WO2017047349A1 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
WO2017047349A1
WO2017047349A1 PCT/JP2016/074773 JP2016074773W WO2017047349A1 WO 2017047349 A1 WO2017047349 A1 WO 2017047349A1 JP 2016074773 W JP2016074773 W JP 2016074773W WO 2017047349 A1 WO2017047349 A1 WO 2017047349A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential pressure
determination threshold
dpf
ash
change rate
Prior art date
Application number
PCT/JP2016/074773
Other languages
French (fr)
Japanese (ja)
Inventor
青木 秀樹
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to DE112016004177.2T priority Critical patent/DE112016004177T5/en
Publication of WO2017047349A1 publication Critical patent/WO2017047349A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/446Auxiliary equipment or operation thereof controlling filtration by pressure measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1611Particle filter ash amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • One aspect of the present invention relates to an exhaust purification device.
  • An exhaust purification device described in Patent Document 1 includes a filter for collecting particulates (particulate matter), two pressure sensors for detecting pressures on the input side and output side of the filter, and two pressure sensors.
  • a second processing unit that estimates the residual amount of ash in the filter from the differential pressure across the filter when the regeneration of the filter is completed.
  • the differential pressure between the pressure on the upstream side of the filter and the pressure on the downstream side of the filter exceeds the differential pressure determination threshold
  • the amount of particulate matter deposited on the filter is the deposition limit. Estimating that the value has been reached, starting filter regeneration.
  • the filter differential pressure changes in accordance with the amount of ash accumulated, so that regeneration of the filter may not be started at an appropriate timing. Specifically, as the amount of ash deposited on the filter increases, the differential pressure of the filter increases. Therefore, before the amount of particulate matter deposited reaches the deposition limit, the differential pressure of the filter reaches the differential pressure determination threshold. The filter regeneration may be started.
  • An object of one aspect of the present invention is to provide an exhaust purification device capable of starting regeneration of a filter at an appropriate timing.
  • An exhaust emission control device is an exhaust emission control device that purifies exhaust gas discharged from an internal combustion engine, a filter that collects particulate matter contained in the exhaust gas, and fuel that supplies fuel to the filter
  • a differential pressure determination threshold A regeneration control unit that controls the fuel supply unit so that the particulate matter deposited on the filter is burned by the fuel, and a differential pressure change rate calculation unit that calculates a change rate of the differential pressure detected by the differential pressure detection unit;
  • the ash deposition amount estimation unit for estimating the ash deposition amount in the filter, and the ash deposition amount estimated by the ash deposition amount estimation unit Meet And a differential pressure determination threshold setting unit for setting a differential pressure judgment threshold Te, the differential pressure judgment threshold value setting section increases the higher the differential pressure judgment threshold amount of deposited
  • the differential pressure of the filter when the differential pressure between the pressure upstream of the filter and the pressure downstream of the filter (hereinafter referred to as the differential pressure of the filter) becomes equal to or greater than the differential pressure determination threshold, it accumulates on the filter.
  • the filter is regenerated by controlling the fuel supply unit so that the particulate matter is burned by the fuel.
  • the rate of change of the differential pressure of the filter is calculated, the amount of ash accumulated in the filter is estimated based on the rate of change of the differential pressure, and a differential pressure determination threshold is set according to the amount of accumulated ash. .
  • the differential pressure determination threshold increases as the amount of ash accumulated in the filter increases.
  • the differential pressure of the filter reaches the differential pressure determination threshold, a desired amount of particulate matter is deposited on the filter even if ash is accumulated on the filter.
  • the regeneration of the filter is prevented from starting before the desired amount of particulate matter is deposited on the filter. Thereby, the regeneration of the filter can be started at an appropriate timing.
  • the differential pressure change rate calculation unit calculates an average value of the differential pressure change rate
  • the ash deposition amount estimation unit calculates the average value of the differential pressure change rate calculated by the differential pressure change rate calculation unit.
  • the amount of ash deposited may be estimated based on the above. In this case, the estimation accuracy of the ash accumulation amount in the filter can be improved.
  • the differential pressure determination threshold setting unit increases the differential pressure determination threshold as the ash accumulation amount increases until the ash accumulation amount reaches a specified value, and the ash accumulation amount reaches the specified value.
  • the differential pressure determination threshold may be maximized. In this case, since the regeneration of the filter is started before the differential pressure of the filter becomes sufficiently high, the internal combustion engine can be protected.
  • filter regeneration can be started at an appropriate timing.
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust emission control device according to an embodiment.
  • FIG. 2 is a graph showing a DPF differential pressure map representing the relationship among the PM accumulation amount, the ash accumulation amount, and the DPF differential pressure.
  • FIG. 3A is a graph showing the relationship between the travel distance and the slope of the DPF differential pressure
  • FIG. 3B is the ash deposition amount showing the relation between the slope of the DPF differential pressure and the ash deposition amount.
  • FIG. 3C is a graph showing a differential pressure determination threshold map representing the relationship between the ash deposition amount and the differential pressure determination threshold.
  • FIG. 4 is a graph showing the relationship between travel time, DPF differential pressure, and differential pressure determination threshold when the differential pressure determination threshold map shown in FIG. 3C is used.
  • FIG. 3A is a graph showing the relationship between the travel distance and the slope of the DPF differential pressure
  • FIG. 3B is the ash deposition amount showing the relation between the slope of the DPF differential pressure and the ash deposition amount
  • FIG. 5 is a graph showing a modification of the differential pressure determination threshold map representing the relationship between the ash deposition amount and the differential pressure determination threshold.
  • FIG. 6 is a graph showing the relationship between travel time, DPF differential pressure, and differential pressure determination threshold when the differential pressure determination threshold map shown in FIG. 5 is used.
  • FIG. 1 is a schematic configuration diagram showing an exhaust purification device according to an embodiment.
  • an exhaust emission control device 1 of this embodiment is mounted on a vehicle.
  • the exhaust purification device 1 purifies exhaust gas discharged from a diesel engine (hereinafter simply referred to as an engine) 2 that is an internal combustion engine.
  • the engine 2 has a plurality of injectors 3 that inject fuel into a plurality of cylinders (not shown).
  • the exhaust purification apparatus 1 includes a diesel oxidation catalyst (DOC) 5 and a diesel exhaust particulate removal filter (DPF: Diesel) disposed in order from an upstream side to a downstream side in an exhaust passage 4 connected to an engine 2. Particulate Filter) 6.
  • the DOC 5 oxidizes and removes particulate matter (PM) contained in the exhaust gas.
  • the DPF 6 collects PM contained in the exhaust gas.
  • the exhaust purification device 1 includes a fuel addition valve 7 that is disposed on the upstream side of the DOC 5 in the exhaust passage 4 and that adds fuel to the exhaust passage 4.
  • the fuel added from the fuel addition valve 7 is mainly used as a reducing agent when the DPF 6 is regenerated.
  • the regeneration of the DPF 6 is to burn the PM deposited on the DPF 6 with a high-temperature fuel.
  • the fuel addition valve 7 constitutes a fuel supply unit that supplies fuel to the DPF 6.
  • the exhaust purification device 1 includes a differential pressure sensor 8 (differential pressure detection unit) that detects a differential pressure between the pressure upstream of the DPF 6 and the pressure downstream of the DPF 6 (hereinafter referred to as DPF differential pressure), and fuel addition A controller 10 connected to the valve 7 and the differential pressure sensor 8 is provided.
  • the controller 10 inputs a detection signal of the differential pressure sensor 8, performs a predetermined process, and controls the fuel addition valve 7 so as to perform a regeneration process of the DPF 6.
  • the controller 10 includes a PM accumulation amount estimation unit 11, a differential pressure change rate calculation unit 12, an ash accumulation amount estimation unit 13, a differential pressure determination threshold setting unit 14, and a regeneration control unit 15.
  • the PM deposition amount estimation unit 11 estimates the amount of PM deposited on the DPF 6, that is, the amount of PM deposition on the DPF 6 (hereinafter simply referred to as PM deposition amount).
  • the PM accumulation amount estimation unit 11 estimates the PM accumulation amount using a known estimation formula based on, for example, the engine speed, the fuel injection amount from the injector 3, and the travel distance or travel time.
