WO2017010550A1 - Exhaust gas purification system - Google Patents

Exhaust gas purification system Download PDF

Info

Publication number
WO2017010550A1
WO2017010550A1 PCT/JP2016/070852 JP2016070852W WO2017010550A1 WO 2017010550 A1 WO2017010550 A1 WO 2017010550A1 JP 2016070852 W JP2016070852 W JP 2016070852W WO 2017010550 A1 WO2017010550 A1 WO 2017010550A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
control
maf
target value
exhaust
Prior art date
Application number
PCT/JP2016/070852
Other languages
French (fr)
Japanese (ja)
Inventor
輝男 中田
隆行 坂本
長岡 大治
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017010550A1 publication Critical patent/WO2017010550A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/64Systems for actuating EGR valves the EGR valve being operated together with an intake air throttle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification system.
  • a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine.
  • NOx nitrogen compounds
  • This NOx occlusion reduction type catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and reduces and purifies NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. Detoxify and release. For this reason, when the NOx occlusion amount of the catalyst reaches a predetermined amount, so-called NOx purge that makes the exhaust rich by post injection or exhaust pipe injection needs to be performed periodically to restore the NOx occlusion capacity ( For example, see Patent Document 1).
  • the NOx occlusion reduction type catalyst also occludes sulfur oxide (hereinafter referred to as SOx) contained in the exhaust gas.
  • SOx sulfur oxide
  • the SOx occlusion amount increases, there is a problem that the NOx purification ability of the NOx occlusion reduction type catalyst is lowered. Therefore, when the SOx occlusion amount reaches a predetermined amount, unburned fuel is added to the upstream oxidation catalyst by post injection or exhaust pipe injection so that SOx is released from the NOx occlusion reduction type catalyst and recovered from S poisoning. Therefore, it is necessary to periodically perform a so-called SOx purge for raising the exhaust temperature to the SOx separation temperature (see, for example, Patent Document 2).
  • the EGR cooler and the EGR flow path may be fouled, and measures such as adding an EGR catalyst are required to suppress this fouling. . Further, when the fuel injection amount in the injection system control is increased and the intake air amount is decreased, the fuel consumption becomes excessive as described above, and the fuel efficiency is deteriorated.
  • the exhaust purification system of the present disclosure is intended to improve fuel efficiency while suppressing fouling of a flow path for recirculating exhaust gas.
  • An exhaust purification system of the present disclosure includes a NOx reduction catalyst that is provided in an exhaust passage of an internal combustion engine to reduce and purify NOx in exhaust, an intake air amount adjustment valve that adjusts an amount of air sucked into the internal combustion engine, The exhaust air-fuel ratio is changed from a lean state by using a recirculation amount adjustment valve that adjusts the amount of exhaust gas recirculated to the internal combustion engine, an air system control that decreases the intake air amount, and an injection system control that increases the fuel injection amount.
  • a control unit that executes a regeneration process for recovering the purification ability of the NOx reduction catalyst by switching to the rich state, wherein the control unit richly changes the exhaust air-fuel ratio from the lean state.
  • the recirculation amount adjustment valve is closed or fixed at a specified opening, and the amount of air taken into the internal combustion engine by the intake amount adjustment valve Adjust to.
  • fuel efficiency can be improved while suppressing fouling of the flow path for recirculating exhaust gas.
  • FIG. 1 is an overall configuration diagram showing an exhaust purification system according to the present embodiment.
  • FIG. 2 is a timing chart for explaining the SOx purge control according to the present embodiment.
  • FIG. 3 is a block diagram showing the MAF target value setting process during SOx purge lean control according to the present embodiment.
  • FIG. 4 is a block diagram showing a lamp application process for the MAF target value during SOx purge control according to the present embodiment.
  • FIG. 5A is a diagram for explaining valve opening / closing control during SOx purge control according to the present embodiment, and shows the valve opening degree MAP of the intake throttle valve and the EGR valve during lean.
  • FIG. 1 is an overall configuration diagram showing an exhaust purification system according to the present embodiment.
  • FIG. 2 is a timing chart for explaining the SOx purge control according to the present embodiment.
  • FIG. 3 is a block diagram showing the MAF target value setting process during SOx purge lean control according to the present embodiment.
  • FIG. 4 is a block diagram showing a lamp
  • FIG. 5B is a diagram for explaining the valve opening / closing control during the SOx purge control according to the present embodiment, and shows the valve opening degree MAP of the intake throttle valve in the rich state.
  • FIG. 6A is a block diagram showing a lamp application process for an EGR target value during SOx purge control according to the present embodiment.
  • FIG. 6B shows valve opening control of the EGR valve at the rich time.
  • FIG. 7 is a block diagram showing a target injection amount setting process during SOx purge rich control according to the present embodiment.
  • FIG. 8 is a timing chart for explaining the catalyst temperature adjustment control of the SOx purge control according to the present embodiment.
  • FIG. 9 is a timing chart illustrating the NOx purge control according to this embodiment.
  • FIG. 10 is a block diagram showing a MAF target value setting process during NOx purge control according to the present embodiment.
  • FIG. 11 is a block diagram showing a lamp application process for the MAF target value during NOx purge control according to the present embodiment.
  • FIG. 12A is a diagram for explaining valve opening / closing control during NOx purge control according to this embodiment, and shows the valve opening degree MAP of the intake throttle valve and the EGR valve during lean.
  • FIG. 12B is a diagram for explaining valve opening / closing control during NOx purge control according to the present embodiment, and shows the valve opening degree MAP of the intake throttle valve when rich.
  • FIG. 13A is a block diagram showing a lamp application process for an EGR target value during NOx purge control according to the present embodiment.
  • FIG. 13B is a diagram illustrating valve opening degree control of the EGR valve at the rich time.
  • FIG. 14 is a block diagram showing a target injection amount setting process during NOx purge rich control according to the present embodiment.
  • FIG. 15 is a block diagram showing processing for correcting the injection amount of the in-cylinder injector according to the present embodiment.
  • FIG. 16 is a flowchart for explaining the learning correction coefficient calculation processing according to the present embodiment.
  • FIG. 17 is a block diagram showing MAF correction coefficient setting processing according to this embodiment.
  • each cylinder of a diesel engine (hereinafter simply referred to as “engine”) 10 is provided with an in-cylinder injector 11 that directly injects high-pressure fuel that is stored in a common rail (not shown) into each cylinder. Yes.
  • the fuel injection amount and fuel injection timing of these in-cylinder injectors 11 are controlled according to an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 50.
  • ECU electronice control unit
  • An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for connecting exhaust to the outside is connected to the exhaust manifold 10B.
  • the intake passage 12 is supplied with an air cleaner 14, an intake air amount sensor (hereinafter referred to as MAF sensor) 40 for detecting the amount of intake air, a compressor 20 ⁇ / b> A of the variable displacement supercharger 20, and the like.
  • MAF sensor intake air amount sensor
  • An intercooler 15 that cools the air
  • an intake throttle valve 16 that adjusts the amount of air taken into the engine 10 (an example of an intake air amount adjustment valve of the present invention), and the like are provided.
  • the exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side.
  • reference numeral 41 denotes an engine speed sensor
  • reference numeral 42 denotes an accelerator opening sensor
  • reference numeral 46 denotes a boost pressure sensor.
  • the EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools EGR gas, and an EGR valve 24 that adjusts the EGR amount (the amount of exhaust gas recirculated to the engine 10). (An example of a recirculation amount adjusting valve of the present invention).
  • the exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A.
  • the exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust injector 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. Yes.
  • the oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure.
  • a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.
  • the filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. .
  • the filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter regeneration is performed to remove the combustion.
  • Filter regeneration is performed by supplying unburned fuel to the upstream oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.
  • the first exhaust temperature sensor 43 is provided on the upstream side of the oxidation catalyst 31 and detects the exhaust temperature flowing into the oxidation catalyst 31.
  • the second exhaust temperature sensor 44 is provided between the NOx storage reduction catalyst 32 and the filter 33 and detects the exhaust temperature flowing into the filter 33.
  • the NOx / lambda sensor 45 is provided on the downstream side of the filter 33, and detects the NOx value and lambda value (hereinafter also referred to as excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32.
  • the ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, the sensor values of the sensors 40 to 46 are input to the ECU 50. Further, the ECU 50 partially includes a filter regeneration control unit 51, a SOx purge control unit 60, a NOx purge control unit 70, a MAF follow-up control unit 80, an injection amount learning correction unit 90, and a MAF correction coefficient calculation unit 95. As a functional element. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.
  • the filter regeneration control unit 51 estimates the PM accumulation amount of the filter 33 from the travel distance of the vehicle or the differential pressure across the filter detected by a differential pressure sensor (not shown), and the estimated PM accumulation amount exceeds a predetermined upper limit threshold. And the regeneration flag F DPF is turned on (see time t 1 in FIG. 2). When the regeneration flag F DPF is turned on, an instruction signal for performing exhaust pipe injection is transmitted to the exhaust injector 34, or an instruction signal for performing post injection is transmitted to the in-cylinder injector 11, and the exhaust temperature is increased. Is raised to the PM combustion temperature (for example, about 550 ° C.).
  • the regeneration flag F DPF is, PM deposition estimation amount is turned off drops to a predetermined lower limit threshold indicating the burn off (determination threshold value) (see time t 2 in FIG. 2).
  • the SOx purge control unit 60 makes the exhaust rich and raises the exhaust temperature to a sulfur desorption temperature (for example, about 600 ° C.) to recover the NOx occlusion reduction type catalyst 32 from SOx poisoning (hereinafter, this control). (Referred to as SOx purge control).
  • FIG. 2 shows a timing chart of the SOx purge control of this embodiment.
  • SOx purge flag F SP to start SOx purge control is turned on at the same time off the regeneration flag F DPF (see time t 2 in FIG. 2).
  • F DPF regeneration flag
  • the enrichment by the SOx purge control is performed by adjusting the excess air ratio to the lean side from the theoretical air-fuel ratio equivalent value (about 1.0) from the steady operation (for example, about 1.5) by the air system control.
  • SOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) This is realized by using together with the SOx purge rich control that lowers to .9). Details of the SOx purge lean control and the SOx purge rich control will be described below.
  • FIG. 3 is a block diagram illustrating a process for setting the MAF target value MAF SPL_Trgt during the SOx purge lean control.
  • the first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q (the fuel injection amount of the engine 10), and the engine speed Ne, the accelerator opening Q,
  • the excess air ratio target value ⁇ SPL_Trgt (first target excess air ratio) at the time of SOx purge lean control corresponding to is preset based on experiments or the like.
  • the excess air ratio target value ⁇ SPL_Trgt at the time of SOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 62. Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF SPL_Trgt during the SOx purge lean control based on the following formula (1).
  • Equation (1) Q fnl_cord represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a theoretical air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.
  • MAF target value MAF SPL_Trgt calculated by the MAF target value calculation unit 62, when the SOx purge flag F SP is turned on (see time t 2 in FIG. 2) is input to the lamp unit 63.
  • the ramp processing unit 63 uses the engine speed Ne and the accelerator opening Q as input signals, reads the increase change amount from the increase change amount MAP63A, and reads the decrease change amount from the decrease change amount MAP63B.
  • the increasing amount of change is used when switching from the rich state to the lean state, and indicates the amount of addition per unit time to the MAF target value MAF.
  • the change amount at the time of decrease is used when switching from the lean state to the rich state, and indicates a subtraction amount per unit time with respect to the MAF target value MAF.
  • the ramp processing unit 63 includes a ramp start / end determination unit 63C, an increase target value calculation unit 63D, a decrease target value calculation unit 63E, a target value selection unit 63F, and an output switching unit 63G. .
  • a start instruction signal is input to the lamp start / end determination unit 63C.
  • the start instruction signal indicates the start timing of the ramp process according to a change in the state of the signal, and identifies the switching from the lean state to the rich state and the switching from the rich state to the lean state.
  • the lamp start / end determination unit 63C outputs a permission signal to the output switching unit 63G when it is determined that the lamp processing start timing is reached. This permission signal is output until the MAF target value MAF SPL_Trgt from the MAF target value calculation unit 62 and the MAF target value (MAF target ramp value MAF SPL_Trgt_Ramp ) output from the output switching unit 63G match.
  • the increase target value calculation unit 63D receives the increase change amount from the increase change amount MAP63A, the MAF target value MAF SPL_Trgt, and the MAF target value (MAF target value immediately before the update) output from the output switching unit 63G. .
  • the section correction value obtained by multiplying the increase amount of change by the calculation clock is added to the MAF target value from the output switching unit 63G. Then, this added value is compared with the MAF target value MAF SPL_Trgt from the MAF target value calculation unit 62, and the smaller one is output to the target value selection unit 63F as an increased provisional MAF target value.
  • the decrease target value calculation unit 63E receives the decrease change amount from the decrease change amount MAP63B, the MAF target value MAF SPL_Trgt, and the MAF target value (MAF target value immediately before the update) output from the output switching unit 63G. .
  • the section correction value obtained by multiplying the decrease change amount by the calculation clock is subtracted from the MAF target value from the output switching unit 63G. Then, this subtraction value is compared with the MAF target value MAF SPL_Trgt from the MAF target value calculation unit 62, and the larger one is output to the target value selection unit 63F as a reduced provisional MAF target value.
  • the target value selection unit 63F switches one of the increase temporary MAF target value output from the increase target value calculation unit 63D and the decrease temporary MAF target value output from the decrease target value calculation unit 63E between the rich state and the lean state. It selects according to this, and outputs it to the output switching part 63G. Specifically, the increase temporary MAF target value is selected and output when switching from the rich state to the lean state, and the decrease temporary MAF target value is selected and output when switching from the lean state to the rich state.
  • the output switching unit 63G outputs the increase temporary MAF target value or the decrease temporary MAF target value from the target value selection unit 63F as the MAF target ramp value MAF SPL_Trgt_Ramp over the period when the permission signal is output from the lamp start / end determination unit 63C. Output as. In addition, the output switching unit 63G outputs the MAF target value MAF SPL_Trgt from the MAF target value calculation unit 62 during a period when the permission signal is not output.
  • the valve control unit 64 shown in FIG. 3 obtains the intake throttle valve 16 from the MAF target values (MAF SPL_Trgt , MAF SPL_Trgt_Ramp ) output from the ramp processing unit 63 and the actual MAF value MAF Act based on the detection result of the MAF sensor 40. And the EGR valve 24 is controlled.
  • MAF target values MAF SPL_Trgt , MAF SPL_Trgt_Ramp
  • the MAF operation amount is determined by PID control so that the actual MAF value MAF Act matches the MAF target value, and the intake throttle valve opening is determined from the lean valve opening MAP64A shown in FIG. 5A.
  • the VO_ith_L and the EGR valve opening VO_EGR_L are read, and the intake throttle valve 16 and the EGR valve 24 are feedback-controlled.
  • the MAF operation amount is determined by PID control so that the actual MAF value MAF Act matches the MAF target value, and the intake throttle valve opening is determined from the lean valve opening MAP64B shown in FIG. 5B.
  • VO_ith_R is read and the intake throttle valve 16 is feedback-controlled.
  • the feedback integral term is reset to an initial value (for example, 0).
  • the EGR valve 24 is fixed in a closed state or a specified opening degree with a reduced flow rate.
  • ramp control is performed to gradually change the valve opening so that the torque of the engine 10 does not fluctuate.
  • the valve control unit 64 includes the immediately preceding target value holding unit 64C, the first control amount calculation unit 64D, the second control amount calculation unit 64E, the output target value holding unit 64F, and the control.
  • An amount selection unit 64G, a target value calculation unit 64H, and an output switching unit 64J are provided.
  • the immediately preceding target value holding unit 64C holds the EGR target value (the target value of the valve opening in the EGR valve 24) immediately before the change.
  • the first control amount calculator 64D calculates the first control amount by multiplying the valve opening per unit time by the calculation clock.
  • the second control amount calculation unit 64D has an EGR decrease reached value (final valve opening) and an output target value held in the output target value holding unit 64F (an EGR target value output immediately before from the output switching unit 64J). The second control amount is calculated from the difference.
  • the control amount selection unit 64G selects the smaller one of the first control amount calculated by the first control amount calculation unit 64D and the second control amount calculated by the second control amount calculation unit 64E as the control amount.
  • the target value calculation unit 64H calculates the EGR target value by subtracting the control amount selected by the control amount selection unit 64G from the output target value held in the output target value holding unit 64F.
  • the output switching unit 64J outputs the EGR target value calculated by the target value calculation unit 64H over the output period of the start instruction signal.
  • the ramp process is applied to the EGR target value when the exhaust air-fuel ratio is switched from the lean state to the rich state, as shown by the symbol VO_EGR_R in FIG. Can be closed.
  • the EGR valve 24 is closed or fixed at a specified opening degree, and the intake air is sucked into the engine 10 by the intake throttle valve 16. The amount is adjusted. Since the EGR valve 24 is closed or fixed at a specified opening degree, the EGR passage 22 and the EGR cooler 23 can be prevented from being contaminated. Further, since the intake air amount is adjusted by the intake throttle valve 16, it is possible to reduce the fuel injection amount by the exhaust pipe injection and the post injection for generating the rich condition. As a result, it is possible to improve fuel efficiency while suppressing contamination of the EGR passage 22 and the like.
  • the EGR valve 24 is closed with a predetermined valve operation amount per unit time, so that the torque fluctuation of the engine 10 at the start of the SOx purge can be suppressed, and the driver It is possible to effectively suppress the deterioration of the ability.
  • the intake throttle valve 16 is opened and closed at a predetermined valve operation amount per unit time, so that the engine at the start and end of the SOx purge
  • the torque fluctuation of 10 can be suppressed, and the deterioration of drivability can be effectively suppressed.
  • valve opening of the intake throttle valve 16 is determined based on the MAF target values (MAF SPL_Trgt , MAF SPL_Trgt_Ramp ) based on the operating state of the engine 10 (engine speed Ne, accelerator opening Q) and the detected value of the MAF sensor 40.
  • Control is performed by PID control based on the deviation of the actual intake air amount MAF Act , and the integral term of PID control is initialized when switching from lean state control to rich state control, resulting in feedback control in the lean state Can be suppressed.
  • the lambda sensor is not provided on the upstream side of the NOx storage reduction catalyst 32, or the NOx storage reduction catalyst 32 Even when a lambda sensor is provided on the upstream side, exhaust can be effectively reduced to a desired excess air ratio required for SOx purge lean control without using the sensor value of the lambda sensor.
  • the MAF target value MAF SPL_Trgt can be set by feedforward control. Effects such as characteristic changes and individual differences can be effectively eliminated.
  • FIG. 7 is a block diagram showing processing for setting the target injection amount Q SPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in SOx purge rich control.
  • the second target excess air ratio setting map 65 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and at the time of SOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q.
  • the excess air ratio target value ⁇ SPR_Trgt (second target excess air ratio) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ SPR_Trgt at the time of SOx purge rich control is read from the second target excess air ratio setting map 65 using the engine speed Ne and the accelerator opening Q as input signals, and an injection quantity target value calculation unit 66. Further, the injection amount target value calculation unit 66 calculates the target injection amount Q SPR_Trgt during the SOx purge rich control based on the following formula (2).
  • MAF SPL_Trgt MAF SPL_Trgt ⁇ Maf_corr / ( ⁇ SPR_Trgt ⁇ Ro Fuel ⁇ AFR sto ) ⁇ Q fnl_corrd (2)
  • MAF SPL_Trgt is the MAF target value at the SOx purge lean, and is input from the above-described MAF target value calculation unit 62.
  • Q fnl_cord is a fuel injection amount (excluding post-injection) before application of learning corrected MAF tracking control described later
  • Ro Fuel is fuel specific gravity
  • AFR sto is a theoretical air-fuel ratio
  • Maf_corr is a MAF correction coefficient described later. Show.
  • the injection amount target value calculation unit 66 refers to the distribution MAP and reads out the distribution value.
  • the distribution value indicates the ratio between the fuel injection amount by the exhaust injector 34 and the fuel injection amount by the in-cylinder injector 11.
  • Injection amount target value computing unit 66 by multiplying the distribution value to the target injection amount Q SPR_Trgt, calculates the fuel injection amount Q SPR_Trgt_Post in the fuel injection amount Q SPR_Trgt_EXT-cylinder injector 11 of the exhaust injector 34. These fuel injection amount, SOx purge rich flag F SPR to be described later is turned on, is sent as the injection instruction signal to the exhaust injector 34 and cylinder injector 11.
  • the target injection amount Q SPR_Trgt is set based on the air excess rate target value ⁇ SPR_Trgt read from the second target air excess rate setting map 65 and the fuel injection amount of the in-cylinder injector 11. It is like that.
  • the sensor value of the lambda sensor is not used. The exhaust can be effectively reduced to a desired excess air ratio required for SOx purge rich control.
  • the target injection amount Q SPR_Trgt can be set by feedforward control. Effects such as characteristic changes can be effectively eliminated.
  • the exhaust temperature (hereinafter also referred to as catalyst temperature) flowing into the NOx occlusion reduction type catalyst 32 during the SOx purge control is the SOx that performs exhaust pipe injection or post injection as shown at times t 2 to t 4 in FIG.
  • the purge rich flag F SPR is controlled by alternately switching on / off (rich / lean).
