JPH05288037A - Exhaust gas purifying device for diesel engine - Google Patents

Exhaust gas purifying device for diesel engine

Info

Publication number
JPH05288037A
JPH05288037A JP4086955A JP8695592A JPH05288037A JP H05288037 A JPH05288037 A JP H05288037A JP 4086955 A JP4086955 A JP 4086955A JP 8695592 A JP8695592 A JP 8695592A JP H05288037 A JPH05288037 A JP H05288037A
Authority
JP
Japan
Prior art keywords
filter
regeneration
differential pressure
pressure
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4086955A
Other languages
Japanese (ja)
Other versions
JP2789921B2 (en
Inventor
Kotaro Hayashi
孝太郎 林
Kiyoshi Obata
喜代志 小端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4086955A priority Critical patent/JP2789921B2/en
Publication of JPH05288037A publication Critical patent/JPH05288037A/en
Application granted granted Critical
Publication of JP2789921B2 publication Critical patent/JP2789921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To accurately judge a regeneration timing of a filter by providing pressure sensors to detect gas flow condition after regeneration of the filter and a control circuit to judge the regeneration timing of the filter. CONSTITUTION:Pressure introducing pipes 14 and 15 are respectively connected to the exhaust pipe 2 on the upper stream and that on the lower stream of a filter 1 as means to detect gas flow condition after regeneration of the filter 1. A first pressure sensor 16 and a second pressure sensor 17 are provided for detecting the exhaust pressure in this exhaust pipe territory. Analog signals from the first pressure sensor 16 and the second pressure sensor 17, besides an analog signal from an exhaust temperature sensor 22 provided on the upper stream side of the filter 1 and detecting exhaust temperature Th, and the like are input to the input side of a control circuit 6a. In the control circuit 6, pressure difference across the filter in the standard operating condition is computed, and the filter regeneration timing is judged by whether the pressure difference reaches a prescribed value or not. In this way, the regeneration timing of the filter 1 can be accurately judged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディーゼルエンジンより
排出されるディーゼルパティキュレートを捕集するパテ
ィキュレートフィルタを備えた排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust emission control device equipped with a particulate filter for collecting diesel particulates discharged from a diesel engine.

【0002】[0002]

【従来の技術】例えばディーゼル機関の排気中には排気
微粒子、即ちパティキュレートが多く含まれているた
め、機関の排気系にはこのパティキュレートを捕集する
ためのパティキュレートフィルタ(以下、フィルタと呼
ぶ)が装着されている。このフィルタは、使用に伴って
その内部に蓄積されるパティキュレートの量が増えると
通気性が次第に損なわれ、エンジン性能も低下すること
になるため、パティキュレート捕集量に応じて定期的に
再生されなければならない。
2. Description of the Related Art For example, exhaust gas of a diesel engine contains a large amount of exhaust particulates, that is, particulates. Therefore, the exhaust system of the engine has a particulate filter (hereinafter referred to as a filter) for collecting the particulates. Called) is installed. As the amount of particulates accumulated inside the filter increases as it is used, the air permeability will gradually deteriorate, and the engine performance will also deteriorate.Therefore, it is regularly regenerated according to the amount of particulates trapped. It must be.

【0003】そしてこのフィルタ再生時期の判断にあた
っては、パティキュレート捕集に伴って増加するフィル
タ詰まり度を検出するためのパラメータとして、フィル
タ前後差圧(圧損値)ΔP′を検出し、これを所定吸入
空気量及び所定排気温度の基準状態でのフィルタ前後差
圧値ΔPに換算した後、再生基準としての差圧所定値a
と比較することで現在のフィルタの詰まり度を求めフィ
ルタ再生時期を判断した排気浄化装置が既に知られてい
る。
In determining the filter regeneration timing, the differential pressure across the filter (pressure loss value) ΔP 'is detected as a parameter for detecting the degree of filter clogging which increases with the collection of particulates, and this is determined. After converting into the differential pressure value ΔP before and after the filter in the reference state of the intake air amount and the predetermined exhaust temperature, the predetermined differential pressure value a as the regeneration reference
There is already known an exhaust gas purifying apparatus that determines the clogging degree of the current filter by comparing with the above to determine the filter regeneration time.

【0004】ところで、このような排気浄化装置におい
てフィルタの詰まり度を変化させる物質としては上述し
たパティキュレートの他に、エンジンオイルに含まれる
灰分、即ちCa,Feなどの無機物があり、これは上述
したようなフィルタ再生処理ではフィルタから取り除く
ことはできない。そして、フィルタ使用に伴ってフィル
タに捕集される灰分量が増加すると、フィルタ再生して
もフィルタの通気度は使用前の新品フィルタの通気状態
までには回復できず、徐々にフィルタ再生直後のフィル
タ前後差圧が上昇して、パティキュレート捕集期間が短
くなり、この結果フィルタ再生時の燃焼されるべきパテ
ィキュレート量が少なく再生不良となる恐れがある。
By the way, as substances that change the degree of filter clogging in such an exhaust gas purification device, there are ash contained in engine oil, that is, inorganic substances such as Ca and Fe, in addition to the above-mentioned particulates. It cannot be removed from the filter by such filter regeneration processing. When the amount of ash collected in the filter increases as the filter is used, even if the filter is regenerated, the air permeability of the filter cannot be restored to the aeration state of the new filter before use. The differential pressure across the filter rises, and the particulate collection period is shortened. As a result, the amount of particulates to be burned at the time of filter regeneration is small and regeneration may be defective.