  • the differential pressure change rate calculation unit 12 calculates the change rate of the DPF differential pressure based on the DPF differential pressure detected by the differential pressure sensor 8 and the PM deposition amount estimated by the PM deposition amount estimation unit 11.
  • the change rate of the DPF differential pressure is also referred to as the slope of the DPF differential pressure.
  • the change rate of the DPF differential pressure is, for example, the change amount of the DPF differential pressure per unit increase amount of the PM deposition amount.
  • the differential pressure change rate calculation unit 12 calculates the change rate (slope) of the DPF differential pressure using, for example, the DPF differential pressure map shown in FIG.
  • the DPF differential pressure map is a map representing the relationship between the PM deposition amount, the ash deposition amount, and the DPF differential pressure, and is obtained in advance through experiments or the like.
  • the amount of ash deposited is the amount of ash deposited on the DPF 6, that is, the amount of ash deposited on the DPF 6.
  • ash is an incombustible material discharged from the engine, and mainly includes Ca compounds contained in engine oil.
  • the solid line P is data when the ash deposition amount is zero.
  • the solid line Q is data when the ash deposition amount is 200 g.
  • the solid line R is data when the ash deposition amount is 300 g.
  • the solid line S is data when the ash deposition amount is 400 g.
  • the greater the amount of PM deposited the greater the DPF differential pressure. As the ash deposition amount increases, the DPF differential pressure increases.
  • the differential pressure change rate calculation unit 12 calculates the change rate of the DPF differential pressure from the two DPF differential pressures. At this time, the differential pressure change rate calculation unit 12 calculates the change rate of the DPF differential pressure a plurality of times (for example, 10 times), calculates the average value of these DPF differential pressure change rates, and finally calculates the average value. It is determined as the change rate of the DPF differential pressure.
  • the change rate (slope) of the DPF differential pressure increases as the travel distance becomes longer, as shown in FIG. The reason for this is that the amount of ash deposition increases as the travel distance increases.
  • the ash accumulation amount estimation unit 13 estimates the ash accumulation amount based on the final change rate of the DPF differential pressure calculated by the differential pressure change rate calculation unit 12 (an average value of the change rate of the DPF differential pressure).
  • the ash accumulation amount estimation unit 13 estimates the ash accumulation amount using, for example, an ash accumulation amount map shown in FIG.
  • the ash deposition amount map is a map that represents the relationship between the change rate (slope) of the DPF differential pressure and the ash deposition amount, and is obtained in advance through experiments or the like.
  • the ash accumulation amount map is set so that the ash accumulation amount increases as the change rate (slope) of the DPF differential pressure increases.
  • the differential pressure determination threshold setting unit 14 sets a differential pressure determination threshold according to the ash accumulation amount estimated by the ash accumulation amount estimation unit 13.
  • the differential pressure determination threshold is used when determining whether or not to regenerate the DPF 6 in the regeneration control unit 15 described later.
  • the differential pressure determination threshold value setting unit 14 sets the differential pressure determination threshold value using, for example, a differential pressure determination threshold value map shown in FIG.
  • the differential pressure determination threshold map is a map representing the relationship between the ash deposition amount and the differential pressure determination threshold, and is obtained in advance through experiments or the like.
  • the differential pressure determination threshold map is set so that the differential pressure determination threshold increases as the ash deposition amount increases from a certain initial value. Therefore, the differential pressure determination threshold value setting unit 14 increases the differential pressure determination threshold value as the ash accumulation amount increases.
  • the differential pressure determination threshold A increases as the traveling time increases.
  • the regeneration control unit 15 determines whether to regenerate the DPF 6 based on the DPF differential pressure detected by the differential pressure sensor 8 and the differential pressure determination threshold set by the differential pressure determination threshold setting unit 14. At this time, the regeneration control unit 15 determines to regenerate the DPF 6 when the DPF differential pressure is equal to or greater than the differential pressure determination threshold. Then, the regeneration control unit 15 controls the fuel addition valve 7 so that fuel is added from the fuel addition valve 7 when the DPF 6 is regenerated.
  • the amount of accumulated PM increases as the running time elapses, so the DPF differential pressure increases.
  • the DPF differential pressure reaches the differential pressure determination threshold A, it is determined that the PM deposition amount has reached the deposition limit value, and regeneration of the DPF 6 is started. Then, since fuel is added from the fuel addition valve 7, fuel is supplied to the DPF 6, so that PM deposited on the DPF 6 is burned by the fuel. For this reason, the DPF differential pressure rapidly decreases. When regeneration of the DPF 6 is completed, PM accumulates again on the DPF 6.
  • the DPF differential pressure is determined before the desired amount of PM is deposited on the DPF 6. The threshold may be reached and regeneration of the DPF 6 may be started.
  • the rate of change of the DPF differential pressure is calculated based on the DPF differential pressure and the PM deposition amount
  • the ash deposition amount is estimated based on the rate of change of the DPF differential pressure
  • the ash deposition amount is set according to the above.
  • the differential pressure determination threshold increases as the ash deposition amount increases. Therefore, as shown in FIG. 4, when the ash accumulation amount increases as the travel time elapses, the differential pressure determination threshold A increases as the ash accumulation amount increases. Therefore, when the DPF differential pressure reaches the differential pressure determination threshold A, a desired amount of PM is deposited on the DPF 6 even if ash is accumulated on the DPF 6. Therefore, the regeneration of the DPF 6 is prevented from starting before the desired amount of PM is deposited on the DPF 6. Thereby, the regeneration of the DPF 6 can be started at an appropriate timing.
  • the estimation accuracy of the ash deposition amount can be improved.
  • the differential pressure determination threshold value setting unit 14 sets the differential pressure determination threshold value using the differential pressure determination threshold value map shown in FIG. I can't.
  • the differential pressure determination threshold setting unit 14 may set the differential pressure determination threshold using the differential pressure determination threshold map shown in FIG.
  • the differential pressure determination threshold map shown in FIG. 5 shows that when the ash accumulation amount is equal to or less than the specified value K, the differential pressure determination threshold value increases as the ash accumulation amount increases, and when the ash accumulation amount is equal to or greater than the specified value K,
  • the differential pressure determination threshold is set to be constant at the maximum value M.
  • the maximum value M is determined in consideration of, for example, the rigidity and durability of the exhaust manifold of the engine 2.
  • the differential pressure determination threshold value setting unit 14 increases the differential pressure determination threshold value as the ash deposition amount increases until the ash deposition amount reaches the specified value K, and when the ash deposition amount reaches the specified value K, The differential pressure determination threshold is set to the maximum value M.
  • the differential pressure determination threshold A increases as the travel time increases.
  • the differential pressure determination threshold A A is constant.
  • the change rate of the DPF differential pressure is calculated a plurality of times, the average value of the change rate of these DPF differential pressures is calculated, and the ash deposition amount is estimated based on the average value.
  • the form is not limited, and the rate of change of the DPF differential pressure may be calculated only once, and the ash deposition amount may be estimated based on the rate of change of the DPF differential pressure. In this case, the arithmetic processing by the controller 10 can be simplified.
  • the DPF 6 is regenerated by adding fuel from the fuel addition valve 7.
  • the present invention is not particularly limited to this, and a cylinder (not shown) is disposed from the injector 3 disposed in the engine 2.
  • the DPF 6 may be regenerated by injecting the fuel into ().
  • the injector 3 constitutes a fuel supply unit that supplies fuel to the DPF 6.
  • an atmospheric pressure sensor that detects atmospheric pressure may be further provided, and the differential pressure determination threshold value may be corrected each time based on the detected value. . In this case, correction is performed to lower the differential pressure determination threshold as the atmospheric pressure is lower.
  • SYMBOLS 1 Exhaust gas purification device, 2 ... Diesel engine (internal combustion engine), 6 ... Diesel exhaust particulate removal filter (filter), 7 ... Fuel addition valve (fuel supply part), 8 ... Differential pressure sensor (differential pressure detection part), 10 ... Controller, 12 ... Differential pressure change rate calculation unit, 13 ... Ash accumulation amount estimation unit, 14 ... Differential pressure determination threshold setting unit, 15 ... Regeneration control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

