The blow generation condition determination circuit 31 determines the blow generation region corresponding to the deposition amount of the exhaust particulates determined by the deposition amount calculation circuit 29 based on the blow generation region map set as shown in FIG. 4, and the operating condition detection circuit 27. Based on the engine speed Ne and the control lever opening C / L, which are input as a signal from the engine, it is determined whether or not it is within the blow generation region, that is, whether or not the exhaust particulate is easily separated from the filter 5 in a large amount. Here, in the blow occurrence region map of FIG. 4, the blow occurrence region is set from the high load and high rotation side when the deposition amount of exhaust particulates is small, and from the low load and low rotation side when the deposition amount is large. Therefore, the blow generation condition can be accurately determined according to the amount of exhaust particulates deposited. When it is judged that the blow generation condition is satisfied, the blow generation condition judgment circuit 31 is in a state where a large amount of exhaust particulate is easily separated from the filter 5, so a signal is output to the exhaust throttle output circuit 35 and the bypass output circuit 37 to output the exhaust throttle valve. 11 is closed and the bypass valve 19 is opened to perform blow avoidance processing for bypassing exhaust gas to the filter 5, and at the same time, a signal is output to the regeneration timing determination circuit 33.

【0016】再生時期判断回路33は、ブロー発生条件
判断回路31がブロー発生条件と判断しないときは、堆
積量演算回路29が求めた排気微粒子の堆積量が所定値
以上かどうかを判定し、所定値以上のときに再生時期と
判断する。一方、ブロー発生条件判断回路31がブロー
発生条件と判断したときは、直前の例えば1分間という
所定時間内においてブロー発生条件と判断された割合を
ブロー発生頻度として算出し、このブロー発生頻度が所
定値以上のときに再生時期と判断する。再生時期と判断
すると、再生時期判断回路33は、再生制御回路32及
び堆積量推定回路41へ信号出力する。本実施例におい
ては、この堆積量推定回路41と前述した堆積量演算回
路29が堆積量検出手段を構成する。再生制御回路32
は、再生時期判断回路33からの信号入力を受けると、
再生出力回路43へ信号出力して電気ヒータ7に通電す
ることにより排気微粒子を燃焼させてフィルタ5の再生
処理を行うとともに、再生処理の開始時に堆積量演算回
路29が求めた排気微粒子の堆積量を記憶する。排気温
度検出回路45は、フィルタ5の再生処理中において、
フィルタ5の下流側の排気温度Tを検出する温度センサ
6からの検出信号の入力を受け、再生制御回路32へ信
号出力する。再生制御回路32は、この排気温度Tに基
づいてフィルタ5における排気微粒子の燃焼量を求め、
この燃焼量と再生処理開始時に記憶したフィルタ5の堆
積量とを比較し、例えば燃焼量が堆積量と一致したとき
に再生が充分に行われたと判断し、再生処理を終了す
る。再生処理の終了時には、再生制御回路32から堆積
量推定回路41へ信号出力される。また、再生時期判断
回路33が再生時期ではないと判断した場合には、排気
絞り出力回路35及びバイパス出力回路37へ信号出力
して、排気絞り弁11を開弁しバイパス弁19を閉弁し
て排気をフィルタ5に流入させる。
When the blow generation condition determination circuit 31 does not determine that the blow generation condition is satisfied, the regeneration timing determination circuit 33 determines whether or not the deposition amount of exhaust particulates calculated by the deposition amount calculation circuit 29 is equal to or greater than a predetermined value, and a predetermined value is determined. When it is more than the value, it is judged to be the reproduction time. On the other hand, when the blow occurrence condition determination circuit 31 determines that the blow occurrence condition is present, the proportion of the blow occurrence condition determined within the predetermined time of, for example, 1 minute immediately before is calculated as the blow occurrence frequency, and the blow occurrence frequency is set to the predetermined value. When it is more than the value, it is judged to be the reproduction time. When it is determined that it is the regeneration time, the regeneration time determination circuit 33 outputs a signal to the regeneration control circuit 32 and the accumulation amount estimation circuit 41. In this embodiment, the deposit amount estimating circuit 41 and the deposit amount calculating circuit 29 described above constitute the deposit amount detecting means. Reproduction control circuit 32
Receives a signal input from the reproduction timing determination circuit 33,
A signal is output to the regeneration output circuit 43 to energize the electric heater 7 to burn the exhaust particulates to perform the regeneration processing of the filter 5, and the deposition amount of the exhaust particulates calculated by the deposition amount calculation circuit 29 at the start of the regeneration processing. Memorize The exhaust gas temperature detection circuit 45, during the regeneration process of the filter 5,
It receives a detection signal from the temperature sensor 6 that detects the exhaust gas temperature T on the downstream side of the filter 5, and outputs the signal to the regeneration control circuit 32. The regeneration control circuit 32 obtains the combustion amount of exhaust particulates in the filter 5 based on the exhaust temperature T,
The combustion amount is compared with the deposition amount of the filter 5 stored at the start of the regeneration process, and when the combustion amount matches the deposition amount, it is determined that the regeneration has been sufficiently performed, and the regeneration process is ended. At the end of the regeneration process, a signal is output from the regeneration control circuit 32 to the accumulation amount estimation circuit 41. When the regeneration timing determination circuit 33 determines that it is not the regeneration timing, a signal is output to the exhaust throttle output circuit 35 and the bypass output circuit 37 to open the exhaust throttle valve 11 and close the bypass valve 19. The exhaust gas into the filter 5.