【0005】このような問題に対して、特開昭62−3
5009号公報では、灰分がフィルタに捕集されること
による差圧上昇分と走行距離との関係を予め実験的に求
めておき、検出されたフィルタ前後差圧から、車両走行
距離に応じた灰分堆積による差圧上昇分を減じるように
補正し、以て走行距離が多い程、再生時期を遅らせるよ
うにして最適な再生時期を以てフィルタ再生しようとし
た再生装置が開示されている。
With respect to such a problem, Japanese Patent Application Laid-Open No. 62-3
In Japanese Patent Publication No. 5009, the relationship between the amount of increase in the differential pressure due to the ash collected by the filter and the travel distance is experimentally obtained in advance, and the ash content corresponding to the vehicle travel distance is calculated from the detected differential pressure across the filter. A regeneration device is disclosed in which correction is performed so as to reduce the increase in the differential pressure due to deposition, and the regeneration time is delayed as the traveling distance increases so that the filter regeneration is performed at an optimal regeneration time.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述した
ような再生装置においては、単に車両の走行距離のみに
よって、一元的に灰分堆積に起因する差圧上昇分を推定
しているため、その走行距離に達するまでの運転履歴に
よっては堆積される灰分量が毎回異なり、補正された再
生時期が必ずしも適切なものとは限らない。
However, in the above-described regeneration device, since the differential pressure increase due to the ash accumulation is centrally estimated only by the traveling distance of the vehicle, the traveling distance can be reduced. The amount of ash accumulated is different each time depending on the operation history until reaching, and the corrected regeneration time is not always appropriate.

【0007】この結果、フィルタ再生時において燃焼さ
れるパティキュレート量が常に一定値とはならず、場合
によってはパティキュレート量過多のために溶損した
り、或は逆に再生不良となる恐れがある。本発明は上述
したような従来装置の問題点に鑑み、精度よくフィルタ
再生時期を判断することが可能な排気浄化装置を提供す
ることを目的とする。
As a result, the amount of particulates burned at the time of filter regeneration does not always become a constant value, and depending on the case, there is a possibility that the amount of particulates will be burnt out due to an excessive amount of particulates, or conversely regeneration failure. .. The present invention has been made in view of the above-mentioned problems of the conventional device, and an object of the present invention is to provide an exhaust gas purification device capable of accurately determining the filter regeneration timing.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明によればディーゼルエンジンの排気系に設け
られパティキュレートを捕集するフィルタと該フィルタ
を再生する再生手段とを有し、定期的に再生手段を作動
させてフィルタに捕集されたパティキュレートを着火燃
焼するディーゼルエンジンの排気浄化装置において、上
記複数回のフィルタ再生後のフィルタ詰まり度平均値を
検出する詰まり度検出手段と、検出された複数回のフィ
ルタ再生後の詰まり度平均値に応じてフィルタ再生時期
を補正する再生時期補正手段とを有することを特徴とす
るディーゼルエンジンの排気浄化装置が提供される。
To achieve the above object, according to the present invention, a diesel engine exhaust system is provided with a filter for collecting particulates and a regenerating means for regenerating the filter, In the exhaust gas purification device of the diesel engine that ignites and burns the particulates collected in the filter by operating the regeneration means, the clogging degree detection means for detecting the filter clogging degree average value after the plurality of times of filter regeneration, An exhaust emission control device for a diesel engine, comprising: a regeneration timing correction unit that corrects the filter regeneration timing according to the detected clogging degree average value after a plurality of times of filter regeneration.

【0009】更に、本発明によれば上記排気浄化装置に
おいて、更に検出された複数回のフィルタ再生後の詰ま
り度平均値が所定値以上の時、外部に対して警報を発す
る警報手段を有する装置も提供される。
Further, according to the present invention, in the above-mentioned exhaust gas purification device, a device having an alarm means for issuing an alarm to the outside when the detected average clogging degree after a plurality of times of filter regeneration is a predetermined value or more. Is also provided.

【0010】[0010]

【作用】複数回のフィルタ再生後においてフィルタ詰ま
り度平均値に、新品時のフィルタ詰まり度、又はフィル
タ使用初期の詰まり度と差が生じるならば、その変化分
はフィルタに捕捉された灰分に起因するものと見ること
ができる。本発明は、走行距離から灰分が寄与する詰ま
り度変化を類推するのではなく、複数回のフィルタ再生
後のフィルタ詰まり度平均値を検出することで、直接的
に灰分に起因する詰まり度変化を検知し、フィルタ再生
時期を補正する。
[Function] If the average value of the degree of filter clogging after a plurality of times of filter regeneration is different from the degree of clogging of a new filter or the clogging degree at the beginning of use of the filter, the change is due to the ash content captured by the filter. It can be seen as doing. The present invention does not infer the clogging degree change in which ash content contributes from the traveling distance, but detects the filter clogging degree average value after a plurality of times of filter regeneration, thereby directly measuring the clogging degree change caused by ash content. Detect and correct the filter regeneration time.