This exhaust gas purification device (1) is provided with: a DPF (6) for capturing PM included in exhaust gas; a fuel addition valve (7) for supplying fuel to the DPF; a differential pressure sensor (8) for detecting the pressure differential (DPF pressure differential) between pressure on the upstream side of the DPF and pressure on the downstream side of the DPF; a reproduction control unit (15) for controlling the fuel addition valve so as to burn the PM deposited on the DPF with fuel when the DPF differential pressure is equal to or greater than a differential pressure determination threshold value; a differential pressure change rate calculation unit (12) for calculating the change rate of the DPF differential pressure; an ash deposit amount estimation unit (13) for estimating the amount of ash deposited on the DPF on the basis of the rate of change of the DPF differential pressure; and a differential pressure determination threshold value setting unit (14) for setting a differential pressure determination threshold value according to the amount of ash deposited. The greater the amount of ash deposited, the greater the differential pressure determination threshold value setting unit makes the differential pressure determination threshold value.

Description

排気浄化装置Exhaust purification device
 本発明の一側面は、排気浄化装置に関する。 One aspect of the present invention relates to an exhaust purification device.
 従来の排気浄化装置としては、例えば特許文献1に記載されている装置が知られている。特許文献1に記載の排気浄化装置は、パティキュレート(粒子状物質)捕集用のフィルタと、このフィルタの入力側及び出力側の圧力をそれぞれ検出する2つの圧力センサと、2つの圧力センサの圧力信号に応答してフィルタの前後差圧を演算し、その前後差圧に基づいてフィルタにおけるパティキュレートの堆積量を推定し、その推定結果に従ってフィルタの再生を行うかどうかを判別する第1処理部と、フィルタの再生が終了したとき、フィルタの前後差圧からフィルタにおけるアッシュ残留量を推定する第2処理部とを備えている。 For example, a device described in Patent Document 1 is known as a conventional exhaust gas purification device. An exhaust purification device described in Patent Document 1 includes a filter for collecting particulates (particulate matter), two pressure sensors for detecting pressures on the input side and output side of the filter, and two pressure sensors. A first process of calculating a differential pressure across the filter in response to the pressure signal, estimating a particulate accumulation amount on the filter based on the differential pressure across the filter, and determining whether to regenerate the filter according to the estimation result And a second processing unit that estimates the residual amount of ash in the filter from the differential pressure across the filter when the regeneration of the filter is completed.
特開2004-76605号公報JP 2004-76605 A
 従来においては、フィルタの上流側の圧力とフィルタの下流側の圧力との差圧(フィルタの差圧)が差圧判定閾値以上となったときに、フィルタにおける粒子状物質の堆積量が堆積限界値に達したと推定して、フィルタの再生を開始している。しかし、フィルタにアッシュが堆積すると、アッシュの堆積量に応じてフィルタの差圧が変化するため、適切なタイミングでフィルタの再生が開始されないことがある。具体的には、フィルタにおけるアッシュの堆積量が増加すると、フィルタの差圧が大きくなるため、粒子状物質の堆積量が堆積限界値に達する前に、フィルタの差圧が差圧判定閾値に達し、フィルタの再生が開始されることがある。 Conventionally, when the differential pressure between the pressure on the upstream side of the filter and the pressure on the downstream side of the filter (the differential pressure of the filter) exceeds the differential pressure determination threshold, the amount of particulate matter deposited on the filter is the deposition limit. Estimating that the value has been reached, starting filter regeneration. However, when ash accumulates on the filter, the filter differential pressure changes in accordance with the amount of ash accumulated, so that regeneration of the filter may not be started at an appropriate timing. Specifically, as the amount of ash deposited on the filter increases, the differential pressure of the filter increases. Therefore, before the amount of particulate matter deposited reaches the deposition limit, the differential pressure of the filter reaches the differential pressure determination threshold. The filter regeneration may be started.
 本発明の一側面は、適切なタイミングでフィルタの再生を開始することができる排気浄化装置を提供することを目的とする。 An object of one aspect of the present invention is to provide an exhaust purification device capable of starting regeneration of a filter at an appropriate timing.
 本発明の一側面に係る排気浄化装置は、内燃機関から排出される排気ガスを浄化する排気浄化装置において、排気ガスに含まれる粒子状物質を捕集するフィルタと、フィルタに燃料を供給する燃料供給部と、フィルタの上流側の圧力とフィルタの下流側の圧力との差圧を検出する差圧検出部と、差圧検出部により検出された差圧が差圧判定閾値以上となったときに、フィルタに堆積した粒子状物質を燃料により燃焼させるように燃料供給部を制御する再生制御部と、差圧検出部により検出された差圧の変化率を算出する差圧変化率算出部と、差圧変化率算出部により算出された差圧の変化率に基づいて、フィルタにおけるアッシュの堆積量を推定するアッシュ堆積量推定部と、アッシュ堆積量推定部により推定されたアッシュの堆積量に応じて差圧判定閾値を設定する差圧判定閾値設定部とを備え、差圧判定閾値設定部は、アッシュの堆積量が多くなるほど差圧判定閾値を大きくする。 An exhaust emission control device according to one aspect of the present invention is an exhaust emission control device that purifies exhaust gas discharged from an internal combustion engine, a filter that collects particulate matter contained in the exhaust gas, and fuel that supplies fuel to the filter When the differential pressure detected by the supply unit, the differential pressure between the upstream pressure of the filter and the downstream pressure of the filter, and the differential pressure detected by the differential pressure detector exceeds a differential pressure determination threshold A regeneration control unit that controls the fuel supply unit so that the particulate matter deposited on the filter is burned by the fuel, and a differential pressure change rate calculation unit that calculates a change rate of the differential pressure detected by the differential pressure detection unit; Based on the differential pressure change rate calculated by the differential pressure change rate calculation unit, the ash deposition amount estimation unit for estimating the ash deposition amount in the filter, and the ash deposition amount estimated by the ash deposition amount estimation unit Meet And a differential pressure determination threshold setting unit for setting a differential pressure judgment threshold Te, the differential pressure judgment threshold value setting section increases the higher the differential pressure judgment threshold amount of deposited ash increases.
 このような排気浄化装置においては、フィルタの上流側の圧力とフィルタの下流側の圧力との差圧(以下、フィルタの差圧)が差圧判定閾値以上となったときに、フィルタに堆積した粒子状物質を燃料により燃焼させるように燃料供給部を制御することにより、フィルタの再生を行う。ここで、フィルタの差圧の変化率が算出され、当該差圧の変化率に基づいて、フィルタにおけるアッシュの堆積量が推定され、そのアッシュの堆積量に応じて差圧判定閾値が設定される。このとき、フィルタにおけるアッシュの堆積量が多くなるほど、差圧判定閾値が大きくなる。このため、フィルタの差圧が差圧判定閾値に達した時点では、フィルタにアッシュが堆積していても、所望量の粒子状物質がフィルタに堆積した状態となっている。従って、所望量の粒子状物質がフィルタに堆積する前に、フィルタの再生が開始されることが防止される。これにより、適切なタイミングでフィルタの再生を開始することができる。 In such an exhaust purification device, when the differential pressure between the pressure upstream of the filter and the pressure downstream of the filter (hereinafter referred to as the differential pressure of the filter) becomes equal to or greater than the differential pressure determination threshold, it accumulates on the filter. The filter is regenerated by controlling the fuel supply unit so that the particulate matter is burned by the fuel. Here, the rate of change of the differential pressure of the filter is calculated, the amount of ash accumulated in the filter is estimated based on the rate of change of the differential pressure, and a differential pressure determination threshold is set according to the amount of accumulated ash. . At this time, the differential pressure determination threshold increases as the amount of ash accumulated in the filter increases. For this reason, when the differential pressure of the filter reaches the differential pressure determination threshold, a desired amount of particulate matter is deposited on the filter even if ash is accumulated on the filter. Thus, the regeneration of the filter is prevented from starting before the desired amount of particulate matter is deposited on the filter. Thereby, the regeneration of the filter can be started at an appropriate timing.