  • the SOx purge rich flag FSPR is turned off, the catalyst temperature is lowered by stopping the exhaust pipe injection or the post injection (hereinafter, this period is referred to as an interval TF_INT ).
  • the injection period TF_INJ is set by reading values corresponding to the engine speed Ne and the accelerator opening Q from an injection period setting map (not shown) created in advance by experiments or the like.
  • an injection period required to reliably reduce the excess air ratio of exhaust gas obtained in advance through experiments or the like to the second target excess air ratio is set according to the operating state of the engine 10. ing.
  • the interval T F_INT is set by feedback control when the SOx purge rich flag F SPR at which the catalyst temperature is highest is switched from on to off. Specifically, the proportional control for changing the input signal in proportion to the deviation ⁇ T between the target catalyst temperature and the estimated catalyst temperature when the SOx purge rich flag FSPR is turned off, and the time integral value of the deviation ⁇ T are proportional. This is processed by PID control constituted by integral control for changing the input signal and differential control for changing the input signal in proportion to the time differential value of the deviation ⁇ T.
  • the target catalyst temperature is set at a temperature at which SOx can be removed from the NOx storage reduction catalyst 32.
  • the estimated catalyst temperature is, for example, the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, and the oxidation catalyst 31. Further, it may be estimated based on the amount of HC / CO heat generated inside the NOx storage reduction catalyst 32, the amount of heat released to the outside air, and the like.
  • the SOx purge rich flag F SPR is also turned on, and further during the previous SOx purge control.
  • the interval T F_INT calculated by feedback is also reset once. That is, the first time immediately after the regeneration of the filter, the exhaust pipe injection or the post injection is executed according to the injection period TF_INJ_1 set in the injection period setting map (see times t 1 to t 2 in FIG. 8).
  • the SOx purge control is promptly transferred to the fuel consumption amount without lowering the exhaust temperature increased by the filter regeneration. Can be reduced.
  • the injection period TF_INJ for raising the catalyst temperature and lowering the excess air ratio to the second target excess air ratio is set from the map referred to based on the operating state of the engine 10,
  • the interval TF_INT for lowering the catalyst temperature is processed by PID control. This makes it possible to reliably reduce the excess air ratio to the target excess ratio while effectively maintaining the catalyst temperature during the SOx purge control within a desired temperature range necessary for the purge.
  • SOx purge control (1) SOx purge flag F from on the SP injection quantity of the exhaust pipe injection or post injection accumulated, when the amount of the cumulative injected has reached the predetermined upper limit threshold amount, of (2) SOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals.
  • SOx purge flag F SP is terminated by turning off the (time t 4 in FIG. 2 , reference time t n in FIG. 8).
  • the SOx purge control end condition is provided with the upper limit of the cumulative injection amount and the elapsed time
  • the fuel consumption amount when the SOx purge does not progress due to a decrease in the exhaust temperature or the like. Can be effectively prevented from becoming excessive.
  • NOx purge control restores the NOx storage capability of the NOx storage reduction catalyst 32 by making the exhaust atmosphere rich and detoxifying and releasing NOx stored in the NOx storage reduction catalyst 32 by reduction purification. Control (hereinafter, this control is referred to as NOx purge control) is executed.
  • the NOx purge flag F NP for starting the NOx purge control is turned on when the NOx emission amount per unit time is estimated from the operating state of the engine 10 and the estimated cumulative value ⁇ NOx obtained by accumulating this exceeds a predetermined threshold value ( reference time t 1 in FIG. 9).
  • the NOx purification rate by the NOx occlusion reduction type catalyst 32 is calculated from the NOx emission amount upstream of the catalyst estimated from the operating state of the engine 10 and the NOx amount downstream of the catalyst detected by the NOx / lambda sensor 45.
  • the NOx purge flag F NP is turned on.
  • the enrichment by the NOx purge control is performed on the lean side of the excess air ratio from the stoichiometric air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control.
  • NOx purge lean control for reducing to 3 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the third target excess air ratio to the fourth target excess air ratio on the rich side (for example, about 0) .9) and NOx purge rich control for reducing the pressure to 9).
  • the details of the NOx purge lean control and the NOx purge rich control will be described below.
  • FIG. 10 is a block diagram showing a process for setting the MAF target value MAF NPL_Trgt during the NOx purge lean control.
  • the third target excess air ratio setting map 71 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge lean control corresponding to the engine speed Ne and the accelerator opening Q.
  • the excess air ratio target value ⁇ NPL_Trgt (third excess air ratio) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ NPL_Trgt at the time of NOx purge lean control is read from the third target excess air ratio setting map 71 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 72. Entered. Further, the MAF target value calculation unit 72 calculates the MAF target value MAF NPL_Trgt at the time of NOx purge lean control based on the following formula (3).
  • MAF NPL_Trgt ⁇ NPL_Trgt ⁇ Q fnl_corrd ⁇ Ro Fuel ⁇ AFR sto / Maf_corr (3)
  • Q fnl_cord represents a learning-corrected fuel injection amount (excluding post-injection) described later
  • Ro Fuel represents fuel specific gravity
  • AFR sto represents a theoretical air-fuel ratio
  • Maf_corr represents a MAF correction coefficient described later. Yes.
  • the MAF target value MAF NPL_Trgt calculated by the MAF target value calculation unit 72 is input to the ramp processing unit 73 when the NOx purge flag F NP is turned on (see time t 1 in FIG. 9).
  • the ramp processing unit 73 uses the engine speed Ne and the accelerator opening Q as input signals, reads the change amount when increasing from the increase amount MAP 73A, and reads the change amount when decreasing from the decrease amount MAP 73B.
  • the increasing amount of change is used when switching from the rich state to the lean state, and indicates the amount of addition per unit time to the MAF target value MAF.
  • the change amount at the time of decrease is used when switching from the lean state to the rich state, and indicates a subtraction amount per unit time with respect to the MAF target value MAF.
  • the ramp processing unit 73 includes a ramp start / end determination unit 73C, an increase target value calculation unit 73D, a decrease target value calculation unit 73E, a target value selection unit 73F, and an output switching unit 73G. .
  • the lamp start / end determination unit 73C receives a start instruction signal.
  • the start instruction signal indicates the start timing of the ramp process according to a change in the state of the signal, and identifies the switching from the lean state to the rich state and the switching from the rich state to the lean state.
  • the lamp start / end determination unit 73C outputs a permission signal to the output switching unit 73G when it is determined that the lamp processing start timing is reached. This permission signal is output until the MAF target value MAF NPL_Trgt from the MAF target value calculation unit 72 and the MAF target value (MAF target ramp value MAF NPL_Trgt_Ramp ) output from the output switching unit 73G match.
  • the increase target value calculation unit 73D receives the increase change amount from the increase change amount MAP 73A, the MAF target value MAF NPL_Trgt, and the MAF target value (MAF target value immediately before the update) output from the output switching unit 73G. .
  • the section correction value obtained by multiplying the change amount during increase by the calculation clock is added to the MAF target value from the output switching unit 73G. Then, this added value is compared with the MAF target value MAF NPL_Trgt from the MAF target value calculation unit 72, and the smaller one is output to the target value selection unit 73F as an increased provisional MAF target value.
  • the decrease target value calculation unit 73E receives the decrease change amount from the decrease change amount MAP 73B, the MAF target value MAF NPL_Trgt, and the MAF target value (MAF target value immediately before the update) output from the output switching unit 73G. .
  • the section correction value obtained by multiplying the decrease change amount by the calculation clock is subtracted from the MAF target value from the output switching unit 73G. Then, this subtraction value is compared with the MAF target value MAF NPL_Trgt from the MAF target value calculation unit 72, and the larger one is output to the target value selection unit 73F as a reduced provisional MAF target value.
  • the target value selection unit 73F switches one of the increase temporary MAF target value output from the increase target value calculation unit 73D and the decrease temporary MAF target value output from the decrease target value calculation unit 73E between the rich state and the lean state. Depending on the selection, the output is output to the output switching unit 73G. Specifically, the increase temporary MAF target value is selected and output when switching from the rich state to the lean state, and the decrease temporary MAF target value is selected and output when switching from the lean state to the rich state.
  • the output switching unit 73G sets the increase temporary MAF target value or the decrease temporary MAF target value from the target value selection unit 73F as the MAF target ramp value MAF NPL_Trgt_Ramp over the period when the permission signal is output from the lamp start / end determination unit 73C. Output as. Further, the output switching unit 73G outputs the MAF target value MAF NPL_Trgt from the MAF target value calculation unit 72 during a period when the permission signal is not output.
  • the valve control unit 74 shown in FIG. 10 calculates the intake throttle valve 16 from the MAF target values (MAF NPL_Trgt , MAF NPL_Trgt_Ramp ) output from the ramp processing unit 73 and the actual MAF value MAF Act based on the detection result of the MAF sensor 40. And the EGR valve 24 is controlled.
  • MAF target values MAF NPL_Trgt , MAF NPL_Trgt_Ramp
  • the MAF operation amount is determined by PID control so that the actual MAF value MAF Act matches the MAF target value, and the intake throttle valve opening is determined from the lean valve opening MAP74A shown in FIG. 12A.
  • the VO_ith_L and the EGR valve opening VO_EGR_L are read, and the intake throttle valve 16 and the EGR valve 24 are feedback-controlled.
  • the MAF operation amount is determined by PID control so that the actual MAF value MAF Act matches the MAF target value, and the intake throttle valve opening from the lean valve opening MAP74B shown in FIG. 12B VO_ith_R is read and the intake throttle valve 16 is feedback-controlled.
  • the feedback integral term is reset to an initial value (for example, 0).
  • the EGR valve 24 is closed or fixed at a specified opening degree with a reduced flow rate.
  • ramp control is performed to gradually change the valve opening so that the torque of the engine 10 does not fluctuate.
  • the valve control unit 74 includes a previous target value holding unit 74C, a first control amount calculation unit 74D, a second control amount calculation unit 74E, an output target value holding unit 74F, and a control.
  • An amount selection unit 74G, a target value calculation unit 74H, and an output switching unit 74J are provided.
  • the immediately preceding target value holding unit 74C holds the EGR target value (the target value of the valve opening in the EGR valve 24) immediately before the change.
  • the first control amount calculation unit 74D calculates the first control amount by multiplying the valve opening per unit time by the calculation clock.
  • the second control amount calculation unit 74E includes an EGR reduction reached value (final valve opening) and an output target value held in the output target value holding unit 74F (EGR target value output immediately before from the output switching unit 74J). The second control amount is calculated from the difference.
  • the control amount selection unit 74G selects the smaller one of the first control amount calculated by the first control amount calculation unit 74D and the second control amount calculated by the second control amount calculation unit 74E as the control amount.
  • the target value calculation unit 74H calculates the EGR target value by subtracting the control amount selected by the control amount selection unit 74G from the output target value held in the output target value holding unit 74F.
  • the output switching unit 74J outputs the EGR target value calculated by the target value calculation unit 74H over the output period of the start instruction signal.
  • the ramp process is applied to the EGR target value when the exhaust air-fuel ratio is switched from the lean state to the rich state, as indicated by the symbol VO_EGR_R in FIG. Can be closed.
  • the EGR valve 24 is closed or fixed at a specified opening degree, and the intake air is sucked into the engine 10 by the intake throttle valve 16. The amount is adjusted. Since the EGR valve 24 is closed or fixed at a specified opening degree, the EGR passage 22 and the EGR cooler 23 can be prevented from being contaminated. Further, since the intake air amount is adjusted by the intake throttle valve 16, it is possible to reduce the fuel injection amount by the exhaust pipe injection and the post injection for generating the rich condition. As a result, it is possible to improve fuel efficiency while suppressing contamination of the EGR passage 22 and the like.
  • the EGR valve 24 is closed with a predetermined valve operation amount per unit time, so that the torque fluctuation of the engine 10 at the start of the NOx purge can be suppressed, and the driver It is possible to effectively suppress the deterioration of the ability.
  • the intake throttle valve 16 is opened and closed at a predetermined valve operation amount per unit time, so that the engine at the start and end of the NOx purge
  • the torque fluctuation of 10 can be suppressed, and the deterioration of drivability can be effectively suppressed.
  • valve opening of the intake throttle valve 16 is determined based on the MAF target values (MAF NPL_Trgt , MAF NPL_Trgt_Ramp ) based on the operating state of the engine 10 (engine speed Ne, accelerator opening Q) and the detection value of the MAF sensor 40.
  • Control is performed by PID control based on the deviation of the actual intake air amount MAF Act , and the integral term of PID control is initialized when switching from lean state control to rich state control, resulting in feedback control in the lean state Can be suppressed.
  • the lambda sensor is not provided on the upstream side of the NOx storage reduction catalyst 32, or the NOx storage reduction catalyst 32 Even when a lambda sensor is provided on the upstream side, the exhaust can be effectively reduced to a desired excess air ratio required for NOx purge lean control without using the sensor value of the lambda sensor.
  • the MAF target value MAF NPL_Trgt can be set by feedforward control. Effects such as characteristic changes can be effectively eliminated.
  • FIG. 14 is a block diagram showing processing for setting the target injection amount Q NPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in NOx purge rich control.
  • the fourth target excess air ratio setting map 75 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q.
  • the air excess rate target value ⁇ NPR_Trgt (fourth target air excess rate) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ NPR_Trgt at the time of NOx purge rich control is read from the fourth target excess air ratio setting map 75 using the engine speed Ne and the accelerator opening Q as input signals, and the injection amount target value calculation section 76 is performed. Is input. Further, the injection amount target value calculation unit 76 calculates the target injection amount Q NPR_Trgt at the time of NOx purge rich control based on the following formula (4).
  • MAF NPL_Trgt MAF NPL_Trgt ⁇ Maf_corr / ( ⁇ NPR_Trgt ⁇ Ro Fuel ⁇ AFR sto ) ⁇ Q fnl_corrd (4)
  • MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the MAF target value calculation unit 72 described above.
  • Q fnl_cord is a fuel injection amount (excluding post-injection) before application of learning corrected MAF tracking control described later
  • Ro Fuel is fuel specific gravity
  • AFR sto is a theoretical air-fuel ratio
  • Maf_corr is a MAF correction coefficient described later. Show.
  • the injection amount target value calculation unit 76 refers to the distribution MAP and reads out the distribution value.
  • the distribution value indicates the ratio between the fuel injection amount by the exhaust injector 34 and the fuel injection amount by the in-cylinder injector 11.
  • Injection amount target value computing unit 66 by multiplying the distribution value to the target injection amount Q NPR_Trgt, calculates the fuel injection amount Q NPR_Trgt_Post in the fuel injection amount Q NPR_Trgt_EXT-cylinder injector 11 of the exhaust injector 34.
  • These fuel injection amounts are transmitted as injection instruction signals to the exhaust injector 34 and the in-cylinder injector 11 when the NOx purge flag F NP is turned on (time t 1 in FIG. 9). The transmission of the injection instruction signal is continued until the NOx purge flag F NP is turned off (time t 2 in FIG. 9) by the end determination of NOx purge control described later.
  • the target injection amount Q NPR_Trgt is set based on the excess air ratio target value ⁇ NPR_Trgt read from the fourth target excess air ratio setting map 75 and the fuel injection amount of the in-cylinder injector 11. It is like that.
  • the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge rich control.
  • the target injection amount Q NPR_Trgt can be set by feedforward control. Effects such as characteristic changes can be effectively eliminated.
  • the ECU 50 feedback-controls the opening degree of the intake throttle valve 16 and the EGR valve 24 based on the sensor value of the MAF sensor 40 in the region where the operating state of the engine 10 is on the low load side. On the other hand, in the region where the operating state of the engine 10 is on the high load side, the ECU 50 feedback-controls the supercharging pressure by the variable displacement supercharger 20 based on the sensor value of the boost pressure sensor 46 (hereinafter, this region is referred to as “high”). (Referred to as boost pressure FB control region).
  • the excess air ratio target value ⁇ NPR_Trgt the excess air ratio target value necessary for the NOx purge.
  • the NOx purge control unit 70 of the present embodiment prohibits NOx purge lean control for adjusting the opening of the intake throttle valve 16 and the EGR valve 24 in the boost pressure FB control region, and The excess air ratio is reduced to the fourth target excess air ratio (the excess air ratio target value ⁇ NPR_Trgt ) only by injection or post injection.
  • the MAF target value set based on the operating state of the engine 10 may be applied to the MAF target value MAF NPL_Trgt of the above-described equation (4).
  • NOx purge control (1) when the NOx purge flag F NP is turned on, the amount of exhaust pipe injection or post injection is accumulated, and when this cumulative injection amount reaches a predetermined upper limit threshold amount, (2) NOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals.
  • the NOx purge flag F NP is turned off and the process is terminated (time t 2 in FIG. 9). reference).
  • the cumulative injection amount and the upper limit of the elapsed time are provided in the end condition of the NOx purge control, so that the fuel consumption amount is reduced when the NOx purge is not successful due to a decrease in the exhaust temperature or the like. It is possible to reliably prevent the excess.
  • the MAF follow-up control unit 80 includes (1) a period for switching from a lean state in normal operation to a rich state by SOx purge control or NOx purge control, and (2) lean in normal operation from a rich state by SOx purge control or NOx purge control. During the period of switching to the state, control (MAF follow-up control) is performed to correct the fuel injection timing and the fuel injection amount of the in-cylinder injector 11 according to the MAF change.
  • the injection amount learning correction unit 90 includes a learning correction coefficient calculation unit 91 and an injection amount correction unit 92.
  • the learning correction coefficient calculation unit 91 is based on the error ⁇ between the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 during the lean operation of the engine 10 and the estimated lambda value ⁇ Est, and the learning correction coefficient F for the fuel injection amount. Calculate Corr .
  • the actual lambda value ⁇ Act in the exhaust gas that passes through the oxidation catalyst 31 and is detected by the downstream NOx / lambda sensor 45 It is considered that the estimated lambda value ⁇ Est in the exhaust discharged from the engine 10 coincides.
  • step S300 based on the engine speed Ne and the accelerator opening Q, it is determined whether or not the engine 10 is in a lean operation state. If it is in the lean operation state, the process proceeds to step S310 to start the calculation of the learning correction coefficient.
  • the estimated lambda value ⁇ Est is estimated and calculated from the operating state of the engine 10 according to the engine speed Ne and the accelerator opening Q. Further, the correction sensitivity coefficient K 2 is read the actual lambda value lambda Act detected by the NOx / lambda sensor 45 from the correction sensitivity coefficient map 91A shown in FIG. 12 as an input signal.
  • step S320 it is determined whether or not the absolute value
  • step S330 it is determined whether the learning prohibition flag FPro is off.
  • Whether or not the engine 10 is in a transient operation state is determined based on, for example, the time change amount of the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 when the time change amount is larger than a predetermined threshold value. What is necessary is just to determine with a transient operation state.
  • step S340 the learning value map 91B (see FIG. 15) referred to based on the engine speed Ne and the accelerator opening Q is updated to the learning value F CorrAdpt calculated in step S310. More specifically, on the learning value map 91B, a plurality of learning areas divided according to the engine speed Ne and the accelerator opening Q are set. These learning regions are preferably set to have a narrower range as the region is used more frequently and to be wider as a region is used less frequently. As a result, learning accuracy is improved in regions where the usage frequency is high, and unlearning can be effectively prevented in regions where the usage frequency is low.
  • the learning correction coefficient F Corr is input to the injection amount correction unit 92 shown in FIG.
  • the injection amount correction unit 92 multiplies each basic injection amount of pilot injection Q Pilot , pre-injection Q Pre , main injection Q Main , after-injection Q After , and post-injection Q Post by a learning correction coefficient F Corr. The injection amount is corrected.
  • MAF correction coefficient calculating unit 95 MAF is used to set the MAF target value MAF SPL_Trgt and the target injection amount Q SPR_Trgt during SOx purge control and the setting of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control A correction coefficient Maf_corr is calculated.
  • the fuel injection amount of the in-cylinder injector 11 is corrected based on an error ⁇ between the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 and the estimated lambda value ⁇ Est .
  • lambda is the ratio of air to fuel
  • the cause of the error ⁇ is not necessarily only the influence of the difference between the command injection amount and the actual injection amount with respect to the in-cylinder injector 11. That is, there is a possibility that the error of the MAF sensor 40 as well as the in-cylinder injector 11 affects the lambda error ⁇ .
  • FIG. 17 is a block diagram showing the setting process of the MAF correction coefficient Maf_corr by the MAF correction coefficient calculation unit 95.
  • the correction coefficient setting map 96 is a map that is referred to based on the engine speed Ne and the accelerator opening Q.
  • the MAF indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is shown in FIG.
  • the correction coefficient Maf_corr is set in advance based on experiments or the like.
  • the MAF correction coefficient calculation unit 95 reads the MAF correction coefficient Maf_corr from the correction coefficient setting map 96 using the engine speed Ne and the accelerator opening Q as input signals, and outputs the MAF correction coefficient Maf_corr to the MAF target value calculation unit 62, 72 and the injection amount target value calculation units 66 and 76.
  • SOx purge control when the MAF target value MAF SPL_Trgt and the target injection amount Q SPR_Trgt, the setting of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control effectively the sensor characteristics of the MAF sensor 40 It becomes possible to reflect.
  • the exhaust purification system of the present invention is useful in that fuel efficiency can be improved while suppressing fouling of a flow path for recirculating exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