【0017】排気圧力検出回路47は、フィルタ5の上
流側の排気通路3の圧力Pを検出する圧力センサ13か
らの検出信号の入力を受け、圧力Pを逐次堆積量推定回
路41へ信号出力する。また、運転条件検出回路27は
機関回転数Ne及びコントロールレバー開度C/Lを逐
次堆積量推定回路41へ信号出力する。堆積量推定回路
41は、再生時期判断回路33からフィルタ5の再生開
始の信号入力を受けると、図5のように設定された所定
量の排気微粒子の堆積時における運転条件毎のフィルタ
5上流側の基準圧力P0 マップに基づき、運転条件検出
回路27から信号入力されたそのときの機関回転数Ne
及びスロットル開度C/Lに応じて所定量の排気微粒子
の堆積時における基準圧力P0 を検索し、この基準圧力
0 と、排気圧力検出回路47から信号入力された同一
運転条件での実際の圧力Pとの比から推定堆積量G1を
推定し、この推定堆積量G1を堆積量記憶回路49に記
憶させる。また、堆積量推定回路41は、再生制御回路
32から再生終了の信号入力を受けると、運転条件検出
回路27から信号入力されたそのときの運転条件での基
準圧力P0 を図5のマップから検索し、この基準圧力P
0 と、排気圧力検出回路47から信号入力されたそのと
きの実際の圧力Pとの比から推定堆積量G2を推定し、
この推定堆積量G2を再生状態判断手段としての再生状
態判断回路50へ信号出力するとともに、堆積量記憶回
路49に記憶させる。
The exhaust pressure detection circuit 47 receives a detection signal from the pressure sensor 13 which detects the pressure P in the exhaust passage 3 on the upstream side of the filter 5, and outputs the pressure P to the sequential deposition amount estimation circuit 41 as a signal. .. Further, the operating condition detection circuit 27 sequentially outputs the engine speed Ne and the control lever opening C / L to the deposition amount estimation circuit 41 as a signal. When receiving the signal for starting regeneration of the filter 5 from the regeneration timing determination circuit 33, the deposition amount estimation circuit 41 upstream side of the filter 5 for each operating condition when a predetermined amount of exhaust particulate matter set as shown in FIG. 5 is deposited. Based on the reference pressure P 0 map of, the engine speed Ne at that time when a signal is input from the operating condition detection circuit 27
And a reference pressure P 0 at the time of depositing a predetermined amount of exhaust particulates according to the throttle opening C / L, and the reference pressure P 0 and the actual operation under the same operating condition signaled from the exhaust pressure detection circuit 47. The estimated deposition amount G1 is estimated from the ratio to the pressure P of the above, and the estimated deposition amount G1 is stored in the deposition amount storage circuit 49. Further, when the accumulation amount estimating circuit 41 receives a regeneration end signal from the regeneration control circuit 32, the reference pressure P 0 under the operating condition at that time, which is signaled from the operating condition detecting circuit 27, is obtained from the map of FIG. Search for this reference pressure P
The estimated deposition amount G2 is estimated from the ratio between 0 and the actual pressure P at that time, which is signaled from the exhaust pressure detection circuit 47,
The estimated deposition amount G2 is output to the regeneration state determination circuit 50 serving as a regeneration state determination means and stored in the deposition amount storage circuit 49.

【0018】再生状態判断回路50は、堆積量推定回路
49から再生処理後におけるフィルタ5の排気微粒子の
推定堆積量G2の信号入力を受けると、この推定堆積量
G2と、堆積量記憶回路49が記憶した再生処理前にお
ける推定堆積量G1とを比較し、再生が良好に行われた
かどうかを判断する。本実施例においては、G1×K>
G2であれば再生が良好に行われたと判断し、反対に、
G1×K≦G2であれば再生が不完全であると判断す
る。ここで係数Kの値はK=0.9とする。
When the regeneration state determination circuit 50 receives a signal of the estimated deposition amount G2 of exhaust particulates of the filter 5 after the regeneration process from the deposition amount estimation circuit 49, the estimated deposition amount G2 and the deposition amount storage circuit 49 The stored estimated amount G1 before the regeneration process is compared to determine whether or not the regeneration is favorably performed. In this embodiment, G1 × K>
If it is G2, it is judged that the reproduction was performed well, and conversely,
If G1 × K ≦ G2, it is determined that the reproduction is incomplete. Here, the value of the coefficient K is K = 0.9.

【0019】再生後の推定堆積量G2が再生前の推定堆
積量G1の0.9倍以上のとき、すなわち再生不良のと
きには、再生状態判断回路50は、排気微粒子除去手段
としての排気微粒子除去回路へ信号出力する。排気微粒
子除去回路51は、再生状態判断回路50からの信号入
力を受けると、フィルタ5に堆積した排気微粒子を強制
的に除去するために、まず排気絞り出力回路35及びバ
イパス出力回路37へ信号出力して排気絞り弁11及び
バイパス弁19の両方を閉弁し、排気絞り弁11の上流
側の排気通路の圧力を上昇させる。次に、バイパス弁1
9を閉弁したまま、排気絞り弁11を小刻みに繰り返し
て開閉させて、フィルタ5へ高圧状態の排気を少量ずつ
間欠的に流入させる。これにより、再生処理によって燃
焼せずにフィルタ5に堆積した排気微粒子が、フィルタ
5から徐々に除去される。フィルタ5への排気の流入回
数が所定回数となると、排気絞り出力回路35に信号出
力して排気絞り弁11を開弁して排気微粒子の強制除去
を終了するとともに、堆積量推定回路41へ信号出力す
る。
When the estimated deposition amount G2 after regeneration is 0.9 times or more of the estimated deposition amount G1 before regeneration, that is, when the regeneration is defective, the regeneration state determination circuit 50 causes the exhaust particulate removal circuit as exhaust particulate removal means. Signal is output to. Upon receiving a signal input from the regeneration state determination circuit 50, the exhaust particle removal circuit 51 first outputs a signal to the exhaust throttle output circuit 35 and the bypass output circuit 37 in order to forcibly remove the exhaust particles deposited on the filter 5. Then, both the exhaust throttle valve 11 and the bypass valve 19 are closed to increase the pressure in the exhaust passage upstream of the exhaust throttle valve 11. Next, bypass valve 1
With the valve 9 closed, the exhaust throttle valve 11 is repeatedly opened and closed in small increments to intermittently inject high-pressure exhaust gas into the filter 5 little by little. As a result, exhaust particulates that have accumulated on the filter 5 without being burned by the regeneration process are gradually removed from the filter 5. When the number of inflows of the exhaust gas into the filter 5 reaches a predetermined number, a signal is output to the exhaust throttle output circuit 35 to open the exhaust throttle valve 11 to complete the forced removal of the exhaust particulates, and a signal to the deposition amount estimation circuit 41. Output.