 一実施形態において、差圧変化率算出部は、差圧の変化率の平均値を算出し、アッシュ堆積量推定部は、差圧変化率算出部により算出された差圧の変化率の平均値に基づいて、アッシュの堆積量を推定してもよい。この場合には、フィルタにおけるアッシュの堆積量の推定精度を向上させることができる。 In one embodiment, the differential pressure change rate calculation unit calculates an average value of the differential pressure change rate, and the ash deposition amount estimation unit calculates the average value of the differential pressure change rate calculated by the differential pressure change rate calculation unit. The amount of ash deposited may be estimated based on the above. In this case, the estimation accuracy of the ash accumulation amount in the filter can be improved.
 一実施形態において、差圧判定閾値設定部は、アッシュの堆積量が規定値に達するまでは、アッシュの堆積量が多くなるほど差圧判定閾値を大きくし、アッシュの堆積量が規定値に達したときは、差圧判定閾値を最大値にしてもよい。この場合には、フィルタの差圧が十分に高くなる前にフィルタの再生が開始されるため、内燃機関を保護することができる。 In one embodiment, the differential pressure determination threshold setting unit increases the differential pressure determination threshold as the ash accumulation amount increases until the ash accumulation amount reaches a specified value, and the ash accumulation amount reaches the specified value. In some cases, the differential pressure determination threshold may be maximized. In this case, since the regeneration of the filter is started before the differential pressure of the filter becomes sufficiently high, the internal combustion engine can be protected.
 本発明の一側面によれば、適切なタイミングでフィルタの再生を開始することができる。 According to one aspect of the present invention, filter regeneration can be started at an appropriate timing.
図1は、一実施形態に係る排気浄化装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an exhaust emission control device according to an embodiment. 図2は、PM堆積量とアッシュ堆積量とDPF差圧との関係を表したDPF差圧マップを示すグラフである。FIG. 2 is a graph showing a DPF differential pressure map representing the relationship among the PM accumulation amount, the ash accumulation amount, and the DPF differential pressure. 図3(a)は、走行距離とDPF差圧の傾きとの関係を表したグラフであり、図3(b)は、DPF差圧の傾きとアッシュ堆積量との関係を表したアッシュ堆積量マップを示すグラフであり、図3(c)は、アッシュ堆積量と差圧判定閾値との関係を表した差圧判定閾値マップを示すグラフである。FIG. 3A is a graph showing the relationship between the travel distance and the slope of the DPF differential pressure, and FIG. 3B is the ash deposition amount showing the relation between the slope of the DPF differential pressure and the ash deposition amount. FIG. 3C is a graph showing a differential pressure determination threshold map representing the relationship between the ash deposition amount and the differential pressure determination threshold. 図4は、図3(c)に示される差圧判定閾値マップを使用した場合に、走行時間とDPF差圧と差圧判定閾値との関係を表したグラフである。FIG. 4 is a graph showing the relationship between travel time, DPF differential pressure, and differential pressure determination threshold when the differential pressure determination threshold map shown in FIG. 3C is used. 図5は、アッシュ堆積量と差圧判定閾値との関係を表した差圧判定閾値マップの変形例を示すグラフである。FIG. 5 is a graph showing a modification of the differential pressure determination threshold map representing the relationship between the ash deposition amount and the differential pressure determination threshold. 図6は、図5に示される差圧判定閾値マップを使用した場合に、走行時間とDPF差圧と差圧判定閾値との関係を表したグラフである。FIG. 6 is a graph showing the relationship between travel time, DPF differential pressure, and differential pressure determination threshold when the differential pressure determination threshold map shown in FIG. 5 is used.
 以下、一実施形態について、図面を参照して詳細に説明する。 Hereinafter, an embodiment will be described in detail with reference to the drawings.
 図1は、一実施形態に係る排気浄化装置を示す概略構成図である。図1において、本実施形態の排気浄化装置1は、車両に搭載されている。排気浄化装置1は、内燃機関であるディーゼルエンジン(以下、単にエンジンという)2から排出される排気ガスを浄化する。エンジン2は、複数の気筒(図示せず)にそれぞれ燃料を噴射する複数のインジェクタ3を有している。 FIG. 1 is a schematic configuration diagram showing an exhaust purification device according to an embodiment. In FIG. 1, an exhaust emission control device 1 of this embodiment is mounted on a vehicle. The exhaust purification device 1 purifies exhaust gas discharged from a diesel engine (hereinafter simply referred to as an engine) 2 that is an internal combustion engine. The engine 2 has a plurality of injectors 3 that inject fuel into a plurality of cylinders (not shown).
 排気浄化装置1は、エンジン2に接続された排気通路4に上流側から下流側に向けて順に配設されたディーゼル酸化触媒(DOC:Diesel Oxidation Catalyst)5及びディーゼル排気微粒子除去フィルタ(DPF:Diesel Particulate Filter)6を備えている。DOC5は、排気ガスに含まれる粒子状物質(PM:Particulate Matter)を酸化して除去する。DPF6は、排気ガスに含まれるPMを捕集する。 The exhaust purification apparatus 1 includes a diesel oxidation catalyst (DOC) 5 and a diesel exhaust particulate removal filter (DPF: Diesel) disposed in order from an upstream side to a downstream side in an exhaust passage 4 connected to an engine 2. Particulate Filter) 6. The DOC 5 oxidizes and removes particulate matter (PM) contained in the exhaust gas. The DPF 6 collects PM contained in the exhaust gas.
 また、排気浄化装置1は、排気通路4におけるDOC5の上流側に配設され、排気通路4に燃料を添加する燃料添加弁7を備えている。燃料添加弁7から添加される燃料は、主としてDPF6の再生を行う際に還元剤として使用される。DPF6の再生とは、DPF6に堆積したPMを高温の燃料により燃焼させることである。燃料添加弁7は、DPF6に燃料を供給する燃料供給部を構成している。 Further, the exhaust purification device 1 includes a fuel addition valve 7 that is disposed on the upstream side of the DOC 5 in the exhaust passage 4 and that adds fuel to the exhaust passage 4. The fuel added from the fuel addition valve 7 is mainly used as a reducing agent when the DPF 6 is regenerated. The regeneration of the DPF 6 is to burn the PM deposited on the DPF 6 with a high-temperature fuel. The fuel addition valve 7 constitutes a fuel supply unit that supplies fuel to the DPF 6.
 また、排気浄化装置1は、DPF6の上流側の圧力とDPF6の下流側の圧力との差圧(以下、DPF差圧という)を検出する差圧センサ8(差圧検出部)と、燃料添加弁7及び差圧センサ8と接続されたコントローラ10とを備えている。コントローラ10は、差圧センサ8の検出信号を入力し、所定の処理を行い、DPF6の再生処理を実施するように燃料添加弁7を制御する。 In addition, the exhaust purification device 1 includes a differential pressure sensor 8 (differential pressure detection unit) that detects a differential pressure between the pressure upstream of the DPF 6 and the pressure downstream of the DPF 6 (hereinafter referred to as DPF differential pressure), and fuel addition A controller 10 connected to the valve 7 and the differential pressure sensor 8 is provided. The controller 10 inputs a detection signal of the differential pressure sensor 8, performs a predetermined process, and controls the fuel addition valve 7 so as to perform a regeneration process of the DPF 6.
 コントローラ10は、PM堆積量推定部11と、差圧変化率算出部12と、アッシュ堆積量推定部13と、差圧判定閾値設定部14と、再生制御部15とを有している。 The controller 10 includes a PM accumulation amount estimation unit 11, a differential pressure change rate calculation unit 12, an ash accumulation amount estimation unit 13, a differential pressure determination threshold setting unit 14, and a regeneration control unit 15.
 PM堆積量推定部11は、DPF6に堆積されるPMの量、つまりDPF6におけるPMの堆積量(以下、単にPM堆積量という)を推定する。PM堆積量推定部11は、例えばエンジン回転数とインジェクタ3からの燃料噴射量と走行距離または走行時間とに基づいて、既知の推定計算式を用いてPM堆積量を推定する。 The PM deposition amount estimation unit 11 estimates the amount of PM deposited on the DPF 6, that is, the amount of PM deposition on the DPF 6 (hereinafter simply referred to as PM deposition amount). The PM accumulation amount estimation unit 11 estimates the PM accumulation amount using a known estimation formula based on, for example, the engine speed, the fuel injection amount from the injector 3, and the travel distance or travel time.
 差圧変化率算出部12は、差圧センサ8により検出されたDPF差圧とPM堆積量推定部11により推定されたPM堆積量とに基づいて、DPF差圧の変化率を算出する。なお、DPF差圧の変化率は、DPF差圧の傾きともいう。DPF差圧の変化率は、例えばPM堆積量の単位増加量当たりのDPF差圧の変化量である。 The differential pressure change rate calculation unit 12 calculates the change rate of the DPF differential pressure based on the DPF differential pressure detected by the differential pressure sensor 8 and the PM deposition amount estimated by the PM deposition amount estimation unit 11. The change rate of the DPF differential pressure is also referred to as the slope of the DPF differential pressure. The change rate of the DPF differential pressure is, for example, the change amount of the DPF differential pressure per unit increase amount of the PM deposition amount.