An exhaust gas purification system is provided with: a NOx reduction-type catalyst 32 that is disposed in an exhaust gas passage of an engine 10; an intake throttle valve 16 that regulates the amount of air sucked into the engine 10; an EGR valve 24 that regulates the amount of exhaust gas recirculated to the engine 10; and an ECU 50 that carries out a regeneration treatment in which the purification capacity of the NOx reduction-type catalyst 32 is recovered by jointly using an air system control for reducing the amount of sucked-in air, and an injection system control for increasing the amount of fuel injection. When the exhaust air-fuel ratio switches from a lean state to a rich state, the ECU 50 fixes the EGR valve 24 in a closed state or at a designated opening degree, and regulates the amount of sucked-in air via the intake throttle valve 16.

Description

排気浄化システムExhaust purification system
 本発明は、排気浄化システムに関する。 The present invention relates to an exhaust purification system.
 従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。このNOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。このため、触媒のNOx吸蔵量が所定量に達した場合は、NOx吸蔵能力を回復させるべく、ポスト噴射や排気管噴射によって排気をリッチ状態にする所謂NOxパージを定期的に行う必要がある(例えば、特許文献1参照)。 Conventionally, a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine. This NOx occlusion reduction type catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and reduces and purifies NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. Detoxify and release. For this reason, when the NOx occlusion amount of the catalyst reaches a predetermined amount, so-called NOx purge that makes the exhaust rich by post injection or exhaust pipe injection needs to be performed periodically to restore the NOx occlusion capacity ( For example, see Patent Document 1).
 また、NOx吸蔵還元型触媒には、排気中に含まれる硫黄酸化物(以下、SOxという)も吸蔵される。このSOx吸蔵量が増加すると、NOx吸蔵還元型触媒のNOx浄化能力を低下させる課題がある。このため、SOx吸蔵量が所定量に達した場合は、NOx吸蔵還元型触媒からSOxを離脱させてS被毒から回復させるべく、ポスト噴射や排気管噴射によって上流側の酸化触媒に未燃燃料を供給して排気温度をSOx離脱温度まで上昇させる所謂SOxパージを定期的に行う必要がある(例えば、特許文献2参照)。 Further, the NOx occlusion reduction type catalyst also occludes sulfur oxide (hereinafter referred to as SOx) contained in the exhaust gas. When this SOx occlusion amount increases, there is a problem that the NOx purification ability of the NOx occlusion reduction type catalyst is lowered. Therefore, when the SOx occlusion amount reaches a predetermined amount, unburned fuel is added to the upstream oxidation catalyst by post injection or exhaust pipe injection so that SOx is released from the NOx occlusion reduction type catalyst and recovered from S poisoning. Therefore, it is necessary to periodically perform a so-called SOx purge for raising the exhaust temperature to the SOx separation temperature (see, for example, Patent Document 2).
日本国特開2008-202425号公報Japanese Unexamined Patent Publication No. 2008-202425 日本国特開2009-47086号公報Japanese Unexamined Patent Publication No. 2009-47086
 上述のNOxパージやSOxパージを、ポスト噴射や排気管噴射による噴射系制御のみで行うと、燃料消費量が過多となり燃費性能を悪化させる。このため、噴射系制御と吸気スロットルバルブやEGR(Exhaust gas Recirculation)バルブの開度調整により吸入空気量を減少させる空気系制御とを併用することが好ましい。 If the above-mentioned NOx purge and SOx purge are performed only by injection system control by post injection or exhaust pipe injection, the fuel consumption becomes excessive and the fuel efficiency is deteriorated. For this reason, it is preferable to use both the injection system control and the air system control for reducing the intake air amount by adjusting the opening of an intake throttle valve or an EGR (Exhaust gas Recirculation) valve.
 吸入空気量を減少させるべくEGRガスの還流量を増加させると、EGRクーラやEGR流路が汚損される虞があり、この汚損を抑制するためにEGR触媒を追加する等の対応が必要となる。また、噴射系制御での燃料噴射量を増やして吸入空気量を減少させると、上述のように燃料消費量が過多となって燃費性能を悪化させてしまう。 If the recirculation amount of the EGR gas is increased to reduce the intake air amount, the EGR cooler and the EGR flow path may be fouled, and measures such as adding an EGR catalyst are required to suppress this fouling. . Further, when the fuel injection amount in the injection system control is increased and the intake air amount is decreased, the fuel consumption becomes excessive as described above, and the fuel efficiency is deteriorated.
 本開示の排気浄化システムは、排気を還流させる流路の汚損を抑制しつつ燃費性能を向上させることを目的とする。 The exhaust purification system of the present disclosure is intended to improve fuel efficiency while suppressing fouling of a flow path for recirculating exhaust gas.
 本開示の排気浄化システムは、内燃機関の排気通路に設けられて排気中のNOxを還元浄化するNOx還元型触媒と、前記内燃機関に吸入される空気の量を調整する吸気量調整バルブと、前記内燃機関に還流される排気の量を調整する還流量調整バルブと、吸入空気量を減少させる空気系制御と燃料噴射量を増加させる噴射系制御とを併用して排気空燃比をリーン状態からリッチ状態に切り替えることで、前記NOx還元型触媒の浄化能力を回復させる再生処理を実行する制御部と、を備える排気浄化システムであって、前記制御部は、前記排気空燃比をリーン状態からリッチ状態に切り替える際に、前記還流量調整バルブを閉状態若しくは指定開度で固定するとともに、前記吸気量調整バルブによって前記内燃機関に吸入される空気の量を調整する。 An exhaust purification system of the present disclosure includes a NOx reduction catalyst that is provided in an exhaust passage of an internal combustion engine to reduce and purify NOx in exhaust, an intake air amount adjustment valve that adjusts an amount of air sucked into the internal combustion engine, The exhaust air-fuel ratio is changed from a lean state by using a recirculation amount adjustment valve that adjusts the amount of exhaust gas recirculated to the internal combustion engine, an air system control that decreases the intake air amount, and an injection system control that increases the fuel injection amount. A control unit that executes a regeneration process for recovering the purification ability of the NOx reduction catalyst by switching to the rich state, wherein the control unit richly changes the exhaust air-fuel ratio from the lean state. When switching to a state, the recirculation amount adjustment valve is closed or fixed at a specified opening, and the amount of air taken into the internal combustion engine by the intake amount adjustment valve Adjust to.
 本開示の排気浄化システムによれば、排気を還流させる流路の汚損を抑制しつつ燃費性能を向上させることができる。 According to the exhaust purification system of the present disclosure, fuel efficiency can be improved while suppressing fouling of the flow path for recirculating exhaust gas.
図1は、本実施形態に係る排気浄化システムを示す全体構成図である。FIG. 1 is an overall configuration diagram showing an exhaust purification system according to the present embodiment. 図2は、本実施形態に係るSOxパージ制御を説明するタイミングチャート図である。FIG. 2 is a timing chart for explaining the SOx purge control according to the present embodiment. 図3は、本実施形態に係るSOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。FIG. 3 is a block diagram showing the MAF target value setting process during SOx purge lean control according to the present embodiment. 図4は、本実施形態に係るSOxパージ制御時のMAF目標値に対するランプ適用処理を示すブロック図である。FIG. 4 is a block diagram showing a lamp application process for the MAF target value during SOx purge control according to the present embodiment. 図5Aは、本実施形態に係るSOxパージ制御時のバルブ開閉制御を説明する図であり、リーン時における吸気スロットルバルブ及びEGRバルブのバルブ開度MAPを示す。FIG. 5A is a diagram for explaining valve opening / closing control during SOx purge control according to the present embodiment, and shows the valve opening degree MAP of the intake throttle valve and the EGR valve during lean. 図5Bは、本実施形態に係るSOxパージ制御時のバルブ開閉制御を説明する図であり、リッチ時における吸気スロットルバルブのバルブ開度MAPを示す。FIG. 5B is a diagram for explaining the valve opening / closing control during the SOx purge control according to the present embodiment, and shows the valve opening degree MAP of the intake throttle valve in the rich state. 図6Aは、本実施形態に係るSOxパージ制御時のEGR目標値に対するランプ適用処理を示すブロック図である。FIG. 6A is a block diagram showing a lamp application process for an EGR target value during SOx purge control according to the present embodiment. 図6Bは、リッチ時におけるEGRバルブのバルブ開度制御を示す。FIG. 6B shows valve opening control of the EGR valve at the rich time. 図7は、本実施形態に係るSOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。FIG. 7 is a block diagram showing a target injection amount setting process during SOx purge rich control according to the present embodiment. 図8は、本実施形態に係るSOxパージ制御の触媒温度調整制御を説明するタイミングチャート図である。FIG. 8 is a timing chart for explaining the catalyst temperature adjustment control of the SOx purge control according to the present embodiment. 図9は、本実施形態に係るNOxパージ制御を説明するタイミングチャート図である。FIG. 9 is a timing chart illustrating the NOx purge control according to this embodiment. 図10は、本実施形態に係るNOxパージ制御時のMAF目標値の設定処理を示すブロック図である。FIG. 10 is a block diagram showing a MAF target value setting process during NOx purge control according to the present embodiment. 図11は、本実施形態に係るNOxパージ制御時のMAF目標値に対するランプ適用処理を示すブロック図である。FIG. 11 is a block diagram showing a lamp application process for the MAF target value during NOx purge control according to the present embodiment. 図12Aは、本実施形態に係るNOxパージ制御時のバルブ開閉制御を説明する図であり、リーン時における吸気スロットルバルブ及びEGRバルブのバルブ開度MAPを示す。FIG. 12A is a diagram for explaining valve opening / closing control during NOx purge control according to this embodiment, and shows the valve opening degree MAP of the intake throttle valve and the EGR valve during lean. 図12Bは、本実施形態に係るNOxパージ制御時のバルブ開閉制御を説明する図であり、リッチ時における吸気スロットルバルブのバルブ開度MAPを示す。FIG. 12B is a diagram for explaining valve opening / closing control during NOx purge control according to the present embodiment, and shows the valve opening degree MAP of the intake throttle valve when rich. 図13Aは、本実施形態に係るNOxパージ制御時のEGR目標値に対するランプ適用処理を示すブロック図である。FIG. 13A is a block diagram showing a lamp application process for an EGR target value during NOx purge control according to the present embodiment. 図13Bは、リッチ時におけるEGRバルブのバルブ開度制御を示す図である。FIG. 13B is a diagram illustrating valve opening degree control of the EGR valve at the rich time. 図14は、本実施形態に係るNOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。FIG. 14 is a block diagram showing a target injection amount setting process during NOx purge rich control according to the present embodiment. 図15は、本実施形態に係る筒内インジェクタの噴射量学習補正の処理を示すブロック図である。FIG. 15 is a block diagram showing processing for correcting the injection amount of the in-cylinder injector according to the present embodiment. 図16は、本実施形態に係る学習補正係数の演算処理を説明するフロー図である。FIG. 16 is a flowchart for explaining the learning correction coefficient calculation processing according to the present embodiment. 図17は、本実施形態に係るMAF補正係数の設定処理を示すブロック図である。FIG. 17 is a block diagram showing MAF correction coefficient setting processing according to this embodiment.
 以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化システムを説明する。 Hereinafter, an exhaust purification system according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射する筒内インジェクタ11がそれぞれ設けられている。これら筒内インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)50から入力される指示信号に応じてコントロールされる。 As shown in FIG. 1, each cylinder of a diesel engine (hereinafter simply referred to as “engine”) 10 is provided with an in-cylinder injector 11 that directly injects high-pressure fuel that is stored in a common rail (not shown) into each cylinder. Yes. The fuel injection amount and fuel injection timing of these in-cylinder injectors 11 are controlled according to an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 50.
 エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。 An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for connecting exhaust to the outside is connected to the exhaust manifold 10B.
 吸気通路12には、吸気上流側から順にエアクリーナ14、吸入される空気の量を検出する吸入空気量センサ(以下、MAFセンサという)40、可変容量型過給機20のコンプレッサ20A、加給された空気を冷却するインタークーラ15、エンジン10に吸入される空気の量を調整する吸気スロットルバルブ16(本発明の吸気量調整バルブの一例)等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサをそれぞれ示している。 The intake passage 12 is supplied with an air cleaner 14, an intake air amount sensor (hereinafter referred to as MAF sensor) 40 for detecting the amount of intake air, a compressor 20 </ b> A of the variable displacement supercharger 20, and the like. An intercooler 15 that cools the air, an intake throttle valve 16 that adjusts the amount of air taken into the engine 10 (an example of an intake air amount adjustment valve of the present invention), and the like are provided. The exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side. In FIG. 1, reference numeral 41 denotes an engine speed sensor, reference numeral 42 denotes an accelerator opening sensor, and reference numeral 46 denotes a boost pressure sensor.
 EGR装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量(エンジン10に還流される排気の量)を調整するEGRバルブ24(本発明の還流量調整バルブの一例)とを備えている。 The EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools EGR gas, and an EGR valve 24 that adjusts the EGR amount (the amount of exhaust gas recirculated to the engine 10). (An example of a recirculation amount adjusting valve of the present invention).
 排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気インジェクタ34が設けられている。 The exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A. The exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust injector 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. Yes.
 酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気インジェクタ34の排気管噴射又は筒内インジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。 The oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure. When the unburned fuel is supplied by the exhaust pipe injection of the exhaust injector 34 or the post injection of the in-cylinder injector 11, the oxidation catalyst 31 oxidizes this and raises the exhaust temperature.
 NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。 The NOx occlusion reduction type catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure. The NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.
 フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ再生が実行される。フィルタ再生は、排気管噴射又はポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。 The filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. . The filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter regeneration is performed to remove the combustion. Filter regeneration is performed by supplying unburned fuel to the upstream oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.
 第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度を検出する。第2排気温度センサ44は、NOx吸蔵還元型触媒32とフィルタ33との間に設けられており、フィルタ33に流入する排気温度を検出する。NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(以下、空気過剰率ともいう)を検出する。 The first exhaust temperature sensor 43 is provided on the upstream side of the oxidation catalyst 31 and detects the exhaust temperature flowing into the oxidation catalyst 31. The second exhaust temperature sensor 44 is provided between the NOx storage reduction catalyst 32 and the filter 33 and detects the exhaust temperature flowing into the filter 33. The NOx / lambda sensor 45 is provided on the downstream side of the filter 33, and detects the NOx value and lambda value (hereinafter also referred to as excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32.
 ECU50は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40~46のセンサ値が入力される。また、ECU50は、フィルタ再生制御部51と、SOxパージ制御部60と、NOxパージ制御部70と、MAF追従制御部80、噴射量学習補正部90と、MAF補正係数演算部95とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。 The ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, the sensor values of the sensors 40 to 46 are input to the ECU 50. Further, the ECU 50 partially includes a filter regeneration control unit 51, a SOx purge control unit 60, a NOx purge control unit 70, a MAF follow-up control unit 80, an injection amount learning correction unit 90, and a MAF correction coefficient calculation unit 95. As a functional element. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.
 [フィルタ再生制御]
 フィルタ再生制御部51は、車両の走行距離、あるいは図示しない差圧センサで検出されるフィルタ前後差圧からフィルタ33のPM堆積量を推定すると共に、このPM堆積推定量が所定の上限閾値を超えると再生フラグFDPFをオンにする(図2の時刻t参照)。再生フラグFDPFがオンにされると、排気インジェクタ34に排気管噴射を実行させる指示信号が送信されるか、あるいは、筒内インジェクタ11にポスト噴射を実行させる指示信号が送信されて、排気温度をPM燃焼温度(例えば、約550℃)まで昇温させる。この再生フラグFDPFは、PM堆積推定量が燃焼除去を示す所定の下限閾値(判定閾値)まで低下するとオフにされる(図2の時刻t参照)。なお、再生フラグFDPFをオフにする判定閾値は、例えば、フィルタ再生開始(FDPF=1)からの上限経過時間や上限累積噴射量を基準にしてもよい。
[Filter regeneration control]
The filter regeneration control unit 51 estimates the PM accumulation amount of the filter 33 from the travel distance of the vehicle or the differential pressure across the filter detected by a differential pressure sensor (not shown), and the estimated PM accumulation amount exceeds a predetermined upper limit threshold. And the regeneration flag F DPF is turned on (see time t 1 in FIG. 2). When the regeneration flag F DPF is turned on, an instruction signal for performing exhaust pipe injection is transmitted to the exhaust injector 34, or an instruction signal for performing post injection is transmitted to the in-cylinder injector 11, and the exhaust temperature is increased. Is raised to the PM combustion temperature (for example, about 550 ° C.). The regeneration flag F DPF is, PM deposition estimation amount is turned off drops to a predetermined lower limit threshold indicating the burn off (determination threshold value) (see time t 2 in FIG. 2). The determination threshold value for turning off the regeneration flag F DPF may be based on, for example, the upper limit elapsed time or the upper limit cumulative injection amount from the start of filter regeneration (F DPF = 1).
 [SOxパージ制御]
 SOxパージ制御部60は、排気をリッチ状態にして排気温度を硫黄離脱温度(例えば、約600℃)まで上昇させて、NOx吸蔵還元型触媒32をSOx被毒から回復させる制御(以下、この制御をSOxパージ制御という)を実行する。
[SOx purge control]
The SOx purge control unit 60 makes the exhaust rich and raises the exhaust temperature to a sulfur desorption temperature (for example, about 600 ° C.) to recover the NOx occlusion reduction type catalyst 32 from SOx poisoning (hereinafter, this control). (Referred to as SOx purge control).
 図2は、本実施形態のSOxパージ制御のタイミングチャートを示している。図2に示すように、SOxパージ制御を開始するSOxパージフラグFSPは、再生フラグFDPFのオフと同時にオンにされる(図2の時刻t参照)。これにより、フィルタ33の再生によって排気温度を上昇させた状態からSOxパージ制御に効率よく移行することが可能となり、燃料消費量を効果的に低減することができる。 FIG. 2 shows a timing chart of the SOx purge control of this embodiment. As shown in FIG. 2, SOx purge flag F SP to start SOx purge control is turned on at the same time off the regeneration flag F DPF (see time t 2 in FIG. 2). As a result, it is possible to efficiently shift to the SOx purge control from the state in which the exhaust gas temperature has been raised by the regeneration of the filter 33, and the fuel consumption can be effectively reduced.
 本実施形態において、SOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるSOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるSOxパージリッチ制御とを併用することで実現される。以下、SOxパージリーン制御及び、SOxパージリッチ制御の詳細について説明する。 In the present embodiment, the enrichment by the SOx purge control is performed by adjusting the excess air ratio to the lean side from the theoretical air-fuel ratio equivalent value (about 1.0) from the steady operation (for example, about 1.5) by the air system control. SOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) This is realized by using together with the SOx purge rich control that lowers to .9). Details of the SOx purge lean control and the SOx purge rich control will be described below.
 [SOxパージリーン制御の空気系制御]
 図3は、SOxパージリーン制御時のMAF目標値MAFSPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ61は、エンジン回転数Ne及びアクセル開度Q(エンジン10の燃料噴射量)に基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリーン制御時の空気過剰率目標値λSPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
[Air system control for SOx purge lean control]
FIG. 3 is a block diagram illustrating a process for setting the MAF target value MAF SPL_Trgt during the SOx purge lean control. The first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q (the fuel injection amount of the engine 10), and the engine speed Ne, the accelerator opening Q, The excess air ratio target value λ SPL_Trgt (first target excess air ratio) at the time of SOx purge lean control corresponding to is preset based on experiments or the like.
 まず、第1目標空気過剰率設定マップ61から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリーン制御時の空気過剰率目標値λSPL_Trgtが読み取られて、MAF目標値演算部62に入力される。さらに、MAF目標値演算部62では、以下の数式(1)に基づいてSOxパージリーン制御時のMAF目標値MAFSPL_Trgtが演算される。 First, the excess air ratio target value λ SPL_Trgt at the time of SOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 62. Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF SPL_Trgt during the SOx purge lean control based on the following formula (1).
 MAFSPL_Trgt=λSPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(1)
 数式(1)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
MAF SPL_Trgt = λ SPL_Trgt × Q fnl_corrd × Ro Fuel × AFR sto / Maf_corr (1)
In Equation (1), Q fnl_cord represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a theoretical air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.
 MAF目標値演算部62によって演算されたMAF目標値MAFSPL_Trgtは、SOxパージフラグFSPがオン(図2の時刻t参照)になるとランプ処理部63に入力される。 MAF target value MAF SPL_Trgt calculated by the MAF target value calculation unit 62, when the SOx purge flag F SP is turned on (see time t 2 in FIG. 2) is input to the lamp unit 63.
 ランプ処理部63は、エンジン回転数Ne及びアクセル開度Qを入力信号とし、増加時変化量MAP63Aから増加時変化量を読み取り、減少時変化量MAP63Bから減少時変化量を読み取る。増加時変化量は、リッチ状態からリーン状態へ切り替える際に使用され、MAF目標値MAFに対する単位時間あたりの加算量を示す。減少時変化量は、リーン状態からリッチ状態へ切り替える際に使用され、MAF目標値MAFに対する単位時間あたりの減算量を示す。 The ramp processing unit 63 uses the engine speed Ne and the accelerator opening Q as input signals, reads the increase change amount from the increase change amount MAP63A, and reads the decrease change amount from the decrease change amount MAP63B. The increasing amount of change is used when switching from the rich state to the lean state, and indicates the amount of addition per unit time to the MAF target value MAF. The change amount at the time of decrease is used when switching from the lean state to the rich state, and indicates a subtraction amount per unit time with respect to the MAF target value MAF.