【0011】又、再生後の詰まり度の増大度合によって
はエンジン性能が低下する恐れがあるため、警報手段は
複数回の詰まり度平均値が所定値以上のとき外部に対し
て警報を発する。
Further, since the engine performance may be deteriorated depending on the degree of increase in the clogging degree after the regeneration, the warning means issues a warning to the outside when the clogging degree average value of a plurality of times is a predetermined value or more.

【0012】[0012]

【実施例】以下、フィルタの詰まり度を表すパラメータ
として、フィルタ前後差圧を採用した実施例に基づい
て、図面を参照しながら本発明による排気浄化装置を説
明する。本発明による排気浄化装置の概略的構成を示す
図1に関し、1はパティキュレートを捕集するフィル
タ、2はパティキュレート捕集時、図示しないディーゼ
ルエンジン本体からの排気ガスをフィルタ1に導く排気
管、また3はフィルタ1再生時、排気ガスをフィルタ1
より迂回させるバイパス管である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An exhaust gas purifying apparatus according to the present invention will be described below with reference to the drawings based on an embodiment in which a differential pressure across a filter is used as a parameter representing a degree of filter clogging. 1 shows a schematic configuration of an exhaust emission control device according to the present invention, 1 is a filter for collecting particulates, 2 is an exhaust pipe for guiding exhaust gas from a diesel engine main body (not shown) to the filter 1 at the time of collecting particulates , And 3 is exhaust gas from the filter 1 when the filter 1 is regenerated.
It is a bypass pipe that makes more detours.

【0013】排気管2及びバイパス管3の夫々の内部に
は、上述したようなパティキュレート捕集時とフィルタ
再生時の排気ガス流れを達成する第1排気制御弁4及び
第2排気制御弁5が設けられており、例えばパティキュ
レート捕集時には図に示したような弁位置を占め、フィ
ルタ再生時には弁周り点線で示したような位置を占める
ように制御回路(ECU)6によって作動制御される。
Inside the exhaust pipe 2 and the bypass pipe 3, respectively, a first exhaust control valve 4 and a second exhaust control valve 5 that achieve the exhaust gas flow during particulate collection and filter regeneration as described above. Is provided, and the operation is controlled by the control circuit (ECU) 6 so as to occupy the valve position as shown in the figure at the time of particulate collection and the position as shown by the dotted line around the valve at the time of filter regeneration. ..

【0014】排気管2内部に配置される第1排気制御弁
4とフィルタ1との間には、フィルタ再生時、パティキ
ュレート燃焼のための再生用ガス(例えば2次空気)を
フィルタ1の排気上流側(以下、上流側と呼ぶ)に供給
する電動エアポンプ7が設けられており、これはフィル
タ1の前端に配置されるフィルタ再生用電気ヒータ8と
共に、バッテリ9より電力供給される。尚、これらフィ
ルタ再生のための要素に関し、10,11は制御回路6
によってオンオフされる半導体リレーであり、12はエ
アポンプ用フィルタ、13は排気ガスのエアポンプ7へ
の逆流を防ぐストップ弁である。
Between the first exhaust control valve 4 arranged inside the exhaust pipe 2 and the filter 1, a regeneration gas (for example, secondary air) for particulate combustion during filter regeneration is exhausted from the filter 1. An electric air pump 7 is provided for supplying to the upstream side (hereinafter referred to as the upstream side), and this is supplied with electric power from a battery 9 together with a filter regeneration electric heater 8 arranged at the front end of the filter 1. Incidentally, regarding the elements for reproducing these filters, 10 and 11 are control circuits 6.
Is a semiconductor relay that is turned on and off by a filter 12, an air pump filter 12, and a stop valve 13 that prevents exhaust gas from flowing back to the air pump 7.

【0015】フィルタ1におけるパティキュレート捕集
状態を検出するため、又フィルタ1の再生後の通気状態
を検出するための手段として、フィルタ1の上・下流の
排気管1には夫々、圧力導入管14及び15が接続さ
れ、この排気管領域での排気圧を検出する第1の圧力セ
ンサ16(フィルタ上流側)及び第2の圧力センサ17
(フィルタ下流側)が設けられる。
As means for detecting the particulate collection state in the filter 1 and for detecting the ventilation state of the filter 1 after regeneration, pressure introducing pipes are provided in the exhaust pipe 1 above and below the filter 1, respectively. 14 and 15 are connected to each other, and a first pressure sensor 16 (upstream side of the filter) and a second pressure sensor 17 for detecting exhaust pressure in the exhaust pipe region.
(Downstream side of the filter) is provided.