 差圧変化率算出部12は、例えば図2に示されるDPF差圧マップを用いて、DPF差圧の変化率(傾き)を算出する。DPF差圧マップは、PM堆積量とアッシュ堆積量とDPF差圧との関係を表したマップであり、予め実験等により得られている。アッシュ堆積量は、DPF6に堆積されるアッシュの量、つまりDPF6におけるアッシュの堆積量である。なお、アッシュとは、エンジンから排出される不燃物のことであり、主としてエンジンオイルに含まれるCa化合物等が挙げられる。 The differential pressure change rate calculation unit 12 calculates the change rate (slope) of the DPF differential pressure using, for example, the DPF differential pressure map shown in FIG. The DPF differential pressure map is a map representing the relationship between the PM deposition amount, the ash deposition amount, and the DPF differential pressure, and is obtained in advance through experiments or the like. The amount of ash deposited is the amount of ash deposited on the DPF 6, that is, the amount of ash deposited on the DPF 6. Note that ash is an incombustible material discharged from the engine, and mainly includes Ca compounds contained in engine oil.
 図2において、実線Pは、アッシュ堆積量が0のときのデータである。実線Qは、アッシュ堆積量が200gのときのデータである。実線Rは、アッシュ堆積量が300gのときのデータである。実線Sは、アッシュ堆積量が400gのときのデータである。PM堆積量が多くなるほど、DPF差圧が大きくなる。アッシュ堆積量が多くなるほど、DPF差圧が大きくなる。 In FIG. 2, the solid line P is data when the ash deposition amount is zero. The solid line Q is data when the ash deposition amount is 200 g. The solid line R is data when the ash deposition amount is 300 g. The solid line S is data when the ash deposition amount is 400 g. The greater the amount of PM deposited, the greater the DPF differential pressure. As the ash deposition amount increases, the DPF differential pressure increases.
 差圧変化率算出部12は、2点のDPF差圧からDPF差圧の変化率を算出する。このとき、差圧変化率算出部12は、DPF差圧の変化率を複数回(例えば10回)算出し、これらのDPF差圧の変化率の平均値を算出し、その平均値を最終的なDPF差圧の変化率として決定する。 The differential pressure change rate calculation unit 12 calculates the change rate of the DPF differential pressure from the two DPF differential pressures. At this time, the differential pressure change rate calculation unit 12 calculates the change rate of the DPF differential pressure a plurality of times (for example, 10 times), calculates the average value of these DPF differential pressure change rates, and finally calculates the average value. It is determined as the change rate of the DPF differential pressure.
 DPF差圧の変化率(傾き)は、図3(a)に示されるように、走行距離が長くなるに従って大きくなる。その理由は、走行距離が長くなるに従ってアッシュ堆積量が多くなるからである。 The change rate (slope) of the DPF differential pressure increases as the travel distance becomes longer, as shown in FIG. The reason for this is that the amount of ash deposition increases as the travel distance increases.
 アッシュ堆積量推定部13は、差圧変化率算出部12により算出された最終的なDPF差圧の変化率(DPF差圧の変化率の平均値)に基づいて、アッシュ堆積量を推定する。アッシュ堆積量推定部13は、例えば図3(b)に示されるアッシュ堆積量マップを用いて、アッシュ堆積量を推定する。アッシュ堆積量マップは、DPF差圧の変化率(傾き)とアッシュ堆積量との関係を表したマップであり、予め実験等により得られている。アッシュ堆積量マップは、DPF差圧の変化率(傾き)が大きくなるほどアッシュ堆積量が多くなるように設定されている。 The ash accumulation amount estimation unit 13 estimates the ash accumulation amount based on the final change rate of the DPF differential pressure calculated by the differential pressure change rate calculation unit 12 (an average value of the change rate of the DPF differential pressure). The ash accumulation amount estimation unit 13 estimates the ash accumulation amount using, for example, an ash accumulation amount map shown in FIG. The ash deposition amount map is a map that represents the relationship between the change rate (slope) of the DPF differential pressure and the ash deposition amount, and is obtained in advance through experiments or the like. The ash accumulation amount map is set so that the ash accumulation amount increases as the change rate (slope) of the DPF differential pressure increases.
 差圧判定閾値設定部14は、アッシュ堆積量推定部13により推定されたアッシュ堆積量に応じて差圧判定閾値を設定する。差圧判定閾値は、後述する再生制御部15においてDPF6の再生を行うかどうかを判定する際に使用される。 The differential pressure determination threshold setting unit 14 sets a differential pressure determination threshold according to the ash accumulation amount estimated by the ash accumulation amount estimation unit 13. The differential pressure determination threshold is used when determining whether or not to regenerate the DPF 6 in the regeneration control unit 15 described later.
 差圧判定閾値設定部14は、例えば図3(c)に示される差圧判定閾値マップを用いて、差圧判定閾値を設定する。差圧判定閾値マップは、アッシュ堆積量と差圧判定閾値との関係を表したマップであり、予め実験等により得られている。差圧判定閾値マップは、一定の初期値からアッシュ堆積量が多くなるほど差圧判定閾値が大きくなるように設定されている。従って、差圧判定閾値設定部14は、アッシュ堆積量が多くなるほど差圧判定閾値を大きくする。 The differential pressure determination threshold value setting unit 14 sets the differential pressure determination threshold value using, for example, a differential pressure determination threshold value map shown in FIG. The differential pressure determination threshold map is a map representing the relationship between the ash deposition amount and the differential pressure determination threshold, and is obtained in advance through experiments or the like. The differential pressure determination threshold map is set so that the differential pressure determination threshold increases as the ash deposition amount increases from a certain initial value. Therefore, the differential pressure determination threshold value setting unit 14 increases the differential pressure determination threshold value as the ash accumulation amount increases.
 上述したように、走行時間が長くなるほど、アッシュ堆積量が多くなる。このため、図4に示されるように、走行時間が長くなるほど、差圧判定閾値Aが大きくなる。 As described above, the ash accumulation amount increases as the traveling time becomes longer. For this reason, as shown in FIG. 4, the differential pressure determination threshold A increases as the traveling time increases.
 再生制御部15は、差圧センサ8により検出されたDPF差圧と差圧判定閾値設定部14により設定された差圧判定閾値とに基づいて、DPF6の再生を行うかどうかを判定する。このとき、再生制御部15は、DPF差圧が差圧判定閾値以上であるときに、DPF6の再生を行うと判定する。そして、再生制御部15は、DPF6の再生を行うときは、燃料添加弁7から燃料を添加させるように燃料添加弁7を制御する。 The regeneration control unit 15 determines whether to regenerate the DPF 6 based on the DPF differential pressure detected by the differential pressure sensor 8 and the differential pressure determination threshold set by the differential pressure determination threshold setting unit 14. At this time, the regeneration control unit 15 determines to regenerate the DPF 6 when the DPF differential pressure is equal to or greater than the differential pressure determination threshold. Then, the regeneration control unit 15 controls the fuel addition valve 7 so that fuel is added from the fuel addition valve 7 when the DPF 6 is regenerated.
 以上のように構成された排気浄化装置1においては、図4に示されるように、走行時間の経過と共にPM堆積量が増加するため、DPF差圧が大きくなる。そして、DPF差圧が差圧判定閾値Aに達すると、PM堆積量が堆積限界値に達したと判断されて、DPF6の再生が開始される。すると、燃料添加弁7から燃料が添加されることで、DPF6に燃料が供給されるため、DPF6に堆積したPMが燃料により燃焼される。このため、DPF差圧が急激に下がる。DPF6の再生が終了すると、再びDPF6にPMが堆積していく。 In the exhaust emission control device 1 configured as described above, as shown in FIG. 4, the amount of accumulated PM increases as the running time elapses, so the DPF differential pressure increases. When the DPF differential pressure reaches the differential pressure determination threshold A, it is determined that the PM deposition amount has reached the deposition limit value, and regeneration of the DPF 6 is started. Then, since fuel is added from the fuel addition valve 7, fuel is supplied to the DPF 6, so that PM deposited on the DPF 6 is burned by the fuel. For this reason, the DPF differential pressure rapidly decreases. When regeneration of the DPF 6 is completed, PM accumulates again on the DPF 6.