 図4に示すように、ランプ処理部63は、ランプ開始終了判定部63Cと、増加目標値演算部63Dと、減少目標値演算部63Eと、目標値選択部63Fと、出力切替部63Gを備える。 As shown in FIG. 4, the ramp processing unit 63 includes a ramp start / end determination unit 63C, an increase target value calculation unit 63D, a decrease target value calculation unit 63E, a target value selection unit 63F, and an output switching unit 63G. .
 ランプ開始終了判定部63Cには、開始指示信号が入力される。開始指示信号は、信号の状態変化によってランプ処理の開始タイミングを示すと共に、リーン状態からリッチ状態への切り替えやリッチ状態からリーン状態への切り替えを識別させる。ランプ開始終了判定部63Cは、ランプ処理の開始タイミングと判定した場合に、許可信号を出力切替部63Gに出力する。この許可信号は、MAF目標値演算部62からのMAF目標値MAFSPL_Trgtと出力切替部63Gから出力されるMAF目標値(MAF目標ランプ値MAFSPL_Trgt_Ramp)が一致するまで出力される。 A start instruction signal is input to the lamp start / end determination unit 63C. The start instruction signal indicates the start timing of the ramp process according to a change in the state of the signal, and identifies the switching from the lean state to the rich state and the switching from the rich state to the lean state. The lamp start / end determination unit 63C outputs a permission signal to the output switching unit 63G when it is determined that the lamp processing start timing is reached. This permission signal is output until the MAF target value MAF SPL_Trgt from the MAF target value calculation unit 62 and the MAF target value (MAF target ramp value MAF SPL_Trgt_Ramp ) output from the output switching unit 63G match.
 増加目標値演算部63Dには、増加時変化量MAP63Aからの増加時変化量とMAF目標値MAFSPL_Trgtと出力切替部63Gから出力されるMAF目標値(更新直前のMAF目標値)が入力される。増加目標値演算部63Dでは、増加時変化量に計算クロックが乗じられた区間補正値が、出力切替部63GからのMAF目標値に加算される。そして、この加算値がMAF目標値演算部62からのMAF目標値MAFSPL_Trgtと比較され、小さい方が増加仮MAF目標値として目標値選択部63Fに出力される。 The increase target value calculation unit 63D receives the increase change amount from the increase change amount MAP63A, the MAF target value MAF SPL_Trgt, and the MAF target value (MAF target value immediately before the update) output from the output switching unit 63G. . In the increase target value calculation unit 63D, the section correction value obtained by multiplying the increase amount of change by the calculation clock is added to the MAF target value from the output switching unit 63G. Then, this added value is compared with the MAF target value MAF SPL_Trgt from the MAF target value calculation unit 62, and the smaller one is output to the target value selection unit 63F as an increased provisional MAF target value.
 減少目標値演算部63Eには、減少時変化量MAP63Bからの減少時変化量とMAF目標値MAFSPL_Trgtと出力切替部63Gから出力されるMAF目標値(更新直前のMAF目標値)が入力される。減少目標値演算部63Eでは、減少時変化量に計算クロックが乗じられた区間補正値が、出力切替部63GからのMAF目標値に減算される。そして、この減算値がMAF目標値演算部62からのMAF目標値MAFSPL_Trgtと比較され、大きい方が減少仮MAF目標値として目標値選択部63Fに出力される。 The decrease target value calculation unit 63E receives the decrease change amount from the decrease change amount MAP63B, the MAF target value MAF SPL_Trgt, and the MAF target value (MAF target value immediately before the update) output from the output switching unit 63G. . In the decrease target value calculation unit 63E, the section correction value obtained by multiplying the decrease change amount by the calculation clock is subtracted from the MAF target value from the output switching unit 63G. Then, this subtraction value is compared with the MAF target value MAF SPL_Trgt from the MAF target value calculation unit 62, and the larger one is output to the target value selection unit 63F as a reduced provisional MAF target value.
 目標値選択部63Fは、増加目標値演算部63Dから出力された増加仮MAF目標値と減少目標値演算部63Eから出力された減少仮MAF目標値の一方を、リッチ状態とリーン状態の切り替えに応じて選択し、出力切替部63Gに出力する。具体的には、リッチ状態からリーン状態への切り替え時には増加仮MAF目標値を選択して出力し、リーン状態からリッチ状態への切り替え時には減少仮MAF目標値を選択して出力する。 The target value selection unit 63F switches one of the increase temporary MAF target value output from the increase target value calculation unit 63D and the decrease temporary MAF target value output from the decrease target value calculation unit 63E between the rich state and the lean state. It selects according to this, and outputs it to the output switching part 63G. Specifically, the increase temporary MAF target value is selected and output when switching from the rich state to the lean state, and the decrease temporary MAF target value is selected and output when switching from the lean state to the rich state.
 出力切替部63Gは、ランプ開始終了判定部63Cから許可信号が出力されている期間に亘り、目標値選択部63Fからの増加仮MAF目標値或いは減少仮MAF目標値を、MAF目標ランプ値MAFSPL_Trgt_Rampとして出力する。また、出力切替部63Gは、許可信号が出力されていない期間は、MAF目標値演算部62からのMAF目標値MAFSPL_Trgtを出力する。 The output switching unit 63G outputs the increase temporary MAF target value or the decrease temporary MAF target value from the target value selection unit 63F as the MAF target ramp value MAF SPL_Trgt_Ramp over the period when the permission signal is output from the lamp start / end determination unit 63C. Output as. In addition, the output switching unit 63G outputs the MAF target value MAF SPL_Trgt from the MAF target value calculation unit 62 during a period when the permission signal is not output.
 図3に示すバルブ制御部64は、ランプ処理部63から出力されるMAF目標値(MAFSPL_Trgt,MAFSPL_Trgt_Ramp)、及び、MAFセンサ40の検出結果に基づく実MAF値MAFActから、吸気スロットルバルブ16及びEGRバルブ24を制御する。 The valve control unit 64 shown in FIG. 3 obtains the intake throttle valve 16 from the MAF target values (MAF SPL_Trgt , MAF SPL_Trgt_Ramp ) output from the ramp processing unit 63 and the actual MAF value MAF Act based on the detection result of the MAF sensor 40. And the EGR valve 24 is controlled.
 排気空燃比がリーン状態の場合には、実MAF値MAFActがMAF目標値と一致するようにPID制御によってMAF操作量を定め、図5Aに示すリーン時バルブ開度MAP64Aから吸気スロットルバルブ開度VO_ith_LとEGRバルブ開度VO_EGR_Lを読み取り、吸気スロットルバルブ16及びEGRバルブ24をフィードバック制御する。 When the exhaust air-fuel ratio is in a lean state, the MAF operation amount is determined by PID control so that the actual MAF value MAF Act matches the MAF target value, and the intake throttle valve opening is determined from the lean valve opening MAP64A shown in FIG. 5A. The VO_ith_L and the EGR valve opening VO_EGR_L are read, and the intake throttle valve 16 and the EGR valve 24 are feedback-controlled.
 排気空燃比がリッチ状態の場合には、実MAF値MAFActがMAF目標値と一致するようにPID制御によってMAF操作量を定め、図5Bに示すリーン時バルブ開度MAP64Bから吸気スロットルバルブ開度VO_ith_Rを読み取り、吸気スロットルバルブ16をフィードバック制御する。本実施形態では、リーン状態からリッチ状態への切り替え時において、フィードバックの積分項を初期値(例えば0)にリセットしている。これにより、リッチ状態でフィードバック制御を行うに際し、リーン状態でのフィードバック制御に起因する影響を抑制できる。 When the exhaust air-fuel ratio is rich, the MAF operation amount is determined by PID control so that the actual MAF value MAF Act matches the MAF target value, and the intake throttle valve opening is determined from the lean valve opening MAP64B shown in FIG. 5B. VO_ith_R is read and the intake throttle valve 16 is feedback-controlled. In this embodiment, when switching from the lean state to the rich state, the feedback integral term is reset to an initial value (for example, 0). Thereby, when performing feedback control in a rich state, the influence resulting from feedback control in a lean state can be suppressed.
 一方、EGRバルブ24については、閉状態又は流量を絞った指定開度で固定される。EGRバルブ24を閉じる際にはランプ制御を行って、エンジン10のトルクが変動しないように、緩やかにバルブ開度を変化させている。このため、図6Aに示すように、バルブ制御部64は直前目標値保持部64Cと、第1制御量演算部64Dと、第2制御量演算部64Eと、出力目標値保持部64Fと、制御量選択部64Gと、目標値演算部64Hと、出力切替部64Jとを備える。 On the other hand, the EGR valve 24 is fixed in a closed state or a specified opening degree with a reduced flow rate. When the EGR valve 24 is closed, ramp control is performed to gradually change the valve opening so that the torque of the engine 10 does not fluctuate. For this reason, as shown in FIG. 6A, the valve control unit 64 includes the immediately preceding target value holding unit 64C, the first control amount calculation unit 64D, the second control amount calculation unit 64E, the output target value holding unit 64F, and the control. An amount selection unit 64G, a target value calculation unit 64H, and an output switching unit 64J are provided.
 直前目標値保持部64Cは、変化する直前のEGR目標値(EGRバルブ24におけるバルブ開度の目標値)を保持する。第1制御量演算部64Dは、単位時間あたりのバルブ開度に計算クロックを乗じることで第1制御量を演算する。第2制御量演算部64Dは、EGR低下到達値(最終的なバルブ開度)と出力目標値保持部64Fに保持された出力目標値(出力切替部64Jから直前に出力されたEGR目標値)の差分から第2制御量を演算する。 The immediately preceding target value holding unit 64C holds the EGR target value (the target value of the valve opening in the EGR valve 24) immediately before the change. The first control amount calculator 64D calculates the first control amount by multiplying the valve opening per unit time by the calculation clock. The second control amount calculation unit 64D has an EGR decrease reached value (final valve opening) and an output target value held in the output target value holding unit 64F (an EGR target value output immediately before from the output switching unit 64J). The second control amount is calculated from the difference.
 制御量選択部64Gは、第1制御量演算部64Dで演算された第1制御量と第2制御量演算部64Eで演算された第2制御量の何れか小さい方を制御量として選択する。目標値演算部64Hは、出力目標値保持部64Fに保持された出力目標値から制御量選択部64Gで選択された制御量を減算することで、EGR目標値を演算する。出力切替部64Jは、開始指示信号の出力期間に亘って、目標値演算部64Hで演算されたEGR目標値を出力する。 The control amount selection unit 64G selects the smaller one of the first control amount calculated by the first control amount calculation unit 64D and the second control amount calculated by the second control amount calculation unit 64E as the control amount. The target value calculation unit 64H calculates the EGR target value by subtracting the control amount selected by the control amount selection unit 64G from the output target value held in the output target value holding unit 64F. The output switching unit 64J outputs the EGR target value calculated by the target value calculation unit 64H over the output period of the start instruction signal.
 以上の制御を実行することで、図6Bに符号VO_EGR_Rで示すように、排気空燃比をリーン状態からリッチ状態へ切り替える際に、EGR目標値にランプ処理が適用され、EGRバルブ24を緩やかに閉じることができる。 By executing the above control, the ramp process is applied to the EGR target value when the exhaust air-fuel ratio is switched from the lean state to the rich state, as shown by the symbol VO_EGR_R in FIG. Can be closed.
 上述の制御を行うことで、排気空燃比をリーン状態からリッチ状態に切り替える際には、EGRバルブ24が閉状態若しくは指定開度で固定され、吸気スロットルバルブ16によってエンジン10に吸入される空気の量が調整される。EGRバルブ24が閉状態若しくは指定開度で固定されるので、EGR通路22やEGRクーラ23の汚損が抑制できる。また、吸気スロットルバルブ16によって吸入空気量が調整されるので、リッチ条件を生成するための排気管噴射やポスト噴射による燃料噴射量を低減できる。その結果、EGR通路22等の汚損を抑制しつつ燃費性能を向上させることができる。 By performing the above-described control, when the exhaust air-fuel ratio is switched from the lean state to the rich state, the EGR valve 24 is closed or fixed at a specified opening degree, and the intake air is sucked into the engine 10 by the intake throttle valve 16. The amount is adjusted. Since the EGR valve 24 is closed or fixed at a specified opening degree, the EGR passage 22 and the EGR cooler 23 can be prevented from being contaminated. Further, since the intake air amount is adjusted by the intake throttle valve 16, it is possible to reduce the fuel injection amount by the exhaust pipe injection and the post injection for generating the rich condition. As a result, it is possible to improve fuel efficiency while suppressing contamination of the EGR passage 22 and the like.
 また、排気空燃比をリーン状態からリッチ状態に切り替える際に、単位時間あたり所定のバルブ操作量でEGRバルブ24を閉じているので、SOxパージの開始時におけるエンジン10のトルク変動を抑制でき、ドライバビリティーの悪化を効果的に抑制できる。 Further, when the exhaust air-fuel ratio is switched from the lean state to the rich state, the EGR valve 24 is closed with a predetermined valve operation amount per unit time, so that the torque fluctuation of the engine 10 at the start of the SOx purge can be suppressed, and the driver It is possible to effectively suppress the deterioration of the ability.
 同様に、排気空燃比をリーン状態とリッチ状態との間で切り替える際に、単位時間あたり所定のバルブ操作量で吸気スロットルバルブ16を開閉しているので、SOxパージの開始時や終了時におけるエンジン10のトルク変動を抑制でき、ドライバビリティーの悪化を効果的に抑制できる。 Similarly, when the exhaust air-fuel ratio is switched between the lean state and the rich state, the intake throttle valve 16 is opened and closed at a predetermined valve operation amount per unit time, so that the engine at the start and end of the SOx purge The torque fluctuation of 10 can be suppressed, and the deterioration of drivability can be effectively suppressed.
 また、吸気スロットルバルブ16のバルブ開度を、エンジン10の運転状態(エンジン回転数Ne,アクセル開度Q)に基づくMAF目標値(MAFSPL_Trgt,MAFSPL_Trgt_Ramp)と、MAFセンサ40の検出値に基づく実吸気量MAFActの偏差に基づくPID制御によって制御すると共に、リーン状態の制御からリッチ状態の制御に切り替える際に、PID制御の積分項を初期化しているので、リーン状態でのフィードバック制御に起因する影響を抑制できる。 Further, the valve opening of the intake throttle valve 16 is determined based on the MAF target values (MAF SPL_Trgt , MAF SPL_Trgt_Ramp ) based on the operating state of the engine 10 (engine speed Ne, accelerator opening Q) and the detected value of the MAF sensor 40. Control is performed by PID control based on the deviation of the actual intake air amount MAF Act , and the integral term of PID control is initialized when switching from lean state control to rich state control, resulting in feedback control in the lean state Can be suppressed.
 また、MAF目標値MAFSPL_Trgtに基づいて空気系動作をフィードバック制御するようになっているので、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Further , since the air system operation is feedback-controlled based on the MAF target value MAF SPL_Trgt , the lambda sensor is not provided on the upstream side of the NOx storage reduction catalyst 32, or the NOx storage reduction catalyst 32 Even when a lambda sensor is provided on the upstream side, exhaust can be effectively reduced to a desired excess air ratio required for SOx purge lean control without using the sensor value of the lambda sensor.
 また、筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFSPL_Trgtをフィードフォワード制御で設定することが可能となり、筒内インジェクタ11の経年劣化や特性変化、個体差等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of the in-cylinder injector 11, the MAF target value MAF SPL_Trgt can be set by feedforward control. Effects such as characteristic changes and individual differences can be effectively eliminated.
 [SOxパージリッチ制御の燃料噴射量設定]
 図7は、SOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QSPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第2目標空気過剰率設定マップ65は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。
[Fuel injection amount setting for SOx purge rich control]
FIG. 7 is a block diagram showing processing for setting the target injection amount Q SPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in SOx purge rich control. The second target excess air ratio setting map 65 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and at the time of SOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q. Of the excess air ratio target value λ SPR_Trgt (second target excess air ratio) is set in advance based on experiments or the like.
 まず、第2目標空気過剰率設定マップ65から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgtが読み取られて、噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、以下の数式(2)に基づいてSOxパージリッチ制御時の目標噴射量QSPR_Trgtが演算される。 First, the excess air ratio target value λ SPR_Trgt at the time of SOx purge rich control is read from the second target excess air ratio setting map 65 using the engine speed Ne and the accelerator opening Q as input signals, and an injection quantity target value calculation unit 66. Further, the injection amount target value calculation unit 66 calculates the target injection amount Q SPR_Trgt during the SOx purge rich control based on the following formula (2).
 QSPR_Trgt=MAFSPL_Trgt×Maf_corr/(λSPR_Trgt×RoFuel×AFRsto)-Qfnl_corrd・・・(2)
 数式(2)において、MAFSPL_TrgtはSOxパージリーン時のMAF目標値であって、前述のMAF目標値演算部62から入力される。また、Qfnl_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
Q SPR_Trgt = MAF SPL_Trgt × Maf_corr / (λ SPR_Trgt × Ro Fuel × AFR sto ) −Q fnl_corrd (2)
In Expression (2), MAF SPL_Trgt is the MAF target value at the SOx purge lean, and is input from the above-described MAF target value calculation unit 62. Q fnl_cord is a fuel injection amount (excluding post-injection) before application of learning corrected MAF tracking control described later, Ro Fuel is fuel specific gravity, AFR sto is a theoretical air-fuel ratio, and Maf_corr is a MAF correction coefficient described later. Show.
 噴射量目標値演算部66は、振り分けMAPを参照し、振り分け値を読み出す。振り分け値は、排気インジェクタ34による燃料噴射量と筒内インジェクタ11による燃料噴射量の比率を示す。噴射量目標値演算部66は、目標噴射量QSPR_Trgtに振り分け値を乗じることで、排気インジェクタ34での燃料噴射量QSPR_Trgt_EXTと筒内インジェクタ11での燃料噴射量QSPR_Trgt_Postを算出する。これらの燃料噴射量は、後述するSOxパージリッチフラグFSPRがオンになると、排気インジェクタ34や筒内インジェクタ11に噴射指示信号として送信される。 The injection amount target value calculation unit 66 refers to the distribution MAP and reads out the distribution value. The distribution value indicates the ratio between the fuel injection amount by the exhaust injector 34 and the fuel injection amount by the in-cylinder injector 11. Injection amount target value computing unit 66, by multiplying the distribution value to the target injection amount Q SPR_Trgt, calculates the fuel injection amount Q SPR_Trgt_Post in the fuel injection amount Q SPR_Trgt_EXT-cylinder injector 11 of the exhaust injector 34. These fuel injection amount, SOx purge rich flag F SPR to be described later is turned on, is sent as the injection instruction signal to the exhaust injector 34 and cylinder injector 11.
 このように、本実施形態では、第2目標空気過剰率設定マップ65から読み取られる空気過剰率目標値λSPR_Trgtと、筒内インジェクタ11の燃料噴射量とに基づいて目標噴射量QSPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Thus, in the present embodiment, the target injection amount Q SPR_Trgt is set based on the air excess rate target value λ SPR_Trgt read from the second target air excess rate setting map 65 and the fuel injection amount of the in-cylinder injector 11. It is like that. Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. The exhaust can be effectively reduced to a desired excess air ratio required for SOx purge rich control.
 また、筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QSPR_Trgtをフィードフォワード制御で設定することが可能となり、筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of the in-cylinder injector 11, the target injection amount Q SPR_Trgt can be set by feedforward control. Effects such as characteristic changes can be effectively eliminated.
 [SOxパージ制御の触媒温度調整制御]
 SOxパージ制御中にNOx吸蔵還元型触媒32に流入する排気温度(以下、触媒温度ともいう)は、図2の時刻t~tに示すように、排気管噴射又はポスト噴射を実行するSOxパージリッチフラグFSPRのオン・オフ(リッチ・リーン)を交互に切り替えることで制御される。SOxパージリッチフラグFSPRがオン(FSPR=1)にされると、排気管噴射又はポスト噴射によって触媒温度は上昇する(以下、この期間を噴射期間TF_INJという)。一方、SOxパージリッチフラグFSPRがオフにされると、排気管噴射又はポスト噴射の停止によって触媒温度は低下する(以下、この期間をインターバルTF_INTという)。
[Catalyst temperature adjustment control for SOx purge control]
The exhaust temperature (hereinafter also referred to as catalyst temperature) flowing into the NOx occlusion reduction type catalyst 32 during the SOx purge control is the SOx that performs exhaust pipe injection or post injection as shown at times t 2 to t 4 in FIG. The purge rich flag F SPR is controlled by alternately switching on / off (rich / lean). When the SOx purge rich flag F SPR is turned on (F SPR = 1), the catalyst temperature rises by exhaust pipe injection or post injection (hereinafter, this period is referred to as an injection period TF_INJ ). On the other hand, when the SOx purge rich flag FSPR is turned off, the catalyst temperature is lowered by stopping the exhaust pipe injection or the post injection (hereinafter, this period is referred to as an interval TF_INT ).
 本実施形態において、噴射期間TF_INJは、予め実験等により作成した噴射期間設定マップ(不図示)からエンジン回転数Ne及びアクセル開度Qに対応する値を読み取ることで設定される。この噴射時間設定マップには、予め実験等によって求めた排気の空気過剰率を第2目標空気過剰率まで確実に低下させるのに必要となる噴射期間が、エンジン10の運転状態に応じて設定されている。 In the present embodiment, the injection period TF_INJ is set by reading values corresponding to the engine speed Ne and the accelerator opening Q from an injection period setting map (not shown) created in advance by experiments or the like. In this injection time setting map, an injection period required to reliably reduce the excess air ratio of exhaust gas obtained in advance through experiments or the like to the second target excess air ratio is set according to the operating state of the engine 10. ing.
 インターバルTF_INTは、触媒温度が最も高くなるSOxパージリッチフラグFSPRがオンからオフに切り替えられた際に、フィードバック制御によって設定される。具体的には、SOxパージリッチフラグFSPRがオフされた際の目標触媒温度と推定触媒温度との偏差ΔTに比例して入力信号を変化させる比例制御と、偏差ΔTの時間積分値に比例して入力信号を変化させる積分制御と、偏差ΔTの時間微分値に比例して入力信号を変化させる微分制御とで構成されるPID制御によって処理される。目標触媒温度は、NOx吸蔵還元型触媒32からSOxを離脱可能な温度で設定され、推定触媒温度は、例えば、第1排気温度センサ43で検出される酸化触媒31の入口温度と、酸化触媒31及びNOx吸蔵還元型触媒32の内部でのHC/CO発熱量、外気への放熱量等に基づいて推定すればよい。 The interval T F_INT is set by feedback control when the SOx purge rich flag F SPR at which the catalyst temperature is highest is switched from on to off. Specifically, the proportional control for changing the input signal in proportion to the deviation ΔT between the target catalyst temperature and the estimated catalyst temperature when the SOx purge rich flag FSPR is turned off, and the time integral value of the deviation ΔT are proportional. This is processed by PID control constituted by integral control for changing the input signal and differential control for changing the input signal in proportion to the time differential value of the deviation ΔT. The target catalyst temperature is set at a temperature at which SOx can be removed from the NOx storage reduction catalyst 32. The estimated catalyst temperature is, for example, the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, and the oxidation catalyst 31. Further, it may be estimated based on the amount of HC / CO heat generated inside the NOx storage reduction catalyst 32, the amount of heat released to the outside air, and the like.