【0020】堆積量推定回路41は、排気微粒子除去回
路51から排気微粒子の強制除去終了の信号入力を受け
ると、強制除去終了後におけるフィルタ5の排気微粒子
の推定堆積量G3を推定し、故障判定回路53へ信号出
力する。
Upon receipt of a signal indicating the completion of the forced removal of exhaust particulates from the exhaust particulate removal circuit 51, the deposition amount estimation circuit 41 estimates the estimated deposition amount G3 of exhaust particulates on the filter 5 after the completion of the forced removal to determine a failure. The signal is output to the circuit 53.

【0021】故障判定回路53は、強制除去後の推定堆
積量G3信号入力を受けると、この推定堆積量G3と堆
積量記憶回路49が記憶した再生処理後強制除去前にお
ける推定堆積量G2とを比較し、強制除去が良好に行わ
れたかどうかを判断する。本実施例においては、G2×
L>G3であれば強制除去が良好に行われたと判断し、
反対に、G2×L≦G3であれば強制除去が不完全であ
ると判断する。ここで係数Lの値はL=0.7とする。
When the failure determination circuit 53 receives the estimated deposition amount G3 signal after the forced removal, it inputs the estimated deposition amount G3 and the estimated deposition amount G2 stored in the deposition amount storage circuit 49 after the regeneration process and before the forced removal. Compare and determine if forced removal was successful. In this embodiment, G2 ×
If L> G3, it is judged that the forced removal was successfully performed,
On the contrary, if G2 × L ≦ G3, it is determined that the forced removal is incomplete. Here, the value of the coefficient L is L = 0.7.

【0022】強制除去後の推定堆積量G3が強制除去前
の推定堆積量G2の0.7倍以上のとき、すなわち強制
除去が不完全であると判断されたときには、これ以上フ
ィルタ5へ排気を流入させて排気微粒子の捕集を続ける
と、排気微粒子が除去されずに堆積量が過大となり、排
圧の上昇により連続して機関へ負担がかかってしまう虞
れがある。また、仮に堆積した排気微粒子が燃焼したと
しても、堆積量が過大であるので再生時のフィルタ5の
温度が高くなり過ぎて、フィルタ5の寿命を低下してし
まう可能性が高い。このため、故障判定回路53は、何
らかの異常が発生したと判断して排気絞り出力回路35
及びバイパス出力回路37へ信号出力し、排気絞り弁1
1を閉弁しバイパス弁19を開弁してフィルタ5に対し
て排気をバイパスさせるとともに、故障ランプ20へ信
号出力し、これを点灯させて、運転者に異常を報告す
る。
When the estimated deposition amount G3 after the forced removal is 0.7 times or more of the estimated deposition amount G2 before the forced removal, that is, when it is determined that the forced removal is incomplete, the filter 5 is exhausted any more. If the exhaust particles are continued to be collected by collecting the exhaust particles, the exhaust particles may not be removed and the deposition amount becomes excessively large, which may increase the exhaust pressure and continuously load the engine. Even if the accumulated exhaust particulates are burnt, the temperature of the filter 5 at the time of regeneration is too high and the service life of the filter 5 is likely to be shortened because the amount of accumulation is excessive. For this reason, the failure determination circuit 53 determines that some abnormality has occurred, and the exhaust throttle output circuit 35.
A signal is output to the bypass output circuit 37 and the exhaust throttle valve 1
The valve 1 is closed and the bypass valve 19 is opened to bypass the exhaust gas to the filter 5, and a signal is output to the failure lamp 20, which is lit to report the abnormality to the driver.

【0023】次に、このように構成されたディーゼル機
関の排気浄化装置における制御動作を、図6〜図10に
示すフロー図に基づいて説明する。
Next, the control operation of the exhaust emission control system for a diesel engine constructed as above will be described with reference to the flow charts shown in FIGS.