 ここで、走行時間が長くなるほど、アッシュ堆積量が増加する。アッシュ堆積量が増加すると、上述したようにDPF差圧が高くなる。このため、DPF6の再生を行うかどうかを判定する際に使用される差圧判定閾値が一定値である場合には、所望量のPMがDPF6に堆積する前に、DPF差圧が差圧判定閾値に達し、DPF6の再生が開始されることがある。 Here, as the running time becomes longer, the amount of accumulated ash increases. As the ash deposition amount increases, the DPF differential pressure increases as described above. For this reason, when the differential pressure determination threshold value used when determining whether to regenerate the DPF 6 is a constant value, the DPF differential pressure is determined before the desired amount of PM is deposited on the DPF 6. The threshold may be reached and regeneration of the DPF 6 may be started.
 これに対し本実施形態では、DPF差圧とPM堆積量とに基づいてDPF差圧の変化率が算出され、そのDPF差圧の変化率に基づいてアッシュ堆積量が推定され、そのアッシュ堆積量に応じて差圧判定閾値が設定される。このとき、アッシュ堆積量が多くなるほど、差圧判定閾値が大きくなる。よって、図4に示されるように、走行時間の経過と共にアッシュ堆積量が増加すると、アッシュ堆積量の増加に伴って差圧判定閾値Aが大きくなる。このため、DPF差圧が差圧判定閾値Aに達した時点では、DPF6にアッシュが堆積していても、所望量のPMがDPF6に堆積した状態となっている。従って、所望量のPMがDPF6に堆積する前に、DPF6の再生が開始されることが防止される。これにより、適切なタイミングでDPF6の再生を開始することができる。 On the other hand, in the present embodiment, the rate of change of the DPF differential pressure is calculated based on the DPF differential pressure and the PM deposition amount, the ash deposition amount is estimated based on the rate of change of the DPF differential pressure, and the ash deposition amount. The differential pressure determination threshold is set according to the above. At this time, the differential pressure determination threshold increases as the ash deposition amount increases. Therefore, as shown in FIG. 4, when the ash accumulation amount increases as the travel time elapses, the differential pressure determination threshold A increases as the ash accumulation amount increases. Therefore, when the DPF differential pressure reaches the differential pressure determination threshold A, a desired amount of PM is deposited on the DPF 6 even if ash is accumulated on the DPF 6. Therefore, the regeneration of the DPF 6 is prevented from starting before the desired amount of PM is deposited on the DPF 6. Thereby, the regeneration of the DPF 6 can be started at an appropriate timing.
 また、DPF差圧の変化率の平均値が算出され、その平均値に基づいてアッシュ堆積量が推定されるので、アッシュ堆積量の推定精度を向上させることができる。 Also, since the average value of the change rate of the DPF differential pressure is calculated and the ash deposition amount is estimated based on the average value, the estimation accuracy of the ash deposition amount can be improved.
 なお、本発明の一側面は、上記実施形態には限定されない。例えば、上記実施形態では、差圧判定閾値設定部14は、図3(c)に示される差圧判定閾値マップを用いて、差圧判定閾値を設定しているが、特にその形態には限られない。 It should be noted that one aspect of the present invention is not limited to the above embodiment. For example, in the above embodiment, the differential pressure determination threshold value setting unit 14 sets the differential pressure determination threshold value using the differential pressure determination threshold value map shown in FIG. I can't.
 差圧判定閾値設定部14は、図5に示される差圧判定閾値マップを用いて、差圧判定閾値を設定してもよい。図5に示される差圧判定閾値マップは、アッシュ堆積量が規定値K以下のときは、アッシュ堆積量が多くなるほど差圧判定閾値が大きくなり、アッシュ堆積量が規定値K以上のときは、差圧判定閾値が最大値Mで一定となるように設定されている。最大値Mは、例えばエンジン2のエキゾーストマニホールドの剛性及び耐久性等を考慮して決められている。従って、差圧判定閾値設定部14は、アッシュ堆積量が規定値Kに達するまでは、アッシュ堆積量が多くなるほど差圧判定閾値を大きくし、アッシュ堆積量が規定値Kに達したときは、差圧判定閾値を最大値Mにする。 The differential pressure determination threshold setting unit 14 may set the differential pressure determination threshold using the differential pressure determination threshold map shown in FIG. The differential pressure determination threshold map shown in FIG. 5 shows that when the ash accumulation amount is equal to or less than the specified value K, the differential pressure determination threshold value increases as the ash accumulation amount increases, and when the ash accumulation amount is equal to or greater than the specified value K, The differential pressure determination threshold is set to be constant at the maximum value M. The maximum value M is determined in consideration of, for example, the rigidity and durability of the exhaust manifold of the engine 2. Therefore, the differential pressure determination threshold value setting unit 14 increases the differential pressure determination threshold value as the ash deposition amount increases until the ash deposition amount reaches the specified value K, and when the ash deposition amount reaches the specified value K, The differential pressure determination threshold is set to the maximum value M.
 この場合には、図6に示されるように、走行時間が規定時間に達するまでは、走行時間が長くなるほど差圧判定閾値Aが大きくなり、走行時間が規定時間に達すると、差圧判定閾値Aは一定となる。これにより、DPF差圧が十分に高くなる前にDPF6の再生が開始されるため、エンジン2を保護することができる。 In this case, as shown in FIG. 6, until the travel time reaches the specified time, the differential pressure determination threshold A increases as the travel time increases. When the travel time reaches the specified time, the differential pressure determination threshold A A is constant. Thereby, since regeneration of DPF6 is started before DPF differential pressure becomes high enough, engine 2 can be protected.
 また、上記実施形態では、DPF差圧の変化率を複数回算出し、これらのDPF差圧の変化率の平均値を算出し、その平均値に基づいてアッシュ堆積量が推定しているが、特にその形態には限られず、DPF差圧の変化率を1回のみ算出し、そのDPF差圧の変化率に基づいてアッシュ堆積量が推定してもよい。この場合には、コントローラ10による演算処理を簡素化することができる。 In the above embodiment, the change rate of the DPF differential pressure is calculated a plurality of times, the average value of the change rate of these DPF differential pressures is calculated, and the ash deposition amount is estimated based on the average value. In particular, the form is not limited, and the rate of change of the DPF differential pressure may be calculated only once, and the ash deposition amount may be estimated based on the rate of change of the DPF differential pressure. In this case, the arithmetic processing by the controller 10 can be simplified.
 また、上記実施形態では、燃料添加弁7から燃料を添加させることにより、DPF6の再生を行っているが、特にその形態には限られず、エンジン2に配置されたインジェクタ3から気筒(図示せず)に燃料を噴射することにより、DPF6の再生を行ってもよい。この場合には、インジェクタ3は、DPF6に燃料を供給する燃料供給部を構成することとなる。 In the above embodiment, the DPF 6 is regenerated by adding fuel from the fuel addition valve 7. However, the present invention is not particularly limited to this, and a cylinder (not shown) is disposed from the injector 3 disposed in the engine 2. The DPF 6 may be regenerated by injecting the fuel into (). In this case, the injector 3 constitutes a fuel supply unit that supplies fuel to the DPF 6.
 また、上記実施形態において、標高など大気圧が変化する要素を考慮するため、大気圧を検出する大気圧センサ等を更に備え、その検出値に基づいて差圧判定閾値を都度補正してもよい。この場合、大気圧が低いほど差圧判定閾値を低下させる補正を行う。 Further, in the above-described embodiment, in order to consider an element that changes atmospheric pressure such as altitude, an atmospheric pressure sensor that detects atmospheric pressure may be further provided, and the differential pressure determination threshold value may be corrected each time based on the detected value. . In this case, correction is performed to lower the differential pressure determination threshold as the atmospheric pressure is lower.
 以上に記載した実施形態及び変形例の少なくとも一部を任意に組み合わせてもよい。 At least a part of the embodiments and modifications described above may be arbitrarily combined.
 1…排気浄化装置、2…ディーゼルエンジン(内燃機関)、6…ディーゼル排気微粒子除去フィルタ(フィルタ)、7…燃料添加弁(燃料供給部)、8…差圧センサ(差圧検出部)、10…コントローラ、12…差圧変化率算出部、13…アッシュ堆積量推定部、14…差圧判定閾値設定部、15…再生制御部。 DESCRIPTION OF SYMBOLS 1 ... Exhaust gas purification device, 2 ... Diesel engine (internal combustion engine), 6 ... Diesel exhaust particulate removal filter (filter), 7 ... Fuel addition valve (fuel supply part), 8 ... Differential pressure sensor (differential pressure detection part), 10 ... Controller, 12 ... Differential pressure change rate calculation unit, 13 ... Ash accumulation amount estimation unit, 14 ... Differential pressure determination threshold setting unit, 15 ... Regeneration control unit.