 図8の時刻tに示すように、フィルタ再生の終了(FDPF=0)によってSOxパージフラグFSPがオンされると、SOxパージリッチフラグFSPRもオンにされ、さらに前回のSOxパージ制御時にフィードバック計算されたインターバルTF_INTも一旦リセットされる。すなわち、フィルタ再生直後の初回は、噴射期間設定マップで設定した噴射期間TF_INJ_1に応じて排気管噴射又はポスト噴射が実行される(図8の時刻t~t参照)。このように、SOxパージリーン制御を行うことなくSOxパージリッチ制御からSOxパージ制御を開始するので、フィルタ再生で上昇した排気温度を低下させることなく、速やかにSOxパージ制御に移行され、燃料消費量を低減することができる。 As shown at time t 1 in FIG. 8, when the SOx purge flag F SP is turned on by the end of filter regeneration (F DPF = 0), the SOx purge rich flag F SPR is also turned on, and further during the previous SOx purge control. The interval T F_INT calculated by feedback is also reset once. That is, the first time immediately after the regeneration of the filter, the exhaust pipe injection or the post injection is executed according to the injection period TF_INJ_1 set in the injection period setting map (see times t 1 to t 2 in FIG. 8). As described above, since the SOx purge control is started from the SOx purge rich control without performing the SOx purge lean control, the SOx purge control is promptly transferred to the fuel consumption amount without lowering the exhaust temperature increased by the filter regeneration. Can be reduced.
 次いで、噴射期間TF_INJ_1の経過によってSOxパージリッチフラグFSPRがオフになると、PID制御によって設定されたインターバルTF_INT_1が経過するまで、SOxパージリッチフラグFSPRはオフとされる(図8の時刻t~t参照)。さらに、インターバルTF_INT_1の経過によってSOxパージリッチフラグFSPRがオンにされると、再び噴射期間TF_INJ_2に応じた排気管噴射又はポスト噴射が実行される(図8の時刻t~t参照)。その後、これらSOxパージリッチフラグFSPRのオン・オフの切り替えは、後述するSOxパージ制御の終了判定によってSOxパージフラグFSPがオフ(図8の時刻t参照)にされるまで繰り返し実行される。 Then, when the SOx purge rich flag F SPR is turned off with the passage of the injection period T F_INJ_1, until interval T F_INT_1 set by PID control has elapsed, SOx purge rich flag F SPR is turned off (time in FIG. 8 t 2 to t 3 ). Further, when the SOx purge rich flag F SPR is turned on as the interval TF_INT_1 has elapsed, the exhaust pipe injection or the post injection according to the injection period TF_INJ_2 is executed again (see time t 3 to t 4 in FIG. 8). ). Thereafter, the switching on and off of these SOx purge rich flag F SPR is repeatedly executed until the SOx purge flag F SP is turned off (see time t n in FIG. 8) by the completion judgment of the SOx purge control described later.
 このように、本実施形態では、触媒温度を上昇させると共に空気過剰率を第2目標空気過剰率まで低下させる噴射期間TF_INJをエンジン10の運転状態に基づいて参照されるマップから設定すると共に、触媒温度を降下させるインターバルTF_INTをPID制御によって処理するようになっている。これにより、SOxパージ制御中の触媒温度をパージに必要な所望の温度範囲に効果的に維持しつつ、空気過剰率を目標過剰率まで確実に低下させることが可能になる。 As described above, in the present embodiment, the injection period TF_INJ for raising the catalyst temperature and lowering the excess air ratio to the second target excess air ratio is set from the map referred to based on the operating state of the engine 10, The interval TF_INT for lowering the catalyst temperature is processed by PID control. This makes it possible to reliably reduce the excess air ratio to the target excess ratio while effectively maintaining the catalyst temperature during the SOx purge control within a desired temperature range necessary for the purge.
 [SOxパージ制御の終了判定]
 SOxパージ制御は、(1)SOxパージフラグFSPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)SOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のSOx吸着量がSOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、SOxパージフラグFSPをオフにして終了される(図2の時刻t、図8の時刻t参照)。
[Determining completion of SOx purge control]
SOx purge control, (1) SOx purge flag F from on the SP injection quantity of the exhaust pipe injection or post injection accumulated, when the amount of the cumulative injected has reached the predetermined upper limit threshold amount, of (2) SOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals. If any of the conditions in the case of SOx adsorption amount of NOx occlusion-reduction catalyst 32 has decreased to a predetermined threshold value indicating a SOx removal success is established, SOx purge flag F SP is terminated by turning off the (time t 4 in FIG. 2 , reference time t n in FIG. 8).
 このように、本実施形態では、SOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、SOxパージが排気温度の低下等によって進捗しなかった場合に、燃料消費量が過剰になることを効果的に防止することができる。 As described above, in this embodiment, when the SOx purge control end condition is provided with the upper limit of the cumulative injection amount and the elapsed time, the fuel consumption amount when the SOx purge does not progress due to a decrease in the exhaust temperature or the like. Can be effectively prevented from becoming excessive.
 [NOxパージ制御]
 NOxパージ制御部70は、排気をリッチ雰囲気にしてNOx吸蔵還元型触媒32に吸蔵されているNOxを還元浄化により無害化して放出することで、NOx吸蔵還元型触媒32のNOx吸蔵能力を回復させる制御(以下、この制御をNOxパージ制御という)を実行する。
[NOx purge control]
The NOx purge control unit 70 restores the NOx storage capability of the NOx storage reduction catalyst 32 by making the exhaust atmosphere rich and detoxifying and releasing NOx stored in the NOx storage reduction catalyst 32 by reduction purification. Control (hereinafter, this control is referred to as NOx purge control) is executed.
 NOxパージ制御を開始するNOxパージフラグFNPは、エンジン10の運転状態から単位時間当たりのNOx排出量を推定し、これを累積計算した推定累積値ΣNOxが所定の閾値を超えるとオンにされる(図9の時刻t参照)。あるいは、エンジン10の運転状態から推定される触媒上流側のNOx排出量と、NOx/ラムダセンサ45で検出される触媒下流側のNOx量とからNOx吸蔵還元型触媒32によるNOx浄化率を演算し、このNOx浄化率が所定の判定閾値よりも低くなった場合に、NOxパージフラグFNPはオンにされる。 The NOx purge flag F NP for starting the NOx purge control is turned on when the NOx emission amount per unit time is estimated from the operating state of the engine 10 and the estimated cumulative value ΣNOx obtained by accumulating this exceeds a predetermined threshold value ( reference time t 1 in FIG. 9). Alternatively, the NOx purification rate by the NOx occlusion reduction type catalyst 32 is calculated from the NOx emission amount upstream of the catalyst estimated from the operating state of the engine 10 and the NOx amount downstream of the catalyst detected by the NOx / lambda sensor 45. When the NOx purification rate becomes lower than a predetermined determination threshold, the NOx purge flag F NP is turned on.
 本実施形態において、NOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第3目標空気過剰率(例えば、約1.3)まで低下させるNOxパージリーン制御と、噴射系制御によって空気過剰率を第3目標空気過剰率からリッチ側の第4目標空気過剰率(例えば、約0.9)まで低下させるNOxパージリッチ制御とを併用することで実現される。以下、NOxパージリーン制御及び、NOxパージリッチ制御の詳細について説明する。 In the present embodiment, the enrichment by the NOx purge control is performed on the lean side of the excess air ratio from the stoichiometric air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control. NOx purge lean control for reducing to 3 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the third target excess air ratio to the fourth target excess air ratio on the rich side (for example, about 0) .9) and NOx purge rich control for reducing the pressure to 9). The details of the NOx purge lean control and the NOx purge rich control will be described below.
 [NOxパージリーン制御のMAF目標値設定]
 図10は、NOxパージリーン制御時のMAF目標値MAFNPL_Trgtの設定処理を示すブロック図である。第3目標空気過剰率設定マップ71は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリーン制御時の空気過剰率目標値λNPL_Trgt(第3目標空気過剰率)が予め実験等に基づいて設定されている。
[NOF purge lean control MAF target value setting]
FIG. 10 is a block diagram showing a process for setting the MAF target value MAF NPL_Trgt during the NOx purge lean control. The third target excess air ratio setting map 71 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge lean control corresponding to the engine speed Ne and the accelerator opening Q. The excess air ratio target value λ NPL_Trgt (third excess air ratio) is set in advance based on experiments or the like.
 まず、第3目標空気過剰率設定マップ71から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリーン制御時の空気過剰率目標値λNPL_Trgtが読み取られて、MAF目標値演算部72に入力される。さらに、MAF目標値演算部72では、以下の数式(3)に基づいてNOxパージリーン制御時のMAF目標値MAFNPL_Trgtが演算される。 First, the excess air ratio target value λ NPL_Trgt at the time of NOx purge lean control is read from the third target excess air ratio setting map 71 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 72. Entered. Further, the MAF target value calculation unit 72 calculates the MAF target value MAF NPL_Trgt at the time of NOx purge lean control based on the following formula (3).
 MAFNPL_Trgt=λNPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(3)
 数式(3)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
MAF NPL_Trgt = λ NPL_Trgt × Q fnl_corrd × Ro Fuel × AFR sto / Maf_corr (3)
In Equation (3), Q fnl_cord represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a theoretical air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.
 MAF目標値演算部72によって演算されたMAF目標値MAFNPL_Trgtは、NOxパージフラグFNPがオン(図9の時刻t参照)になるとランプ処理部73に入力される。 The MAF target value MAF NPL_Trgt calculated by the MAF target value calculation unit 72 is input to the ramp processing unit 73 when the NOx purge flag F NP is turned on (see time t 1 in FIG. 9).
 ランプ処理部73は、エンジン回転数Ne及びアクセル開度Qを入力信号とし、増加時変化量MAP73Aから増加時変化量を読み取り、減少時変化量MAP73Bから減少時変化量を読み取る。増加時変化量は、リッチ状態からリーン状態へ切り替える際に使用され、MAF目標値MAFに対する単位時間あたりの加算量を示す。減少時変化量は、リーン状態からリッチ状態へ切り替える際に使用され、MAF目標値MAFに対する単位時間あたりの減算量を示す。 The ramp processing unit 73 uses the engine speed Ne and the accelerator opening Q as input signals, reads the change amount when increasing from the increase amount MAP 73A, and reads the change amount when decreasing from the decrease amount MAP 73B. The increasing amount of change is used when switching from the rich state to the lean state, and indicates the amount of addition per unit time to the MAF target value MAF. The change amount at the time of decrease is used when switching from the lean state to the rich state, and indicates a subtraction amount per unit time with respect to the MAF target value MAF.
 図11に示すように、ランプ処理部73は、ランプ開始終了判定部73Cと、増加目標値演算部73Dと、減少目標値演算部73Eと、目標値選択部73Fと、出力切替部73Gを備える。 As shown in FIG. 11, the ramp processing unit 73 includes a ramp start / end determination unit 73C, an increase target value calculation unit 73D, a decrease target value calculation unit 73E, a target value selection unit 73F, and an output switching unit 73G. .
 ランプ開始終了判定部73Cには、開始指示信号が入力される。開始指示信号は、信号の状態変化によってランプ処理の開始タイミングを示すと共に、リーン状態からリッチ状態への切り替えやリッチ状態からリーン状態への切り替えを識別させる。ランプ開始終了判定部73Cは、ランプ処理の開始タイミングと判定した場合に、許可信号を出力切替部73Gに出力する。この許可信号は、MAF目標値演算部72からのMAF目標値MAFNPL_Trgtと出力切替部73Gから出力されるMAF目標値(MAF目標ランプ値MAFNPL_Trgt_Ramp)が一致するまで出力される。 The lamp start / end determination unit 73C receives a start instruction signal. The start instruction signal indicates the start timing of the ramp process according to a change in the state of the signal, and identifies the switching from the lean state to the rich state and the switching from the rich state to the lean state. The lamp start / end determination unit 73C outputs a permission signal to the output switching unit 73G when it is determined that the lamp processing start timing is reached. This permission signal is output until the MAF target value MAF NPL_Trgt from the MAF target value calculation unit 72 and the MAF target value (MAF target ramp value MAF NPL_Trgt_Ramp ) output from the output switching unit 73G match.
 増加目標値演算部73Dには、増加時変化量MAP73Aからの増加時変化量とMAF目標値MAFNPL_Trgtと出力切替部73Gから出力されるMAF目標値(更新直前のMAF目標値)が入力される。増加目標値演算部73Dでは、増加時変化量に計算クロックが乗じられた区間補正値が、出力切替部73GからのMAF目標値に加算される。そして、この加算値がMAF目標値演算部72からのMAF目標値MAFNPL_Trgtと比較され、小さい方が増加仮MAF目標値として目標値選択部73Fに出力される。 The increase target value calculation unit 73D receives the increase change amount from the increase change amount MAP 73A, the MAF target value MAF NPL_Trgt, and the MAF target value (MAF target value immediately before the update) output from the output switching unit 73G. . In the increase target value calculation unit 73D, the section correction value obtained by multiplying the change amount during increase by the calculation clock is added to the MAF target value from the output switching unit 73G. Then, this added value is compared with the MAF target value MAF NPL_Trgt from the MAF target value calculation unit 72, and the smaller one is output to the target value selection unit 73F as an increased provisional MAF target value.
 減少目標値演算部73Eには、減少時変化量MAP73Bからの減少時変化量とMAF目標値MAFNPL_Trgtと出力切替部73Gから出力されるMAF目標値(更新直前のMAF目標値)が入力される。減少目標値演算部73Eでは、減少時変化量に計算クロックが乗じられた区間補正値が、出力切替部73GからのMAF目標値に減算される。そして、この減算値がMAF目標値演算部72からのMAF目標値MAFNPL_Trgtと比較され、大きい方が減少仮MAF目標値として目標値選択部73Fに出力される。 The decrease target value calculation unit 73E receives the decrease change amount from the decrease change amount MAP 73B, the MAF target value MAF NPL_Trgt, and the MAF target value (MAF target value immediately before the update) output from the output switching unit 73G. . In the decrease target value calculation unit 73E, the section correction value obtained by multiplying the decrease change amount by the calculation clock is subtracted from the MAF target value from the output switching unit 73G. Then, this subtraction value is compared with the MAF target value MAF NPL_Trgt from the MAF target value calculation unit 72, and the larger one is output to the target value selection unit 73F as a reduced provisional MAF target value.
 目標値選択部73Fは、増加目標値演算部73Dから出力された増加仮MAF目標値と減少目標値演算部73Eから出力された減少仮MAF目標値の一方を、リッチ状態とリーン状態の切り替えに応じて選択し、出力切替部73Gに出力する。具体的には、リッチ状態からリーン状態への切り替え時には増加仮MAF目標値を選択して出力し、リーン状態からリッチ状態への切り替え時には減少仮MAF目標値を選択して出力する。 The target value selection unit 73F switches one of the increase temporary MAF target value output from the increase target value calculation unit 73D and the decrease temporary MAF target value output from the decrease target value calculation unit 73E between the rich state and the lean state. Depending on the selection, the output is output to the output switching unit 73G. Specifically, the increase temporary MAF target value is selected and output when switching from the rich state to the lean state, and the decrease temporary MAF target value is selected and output when switching from the lean state to the rich state.
 出力切替部73Gは、ランプ開始終了判定部73Cから許可信号が出力されている期間に亘り、目標値選択部73Fからの増加仮MAF目標値或いは減少仮MAF目標値を、MAF目標ランプ値MAFNPL_Trgt_Rampとして出力する。また、出力切替部73Gは、許可信号が出力されていない期間は、MAF目標値演算部72からのMAF目標値MAFNPL_Trgtを出力する。 The output switching unit 73G sets the increase temporary MAF target value or the decrease temporary MAF target value from the target value selection unit 73F as the MAF target ramp value MAF NPL_Trgt_Ramp over the period when the permission signal is output from the lamp start / end determination unit 73C. Output as. Further, the output switching unit 73G outputs the MAF target value MAF NPL_Trgt from the MAF target value calculation unit 72 during a period when the permission signal is not output.
 図10に示すバルブ制御部74は、ランプ処理部73から出力されるMAF目標値(MAFNPL_Trgt,MAFNPL_Trgt_Ramp)、及び、MAFセンサ40の検出結果に基づく実MAF値MAFActから、吸気スロットルバルブ16及びEGRバルブ24を制御する。 The valve control unit 74 shown in FIG. 10 calculates the intake throttle valve 16 from the MAF target values (MAF NPL_Trgt , MAF NPL_Trgt_Ramp ) output from the ramp processing unit 73 and the actual MAF value MAF Act based on the detection result of the MAF sensor 40. And the EGR valve 24 is controlled.
 排気空燃比がリーン状態の場合には、実MAF値MAFActがMAF目標値と一致するようにPID制御によってMAF操作量を定め、図12Aに示すリーン時バルブ開度MAP74Aから吸気スロットルバルブ開度VO_ith_LとEGRバルブ開度VO_EGR_Lを読み取り、吸気スロットルバルブ16及びEGRバルブ24をフィードバック制御する。 When the exhaust air-fuel ratio is in the lean state, the MAF operation amount is determined by PID control so that the actual MAF value MAF Act matches the MAF target value, and the intake throttle valve opening is determined from the lean valve opening MAP74A shown in FIG. 12A. The VO_ith_L and the EGR valve opening VO_EGR_L are read, and the intake throttle valve 16 and the EGR valve 24 are feedback-controlled.
 排気空燃比がリッチ状態の場合には、実MAF値MAFActがMAF目標値と一致するようにPID制御によってMAF操作量を定め、図12Bに示すリーン時バルブ開度MAP74Bから吸気スロットルバルブ開度VO_ith_Rを読み取り、吸気スロットルバルブ16をフィードバック制御する。本実施形態では、リーン状態からリッチ状態への切り替え時において、フィードバックの積分項を初期値(例えば0)にリセットしている。これにより、リッチ状態でフィードバック制御を行うに際し、リーン状態でのフィードバック制御に起因する影響を抑制できる。 When the exhaust air-fuel ratio is in a rich state, the MAF operation amount is determined by PID control so that the actual MAF value MAF Act matches the MAF target value, and the intake throttle valve opening from the lean valve opening MAP74B shown in FIG. 12B VO_ith_R is read and the intake throttle valve 16 is feedback-controlled. In this embodiment, when switching from the lean state to the rich state, the feedback integral term is reset to an initial value (for example, 0). Thereby, when performing feedback control in a rich state, the influence resulting from feedback control in a lean state can be suppressed.
 一方、EGRバルブ24については閉状態又は流量を絞った指定開度で固定される。EGRバルブ24を閉じる際にはランプ制御を行って、エンジン10のトルクが変動しないように、緩やかにバルブ開度を変化させている。このため、図13Aに示すように、バルブ制御部74は直前目標値保持部74Cと、第1制御量演算部74Dと、第2制御量演算部74Eと、出力目標値保持部74Fと、制御量選択部74Gと、目標値演算部74Hと、出力切替部74Jとを備える。 On the other hand, the EGR valve 24 is closed or fixed at a specified opening degree with a reduced flow rate. When the EGR valve 24 is closed, ramp control is performed to gradually change the valve opening so that the torque of the engine 10 does not fluctuate. For this reason, as shown in FIG. 13A, the valve control unit 74 includes a previous target value holding unit 74C, a first control amount calculation unit 74D, a second control amount calculation unit 74E, an output target value holding unit 74F, and a control. An amount selection unit 74G, a target value calculation unit 74H, and an output switching unit 74J are provided.
 直前目標値保持部74Cは、変化する直前のEGR目標値(EGRバルブ24におけるバルブ開度の目標値)を保持する。第1制御量演算部74Dは、単位時間あたりのバルブ開度に計算クロックを乗じることで第1制御量を演算する。第2制御量演算部74Eは、EGR低下到達値(最終的なバルブ開度)と出力目標値保持部74Fに保持された出力目標値(出力切替部74Jから直前に出力されたEGR目標値)の差分から第2制御量を演算する。 The immediately preceding target value holding unit 74C holds the EGR target value (the target value of the valve opening in the EGR valve 24) immediately before the change. The first control amount calculation unit 74D calculates the first control amount by multiplying the valve opening per unit time by the calculation clock. The second control amount calculation unit 74E includes an EGR reduction reached value (final valve opening) and an output target value held in the output target value holding unit 74F (EGR target value output immediately before from the output switching unit 74J). The second control amount is calculated from the difference.
 制御量選択部74Gは、第1制御量演算部74Dで演算された第1制御量と第2制御量演算部74Eで演算された第2制御量の何れか小さい方を制御量として選択する。目標値演算部74Hは、出力目標値保持部74Fに保持された出力目標値から制御量選択部74Gで選択された制御量を減算することで、EGR目標値を演算する。出力切替部74Jは、開始指示信号の出力期間に亘って、目標値演算部74Hで演算されたEGR目標値を出力する。 The control amount selection unit 74G selects the smaller one of the first control amount calculated by the first control amount calculation unit 74D and the second control amount calculated by the second control amount calculation unit 74E as the control amount. The target value calculation unit 74H calculates the EGR target value by subtracting the control amount selected by the control amount selection unit 74G from the output target value held in the output target value holding unit 74F. The output switching unit 74J outputs the EGR target value calculated by the target value calculation unit 74H over the output period of the start instruction signal.
 以上の制御を実行することで、図13Bに符号VO_EGR_Rで示すように、排気空燃比をリーン状態からリッチ状態へ切り替える際に、EGR目標値にランプ処理が適用され、EGRバルブ24を緩やかに閉じることができる。 By executing the above control, the ramp process is applied to the EGR target value when the exhaust air-fuel ratio is switched from the lean state to the rich state, as indicated by the symbol VO_EGR_R in FIG. Can be closed.
 上述の制御を行うことで、排気空燃比をリーン状態からリッチ状態に切り替える際には、EGRバルブ24が閉状態若しくは指定開度で固定され、吸気スロットルバルブ16によってエンジン10に吸入される空気の量が調整される。EGRバルブ24が閉状態若しくは指定開度で固定されるので、EGR通路22やEGRクーラ23の汚損が抑制できる。また、吸気スロットルバルブ16によって吸入空気量が調整されるので、リッチ条件を生成するための排気管噴射やポスト噴射による燃料噴射量を低減できる。その結果、EGR通路22等の汚損を抑制しつつ燃費性能を向上させることができる。 By performing the above-described control, when the exhaust air-fuel ratio is switched from the lean state to the rich state, the EGR valve 24 is closed or fixed at a specified opening degree, and the intake air is sucked into the engine 10 by the intake throttle valve 16. The amount is adjusted. Since the EGR valve 24 is closed or fixed at a specified opening degree, the EGR passage 22 and the EGR cooler 23 can be prevented from being contaminated. Further, since the intake air amount is adjusted by the intake throttle valve 16, it is possible to reduce the fuel injection amount by the exhaust pipe injection and the post injection for generating the rich condition. As a result, it is possible to improve fuel efficiency while suppressing contamination of the EGR passage 22 and the like.
 また、排気空燃比をリーン状態からリッチ状態に切り替える際に、単位時間あたり所定のバルブ操作量でEGRバルブ24を閉じているので、NOxパージの開始時におけるエンジン10のトルク変動を抑制でき、ドライバビリティーの悪化を効果的に抑制できる。 Further, when the exhaust air-fuel ratio is switched from the lean state to the rich state, the EGR valve 24 is closed with a predetermined valve operation amount per unit time, so that the torque fluctuation of the engine 10 at the start of the NOx purge can be suppressed, and the driver It is possible to effectively suppress the deterioration of the ability.
 同様に、排気空燃比をリーン状態とリッチ状態との間で切り替える際に、単位時間あたり所定のバルブ操作量で吸気スロットルバルブ16を開閉しているので、NOxパージの開始時や終了時におけるエンジン10のトルク変動を抑制でき、ドライバビリティーの悪化を効果的に抑制できる。 Similarly, when the exhaust air-fuel ratio is switched between the lean state and the rich state, the intake throttle valve 16 is opened and closed at a predetermined valve operation amount per unit time, so that the engine at the start and end of the NOx purge The torque fluctuation of 10 can be suppressed, and the deterioration of drivability can be effectively suppressed.
 また、吸気スロットルバルブ16のバルブ開度を、エンジン10の運転状態(エンジン回転数Ne,アクセル開度Q)に基づくMAF目標値(MAFNPL_Trgt,MAFNPL_Trgt_Ramp)と、MAFセンサ40の検出値に基づく実吸気量MAFActの偏差に基づくPID制御によって制御すると共に、リーン状態の制御からリッチ状態の制御に切り替える際に、PID制御の積分項を初期化しているので、リーン状態でのフィードバック制御に起因する影響を抑制できる。 Further, the valve opening of the intake throttle valve 16 is determined based on the MAF target values (MAF NPL_Trgt , MAF NPL_Trgt_Ramp ) based on the operating state of the engine 10 (engine speed Ne, accelerator opening Q) and the detection value of the MAF sensor 40. Control is performed by PID control based on the deviation of the actual intake air amount MAF Act , and the integral term of PID control is initialized when switching from lean state control to rich state control, resulting in feedback control in the lean state Can be suppressed.