【0016】更に本実施例では、前出の圧力導入管1
4,15の途中に、制御回路6によって駆動されるロー
タリ式の圧力検出ライン切り替えバルブ18及び19が
夫々介装される。この圧力検出ライン切り替えバルブ1
8,19は、各圧力センサ16,17へ導入される圧力
を、排気管1からの排気圧か、或はセンサ出力差補正の
際の大気圧かのいずれかに決定するものであって、セン
サ出力値補正時以外のパティキュレート捕集時には図示
するような作動位置を占め、各圧力センサ16,17に
フィルタ前後の排気圧を導くようになっている。尚、2
0及び21は圧力センサ用フィルタである。
Further, in this embodiment, the pressure introducing pipe 1 described above is used.
In the middle of 4 and 15, rotary type pressure detection line switching valves 18 and 19 driven by the control circuit 6 are provided respectively. This pressure detection line switching valve 1
Reference numerals 8 and 19 determine the pressure introduced into each pressure sensor 16 or 17 to be either the exhaust pressure from the exhaust pipe 1 or the atmospheric pressure at the time of correcting the sensor output difference. At the time of collecting particulates other than when the sensor output value is corrected, it occupies the operating position as shown in the drawing, and guides the exhaust pressure before and after the filter to the pressure sensors 16 and 17. 2
Reference numerals 0 and 21 are pressure sensor filters.

【0017】制御回路6の入力側には第1圧力センサ1
6及び第2圧力センサ17からのアナログ信号の他、フ
ィルタ上流側に設けられ排気温度Thを検出する排気温
度センサ22からのアナログ信号、エアフロメータ23
によって検出された吸入空気量Gaを示す信号、など現
在の機関の運転状態を示す各種信号が入力される。そし
て制御回路6はこれら各種センサから得られた運転情報
に基づいてエンジン制御をしたり、フィルタ1に関すれ
ば、圧力センサ16,17から求められた排気圧力より
吸入空気量Ga、排気温Thを以て基準運転状態のフィ
ルタ前後差圧ΔPを演算し、これが予め定められる差圧
所定値ΔPrに達したか否かのフィルタ再生時期を判断
したり、再生の際の電動エアポンプ7や電気ヒータ8を
駆動する処理を実行する。
The first pressure sensor 1 is provided on the input side of the control circuit 6.
6 and the analog signal from the second pressure sensor 17, an analog signal from the exhaust temperature sensor 22 provided on the upstream side of the filter for detecting the exhaust temperature Th, and an air flow meter 23.
Various signals indicating the current operating state of the engine, such as a signal indicating the intake air amount Ga detected by, are input. Then, the control circuit 6 controls the engine based on the operating information obtained from these various sensors, and in the case of the filter 1, the intake air amount Ga and the exhaust temperature Th are calculated from the exhaust pressures obtained from the pressure sensors 16 and 17. The differential pressure ΔP before and after the filter in the standard operating state is calculated based on the above, to determine the filter regeneration timing of whether or not this has reached a predetermined differential pressure predetermined value ΔPr, and to determine the electric air pump 7 and the electric heater 8 at the time of regeneration. Execute the process to drive.

【0018】尚、本発明によれば制御回路6は、上記作
動に加えて、フィルタ再生後の前後差圧ΔPを検出した
り、更に再生時期判定のための差圧所定値ΔPrを補正
したり警報機24を作動する。以下、図2及び図3を参
照して、上述したフィルタ再生処理及びフィルタ再生時
期判断のための基準となる差圧所定値ΔPrの補正に関
する制御回路6の作動を説明する。
According to the present invention, in addition to the above operation, the control circuit 6 detects the differential pressure ΔP before and after the filter regeneration, and further corrects the predetermined differential pressure value ΔPr for determining the regeneration timing. The alarm 24 is activated. The operation of the control circuit 6 relating to the correction of the predetermined differential pressure value ΔPr, which is the reference for the filter regeneration processing and the filter regeneration timing determination, will be described below with reference to FIGS. 2 and 3.

【0019】図2は、上述した制御回路6の作動を実行
するプログラムのフローチャート図であって、図3はこ
のプログラムによって達成される本排気浄化装置の、パ
ティキュレートを捕集していないフィルタ新品の状態か
らパティキュレート捕集・再生を繰り返したフィルタの
前後差圧の経時的変化を示す図である。尚、図3におい
て縦軸の差圧ΔPは、上述したように、エアフロメータ
23によって検出される吸入空気量Ga及び排気温度セ
ンサ22によって検出される排気温Thより基準運転状
態の差圧に換算されたものである。
FIG. 2 is a flow chart of a program for executing the operation of the control circuit 6 described above, and FIG. 3 is a new filter of the exhaust gas purification apparatus achieved by this program, which does not collect particulates. FIG. 6 is a diagram showing a temporal change in a differential pressure across the filter after repeating particulate collection / regeneration from the state. Incidentally, the differential pressure ΔP on the vertical axis in FIG. 3 is converted into the differential pressure in the standard operating state from the intake air amount Ga detected by the air flow meter 23 and the exhaust temperature Th detected by the exhaust temperature sensor 22, as described above. It was done.