Claims (3)

  1.  内燃機関から排出される排気ガスを浄化する排気浄化装置において、
     前記排気ガスに含まれる粒子状物質を捕集するフィルタと、
     前記フィルタに燃料を供給する燃料供給部と、
     前記フィルタの上流側の圧力と前記フィルタの下流側の圧力との差圧を検出する差圧検出部と、
     前記差圧検出部により検出された差圧が差圧判定閾値以上となったときに、前記フィルタに堆積した粒子状物質を燃料により燃焼させるように前記燃料供給部を制御する再生制御部と、
     前記差圧検出部により検出された差圧の変化率を算出する差圧変化率算出部と、
     前記差圧変化率算出部により算出された差圧の変化率に基づいて、前記フィルタにおけるアッシュの堆積量を推定するアッシュ堆積量推定部と、
     前記アッシュ堆積量推定部により推定されたアッシュの堆積量に応じて前記差圧判定閾値を設定する差圧判定閾値設定部とを備え、
     前記差圧判定閾値設定部は、前記アッシュの堆積量が多くなるほど前記差圧判定閾値を大きくする、排気浄化装置。
    In an exhaust purification device that purifies exhaust gas discharged from an internal combustion engine,
    A filter for collecting particulate matter contained in the exhaust gas;
    A fuel supply section for supplying fuel to the filter;
    A differential pressure detector that detects a differential pressure between the pressure upstream of the filter and the pressure downstream of the filter;
    A regeneration control unit that controls the fuel supply unit so that particulate matter deposited on the filter is burned by fuel when the differential pressure detected by the differential pressure detection unit is equal to or greater than a differential pressure determination threshold;
    A differential pressure change rate calculating unit that calculates a change rate of the differential pressure detected by the differential pressure detecting unit;
    An ash accumulation amount estimation unit for estimating an ash accumulation amount in the filter based on the differential pressure change rate calculated by the differential pressure change rate calculation unit;
    A differential pressure determination threshold value setting unit that sets the differential pressure determination threshold value according to the ash accumulation amount estimated by the ash accumulation amount estimation unit;
    The exhaust gas purification apparatus, wherein the differential pressure determination threshold setting unit increases the differential pressure determination threshold as the amount of accumulated ash increases.
  2.  前記差圧変化率算出部は、前記差圧の変化率の平均値を算出し、
     前記アッシュ堆積量推定部は、前記差圧変化率算出部により算出された差圧の変化率の平均値に基づいて、前記アッシュの堆積量を推定する、請求項1記載の排気浄化装置。
    The differential pressure change rate calculator calculates an average value of the differential pressure change rate,
    The exhaust purification apparatus according to claim 1, wherein the ash accumulation amount estimation unit estimates the accumulation amount of the ash based on an average value of the differential pressure change rate calculated by the differential pressure change rate calculation unit.
  3.  前記差圧判定閾値設定部は、前記アッシュの堆積量が規定値に達するまでは、前記アッシュの堆積量が多くなるほど前記差圧判定閾値を大きくし、前記アッシュの堆積量が前記規定値に達したときは、前記差圧判定閾値を最大値にする、請求項1または2記載の排気浄化装置。 The differential pressure determination threshold setting unit increases the differential pressure determination threshold as the ash accumulation amount increases until the ash accumulation amount reaches a specified value, and the ash accumulation amount reaches the specified value. 3. The exhaust emission control device according to claim 1, wherein when the engine pressure is detected, the differential pressure determination threshold value is maximized.
PCT/JP2016/074773 2015-09-15 2016-08-25 Exhaust gas purification device WO2017047349A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016004177.2T DE112016004177T5 (en) 2015-09-15 2016-08-25 exhaust gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-181963 2015-09-15
JP2015181963A JP6146447B2 (en) 2015-09-15 2015-09-15 Exhaust purification device