 また、MAF目標値MAFNPL_Trgtに基づいて空気系動作をフィードバック制御するようになっているので、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Further , since the air system operation is feedback-controlled based on the MAF target value MAF NPL_Trgt , the lambda sensor is not provided on the upstream side of the NOx storage reduction catalyst 32, or the NOx storage reduction catalyst 32 Even when a lambda sensor is provided on the upstream side, the exhaust can be effectively reduced to a desired excess air ratio required for NOx purge lean control without using the sensor value of the lambda sensor.
 また、筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFNPL_Trgtをフィードフォワード制御で設定することが可能となり、筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of the in-cylinder injector 11, the MAF target value MAF NPL_Trgt can be set by feedforward control. Effects such as characteristic changes can be effectively eliminated.
 [NOxパージリッチ制御の燃料噴射量設定]
 図14は、NOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QNPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第4目標空気過剰率設定マップ75は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt(第4目標空気過剰率)が予め実験等に基づいて設定されている。
[NOx purge rich control fuel injection amount setting]
FIG. 14 is a block diagram showing processing for setting the target injection amount Q NPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in NOx purge rich control. The fourth target excess air ratio setting map 75 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q. The air excess rate target value λ NPR_Trgt (fourth target air excess rate) is set in advance based on experiments or the like.
 まず、第4目標空気過剰率設定マップ75から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgtが読み取られて噴射量目標値演算部76に入力される。さらに、噴射量目標値演算部76では、以下の数式(4)に基づいてNOxパージリッチ制御時の目標噴射量QNPR_Trgtが演算される。 First, the excess air ratio target value λ NPR_Trgt at the time of NOx purge rich control is read from the fourth target excess air ratio setting map 75 using the engine speed Ne and the accelerator opening Q as input signals, and the injection amount target value calculation section 76 is performed. Is input. Further, the injection amount target value calculation unit 76 calculates the target injection amount Q NPR_Trgt at the time of NOx purge rich control based on the following formula (4).
 QNPR_Trgt=MAFNPL_Trgt×Maf_corr/(λNPR_Trgt×RoFuel×AFRsto)-Qfnl_corrd・・・(4)
 数式(4)において、MAFNPL_TrgtはNOxパージリーンMAF目標値であって、前述のMAF目標値演算部72から入力される。また、Qfnl_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
Q NPR_Trgt = MAF NPL_Trgt × Maf_corr / (λ NPR_Trgt × Ro Fuel × AFR sto ) −Q fnl_corrd (4)
In Expression (4), MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the MAF target value calculation unit 72 described above. Q fnl_cord is a fuel injection amount (excluding post-injection) before application of learning corrected MAF tracking control described later, Ro Fuel is fuel specific gravity, AFR sto is a theoretical air-fuel ratio, and Maf_corr is a MAF correction coefficient described later. Show.
 噴射量目標値演算部76は、振り分けMAPを参照し、振り分け値を読み出す。振り分け値は、排気インジェクタ34による燃料噴射量と筒内インジェクタ11による燃料噴射量の比率を示す。噴射量目標値演算部66は、目標噴射量QNPR_Trgtに振り分け値を乗じることで、排気インジェクタ34での燃料噴射量QNPR_Trgt_EXTと筒内インジェクタ11での燃料噴射量QNPR_Trgt_Postを算出する。これらの燃料噴射量は、NOxパージフラグFNPがオンになると、排気インジェクタ34や筒内インジェクタ11に噴射指示信号として送信される(図9の時刻t)。この噴射指示信号の送信は、後述するNOxパージ制御の終了判定によってNOxパージフラグFNPがオフ(図9の時刻t)にされるまで継続される。 The injection amount target value calculation unit 76 refers to the distribution MAP and reads out the distribution value. The distribution value indicates the ratio between the fuel injection amount by the exhaust injector 34 and the fuel injection amount by the in-cylinder injector 11. Injection amount target value computing unit 66, by multiplying the distribution value to the target injection amount Q NPR_Trgt, calculates the fuel injection amount Q NPR_Trgt_Post in the fuel injection amount Q NPR_Trgt_EXT-cylinder injector 11 of the exhaust injector 34. These fuel injection amounts are transmitted as injection instruction signals to the exhaust injector 34 and the in-cylinder injector 11 when the NOx purge flag F NP is turned on (time t 1 in FIG. 9). The transmission of the injection instruction signal is continued until the NOx purge flag F NP is turned off (time t 2 in FIG. 9) by the end determination of NOx purge control described later.
 このように、本実施形態では、第4目標空気過剰率設定マップ75から読み取られる空気過剰率目標値λNPR_Trgtと、筒内インジェクタ11の燃料噴射量とに基づいて目標噴射量QNPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Thus, in this embodiment, the target injection amount Q NPR_Trgt is set based on the excess air ratio target value λ NPR_Trgt read from the fourth target excess air ratio setting map 75 and the fuel injection amount of the in-cylinder injector 11. It is like that. Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge rich control.
 また、筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QNPR_Trgtをフィードフォワード制御で設定することが可能となり、筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of the in-cylinder injector 11, the target injection amount Q NPR_Trgt can be set by feedforward control. Effects such as characteristic changes can be effectively eliminated.
 [NOxパージ制御の空気系制御禁止]
 ECU50は、エンジン10の運転状態が低負荷側の領域では、MAFセンサ40のセンサ値に基づいて吸気スロットルバルブ16やEGRバルブ24の開度をフィードバック制御している。一方、エンジン10の運転状態が高負荷側の領域では、ECU50はブースト圧センサ46のセンサ値に基づいて可変容量型過給機20による過給圧をフィードバック制御している(以下、この領域をブースト圧FB制御領域という)。
[No air system control for NOx purge control]
The ECU 50 feedback-controls the opening degree of the intake throttle valve 16 and the EGR valve 24 based on the sensor value of the MAF sensor 40 in the region where the operating state of the engine 10 is on the low load side. On the other hand, in the region where the operating state of the engine 10 is on the high load side, the ECU 50 feedback-controls the supercharging pressure by the variable displacement supercharger 20 based on the sensor value of the boost pressure sensor 46 (hereinafter, this region is referred to as “high”). (Referred to as boost pressure FB control region).
 このようなブースト圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の制御が可変容量型過給機20の制御と干渉してしまう現象が生じる。このため、上述の数式(3)で設定されるMAF目標値MAFNPL_Trgtに基づいて空気系をフィードバック制御するNOxパージリーン制御を実行しても、吸入空気量をMAF目標値MAFNPL_Trgtに維持できない課題がある。その結果、ポスト噴射や排気管噴射を実行するNOxパージリッチ制御を開始しても、空気過剰率をNOxパージに必要な第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させられない可能性がある。 In such a boost pressure FB control region, a phenomenon occurs in which the control of the intake throttle valve 16 and the EGR valve 24 interferes with the control of the variable displacement supercharger 20. For this reason, there is a problem that the intake air amount cannot be maintained at the MAF target value MAF NPL_Trgt even if the NOx purge lean control for performing feedback control of the air system based on the MAF target value MAF NPL_Trgt set by the above equation (3) is executed. is there. As a result, even if the NOx purge rich control for executing the post injection or the exhaust pipe injection is started, the excess air ratio can be lowered to the fourth target excess air ratio (the excess air ratio target value λ NPR_Trgt ) necessary for the NOx purge. There is no possibility.
 このような現象を回避すべく、本実施形態のNOxパージ制御部70は、ブースト圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の開度を調整するNOxパージリーン制御を禁止し、排気管噴射又はポスト噴射のみで空気過剰率を第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させる。これにより、ブースト圧FB制御領域においても、NOxパージを確実に行うことが可能になる。なお、この場合、上述の数式(4)のMAF目標値MAFNPL_Trgtには、エンジン10の運転状態に基づいて設定されるMAF目標値を適用すればよい。 In order to avoid such a phenomenon, the NOx purge control unit 70 of the present embodiment prohibits NOx purge lean control for adjusting the opening of the intake throttle valve 16 and the EGR valve 24 in the boost pressure FB control region, and The excess air ratio is reduced to the fourth target excess air ratio (the excess air ratio target value λ NPR_Trgt ) only by injection or post injection. As a result, the NOx purge can be reliably performed even in the boost pressure FB control region. In this case, the MAF target value set based on the operating state of the engine 10 may be applied to the MAF target value MAF NPL_Trgt of the above-described equation (4).
 [NOxパージ制御の終了判定]
 NOxパージ制御は、(1)NOxパージフラグFNPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)NOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のNOx吸蔵量がNOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、NOxパージフラグFNPをオフにして終了される(図9の時刻t参照)。
[Determining completion of NOx purge control]
In the NOx purge control, (1) when the NOx purge flag F NP is turned on, the amount of exhaust pipe injection or post injection is accumulated, and when this cumulative injection amount reaches a predetermined upper limit threshold amount, (2) NOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals. If any of the conditions in the case where the NOx occlusion amount of the NOx occlusion reduction type catalyst 32 falls to a predetermined threshold value indicating successful NOx removal is satisfied, the NOx purge flag F NP is turned off and the process is terminated (time t 2 in FIG. 9). reference).
 このように、本実施形態では、NOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、NOxパージが排気温度の低下等によって成功しなかった場合に燃料消費量が過剰になることを確実に防止することができる。 As described above, in the present embodiment, the cumulative injection amount and the upper limit of the elapsed time are provided in the end condition of the NOx purge control, so that the fuel consumption amount is reduced when the NOx purge is not successful due to a decrease in the exhaust temperature or the like. It is possible to reliably prevent the excess.
 [MAF追従制御]
 MAF追従制御部80は、(1)通常運転のリーン状態からSOxパージ制御又はNOxパージ制御によるリッチ状態への切り替え期間及び、(2)SOxパージ制御又はNOxパージ制御によるリッチ状態から通常運転のリーン状態への切り替え期間に、筒内インジェクタ11の燃料噴射タイミング及び燃料噴射量をMAF変化に応じて補正する制御(MAF追従制御)を実行する。
[MAF tracking control]
The MAF follow-up control unit 80 includes (1) a period for switching from a lean state in normal operation to a rich state by SOx purge control or NOx purge control, and (2) lean in normal operation from a rich state by SOx purge control or NOx purge control. During the period of switching to the state, control (MAF follow-up control) is performed to correct the fuel injection timing and the fuel injection amount of the in-cylinder injector 11 according to the MAF change.
 [噴射量学習補正]
 図15に示すように、噴射量学習補正部90は、学習補正係数演算部91と、噴射量補正部92とを有する。
[Injection amount learning correction]
As shown in FIG. 15, the injection amount learning correction unit 90 includes a learning correction coefficient calculation unit 91 and an injection amount correction unit 92.
 学習補正係数演算部91は、エンジン10のリーン運転時にNOx/ラムダセンサ45で検出される実ラムダ値λActと、推定ラムダ値λEstとの誤差Δλに基づいて燃料噴射量の学習補正係数FCorrを演算する。排気がリーン状態のときは、酸化触媒31でHCの酸化反応が生じないため、酸化触媒31を通過して下流側のNOx/ラムダセンサ45で検出される排気中の実ラムダ値λActと、エンジン10から排出された排気中の推定ラムダ値λEstとは一致すると考えられる。このため、これら実ラムダ値λActと推定ラムダ値λEstとに誤差Δλが生じた場合は、筒内インジェクタ11に対する指示噴射量と実噴射量との差によるものと仮定することができる。以下、この誤差Δλを用いた学習補正係数演算部91による学習補正係数の演算処理を図16のフローに基づいて説明する。 The learning correction coefficient calculation unit 91 is based on the error Δλ between the actual lambda value λ Act detected by the NOx / lambda sensor 45 during the lean operation of the engine 10 and the estimated lambda value λ Est, and the learning correction coefficient F for the fuel injection amount. Calculate Corr . When the exhaust gas is in a lean state, since the oxidation reaction of HC does not occur in the oxidation catalyst 31, the actual lambda value λ Act in the exhaust gas that passes through the oxidation catalyst 31 and is detected by the downstream NOx / lambda sensor 45, It is considered that the estimated lambda value λ Est in the exhaust discharged from the engine 10 coincides. Therefore, if an error Δλ occurs between the actual lambda value λ Act and the estimated lambda value λ Est , it can be assumed that the difference is between the instructed injection amount for the in-cylinder injector 11 and the actual injection amount. Hereinafter, the learning correction coefficient calculation processing by the learning correction coefficient calculation unit 91 using the error Δλ will be described with reference to the flow of FIG.
 ステップS300では、エンジン回転数Ne及びアクセル開度Qに基づいて、エンジン10がリーン運転状態にあるか否かが判定される。リーン運転状態にあれば、学習補正係数の演算を開始すべく、ステップS310に進む。 In step S300, based on the engine speed Ne and the accelerator opening Q, it is determined whether or not the engine 10 is in a lean operation state. If it is in the lean operation state, the process proceeds to step S310 to start the calculation of the learning correction coefficient.
 ステップS310では、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK及び補正感度係数Kを乗じることで、学習値FCorrAdptが演算される(FCorrAdpt=(λEst-λAct)×K×K)。推定ラムダ値λEstは、エンジン回転数Neやアクセル開度Qに応じたエンジン10の運転状態から推定演算される。また、補正感度係数Kは、図12に示す補正感度係数マップ91AからNOx/ラムダセンサ45で検出される実ラムダ値λActを入力信号として読み取られる。 In step S310, an error Δλ obtained by subtracting the actual lambda value λ Act detected by the NOx / lambda sensor 45 from the estimated lambda value λ Est is multiplied by the learning value gain K 1 and the correction sensitivity coefficient K 2 to thereby obtain the learning value F CorrAdpt is calculated (F CorrAdpt = (λ Est −λ Act ) × K 1 × K 2 ). The estimated lambda value λ Est is estimated and calculated from the operating state of the engine 10 according to the engine speed Ne and the accelerator opening Q. Further, the correction sensitivity coefficient K 2 is read the actual lambda value lambda Act detected by the NOx / lambda sensor 45 from the correction sensitivity coefficient map 91A shown in FIG. 12 as an input signal.
 ステップS320では、学習値FCorrAdptの絶対値|FCorrAdpt|が所定の補正限界値Aの範囲内にあるか否かが判定される。絶対値|FCorrAdpt|が補正限界値Aを超えている場合、本制御はリターンされて今回の学習を中止する。 In step S320, it is determined whether or not the absolute value | F CorrAdpt | of the learning value F CorrAdpt is within the range of the predetermined correction limit value A. If the absolute value | F CorrAdpt | exceeds the correction limit value A, the present control is returned to stop the current learning.
 ステップS330では、学習禁止フラグFProがオフか否かが判定される。学習禁止フラグFProとしては、例えば、エンジン10の過渡運転時、SOxパージ制御時(FSP=1)、NOxパージ制御時(FNP=1)等が該当する。これらの条件が成立する状態では、実ラムダ値λActの変化によって誤差Δλが大きくなり、正確な学習を行えないためである。エンジン10が過渡運転状態にあるか否かは、例えば、NOx/ラムダセンサ45で検出される実ラムダ値λActの時間変化量に基づいて、当該時間変化量が所定の閾値よりも大きい場合に過渡運転状態と判定すればよい。 In step S330, it is determined whether the learning prohibition flag FPro is off. The learning prohibition flag F Pro corresponds to, for example, transient operation of the engine 10, SOx purge control (F SP = 1), NOx purge control (F NP = 1), and the like. This is because when these conditions are satisfied, the error Δλ increases due to a change in the actual lambda value λ Act , and accurate learning cannot be performed. Whether or not the engine 10 is in a transient operation state is determined based on, for example, the time change amount of the actual lambda value λ Act detected by the NOx / lambda sensor 45 when the time change amount is larger than a predetermined threshold value. What is necessary is just to determine with a transient operation state.
 ステップS340では、エンジン回転数Ne及びアクセル開度Qに基づいて参照される学習値マップ91B(図15参照)が、ステップS310で演算された学習値FCorrAdptに更新される。より詳しくは、この学習値マップ91B上には、エンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、好ましくは、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上され、使用頻度が少ない領域では未学習を効果的に防止することが可能になる。 In step S340, the learning value map 91B (see FIG. 15) referred to based on the engine speed Ne and the accelerator opening Q is updated to the learning value F CorrAdpt calculated in step S310. More specifically, on the learning value map 91B, a plurality of learning areas divided according to the engine speed Ne and the accelerator opening Q are set. These learning regions are preferably set to have a narrower range as the region is used more frequently and to be wider as a region is used less frequently. As a result, learning accuracy is improved in regions where the usage frequency is high, and unlearning can be effectively prevented in regions where the usage frequency is low.
 ステップS350では、エンジン回転数Ne及びアクセル開度Qを入力信号として学習値マップ91Bから読み取った学習値に「1」を加算することで、学習補正係数FCorrが演算される(FCorr=1+FCorrAdpt)。この学習補正係数FCorrは、図15に示す噴射量補正部92に入力される。 In step S350, the learning correction coefficient F Corr is calculated by adding “1” to the learned value read from the learned value map 91B using the engine speed Ne and the accelerator opening Q as input signals (F Corr = 1 + F). CorrAdpt ). The learning correction coefficient F Corr is input to the injection amount correction unit 92 shown in FIG.
 噴射量補正部92は、パイロット噴射QPilot、プレ噴射QPre、メイン噴射QMain、アフタ噴射QAfter、ポスト噴射QPostの各基本噴射量に学習補正係数FCorrを乗算することで、これら燃料噴射量の補正を実行する。 The injection amount correction unit 92 multiplies each basic injection amount of pilot injection Q Pilot , pre-injection Q Pre , main injection Q Main , after-injection Q After , and post-injection Q Post by a learning correction coefficient F Corr. The injection amount is corrected.
 このように、推定ラムダ値λEstと実ラムダ値λActとの誤差Δλに応じた学習値で筒内インジェクタ11に燃料噴射量を補正することで、筒内インジェクタ11の経年劣化や特性変化、個体差等のバラツキを効果的に排除することが可能になる。 In this way, by correcting the fuel injection amount to the in-cylinder injector 11 with the learning value corresponding to the error Δλ between the estimated lambda value λ Est and the actual lambda value λ Act , It becomes possible to effectively eliminate variations such as individual differences.
 [MAF補正係数]
 MAF補正係数演算部95は、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgtの設定及び、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に用いられるMAF補正係数Maf_corrを演算する。
[MAF correction coefficient]
MAF correction coefficient calculating unit 95 MAF is used to set the MAF target value MAF SPL_Trgt and the target injection amount Q SPR_Trgt during SOx purge control and the setting of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control A correction coefficient Maf_corr is calculated.
 本実施形態において、筒内インジェクタ11の燃料噴射量は、NOx/ラムダセンサ45で検出される実ラムダ値λActと推定ラムダ値λEstとの誤差Δλに基づいて補正される。しかしながら、ラムダは空気と燃料の比であるため、誤差Δλの要因が必ずしも筒内インジェクタ11に対する指示噴射量と実噴射量との差の影響のみとは限らない。すなわち、ラムダの誤差Δλには、筒内インジェクタ11のみならずMAFセンサ40の誤差も影響している可能性がある。 In the present embodiment, the fuel injection amount of the in-cylinder injector 11 is corrected based on an error Δλ between the actual lambda value λ Act detected by the NOx / lambda sensor 45 and the estimated lambda value λ Est . However, since lambda is the ratio of air to fuel, the cause of the error Δλ is not necessarily only the influence of the difference between the command injection amount and the actual injection amount with respect to the in-cylinder injector 11. That is, there is a possibility that the error of the MAF sensor 40 as well as the in-cylinder injector 11 affects the lambda error Δλ.
 図17は、MAF補正係数演算部95によるMAF補正係数Maf_corrの設定処理を示すブロック図である。補正係数設定マップ96は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。 FIG. 17 is a block diagram showing the setting process of the MAF correction coefficient Maf_corr by the MAF correction coefficient calculation unit 95. The correction coefficient setting map 96 is a map that is referred to based on the engine speed Ne and the accelerator opening Q. The MAF indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is shown in FIG. The correction coefficient Maf_corr is set in advance based on experiments or the like.
 MAF補正係数演算部95は、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ96からMAF補正係数Maf_corrを読み取ると共に、このMAF補正係数Maf_corrをMAF目標値演算部62,72及び噴射量目標値演算部66,76に送信する。これにより、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgt、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に、MAFセンサ40のセンサ特性を効果的に反映することが可能になる。 The MAF correction coefficient calculation unit 95 reads the MAF correction coefficient Maf_corr from the correction coefficient setting map 96 using the engine speed Ne and the accelerator opening Q as input signals, and outputs the MAF correction coefficient Maf_corr to the MAF target value calculation unit 62, 72 and the injection amount target value calculation units 66 and 76. Thus, SOx purge control when the MAF target value MAF SPL_Trgt and the target injection amount Q SPR_Trgt, the setting of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control effectively the sensor characteristics of the MAF sensor 40 It becomes possible to reflect.
 [その他]
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.
 本出願は、2015年07月16日付で出願された日本国特許出願(特願2015-142036)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2015-142036) filed on July 16, 2015, the contents of which are incorporated herein by reference.
 本発明の排気浄化システムは、排気を還流させる流路の汚損を抑制しつつ燃費性能を向上させることができるという点において有用である。 The exhaust purification system of the present invention is useful in that fuel efficiency can be improved while suppressing fouling of a flow path for recirculating exhaust gas.
 10 エンジン
 11 筒内インジェクタ
 12 吸気通路
 13 排気通路
 16 吸気スロットルバルブ
 24 EGRバルブ
 31 酸化触媒
 32 NOx吸蔵還元型触媒
 33 フィルタ
 34 排気インジェクタ
 40 MAFセンサ
 45 NOx/ラムダセンサ
 50 ECU
DESCRIPTION OF SYMBOLS 10 Engine 11 In-cylinder injector 12 Intake passage 13 Exhaust passage 16 Intake throttle valve 24 EGR valve 31 Oxidation catalyst 32 NOx occlusion reduction type catalyst 33 Filter 34 Exhaust injector 40 MAF sensor 45 NOx / lambda sensor 50 ECU