【0020】図2に関し、まずステップS21では圧力
センサ16,17によってフィルタ前後差圧ΔP′(換
算前)、エアフロメータ23によって吸入空気量Ga、
排気温度センサ22によって排気温Thを夫々検出し、
次にステップS22において補正条件として予め定めら
れている基準排気温度Tbase、基準吸入吸気量Gbaseか
ら、図示した式によりフィルタ前後差圧ΔP′を基準運
転条件下のフィルタ前後差圧ΔPに換算する。
Referring to FIG. 2, first, at step S21, the pressure difference between the front and rear of the filter ΔP '(before conversion) by the pressure sensors 16 and 17, the intake air amount Ga by the air flow meter 23,
The exhaust temperature Th is detected by the exhaust temperature sensor 22,
Next, in step S22, the filter front-rear differential pressure ΔP ′ is converted into the filter front-rear differential pressure ΔP under the standard operating condition by the illustrated formula from the reference exhaust temperature Tbase and the reference intake intake air amount Gbase which are predetermined as correction conditions.

【0021】尚、この基準排気温度Tbaseや基準吸入吸
気量Gbaseは、最も使用頻度が高い運転条件下での排気
温度、吸入吸気量より決定されることが好ましい。次に
ステップS23では以上のようにして求められる差圧Δ
Pに信頼性を持たせるべく平均値化処理をする。この処
理は、例えば具体的にはステップS21,22で一定時
間毎(例えば、50mmsec 毎)に検出・換算される差圧
を、図示する演算式によって所定数(例えばn=30
0)に亙り、算術移動平均値を求めることでも良い。
The reference exhaust gas temperature Tbase and the reference intake air intake amount Gbase are preferably determined from the exhaust gas temperature and the intake air intake amount under the most frequently used operating conditions. Next, at step S23, the differential pressure Δ obtained as described above.
An averaging process is performed so that P has reliability. In this process, for example, specifically, the differential pressure detected and converted at a constant time interval (for example, every 50 mmsec) in steps S21 and 22 is determined by a predetermined number (for example, n = 30) by the illustrated arithmetic expression.
It is also possible to obtain the arithmetic moving average value over 0).

【0022】このようにして現在のフィルタ前後差圧Δ
Pが求められたならば、次にルーチンはステップS24
に進み、制御回路6内の所定メモリに記憶されている差
圧所定値ΔPrを呼び込み、上記差圧ΔPが所定値ΔP
rを超えたか否かを判定する。そして本ステップS24
でNo、即ちまだ差圧ΔPが再生を要するほど上昇して
いないならば、パティキュレート捕集作動を継続させる
ために、ルーチンはステップS21に戻り、差圧検出を
する。
In this way, the current differential pressure across the filter Δ
If P is determined, then the routine proceeds to step S24.
And the differential pressure predetermined value ΔPr stored in a predetermined memory in the control circuit 6 is called in, and the differential pressure ΔP is changed to the predetermined value ΔP.
It is determined whether or not r is exceeded. And this step S24
If No, that is, if the differential pressure ΔP has not risen to the extent that regeneration is required, the routine returns to step S21 to detect the differential pressure in order to continue the particulate trapping operation.

【0023】これに対し、差圧ΔPが所定値ΔPrを超
えたと判定されたならば(Yes)、ルーチンはステッ
プS25に進み、ここで初めてフィルタ再生処理を実行
する。このフィルタ再生処理は、従来の排気浄化装置の
それと全く同様であって、図示した装置においては、双
方の排気制御弁4,5を点線位置に作動させ、電気ヒー
タ8に通電しつつ電動エアポンプ7を作動するべく半導
体リレー10,11を駆動させる信号を出力し、フィル
タ1に捕集されたパティキュレートに着火・燃焼する。
On the other hand, if it is determined that the differential pressure ΔP exceeds the predetermined value ΔPr (Yes), the routine proceeds to step S25, where the filter regeneration process is executed for the first time. This filter regeneration process is exactly the same as that of the conventional exhaust gas purification device. In the illustrated device, both the exhaust gas control valves 4 and 5 are operated to the dotted line positions, and the electric heater 8 is energized while the electric air pump 7 is energized. A signal for driving the semiconductor relays 10 and 11 is output to operate the, and the particulates collected by the filter 1 are ignited and burned.

【0024】このようにしてフィルタ1の再生処理が終
了したならば、ルーチンは次にステップS26に進み、
これより本実施例の特徴である、フィルタ再生後の差圧
ΔPafの検出・換算処理を実行する。これは、前述し
たように、検出された差圧ΔPafを新品時点でのフィ
ルタ前後差圧ΔPaiと比較することで、エンジンオイ
ル中の灰分に起因する差圧上昇分を検出するためのもの
であって、ステップS25の再生処理が終了してから、
例えば1分経過した時点での差圧ΔPaf′を検出し、
これをその時の排気温度Thと吸入空気量Gaによって
換算することで求めることができる。
When the regeneration process of the filter 1 is completed in this way, the routine next proceeds to step S26,
From this, the detection / conversion processing of the differential pressure ΔPaf after filter regeneration, which is a feature of this embodiment, is executed. As described above, this is for detecting the differential pressure increase due to the ash content in the engine oil by comparing the detected differential pressure ΔPaf with the filter front-back differential pressure ΔPai at the time of new product. Then, after the reproduction process of step S25 is completed,
For example, the differential pressure ΔPaf ′ at the time when one minute has elapsed is detected,
This can be obtained by converting the exhaust temperature Th and the intake air amount Ga at that time.