Publications (1)

Publication Number Publication Date
WO2017047349A1 true WO2017047349A1 (en) 2017-03-23

Family

ID=58288845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074773 WO2017047349A1 (en) 2015-09-15 2016-08-25 Exhaust gas purification device

Country Status (3)

Country Link
JP (1) JP6146447B2 (en)
DE (1) DE112016004177T5 (en)
WO (1) WO2017047349A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800002311A1 (en) * 2018-02-01 2019-08-01 Magneti Marelli Spa METHOD FOR DETERMINING THE QUANTITY OF METALLIC DUST ACCUMULATED IN A PARTICULATE FILTER FOR AN INTERNAL COMBUSTION ENGINE
WO2019214771A1 (en) * 2018-05-09 2019-11-14 Bayerische Motoren Werke Aktiengesellschaft Determination of an ash loading of a particulate filter for an internal combustion engine
WO2022191307A1 (en) * 2021-03-11 2022-09-15 いすゞ自動車株式会社 Monitoring device and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6932673B2 (en) * 2018-06-26 2021-09-08 株式会社クボタ Diesel engine exhaust treatment system
AT524645B1 (en) * 2020-12-16 2022-11-15 Avl List Gmbh Procedure for operating a particle filter taking into account the amount of ash

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288037A (en) * 1992-04-08 1993-11-02 Toyota Motor Corp Exhaust gas purifying device for diesel engine
JP2002303123A (en) * 2001-02-05 2002-10-18 Nissan Motor Co Ltd Exhaust emission control device
JP2009174368A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Exhaust emission device of internal combustion engine
JP2014208979A (en) * 2013-04-16 2014-11-06 いすゞ自動車株式会社 Exhaust injection control method of exhaust gas after-treatment device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951618B2 (en) * 2001-02-21 2007-08-01 いすゞ自動車株式会社 Diesel particulate filter device and regeneration control method thereof
JP3911408B2 (en) * 2001-11-27 2007-05-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3801135B2 (en) * 2003-01-08 2006-07-26 日産自動車株式会社 Engine exhaust gas purification device
JP4534969B2 (en) * 2005-11-25 2010-09-01 株式会社デンソー Exhaust purification device for internal combustion engine
JP2007270695A (en) * 2006-03-31 2007-10-18 Mitsubishi Fuso Truck & Bus Corp Method and device for regeneration control of particulate filter
JP2009270502A (en) * 2008-05-08 2009-11-19 Denso Corp Exhaust emission control device of internal combustion engine
JP5724943B2 (en) * 2012-05-08 2015-05-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288037A (en) * 1992-04-08 1993-11-02 Toyota Motor Corp Exhaust gas purifying device for diesel engine
JP2002303123A (en) * 2001-02-05 2002-10-18 Nissan Motor Co Ltd Exhaust emission control device
JP2009174368A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Exhaust emission device of internal combustion engine
JP2014208979A (en) * 2013-04-16 2014-11-06 いすゞ自動車株式会社 Exhaust injection control method of exhaust gas after-treatment device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800002311A1 (en) * 2018-02-01 2019-08-01 Magneti Marelli Spa METHOD FOR DETERMINING THE QUANTITY OF METALLIC DUST ACCUMULATED IN A PARTICULATE FILTER FOR AN INTERNAL COMBUSTION ENGINE
EP3521597A1 (en) * 2018-02-01 2019-08-07 Magneti Marelli S.p.A. Method to determine the quantity of metal powders accumulated in a particulate filter for an internal combustion engine
CN110107386A (en) * 2018-02-01 2019-08-09 马涅蒂-马瑞利公司 Method for determining the metal powder amount gathered in the particulate filter for being suitable for internal combustion engine
US10697345B2 (en) 2018-02-01 2020-06-30 MAGNETI MARELLI S.p.A. Method to determine the quantity of metal powders accumulated in a particulate filter for an internal combustion engine
CN110107386B (en) * 2018-02-01 2022-03-25 马涅蒂-马瑞利公司 Method for determining the amount of metal powder accumulated in a particulate filter suitable for an internal combustion engine
WO2019214771A1 (en) * 2018-05-09 2019-11-14 Bayerische Motoren Werke Aktiengesellschaft Determination of an ash loading of a particulate filter for an internal combustion engine
CN112004999A (en) * 2018-05-09 2020-11-27 宝马汽车股份有限公司 Determination of the ash load of a particle filter of an internal combustion engine
US11268425B2 (en) 2018-05-09 2022-03-08 Bayerische Motoren Werke Aktiengesellschaft Determination of an ash loading of a particulate filter for an internal combustion engine
WO2022191307A1 (en) * 2021-03-11 2022-09-15 いすゞ自動車株式会社 Monitoring device and vehicle
JP2022138960A (en) * 2021-03-11 2022-09-26 いすゞ自動車株式会社 Monitoring device and vehicle
JP7439782B2 (en) 2021-03-11 2024-02-28 いすゞ自動車株式会社 Monitoring equipment and vehicles

Also Published As

Publication number Publication date
DE112016004177T5 (en) 2018-05-30
JP2017057766A (en) 2017-03-23
JP6146447B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
WO2017047349A1 (en) Exhaust gas purification device
JP3801135B2 (en) Engine exhaust gas purification device
JP2009138704A (en) Exhaust emission aftertreatment device
JP2004197657A (en) Reproducing apparatus for particulate filter and engine waste gas purifying facility
JP2008031854A (en) Exhaust emission control device for internal combustion engine
JP2015010470A (en) Exhaust emission control device for internal combustion engine
JP2006090153A (en) Exhaust emission control device for internal combustion engine
JP4174685B1 (en) Exhaust gas purification device for internal combustion engine
WO2016140134A1 (en) Exhaust purification system and catalyst regeneration method
JP2008121557A (en) Exhaust emission control device of internal combustion engine
WO2013027546A1 (en) Exhaust gas purification device
WO2017056800A1 (en) Exhaust purifier
JP2010249076A (en) Exhaust emission control device of internal combustion engine
WO2017010550A1 (en) Exhaust gas purification system
JP4185882B2 (en) Exhaust purification device
JP4957216B2 (en) Exhaust gas purification device for internal combustion engine
JP5493268B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP6148636B2 (en) engine
WO2016098895A1 (en) EXHAUST PURIFICATION SYSTEM AND NOx PURIFICATION CAPACITY RECOVERY METHOD
JP2010150979A (en) Exhaust emission control device for engine
JP7019983B2 (en) Exhaust purification system
JP2016223336A (en) Exhaust emission control device, control device and control method
JP2010174794A (en) Exhaust emission control device
JP2007262983A (en) Pm accumulation quantity estimation device for internal combustion engine
JP2006274978A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016004177

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846220

Country of ref document: EP

Kind code of ref document: A1