Claims (4)

  1.  内燃機関の排気通路に設けられて排気中のNOxを還元浄化するNOx還元型触媒と、
     前記内燃機関に吸入される空気の量を調整する吸気量調整バルブと、
     前記内燃機関に還流される排気の量を調整する還流量調整バルブと、
     吸入空気量を減少させる空気系制御と燃料噴射量を増加させる噴射系制御とを併用して排気空燃比をリーン状態からリッチ状態に切り替えることで、前記NOx還元型触媒の浄化能力を回復させる再生処理を実行する制御部と、
     を備える排気浄化システムであって、
     前記制御部は、前記排気空燃比をリーン状態からリッチ状態に切り替える際に、前記還流量調整バルブを閉状態若しくは指定開度で固定するとともに、前記吸気量調整バルブによって前記内燃機関に吸入される空気の量を調整する
     排気浄化システム。
    A NOx reduction catalyst provided in an exhaust passage of the internal combustion engine for reducing and purifying NOx in the exhaust;
    An intake air amount adjustment valve for adjusting the amount of air taken into the internal combustion engine;
    A recirculation amount adjusting valve for adjusting the amount of exhaust gas recirculated to the internal combustion engine;
    Regeneration that restores the purification ability of the NOx reduction catalyst by switching the exhaust air-fuel ratio from the lean state to the rich state by using both the air system control for reducing the intake air amount and the injection system control for increasing the fuel injection amount. A control unit that executes processing;
    An exhaust purification system comprising:
    When the exhaust air-fuel ratio is switched from a lean state to a rich state, the control unit fixes the recirculation amount adjustment valve in a closed state or a specified opening, and is sucked into the internal combustion engine by the intake amount adjustment valve. An exhaust purification system that regulates the amount of air.
  2.  前記制御部は、前記排気空燃比をリーン状態からリッチ状態に切り替える際に、単位時間あたり所定のバルブ操作量で前記還流量調整バルブを閉じる
     請求項1に記載の排気浄化システム。
    The exhaust purification system according to claim 1, wherein the control unit closes the recirculation amount adjusting valve by a predetermined valve operation amount per unit time when the exhaust air-fuel ratio is switched from a lean state to a rich state.
  3.  前記制御部は、前記排気空燃比をリーン状態とリッチ状態との間で切り替える際に、単位時間あたり所定のバルブ操作量で前記吸気量調整バルブを開閉する
     請求項1又は2に記載の排気浄化システム。
    3. The exhaust gas purification according to claim 1, wherein the control unit opens and closes the intake air amount adjustment valve at a predetermined valve operation amount per unit time when the exhaust air-fuel ratio is switched between a lean state and a rich state. system.
  4.  前記制御部は、
      前記吸気量調整バルブのバルブ開度を、内燃機関の運転状態に基づく目標吸気量と吸気量センサの検出値に基づく実吸気量の偏差に基づくPID制御によって制御すると共に、リーン状態の制御からリッチ状態の制御に切り替える際に、前記PID制御の積分項を初期化する
     請求項1から3の何れか1項に記載の排気浄化システム。
    The controller is
    The valve opening degree of the intake air amount adjusting valve is controlled by PID control based on a deviation between a target intake air amount based on the operation state of the internal combustion engine and an actual intake air amount based on a detected value of the intake air amount sensor, and from the lean state control to the rich state The exhaust purification system according to any one of claims 1 to 3, wherein an integral term of the PID control is initialized when switching to state control.
PCT/JP2016/070852 2015-07-16 2016-07-14 Exhaust gas purification system WO2017010550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-142036 2015-07-16
JP2015142036A JP2017025718A (en) 2015-07-16 2015-07-16 Exhaust emission control system