【0025】ところで、このようにして求められるフィ
ルタ再生後のフィルタ前後差圧ΔPfは、捕集されたパ
ティキュレートが完全に焼却されない場合などのように
フィルタ再生状況によっては変化することが考えられ
る。従って本実施例では、灰分が寄与する純粋な差圧変
化分を検出するため、続くステップS27において、図
3に示すように複数回(例えば、20回)の再生後の差
圧データを平均化し、純粋化を図る。
By the way, the pressure difference ΔPf across the filter after the filter regeneration thus obtained may change depending on the filter regeneration condition, such as when the collected particulates are not completely incinerated. Therefore, in this embodiment, in order to detect the pure differential pressure change contributed by the ash, in the subsequent step S27, as shown in FIG. 3, the differential pressure data after regeneration is averaged a plurality of times (for example, 20 times). , Purify.

【0026】そしてステップS28においては、このよ
うにして求められた再生後のフィルタ前後差圧平均値Δ
Pavが、エンジン性能を低下させるほど当初の差圧Δ
Piより変化してしまったか否かを、所定差圧値ΔP1
よりも大きいか否かで判断する。従って、フィルタ1内
における灰分捕集率が増大し、フィルタ自体も使用末期
に至り、ステップS28でYesと判定され、フィルタ
再生後の差圧平均値ΔPavが所定差圧値ΔP1を超え
た場合には(図3の右方部分c)、ルーチンはステップ
S29に進み、前述した警報機24を作動させて運転者
にフィルタ点検を促すようにする。尚、ステップS28
でNoの場合には、ステップS29はスキップされる。
Then, in step S28, the average value Δ of the differential pressure before and after the filter after the reproduction thus obtained is obtained.
The initial differential pressure Δ decreases as Pav decreases engine performance.
Whether or not it has changed from Pi is determined by a predetermined differential pressure value ΔP1.
It is judged by whether it is larger than. Therefore, when the ash collection rate in the filter 1 increases, the filter itself also reaches the end of use, it is determined as Yes in step S28, and the differential pressure average value ΔPav after filter regeneration exceeds the predetermined differential pressure value ΔP1. (Right part c in FIG. 3), the routine proceeds to step S29 to activate the above-mentioned alarm device 24 to prompt the driver to inspect the filter. Incidentally, step S28
If No, step S29 is skipped.

【0027】次にステップS30では、先のステップS
27での再生後フィルタ前後差圧平均値ΔPavから求
められる、灰分捕集に起因する差圧上昇分によって、フ
ィルタ新品の時点で設定されていた再生開始差圧設定値
ΔProを下式により補正する処理がなされる。 ΔPr=ΔPro+(ΔPav−ΔPai) 但し、ΔPro:最初の再生開始差圧設定値 ΔPai:新品時点での差圧値 尚、この新品時点の差圧値ΔPaiは、最初の再生処理
から複数回(例えば、20回)の再生処理完了までの、
所謂フィルタ使用初期の再生後差圧平均値(例えば、図
3の左方部分aの一点鎖線に相当)としても良い。
Next, in step S30, the previous step S
The regeneration start differential pressure set value ΔPro set at the time of new filter is corrected by the following formula by the differential pressure increase due to ash collection, which is obtained from the post-regeneration filter differential pressure average value ΔPav at 27. Processing is done. ΔPr = ΔPro + (ΔPav−ΔPai) where ΔPro: first regeneration start differential pressure setting value ΔPai: differential pressure value at the time of new product Note that the differential pressure value ΔPai at the time of new product is a plurality of times (eg, , 20 times) until the completion of playback processing,
It may be a so-called average value of post-regeneration differential pressure (for example, corresponding to the one-dot chain line of the left portion a in FIG. 3) at the initial stage of using the filter.

【0028】そして、以上のようにして最初の再生開始
差圧設定値ΔProの補正処理がなされたならば、現在
最も新しい再生開始差圧設定値ΔPr(例えば、図3の
中央部分bの2点鎖線ライン)としてこれを制御回路6
のメモリに記憶し、本ルーチンを終了するのである。こ
のように本実施例によれば、複数回のフィルタ再生後の
フィルタ前後差圧ΔPaを検出し、フィルタ新品時、或
は使用初期段階での再生後差圧ΔPaiとの差に応じて
再生開始設定差圧ΔProを補正するため、エンジン運
転状態に関係なく灰分捕集に起因する差圧変化分を検知
でき、従って補正されるフィルタ再生時期も適正なもの
とすることができる。
If the first reproduction start differential pressure setting value ΔPro is corrected as described above, the latest reproduction start differential pressure setting value ΔPr (for example, two points in the central portion b in FIG. 3) is obtained. This is a control line 6 as a chain line)
It is stored in the memory and the present routine is finished. As described above, according to the present embodiment, the differential pressure ΔPa before and after the filter regeneration is detected a plurality of times, and the regeneration is started according to the difference between the differential pressure ΔPai after the regeneration when the filter is new or at the initial stage of use. Since the set pressure difference ΔPro is corrected, it is possible to detect the amount of change in the pressure difference caused by the ash trap, regardless of the engine operating state, and therefore the filter regeneration timing to be corrected can be made appropriate.