【0024】まず、運転条件検出回路27が回転センサ
23及びコントロールレバーセンサ25から機関回転数
Ne及びコントロールレバー開度C/Lを、また排気圧
力検出回路47が圧力センサ13からフィルタ5上流側
の排気通路3の圧力(以下、排圧と略称する)Pを読み
込む(ステップ101)。次に、堆積量演算回路29
が、このときの機関回転数Neとコントロールレバー開
度C/L及び図3の排気微粒子排出量マップに基づい
て、フィルタ5に捕集された排気微粒子の堆積量を演算
し(ステップ103)、ブロー発生条件判断回路31
が、ステップ103にて求めた排気微粒子の堆積量と図
4のブロー発生領域マップに基づいて、排気微粒子がフ
ィルタ5から大量に離脱し易い機関の運転領域を求め、
ステップ101にて読み込んだ機関回転数Ne及びコン
トロールレバー開度C/Lが求めた領域内にあるかどう
か、すなわちブロー発生条件かを判断する(ステップ1
05)。
First, the operating condition detection circuit 27 detects the engine speed Ne and the control lever opening C / L from the rotation sensor 23 and the control lever sensor 25, and the exhaust pressure detection circuit 47 detects the pressure sensor 13 from the pressure sensor 13 to the upstream side of the filter 5. The pressure P in the exhaust passage 3 (hereinafter abbreviated as exhaust pressure) is read (step 101). Next, the accumulation amount calculation circuit 29
However, based on the engine speed Ne, the control lever opening C / L at this time, and the exhaust gas discharge amount map of FIG. 3, the deposition amount of the exhaust gas particles collected by the filter 5 is calculated (step 103), Blow occurrence condition judgment circuit 31
However, based on the exhaust particulate matter deposition amount obtained in step 103 and the blow generation area map of FIG.
It is judged whether or not the engine speed Ne and the control lever opening C / L read in step 101 are within the obtained region, that is, whether or not the blow is generated (step 1).
05).

【0025】ステップ105にてブロー発生条件ではな
いと判断されると、再生時期判断回路33が、ステップ
103にて求めた排気微粒子の堆積量が所定値に達して
いるかどうか、すなわち再生時期かを判断し(ステップ
107)、再生時期であればフィルタ5の再生処理を行
い(ステップ200)、再生時期でなければ排気絞り弁
11を開弁しバイパス弁19を閉弁して、排気をフィル
タ5に流入させる(ステップ109)。
When it is determined in step 105 that the blow condition is not satisfied, the regeneration timing determination circuit 33 determines whether the accumulated amount of exhaust particulates obtained in step 103 has reached a predetermined value, that is, the regeneration timing. If it is determined that the regeneration time is reached, the regeneration process of the filter 5 is performed (step 200). If not at the regeneration time, the exhaust throttle valve 11 is opened and the bypass valve 19 is closed to remove the exhaust gas from the filter 5. (Step 109).

【0026】一方、ステップ105にてブロー発生条件
と判断されると、次にブロー発生条件ではないと判断さ
れるまで、ブロー発生条件判断回路31が排気絞り弁1
1を閉弁しバイパス弁19を開弁して、排気をフィルタ
5に対してバイパスするとともに(ステップ111)、
再生時期判断回路33が、後述するステップ115にて
記憶しているブロー発生頻度が所定値以上かどうか、す
なわち再生時期かを判断する(ステップ113)。この
ブロー発生頻度とは、所定時間内においてブロー発生条
件となる割合であり、ブロー発生頻度が高い場合に再生
を要する。
On the other hand, if it is determined in step 105 that the blow condition is satisfied, the blow condition determination circuit 31 causes the exhaust throttle valve 1 to continue until it is determined that the blow condition is not satisfied.
1 is closed and the bypass valve 19 is opened to bypass the exhaust gas to the filter 5 (step 111),
The regeneration timing determination circuit 33 determines whether or not the blow occurrence frequency stored in step 115, which will be described later, is equal to or greater than a predetermined value, that is, the regeneration timing (step 113). The blow occurrence frequency is a ratio that is a blow occurrence condition within a predetermined time, and regeneration is required when the blow occurrence frequency is high.

【0027】フィルタ5の再生処理を行わない場合は、
ブロー発生頻度を計算し記憶した後(ステップ11
5)、終了する。なお、本実施例においては、20ms
ec毎に繰り返して本制御を行う。
When the reproduction process of the filter 5 is not performed,
After calculating and storing the blow occurrence frequency (step 11
5) and end. In the present embodiment, 20 ms
This control is repeated every ec.

【0028】次に、フィルタ5の再生処理の制御動作に
ついて説明する。
Next, the control operation of the regeneration process of the filter 5 will be described.

【0029】まず、ステップ101にて読み込んだ機関
回転数Ne及びコントロールレバー開度C/Lにより、
堆積量推定回路41が図5の基準圧力マップからフィル
タ5に所定量の排気微粒子が堆積したときの基準圧力P
0 を求め、この基準圧力P0 とステップ101にて読み
込んだ実際の排圧Pとの比から再生前の推定堆積量G1
を計算した後(ステップ201)、電気ヒータ7へ通電
して再生処理を行う(ステップ203)。再生処理中に
おいては、再生制御回路32が、温度センサ6が検出し
たフィルタ5下流側の排気温度Tから排気微粒子の燃焼
量、すなわち再生量を求め(ステップ205)、この再
生量とステップ103にて求めた再生前の排気微粒子の
堆積量との差を計算し、この差が所定値に達するまで電
気ヒータ7への通電を継続する(ステップ207)。本
実施例においては所定値を0とし、排気微粒子が全量燃
焼し得るまで電気ヒータ7への通電を継続する。
First, according to the engine speed Ne and the control lever opening C / L read in step 101,
The accumulation amount estimation circuit 41 uses the reference pressure map of FIG. 5 to determine the reference pressure P when a predetermined amount of exhaust particulates are accumulated on the filter 5.
0 is obtained, and the estimated accumulation amount G1 before regeneration is obtained from the ratio of the reference pressure P 0 and the actual exhaust pressure P read in step 101.
After calculating (step 201), the electric heater 7 is energized to perform a regeneration process (step 203). During the regeneration process, the regeneration control circuit 32 obtains the combustion amount of exhaust particulates, that is, the regeneration amount from the exhaust temperature T on the downstream side of the filter 5 detected by the temperature sensor 6 (step 205). The difference between the calculated amount of exhaust particulate matter before regeneration and the calculated amount is calculated, and the electric heater 7 is continuously energized until the difference reaches a predetermined value (step 207). In the present embodiment, the predetermined value is set to 0 and the electric heater 7 is continuously energized until all the exhaust particulates can burn.

【0030】再生量が所定量に達すると、電気ヒータ7
への通電を停止し(ステップ209)、再生処理を終了
する(ステップ211)。
When the amount of regeneration reaches a predetermined amount, the electric heater 7
Is stopped (step 209) and the reproduction process is ended (step 211).

【0031】フィルタ5の再生処理が終了すると、その
ときの機関回転数Ne、コンロールレバー開度C/L及
び排圧Pを読み込み(ステップ213)、堆積量推定回
路41が再生後の推定堆積量G2を計算して(ステップ
215)、再生状態判断回路50が、このG2よりもス
テップ201にて計算した再生前の推定堆積量G1に係
数Kを掛けた値の方が大きいかどうかを判断する(ステ
ップ217)。本実施例においては、この係数Kの値を
K=0.9とする。G2がG1にKを掛けた値以上であ
るときには、フィルタ5の再生前の排気微粒子の堆積量
の0.9倍以上が再生後もフィルタ5に残留しているこ
ととなるため、再生が不充分であると判断する。
When the regeneration process of the filter 5 is completed, the engine speed Ne, the control lever opening C / L and the exhaust pressure P at that time are read (step 213), and the accumulation amount estimation circuit 41 reads the estimated accumulation amount after regeneration. G2 is calculated (step 215), and the regeneration state determination circuit 50 determines whether or not the value obtained by multiplying the estimated accumulation amount G1 before regeneration calculated in step 201 by the coefficient K is larger than this G2. (Step 217). In this embodiment, the value of this coefficient K is K = 0.9. When G2 is equal to or more than the value obtained by multiplying G1 by K, 0.9 times or more of the accumulated amount of exhaust particulates before the regeneration of the filter 5 remains in the filter 5 even after the regeneration, so that the regeneration is not successful. Judge that it is sufficient.

【0032】再生が不充分であるときは、排気微粒子除
去回路51が排気微粒子のフィルタ5からの強制除去を
行い(ステップ300)、排気微粒子の強制除去が終了
すると、そのときの機関回転数Ne、コントロールレバ
ー開度C/L及び排圧Pを読み込み(ステップ21
9)、堆積量推定回路41が強制除去後の推定堆積量G
3を計算する(ステップ221)。そして、故障判定回
路53が、このG3よりもステップ215にて計算した
再生後強制除去前の推定堆積量G2に係数Lを掛けた値
の方が大きいかどうかを判断する(ステップ223)。
本実施例においては、この係数Lの値をL=0.7とす
る。G3がG2にLを掛けた値以上であるときには、フ
ィルタ5の強制除去前の排気微粒子の堆積量の0.7倍
以上が強制除去後もフィルタ5に残留していることとな
るため、強制除去が不充分であり、故障と判断される
(ステップ400)。
When the regeneration is insufficient, the exhaust particulate removal circuit 51 forcibly removes the exhaust particulates from the filter 5 (step 300). When the forced removal of the exhaust particulates is completed, the engine speed Ne at that time is reached. , Read control lever opening C / L and exhaust pressure P (step 21
9), the estimated deposition amount G after the deposition amount estimation circuit 41 forcibly removes
3 is calculated (step 221). Then, the failure determination circuit 53 determines whether or not the value obtained by multiplying the estimated deposition amount G2 after regeneration calculated before the forced removal in step 215 by the coefficient L is larger than this G3 (step 223).
In this embodiment, the value of this coefficient L is L = 0.7. When G3 is greater than or equal to the value obtained by multiplying G2 by L, 0.7 times or more of the amount of exhaust particulates accumulated before the forced removal of the filter 5 remains in the filter 5 even after the forced removal. The removal is insufficient and it is determined that there is a failure (step 400).

【0033】次に、排気微粒子除去回路51によるフィ
ルタ5の強制除去の制御動作について説明する。
Next, the control operation for the forced removal of the filter 5 by the exhaust particulate removal circuit 51 will be described.

【0034】まず、排気絞り弁11及びバイパス弁19
を閉弁し(ステップ301)、タイマ1を作動する(ス
テップ303)。タイマ1が設定時間を経過し、排気絞
り弁11の上流側の排気通路3が高圧状態となると、バ
イパス弁19は閉弁したまま排気絞り弁11を開弁し
(ステップ305)、高圧排気により排気微粒子の一部
を強制除去する。この状態をタイマ2を作動して所定時
間計測し(ステップ307)、計測後強制除去回数を積
算する(ステップ309)。次に、強制除去回数になっ
たどうかを判断し(ステップ311)、所定回数になっ
ていないと判断された場合は、ステップ301に戻り所
定回数に達するまで上記動作を繰り返す。所定回数に達
すると、排気微粒子はほぼ全量除去されることになる。
このように、本実施例におけるフィルタ5の強制除去
は、排気絞り弁11を小刻みに繰り返して開閉し、フィ
ルタ5に高圧状態の排気を間欠的に流入させるようにし
たので、フィルタ5に捕集された排気微粒子が一度に大
量に離脱することはなく、もしも再生が不十分であった
としても、可視黒煙状態で排気が排出されるのを抑制す
ることができ、かつ排気圧力が急に低下して機関性能の
悪化を招いてしまう恐れもない。
First, the exhaust throttle valve 11 and the bypass valve 19
Is closed (step 301) and the timer 1 is operated (step 303). When the timer 1 has passed the set time and the exhaust passage 3 upstream of the exhaust throttle valve 11 is in a high pressure state, the bypass throttle valve 19 is closed and the exhaust throttle valve 11 is opened (step 305). Forcefully remove some of the exhaust particles. In this state, the timer 2 is operated to measure for a predetermined time (step 307), and after the measurement, the number of forced removals is integrated (step 309). Next, it is determined whether or not the number of times of forced removal has been reached (step 311), and if it is determined that the number of times of forced removal has not been reached, the process returns to step 301 and the above operation is repeated until the number of times is reached. When the predetermined number of times is reached, almost all exhaust particulates will be removed.
As described above, in the forced removal of the filter 5 in this embodiment, the exhaust throttle valve 11 is repeatedly opened and closed in small increments so that the exhaust gas in a high pressure state is intermittently introduced into the filter 5, so that the filter 5 collects it. A large amount of exhausted fine particles are not released at a time, and even if regeneration is insufficient, exhaust gas can be suppressed from being emitted in a visible black smoke state, and the exhaust pressure suddenly increases. There is no fear that the engine performance will deteriorate as a result.