Publications (1)

Publication Number Publication Date
WO2017010550A1 true WO2017010550A1 (en) 2017-01-19

Family

ID=57758050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070852 WO2017010550A1 (en) 2015-07-16 2016-07-14 Exhaust gas purification system

Country Status (2)

Country Link
JP (1) JP2017025718A (en)
WO (1) WO2017010550A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611227A (en) * 2019-01-31 2019-04-12 汽解放汽车有限公司 A kind of dynamic actuator aperture control method of diesel engine air-fuel ratio

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024471B2 (en) * 2018-02-06 2022-02-24 マツダ株式会社 Engine control
JP7208046B2 (en) * 2019-02-08 2023-01-18 株式会社豊田自動織機 Exhaust purification device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161004A (en) * 1994-12-09 1996-06-21 Toshiba Corp Pid controller
JPH08200045A (en) * 1995-01-20 1996-08-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000227023A (en) * 1999-02-05 2000-08-15 Mazda Motor Corp Control device for engine
JP2002021617A (en) * 2000-07-06 2002-01-23 Toyota Motor Corp Electronic throttle control device
JP2002097976A (en) * 2000-09-22 2002-04-05 Mazda Motor Corp Exhaust emission control device of engine
JP2008202425A (en) * 2007-02-16 2008-09-04 Mitsubishi Motors Corp Exhaust emission control device
JP2009047086A (en) * 2007-08-21 2009-03-05 Denso Corp Exhaust emission control device of internal combustion engine
JP2014202127A (en) * 2013-04-04 2014-10-27 いすゞ自動車株式会社 Exhaust emission control system
WO2015092937A1 (en) * 2013-12-20 2015-06-25 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161004A (en) * 1994-12-09 1996-06-21 Toshiba Corp Pid controller
JPH08200045A (en) * 1995-01-20 1996-08-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000227023A (en) * 1999-02-05 2000-08-15 Mazda Motor Corp Control device for engine
JP2002021617A (en) * 2000-07-06 2002-01-23 Toyota Motor Corp Electronic throttle control device
JP2002097976A (en) * 2000-09-22 2002-04-05 Mazda Motor Corp Exhaust emission control device of engine
JP2008202425A (en) * 2007-02-16 2008-09-04 Mitsubishi Motors Corp Exhaust emission control device
JP2009047086A (en) * 2007-08-21 2009-03-05 Denso Corp Exhaust emission control device of internal combustion engine
JP2014202127A (en) * 2013-04-04 2014-10-27 いすゞ自動車株式会社 Exhaust emission control system
WO2015092937A1 (en) * 2013-12-20 2015-06-25 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611227A (en) * 2019-01-31 2019-04-12 汽解放汽车有限公司 A kind of dynamic actuator aperture control method of diesel engine air-fuel ratio
CN109611227B (en) * 2019-01-31 2022-03-25 一汽解放汽车有限公司 Method for controlling opening degree of actuator for dynamic air-fuel ratio of diesel engine

Also Published As

Publication number Publication date
JP2017025718A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2016140134A1 (en) Exhaust purification system and catalyst regeneration method
WO2016117516A1 (en) Exhaust purification system and catalyst regeneration method
WO2016140211A1 (en) Internal combustion engine control device
WO2016125755A1 (en) EXHAUST GAS PURIFICATION SYSTEM AND NOx PURIFICATION CAPACITY RECOVERY METHOD
WO2016039452A1 (en) Exhaust gas purification system
WO2017010550A1 (en) Exhaust gas purification system
WO2016117573A1 (en) EXHAUST GAS PURIFICATION SYSTEM, AND NOx PURIFICATION CAPACITY RESTORATION METHOD
JP6439334B2 (en) Exhaust purification system
WO2016152391A1 (en) Exhaust purification system and catalyst control method
JP6455237B2 (en) Exhaust purification system
WO2016098895A1 (en) EXHAUST PURIFICATION SYSTEM AND NOx PURIFICATION CAPACITY RECOVERY METHOD
JP6405816B2 (en) Exhaust purification system
JP6604034B2 (en) Exhaust purification device
WO2016039453A1 (en) Exhaust-gas-cleaning system and method for controlling the same
WO2016039450A1 (en) Exhaust-gas-cleaning system and method of controlling same
WO2016104802A1 (en) Exhaust-gas purification system and exhaust-gas-purification-system controlling method
JP6435730B2 (en) Control device for internal combustion engine
JP6455070B2 (en) Exhaust purification system
JP2016200077A (en) Exhaust emission control system
WO2016117612A1 (en) Exhaust purification system and catalyst regeneration method
WO2016039454A1 (en) Exhaust cleaning system
WO2017010542A1 (en) Storage amount estimation device
WO2016117517A1 (en) Exhaust gas purification system, and nox purification capacity restoration method
JP2016084753A (en) Exhaust emission control system
JP2016153619A (en) Exhaust emission control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824530

Country of ref document: EP

Kind code of ref document: A1