【0029】以上本発明の一実施例を説明してきたが、
フィルタ詰まり度を表すパラメータとしては上述したフ
ィルタ前後差圧に限定されるものではなく、例えばこの
他にフィルタの重量変化などによってフィルタ内に捕集
された灰分量を検出するようにしても良い。更に、実施
例では再生後の差圧変化量(ΔPav−ΔPai)を以
て最初の再生開始差圧設定値ΔProを補正するように
したが、この設定値はあくまで変えずに、パティキュレ
ート捕集時検出される差圧(換算後)ΔPから上記差圧
変化量を減じた値で再生時期判断するようにしても良
い。
The embodiment of the present invention has been described above.
The parameter indicating the degree of filter clogging is not limited to the above-mentioned differential pressure across the filter, and the amount of ash collected in the filter due to, for example, a change in the weight of the filter may be detected. Further, in the embodiment, the first reproduction start differential pressure set value ΔPro is corrected by the differential pressure change amount (ΔPav−ΔPai) after the reproduction, but this set value is not changed and the detection at the time of particulate collection is performed. The regeneration timing may be determined based on a value obtained by subtracting the differential pressure change amount from the differential pressure (after conversion) ΔP.

【0030】尚、実施例では順流再生方式の排気浄化装
置をその構成例としたが、逆流再生方式でも適用可能で
あり、更にフィルタの数も限定されるものではない。
In the embodiment, the exhaust gas purification apparatus of the forward flow regeneration system is used as an example of the structure, but the backward flow regeneration system is also applicable and the number of filters is not limited.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、複
数回のフィルタ再生後の詰まり度平均値を検出し、その
値に応じて再生時期を補正するため、エンジン運転状態
やフィルタ再生状態に関係なく灰分捕集に起因する詰ま
り度変化分を検知でき、従って補正されるフィルタ再生
時期も適正なものとすることができ毎回のパティキュレ
ート捕集量が一定化し安定した再生を実施することがで
きる。
As described above, according to the present invention, the clogging degree average value after a plurality of times of filter regeneration is detected and the regeneration timing is corrected according to the detected value, so that the engine operating state and the filter regeneration state are Regardless of the condition, it is possible to detect the change in the clogging degree caused by the ash collection, and therefore the filter regeneration timing to be corrected can be made appropriate, and the particulate collection amount for each time can be made constant and stable regeneration can be performed. You can

【0032】加えて複数回の再生後の詰まり度平均値が
所定値以上になれば、エンジン性能が著しく悪化する恐
れがあるが、本発明では外部に対して警報が発せられる
ので運転者に注意を促すことができる。
In addition, if the average value of the degree of clogging after a plurality of times of regeneration exceeds a predetermined value, engine performance may be significantly deteriorated. However, in the present invention, an alarm is issued to the outside, so the driver should be careful. Can be encouraged.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による排気浄化装置の概略的構成図であ
る。
FIG. 1 is a schematic configuration diagram of an exhaust emission control device according to the present invention.

【図2】図1の排気浄化装置の作動を説明する制御フロ
ーチャート図である。
FIG. 2 is a control flowchart illustrating the operation of the exhaust emission control device of FIG.

【図3】本発明によるフィルタ詰まり度変化を経時的差
圧変化で表す図である。
FIG. 3 is a diagram showing a change in filter clogging degree according to the present invention as a change in differential pressure over time.

【符号の説明】[Explanation of symbols]

1…フィルタ 6…制御回路 7…電動エアポンプ 8…電気ヒータ 9…バッテリ 16,17…圧力センサ 22…排気温度センサ 24…警報機 1 ... Filter 6 ... Control Circuit 7 ... Electric Air Pump 8 ... Electric Heater 9 ... Battery 16, 17 ... Pressure Sensor 22 ... Exhaust Temperature Sensor 24 ... Alarm

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ディーゼルエンジンの排気系に設けられ
パティキュレートを捕集するフィルタと該フィルタを再
生する再生手段とを有し、定期的に再生手段を作動させ
てフィルタに捕集されたパティキュレートを着火燃焼す
るディーゼルエンジンの排気浄化装置において、 上記フィルタ再生後のフィルタ詰まり度を検出する詰ま
り度検出手段と、検出された複数回のフィルタ再生後の
詰まり度平均値に応じてフィルタ再生時期を補正する再
生時期補正手段とを有することを特徴とするディーゼル
エンジンの排気浄化装置。
1. A diesel engine exhaust system comprising a filter for collecting particulates and a regenerating unit for regenerating the filter, and the regenerating unit is operated at regular intervals to collect the particulates on the filter. In an exhaust emission control device for a diesel engine that ignites and burns, a filter clogging degree detection unit that detects the filter clogging degree after the filter regeneration, and a filter regeneration timing depending on the detected clogging degree average value after multiple times of filter regeneration. An exhaust emission control device for a diesel engine, comprising: a regeneration timing correction means for performing correction.
【請求項2】 更に、検出された複数回のフィルタ再生
後の詰まり度平均値が所定値以上の時、外部に対して警
報を発する警報手段を有することを特徴とする、請求項
1に記載のディーゼルエンジンの排気浄化装置。
2. The method according to claim 1, further comprising alarm means for issuing an alarm to the outside when the detected clogging degree average value after a plurality of times of filter regeneration is not less than a predetermined value. Exhaust emission control system for diesel engines.
JP4086955A 1992-04-08 1992-04-08 Diesel engine exhaust purification system Expired - Fee Related JP2789921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4086955A JP2789921B2 (en) 1992-04-08 1992-04-08 Diesel engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4086955A JP2789921B2 (en) 1992-04-08 1992-04-08 Diesel engine exhaust purification system