【0035】次に、故障判定回路53による故障時の制
御動作について説明する。
Next, the control operation at the time of failure by the failure determination circuit 53 will be described.

【0036】ステップ300における強制除去が不充分
であり、異常と判断された場合には、排気絞り弁11を
閉弁しバイパス弁19を開弁して、排気をフィルタ5に
対して全てバイパスし(ステップ401)、故障ランプ
を点灯する(ステップ403)。このように、本実施例
においては、再生処理が不充分で、かつ強制除去も不充
分であるときには、故障判定回路53が異常と判断し、
フィルタ5に対して排気をバイパスさせるようにしたの
で、フィルタ5における排気微粒子の堆積量が過大とな
り、排圧が上昇して、機関への負担が増大するのを未然
に防止することができる。また、フィルタ5における排
気微粒子の堆積量が過大とならないので、過大となった
状態での排気微粒子の燃焼、及びこれに起因するフィル
タ5の温度の過上昇が防止でき、フィルタ5の寿命を低
下させることもない。さらに、故障時には、車両室内に
設けた故障ランプ20を点灯させるようにしたので、運
転者は異常をすぐに知ることができ、故障に対して即時
に対応することができる。
If the forced removal in step 300 is insufficient and it is determined that there is an abnormality, the exhaust throttle valve 11 is closed and the bypass valve 19 is opened to bypass all the exhaust gas to the filter 5. (Step 401), the failure lamp is turned on (Step 403). As described above, in this embodiment, when the regeneration process is insufficient and the forced removal is insufficient, the failure determination circuit 53 determines that the abnormality occurs,
Since the exhaust gas is bypassed to the filter 5, it is possible to prevent the accumulation amount of exhaust particulates in the filter 5 from becoming excessive, the exhaust pressure to rise, and the burden on the engine from increasing. Further, since the amount of exhaust particulates deposited on the filter 5 does not become excessively large, combustion of exhaust particulates in an excessively large state and the resulting excessive rise in temperature of the filter 5 can be prevented, and the life of the filter 5 is shortened. I won't let you. Further, when a failure occurs, the failure lamp 20 provided in the vehicle compartment is turned on, so that the driver can immediately recognize the abnormality and can immediately respond to the failure.

【0037】なお、強制除去は、例えば図11に示すよ
うに、排気絞り弁11及びバイパス弁19を閉弁し(ス
テップ351)、排気絞り弁上流側に設けた圧力センサ
13の検出する排圧Pが所定値以上となったときに(ス
テップ353)排気絞り弁11を開弁して排気微粒子の
一部を強制除去し(ステップ355)、排圧Pが所定値
以下となったときに(ステップ357)回数を積算し
(ステップ359)、所定回数まで絞り弁の開閉を繰り
返す(ステップ361)方法によって行っても良い。
For forced removal, for example, as shown in FIG. 11, the exhaust throttle valve 11 and the bypass valve 19 are closed (step 351), and the exhaust pressure detected by the pressure sensor 13 provided upstream of the exhaust throttle valve is detected. When P becomes equal to or higher than a predetermined value (step 353), the exhaust throttle valve 11 is opened to forcibly remove a part of exhaust particulates (step 355), and when the exhaust pressure P becomes equal to or lower than a predetermined value (step 355). It is also possible to carry out by a method of integrating the number of times (step 357) (step 359) and repeating opening and closing of the throttle valve up to a predetermined number of times (step 361).

【0038】[0038]

【発明の効果】以上説明してきたようにこの発明によれ
ば、フィルタへの排気微粒子の堆積量が所定値以上にな
ったとき、又はフィルタからの排気微粒子の離脱条件が
所定回数以上となったときにフィルタの再生を行い、こ
の再生の後、フィルタの再生不良と判断されると、フィ
ルタへの排気の流入阻止の動作・解除を繰り返し行うよ
うにしたので、フィルタに堆積した排気微粒子は排気圧
力により徐々に離脱することとなり、再生不良時に排気
が可視黒煙状態で排出されるのを抑制することができ、
また排気圧力の急な低下による機関性能の悪化も回避さ
れる。さらに、再生不良となった後のフィルタへの排気
微粒子の堆積量の過大化が防止されるので、排気微粒子
を燃焼させることによるフィルタの再生時において、フ
ィルタの燃焼温度の高温化によるフィルタ寿命の低下を
防止できる。
As described above, according to the present invention, when the amount of exhaust particulates deposited on the filter reaches a predetermined value or more, or the condition for separating exhaust particulates from the filter reaches a predetermined number of times or more. At this time, the filter is regenerated, and if it is determined that the filter has not been regenerated after this regeneration, the operation to cancel the inflow of exhaust gas to the filter and the release are repeated. It will gradually disengage due to pressure, and it is possible to prevent exhaust from being emitted in the state of visible black smoke at the time of defective reproduction,
In addition, deterioration of engine performance due to a sudden decrease in exhaust pressure can be avoided. Furthermore, since the accumulation amount of exhaust particulates on the filter after the defective regeneration is prevented from becoming excessive, when the filter is regenerated by burning the exhaust particulates, the life of the filter is shortened by increasing the combustion temperature of the filter. It can prevent the deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例のディーゼル機関の排気
浄化装置の全体図である。
FIG. 1 is an overall view of an exhaust emission control device for a diesel engine according to an embodiment of the present invention.

【図2】本実施例のブロック構成図である。FIG. 2 is a block diagram of the present embodiment.

【図3】機関からの排気微粒子排出量マップである。FIG. 3 is an exhaust particulate emission map from an engine.

【図4】ブロー発生領域マップである。FIG. 4 is a blow generation area map.

【図5】所定量の排気微粒子の堆積時における運転条件
毎のフィルタ上流側の基準圧力マップである。
FIG. 5 is a reference pressure map on the filter upstream side for each operating condition when a predetermined amount of exhaust particulate matter is deposited.

【図6】本実施例のメインフロー図である。FIG. 6 is a main flowchart of the present embodiment.

【図7】フィルタ再生フロー図である。FIG. 7 is a filter regeneration flowchart.

【図8】フィルタ再生フロー図である。FIG. 8 is a filter regeneration flowchart.

【図9】強制除去フロー図である。FIG. 9 is a forced removal flowchart.

【図10】故障フロー図である。FIG. 10 is a failure flow chart.

【図11】他の強制除去フロー図である。FIG. 11 is another forced removal flowchart.

【符号の説明】[Explanation of symbols]

5 フィルタ 7 電気ヒータ(再生手段) 11 排気絞り弁(排気圧力制御手段) 23 回転センサ(運転状態検出手段) 25 コントロールレバーセンサ(運転状態検出手段) 29 堆積量演算回路(堆積量検出手段) 31 ブロー発生条件判断回路(離脱発生条件判断手
段) 41 堆積量推定回路(堆積量検出手段) 50 再生状態判断回路(再生状態判断手段) 51 排気微粒子除去回路(排気微粒子除去手段)
5 Filter 7 Electric Heater (Regeneration Means) 11 Exhaust Throttle Valve (Exhaust Pressure Control Means) 23 Rotation Sensor (Operating State Detecting Means) 25 Control Lever Sensor (Operating State Detecting Means) 29 Deposition Amount Calculation Circuit (Deposition Amount Detection Means) 31 Blow generation condition determination circuit (separation generation condition determination means) 41 Deposition amount estimation circuit (deposition amount detection means) 50 Regeneration state determination circuit (regeneration state determination means) 51 Exhaust particulate removal circuit (exhaust particulate removal means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機関の排気通路に設けられ排気中の排気
微粒子を捕集するフィルタと、このフィルタに捕集され
る排気微粒子の堆積量を検出する堆積量検出手段と、こ
の堆積量検出手段により検出された堆積量が所定値以上
となったとき、前記フィルタに捕集された排気微粒子を
燃焼させてフィルタの再生を行う再生手段と、前記フィ
ルタ上流の排気通路に設けられフィルタへの排気の流入
を阻止してフィルタ上流の排気圧力を上昇させる排気圧
力制御手段と、前記再生手段による再生の前後において
前記堆積量検出手段により検出される排気微粒子の堆積
量に基づき排気微粒子の燃焼量を求め、この燃焼量が所
定値以下であるときフィルタの再生不良と判断する再生
状態判断手段と、この再生状態判断手段がフィルタの再
生不良と判断したとき、前記排気圧力制御手段による排
気流入阻止の動作・解除を繰り返し行ってフィルタ上流
の排気圧力を制御し、フィルタに堆積した排気微粒子を
排気圧力により徐々に除去する排気微粒子除去手段とを
有することを特徴とするディーゼル機関の排気浄化装
置。
1. A filter provided in an exhaust passage of an engine for collecting exhaust particulates in exhaust gas, a deposition amount detecting means for detecting a deposition amount of exhaust particulates collected by the filter, and a deposition amount detecting means. When the amount of accumulation detected by the filter becomes a predetermined value or more, a regeneration means for regenerating the filter by burning the exhaust particulates collected by the filter, and the exhaust gas to the filter provided in the exhaust passage upstream of the filter Exhaust pressure control means for preventing the inflow of exhaust gas and increasing the exhaust pressure upstream of the filter, and the combustion amount of exhaust particulate matter based on the accumulation amount of exhaust particulate matter detected by the accumulation amount detection means before and after regeneration by the regeneration means. It is determined that when the combustion amount is less than or equal to a predetermined value, the regeneration state determining means determines that the regeneration of the filter is defective, and the regeneration state determining means determines that the regeneration of the filter is defective. The exhaust pressure control means repeatedly controls the release of the exhaust gas to control the exhaust pressure upstream of the filter and gradually removes the exhaust particulates accumulated on the filter by the exhaust pressure. Exhaust gas purification device for diesel engines.
【請求項2】 機関の排気通路に設けられ排気中の排気
微粒子を捕集するフィルタと、このフィルタに捕集され
る排気微粒子の堆積量を検出する堆積量検出手段と、機
関の運転状態を検出する運転状態検出手段と、前記堆積
量検出手段により検出される排気微粒子の堆積量と前記
運転状態検出手段により検出される運転状態とに基づ
き、堆積している排気微粒子が離脱する条件を検出する
離脱発生条件検出手段と、この離脱発生条件検出手段に
より検出された排気微粒子の離脱条件が所定頻度以上と
なったとき、前記フィルタに捕集された排気微粒子を燃
焼させてフィルタの再生を行う再生手段と、前記フィル
タ上流の排気通路に設けられフィルタへの排気の流入を
阻止してフィルタ上流の排気圧力を上昇させる排気圧力
制御手段と、前記再生手段による再生の前後において前
記堆積量検出手段により検出される排気微粒子の堆積量
に基づき排気微粒子の燃焼量を求め、この燃焼量が所定
値以下であるときフィルタの再生不良と判断する再生状
態判断手段と、この再生状態判断手段がフィルタの再生
不良と判断したとき、前記排気圧力制御手段による排気
流入阻止の動作・解除を繰り返し行ってフィルタ上流の
排気圧力を制御し、フィルタに堆積した排気微粒子を排
気圧力により徐々に除去する排気微粒子除去手段とを有
することを特徴とするディーゼル機関の排気浄化装置。
2. A filter provided in an exhaust passage of an engine for collecting exhaust particulates in exhaust gas, a deposition amount detecting means for detecting a deposition amount of exhaust particulates collected by the filter, and an operating state of the engine. The condition for the exhausted particulate matter to be separated is detected based on the operating state detecting means for detecting, the amount of exhaust particulate matter detected by the deposit amount detecting means, and the operating state detected by the operating state detecting means. When the separation occurrence condition detecting means and the separation condition of the exhaust particulate matter detected by the separation occurrence condition detecting means are equal to or more than a predetermined frequency, the exhaust particulate matter collected in the filter is burned to regenerate the filter. Regeneration means, exhaust pressure control means provided in an exhaust passage upstream of the filter to prevent exhaust gas from flowing into the filter and increase exhaust pressure upstream of the filter; Before and after the regeneration by the means, the combustion amount of the exhaust particulate matter is obtained based on the deposition amount of the exhaust particulate matter detected by the deposition amount detecting means, and when the combustion amount is less than a predetermined value, it is determined that the regeneration condition of the filter is defective. Means and the regeneration state determining means, when the regeneration of the filter is determined to be defective, the exhaust pressure control means repeatedly performs the operation and release of the exhaust gas inflow prevention to control the exhaust pressure upstream of the filter, and the exhaust particulates deposited on the filter. An exhaust gas purification device for a diesel engine, characterized in that the exhaust gas particulate removal device gradually removes the exhaust gas by the exhaust pressure.
JP3222779A 1991-09-03 1991-09-03 Exhaust purifying device of diesel engine Pending JPH0559931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3222779A JPH0559931A (en) 1991-09-03 1991-09-03 Exhaust purifying device of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3222779A JPH0559931A (en) 1991-09-03 1991-09-03 Exhaust purifying device of diesel engine

Publications (1)

Publication Number Publication Date
JPH0559931A true JPH0559931A (en) 1993-03-09

Family

ID=16787765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3222779A Pending JPH0559931A (en) 1991-09-03 1991-09-03 Exhaust purifying device of diesel engine

Country Status (1)

Country Link
JP (1) JPH0559931A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073273A1 (en) * 2000-03-29 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device for internal combustion engines
JP2008133779A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Diagnosis device for differential pressure sensor
JP2012127255A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2013014755A (en) * 2011-06-10 2013-01-24 Sekisui Chem Co Ltd Anisotropic conductive material, connecting structure and method for producing connecting structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073273A1 (en) * 2000-03-29 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device for internal combustion engines
US6644022B2 (en) 2000-03-29 2003-11-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
JP2008133779A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Diagnosis device for differential pressure sensor
JP2012127255A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2013014755A (en) * 2011-06-10 2013-01-24 Sekisui Chem Co Ltd Anisotropic conductive material, connecting structure and method for producing connecting structure

Similar Documents

Publication Publication Date Title
JP2004076605A (en) Exhaust emission control device
JP4506060B2 (en) Particulate filter regeneration control device
JP3908204B2 (en) Filter control device
JP4008866B2 (en) Exhaust purification equipment
JPH0559931A (en) Exhaust purifying device of diesel engine
JPH1089047A (en) Exhaust fine particle purifying device
JP2998321B2 (en) Diesel engine exhaust purification system
JPH06323127A (en) Exhaust particulate eliminating device for diesel engine
JPH05288037A (en) Exhaust gas purifying device for diesel engine
JPH0650130A (en) Exhaust emission control device of diesel engine
JP3116549B2 (en) Engine exhaust purification device
JPH0559929A (en) Exhaust purifying device of diesel engine
JP3070244B2 (en) Diesel engine exhaust purification system
JP2677053B2 (en) Exhaust particulate deposition amount detector
JP4070681B2 (en) Exhaust purification device
JPH05156929A (en) Exhaust emission control device for internal combustion engine
JPH06280544A (en) Exhaust particle eliminating device for diesel engine
JPH0518229A (en) Exhaust purification device for diesel engine
JPH0726935A (en) Diesel engine
JPH06229226A (en) Device for determining timing of regeneration of particulate filter
JPH05296027A (en) Exhaust gas purifying device for internal combustion engine
JPH0544438A (en) Exhaust gas purifying device for diesel engine
JPH0544429A (en) Exhaust gas purifying device for diesel engine
JPH0734857A (en) Exhaust gas purifying device for diesel engine
JPH0734858A (en) Exhaust gas purifying device for diesel engine