Publications (2)

Publication Number Publication Date
JPH05288037A true JPH05288037A (en) 1993-11-02
JP2789921B2 JP2789921B2 (en) 1998-08-27

Family

ID=13901299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4086955A Expired - Fee Related JP2789921B2 (en) 1992-04-08 1992-04-08 Diesel engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP2789921B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083036A (en) * 2001-09-14 2003-03-19 Mitsubishi Motors Corp Regeneration control device for particulate filter
JP2006513348A (en) * 2003-01-13 2006-04-20 ハーヨットエス ファールツォイクテクニック ゲーエムベーハー ウント コー カーゲー Adjusting method of heating device for particle filter
US7069721B2 (en) 2004-02-02 2006-07-04 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine and exhaust emission control method
JPWO2013005456A1 (en) * 2011-07-06 2015-02-23 イビデン株式会社 Particulate filter state detector
JPWO2013132624A1 (en) * 2012-03-07 2015-07-30 イビデン株式会社 Particulate filter state detector
WO2017047349A1 (en) * 2015-09-15 2017-03-23 株式会社豊田自動織機 Exhaust gas purification device
WO2021241703A1 (en) * 2020-05-29 2021-12-02 いすゞ自動車株式会社 Filter state detection device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083036A (en) * 2001-09-14 2003-03-19 Mitsubishi Motors Corp Regeneration control device for particulate filter
JP4506060B2 (en) * 2001-09-14 2010-07-21 三菱自動車工業株式会社 Particulate filter regeneration control device
JP2006513348A (en) * 2003-01-13 2006-04-20 ハーヨットエス ファールツォイクテクニック ゲーエムベーハー ウント コー カーゲー Adjusting method of heating device for particle filter
JP4936668B2 (en) * 2003-01-13 2012-05-23 ハーヨットエス ファールツォイクテクニック ゲーエムベーハー ウント コー カーゲー Adjusting method of heating device for particle filter
US7069721B2 (en) 2004-02-02 2006-07-04 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine and exhaust emission control method
JPWO2013005456A1 (en) * 2011-07-06 2015-02-23 イビデン株式会社 Particulate filter state detector
JPWO2013132624A1 (en) * 2012-03-07 2015-07-30 イビデン株式会社 Particulate filter state detector
US9322315B2 (en) 2012-03-07 2016-04-26 Ibiden Co., Ltd. Particulate collection filter state detection device
WO2017047349A1 (en) * 2015-09-15 2017-03-23 株式会社豊田自動織機 Exhaust gas purification device
JP2017057766A (en) * 2015-09-15 2017-03-23 株式会社豊田自動織機 Exhaust emission control device
WO2021241703A1 (en) * 2020-05-29 2021-12-02 いすゞ自動車株式会社 Filter state detection device
JP2021188555A (en) * 2020-05-29 2021-12-13 いすゞ自動車株式会社 Filter state detection device

Also Published As

Publication number Publication date
JP2789921B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US8146352B2 (en) Diesel particulate filter control
KR100772954B1 (en) Exhaust purifying apparatus for internal combustion engine
US8281576B2 (en) Diesel particulate filter control
JP4591389B2 (en) Exhaust purification device for internal combustion engine
KR101500349B1 (en) APPARATUS AND METHOD FOR DETECTING AGED OF LEAN NOx TRAP CATALYST
JP2008196394A (en) Exhaust emission control system for vehicular internal combustion engine
JPH07317529A (en) Exhaust emission control device of diesel engine
JP4506060B2 (en) Particulate filter regeneration control device
JP3938865B2 (en) Exhaust purification device control method
JP2789921B2 (en) Diesel engine exhaust purification system
JP3785691B2 (en) Exhaust particulate purification equipment
JP2998321B2 (en) Diesel engine exhaust purification system
JPH0650130A (en) Exhaust emission control device of diesel engine
JPH0544434A (en) Exhaust gas treating device for internal combustion engine
JP3930724B2 (en) Exhaust purification device
JP2011085096A (en) Dpf regeneration control device
JP4013813B2 (en) Diesel engine exhaust purification system
JP2007032553A (en) Exhaust emission control device for internal combustion engine
JP3070244B2 (en) Diesel engine exhaust purification system
JPH06264714A (en) Exhaust gas purifier for internal combustion engine
JP2005330936A (en) Exhaust emission control system for internal combustion engine
JP4997917B2 (en) Exhaust gas purification system for internal combustion engine
JPH05222919A (en) Exhaust emission control device for diesel engine
JPH0559931A (en) Exhaust purifying device of diesel engine
JPH05156929A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees