JP6439334B2 - Exhaust purification system - Google Patents
Exhaust purification system Download PDFInfo
- Publication number
- JP6439334B2 JP6439334B2 JP2014186756A JP2014186756A JP6439334B2 JP 6439334 B2 JP6439334 B2 JP 6439334B2 JP 2014186756 A JP2014186756 A JP 2014186756A JP 2014186756 A JP2014186756 A JP 2014186756A JP 6439334 B2 JP6439334 B2 JP 6439334B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- control
- injection amount
- nox
- maf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000746 purification Methods 0.000 title claims description 17
- 238000002347 injection Methods 0.000 claims description 139
- 239000007924 injection Substances 0.000 claims description 139
- 239000003054 catalyst Substances 0.000 claims description 75
- 239000000446 fuel Substances 0.000 claims description 64
- 230000008929 regeneration Effects 0.000 claims description 40
- 238000011069 regeneration method Methods 0.000 claims description 40
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 239000013618 particulate matter Substances 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 230000005484 gravity Effects 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 4
- 238000010926 purge Methods 0.000 description 121
- 229910052815 sulfur oxide Inorganic materials 0.000 description 83
- 238000011144 upstream manufacturing Methods 0.000 description 17
- 238000007254 oxidation reaction Methods 0.000 description 16
- 239000007789 gas Substances 0.000 description 15
- 230000003647 oxidation Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 230000006866 deterioration Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000001186 cumulative effect Effects 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、排気浄化システムに関する。 The present invention relates to an exhaust purification system.
従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。このNOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。 Conventionally, a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine. This NOx occlusion reduction type catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and reduces and purifies NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. Detoxify and release.
また、NOx吸蔵還元型触媒には、排気中に含まれる硫黄酸化物(以下、SOxという)も吸蔵される。このSOx吸蔵量が増加すると、NOx吸蔵還元型触媒のNOx浄化能力を低下させる課題がある。このため、SOx吸蔵量が所定量に達した場合は、NOx吸蔵還元型触媒からSOxを離脱させてS被毒から回復させるべく、ポスト噴射や排気管噴射によって上流側の酸化触媒に未燃燃料を供給して排気温度をSOx離脱温度まで上昇させる所謂SOxパージを定期的に行う必要がある(例えば、特許文献1参照)。 The NOx occlusion reduction type catalyst also occludes sulfur oxide (hereinafter referred to as SOx) contained in the exhaust gas. When this SOx occlusion amount increases, there is a problem that the NOx purification ability of the NOx occlusion reduction type catalyst is lowered. Therefore, when the SOx occlusion amount reaches a predetermined amount, unburned fuel is added to the upstream oxidation catalyst by post injection or exhaust pipe injection so that SOx is released from the NOx occlusion reduction type catalyst and recovered from S poisoning. So as to raise the exhaust temperature to the SOx separation temperature, so-called SOx purge must be performed periodically (see, for example, Patent Document 1).
SOxパージ時の触媒温度を所望の温度範囲に維持する手法として、排気空燃比をリッチ化して排気温度を上昇させるリッチ制御と、排気空燃非をリーン化して排気温度を降下させるリーン制御とを交互に行うものが知られている(例えば、特許文献1参照)。 As a method of maintaining the catalyst temperature at the SOx purge in a desired temperature range, rich control for increasing the exhaust air temperature by increasing the exhaust air-fuel ratio and lean control for decreasing the exhaust air temperature to reduce the exhaust temperature What performs alternately is known (for example, refer patent document 1).
このようなSOxパージを効率的に行うには、例えば、フィルタ強制再生直後の排気高温状態でSOxパージを実行することが好ましい。しかしながら、フィルタ強制再生直後にSOxパージをリーン制御から開始すると、排気温度が一旦低下するため、十分な効率化が図れない可能性がある。 In order to efficiently perform such SOx purge, for example, it is preferable to execute the SOx purge in a high exhaust gas state immediately after the forced filter regeneration. However, if SOx purge is started from lean control immediately after forced regeneration of the filter, the exhaust gas temperature temporarily decreases, and there is a possibility that sufficient efficiency cannot be achieved.
開示のシステムは、フィルタ強制再生からSOxパージへの切り替え時に温度低下を抑制することで、SOxパージの効率化を図ることを目的とする。 An object of the disclosed system is to improve the efficiency of SOx purge by suppressing a temperature drop when switching from forced filter regeneration to SOx purge.
開示のシステムは、内燃機関の排気通路に、排気中の粒子状物質を捕集するフィルタ及び、排気中のNOxを還元浄化するNOx還元型触媒を配置した排気後処理装置と、排気をリッチ状態にして前記フィルタに堆積した粒子状物質を燃焼除去させるフィルタ再生を実行する第1再生制御手段と、排気をリッチ状態にして前記NOx還元型触媒を所定の目標温度まで昇温するリッチ制御と、排気をリーン状態にして前記NOx還元型触媒の温度を降下させるリーン制御とを交互に行うことで前記NOx還元型触媒のNOx浄化能力を回復させる触媒再生を実行する第2再生制御手段と、を備え、前記第2再生制御手段は、前記第1再生制御手段による前記フィルタ再生によって前記フィルタの粒子状物質堆積量が低下したと判定すると、前記触媒再生を前記リッチ制御から開始する。 The disclosed system includes an exhaust aftertreatment device in which a filter for collecting particulate matter in exhaust gas and a NOx reduction type catalyst for reducing and purifying NOx in exhaust gas are disposed in an exhaust passage of an internal combustion engine, and the exhaust gas is in a rich state First regeneration control means for performing filter regeneration for burning and removing particulate matter deposited on the filter, and rich control for raising the temperature of the NOx reduction catalyst to a predetermined target temperature by setting exhaust to a rich state; A second regeneration control means for performing catalyst regeneration that restores the NOx purification ability of the NOx reduction catalyst by alternately performing lean control that lowers the temperature of the NOx reduction catalyst by setting the exhaust to a lean state; And the second regeneration control means determines that the particulate matter deposition amount of the filter has decreased due to the filter regeneration by the first regeneration control means, To start a medium playback from the rich control.
開示のシステムによれば、フィルタ強制再生からSOxパージへの切り替え時に温度低下を抑制することで、SOxパージの効率化を図ることができる。 According to the disclosed system, the efficiency of SOx purge can be improved by suppressing the temperature drop when switching from forced filter regeneration to SOx purge.
以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化システムを説明する。 Hereinafter, an exhaust purification system according to an embodiment of the present invention will be described with reference to the accompanying drawings.
図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射するインジェクタ11がそれぞれ設けられている。これら各インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)50から入力される指示信号に応じてコントロールされる。
As shown in FIG. 1, each cylinder of a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an
エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。吸気通路12には、吸気上流側から順にエアクリーナ14、吸入空気量センサ(以下、MAFセンサという)40、可変容量型過給機20のコンプレッサ20A、インタークーラ15、吸気スロットルバルブ16等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサをそれぞれ示している。
An
EGR装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量を調整するEGRバルブ24とを備えている。
The EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the
排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気管噴射装置34が設けられている。
The
酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気管噴射装置34又はインジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。
The
NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。
The NOx
フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ強制再生が実行される。フィルタ強制再生は、排気管噴射又はポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。
The
第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度を検出する。第2排気温度センサ44は、酸化触媒31とNOx吸蔵還元型触媒32との間に設けられており、NOx吸蔵還元型触媒32に流入する排気温度を検出する。NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(以下、空気過剰率ともいう)を検出する。
The first
ECU50は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40〜45のセンサ値が入力される。また、ECU50は、フィルタ強制再生制御部51と、SOx離脱処理部60と、NOx離脱処理部70と、MAF追従制御部80、噴射量学習補正部90と、MAF補正係数演算部95とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。
The ECU 50 performs various controls of the
[フィルタ強制再生制御]
フィルタ強制再生制御部51は、本発明の第1再生制御手段の一例であって、車両の走行距離、あるいは図示しない差圧センサで検出されるフィルタ前後差圧からフィルタ33のPM堆積量を推定すると共に、このPM堆積推定量が所定の上限閾値を超えると強制再生フラグFDPFをオンにする(図2の時刻t1参照)。強制再生フラグFDPFがオンにされると、排気管噴射装置34に排気管噴射を実行させる指示信号が送信されるか、あるいは、各インジェクタ11にポスト噴射を実行させる指示信号が送信されて、排気温度をPM燃焼温度(例えば、約550℃)まで昇温させる。この強制再生フラグFDPFは、PM堆積推定量が燃焼除去を示す所定の下限閾値(判定閾値)まで低下するとオフにされる(図2の時刻t2参照)。なお、強制再生フラグFDPFをオフにする判定閾値は、例えば、フィルタ強制再生開始(FDPF=1)からの上限経過時間や上限累積噴射量を基準にしてもよい。
[Filter forced regeneration control]
The filter forced
[SOxパージ制御]
SOx離脱処理部60は、本発明の第2再生制御手段の一例であって、排気をリッチ状態にして排気温度を硫黄離脱温度(例えば、約600℃)まで上昇させて、NOx吸蔵還元型触媒32をSOx被毒から回復させる制御(以下、この制御をSOxパージ制御という)を実行する。
[SOx purge control]
The SOx
図2は、本実施形態のSOxパージ制御のタイミングチャートを示している。図2に示すように、SOxパージ制御を開始するSOxパージフラグFSPは、強制再生フラグFDPFのオフと同時にオンにされる(図2の時刻t2参照)。これにより、フィルタ33の強制再生によって排気温度を上昇させた状態からSOxパージ制御に効率よく移行することが可能となり、燃料消費量を効果的に低減することができる。
FIG. 2 shows a timing chart of the SOx purge control of this embodiment. As shown in FIG. 2, SOx purge flag F SP to start SOx purge control is turned off and on at the same time forced regeneration flag F DPF (see time t 2 in FIG. 2). As a result, it is possible to efficiently shift to the SOx purge control from the state in which the exhaust gas temperature has been raised by the forced regeneration of the
本実施形態において、SOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるSOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるSOxパージリッチ制御とを併用することで実現される。以下、SOxパージリーン制御及び、SOxパージリッチ制御の詳細について説明する。 In the present embodiment, the enrichment by the SOx purge control is performed by adjusting the excess air ratio to the lean side from the theoretical air-fuel ratio equivalent value (about 1.0) from the steady operation (for example, about 1.5) by the air system control. SOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) This is realized by using together with the SOx purge rich control that lowers to .9). Details of the SOx purge lean control and the SOx purge rich control will be described below.
[SOxパージリーン制御の空気系制御]
図3は、SOxパージリーン制御時のMAF目標値MAFSPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ61は、エンジン回転数Ne及びアクセル開度Q(エンジン10の燃料噴射量)に基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリーン制御時の空気過剰率目標値λSPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
[Air system control for SOx purge lean control]
FIG. 3 is a block diagram showing a process for setting the MAF target value MAF SPL_Trgt during SOx purge lean control. The first target excess air
まず、第1目標空気過剰率設定マップ61から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリーン制御時の空気過剰率目標値λSPL_Trgtが読み取られて、MAF目標値演算部62に入力される。さらに、MAF目標値演算部62では、以下の数式(1)に基づいてSOxパージリーン制御時のMAF目標値MAFSPL_Trgtが演算される。
MAFSPL_Trgt=λSPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(1)
First, the excess air ratio target value λ SPL_Trgt at the time of SOx purge lean control is read from the first target excess air
MAF SPL_Trgt = λ SPL_Trgt × Q fnl_corrd × Ro Fuel × AFR sto / Maf_corr (1)
数式(1)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。 In Equation (1), Q fnl_corrd is a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel is a fuel specific gravity, AFR sto is a stoichiometric air-fuel ratio, and Maf_corr is a MAF correction coefficient described later. Yes.
MAF目標値演算部62によって演算されたMAF目標値MAFSPL_Trgtは、SOxパージフラグFSPがオン(図2の時刻t2参照)になるとランプ処理部63に入力される。ランプ処理部63は、各ランプ係数マップ63A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFSPL_Trgt_Rampをバルブ制御部64に入力する。
MAF target value MAF SPL_Trgt calculated by the MAF target
バルブ制御部64は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFSPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。
The
このように、本実施形態では、第1目標空気過剰率設定マップ61から読み取られる空気過剰率目標値λSPL_Trgtと、各インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFSPL_Trgtを設定し、このMAF目標値MAFSPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
Thus, in the present embodiment, the MAF target value MAF SPL_Trgt is set based on the excess air ratio target value λ SPL_Trgt read from the first target excess air
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFSPL_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化、個体差等の影響を効果的に排除することができる。
Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each
また、MAF目標値MAFSPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。
Further, by adding a ramp coefficient that is set according to the operating state of the
[SOxパージリッチ制御の燃料噴射量設定]
図4は、SOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QSPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第2目標空気過剰率設定マップ65は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。
[Fuel injection amount setting for SOx purge rich control]
FIG. 4 is a block diagram showing processing for setting the target injection amount Q SPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in SOx purge rich control. The second target excess air ratio setting map 65 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and at the time of SOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q. The air excess rate target value λ SPR_Trgt (second target air excess rate) is set in advance based on experiments or the like.
まず、第2目標空気過剰率設定マップ65から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgtが読み取られて、噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、以下の数式(2)に基づいてSOxパージリッチ制御時の目標噴射量QSPR_Trgtが演算される。
QSPR_Trgt=MAFSPL_Trgt×Maf_corr/(λSPR_Target×RoFuel×AFRsto)−Qfnl_corrd・・・(2)
First, the excess air ratio target value λ SPR_Trgt at the time of SOx purge rich control is read from the second target excess air ratio setting map 65 using the engine speed Ne and the accelerator opening Q as input signals, and an injection quantity target
Q SPR_Trgt = MAF SPL_Trgt × Maf_corr / (λ SPR_Target × Ro Fuel × AFR sto ) −Q fnl_corrd (2)
数式(2)において、MAFSPL_TrgtはSOxパージリーン時のMAF目標値であって、前述のMAF目標値演算部62から入力される。また、QfnlRaw_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corは後述するMAF補正係数をそれぞれ示している。
In Formula (2), MAF SPL_Trgt is the MAF target value at the time of SOx purge lean, and is input from the MAF target
噴射量目標値演算部66によって演算された目標噴射量QSPR_Trgtは、後述するSOxパージリッチフラグFSPRがオンになると、排気管噴射装置34又は、各インジェクタ11に噴射指示信号として送信される。
The target injection amount Q SPR_Trgt calculated by the injection amount target
このように、本実施形態では、第2目標空気過剰率設定マップ65から読み取られる空気過剰率目標値λSPR_Trgtと、各インジェクタ11の燃料噴射量とに基づいて目標噴射量QSPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
As described above, in this embodiment, the target injection amount Q SPR_Trgt is set based on the air excess rate target value λ SPR_Trgt read from the second target air excess rate setting map 65 and the fuel injection amount of each
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QSPR_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each
[SOxパージ制御の触媒温度調整制御]
SOxパージ制御中にNOx吸蔵還元型触媒32に流入する排気温度(以下、触媒温度ともいう)は、図2の時刻t2〜t4に示すように、排気管噴射又はポスト噴射を実行するSOxパージリッチフラグFSPRのオン・オフ(リッチ・リーン)を交互に切り替えることで制御される。SOxパージリッチフラグFSPRがオン(FSPR=1)にされると、排気管噴射又はポスト噴射によって触媒温度は上昇する(以下、この期間を噴射期間TF_INJという)。一方、SOxパージリッチフラグFSPRがオフにされると、排気管噴射又はポスト噴射の停止によって触媒温度は低下する(以下、この期間をインターバルTF_INTという)。
[Catalyst temperature adjustment control for SOx purge control]
The exhaust temperature (hereinafter also referred to as catalyst temperature) flowing into the NOx occlusion
本実施形態において、噴射期間TF_INJは、予め実験等により作成した噴射期間設定マップ(不図示)からエンジン回転数Ne及びアクセル開度Qに対応する値を読み取ることで設定される。この噴射時間設定マップには、予め実験等によって求めた排気の空気過剰率を第2目標空気過剰率まで確実に低下させるのに必要となる噴射期間が、エンジン10の運転状態に応じて設定されている。
In the present embodiment, the injection period TF_INJ is set by reading values corresponding to the engine speed Ne and the accelerator opening Q from an injection period setting map (not shown) created in advance by experiments or the like. In this injection time setting map, an injection period required to reliably reduce the excess air ratio of exhaust gas obtained in advance through experiments or the like to the second target excess air ratio is set according to the operating state of the
インターバルTF_INTは、触媒温度が最も高くなるSOxパージリッチフラグFSPRがオンからオフに切り替えられた際に、フィードバック制御によって設定される。具体的には、SOxパージリッチフラグFSPRがオフされた際の目標触媒温度と推定触媒温度との偏差ΔTに比例して入力信号を変化させる比例制御と、偏差ΔTの時間積分値に比例して入力信号を変化させる積分制御と、偏差ΔTの時間微分値に比例して入力信号を変化させる微分制御とで構成されるPID制御によって処理される。目標触媒温度は、NOx吸蔵還元型触媒32からSOxを離脱可能な温度で設定され、推定触媒温度は、例えば、第1排気温度センサ43で検出される酸化触媒31の入口温度と、酸化触媒31及びNOx吸蔵還元型触媒32の内部での発熱反応等に基づいて推定すればよい。
The interval TF_INT is set by feedback control when the SOx purge rich flag F SPR at which the catalyst temperature is highest is switched from on to off. Specifically, the proportional control for changing the input signal in proportion to the deviation ΔT between the target catalyst temperature and the estimated catalyst temperature when the SOx purge rich flag F SPR is turned off, and the time integral value of the deviation ΔT are proportional. This is processed by PID control constituted by integral control for changing the input signal and differential control for changing the input signal in proportion to the time differential value of the deviation ΔT. The target catalyst temperature is set at a temperature at which SOx can be removed from the NOx
図5の時刻t1に示すように、フィルタ強制再生の終了(FDPF=0)によってSOxパージフラグFSPがオンされると、SOxパージリッチフラグFSPRもオンにされ、さらに前回のSOxパージ制御時にフィードバック計算されたインターバルTF_INTも一旦リセットされる。すなわち、フィルタ強制再生直後の初回は、噴射期間設定マップで設定した噴射期間TF_INJ_1に応じて排気管噴射又はポスト噴射が実行される(図5の時刻t1〜t2参照)。このように、SOxパージリーン制御を行うことなくSOxパージリッチ制御からSOxパージ制御を開始するので、フィルタ強制再生で上昇した排気温度を低下させることなく、速やかにSOxパージ制御に移行され、燃料消費量を低減することができる。 As shown at time t 1 in FIG. 5, when the SOx purge flag F SP is turned on at the end of forced filter regeneration (F DPF = 0), the SOx purge rich flag F SPR is also turned on, and the previous SOx purge control is performed. The interval TF_INT that is sometimes feedback calculated is also reset. That is, for the first time immediately after the forced filter regeneration, exhaust pipe injection or post injection is executed in accordance with the injection period TF_INJ_1 set in the injection period setting map (see times t 1 to t 2 in FIG. 5). As described above, since the SOx purge control is started from the SOx purge rich control without performing the SOx purge lean control, the fuel gas consumption is promptly shifted to the SOx purge control without lowering the exhaust temperature that has been raised by the forced filter regeneration. Can be reduced.
次いで、噴射期間TF_INJ_1の経過によってSOxパージリッチフラグFSPRがオフになると、PID制御によって設定されたインターバルTF_INT_1が経過するまで、SOxパージリッチフラグFSPRはオフとされる(図5の時刻t2〜t3参照)。さらに、インターバルTF_INT_1の経過によってSOxパージリッチフラグFSPRがオンにされると、再び噴射期間TF_INJ_2に応じた排気管噴射又はポスト噴射が実行される(図5の時刻t3〜t4参照)。その後、これらSOxパージリッチフラグFSPRのオン・オフの切り替えは、後述するSOxパージ制御の終了判定によってSOxパージフラグFSPがオフ(図5の時刻tn参照)にされるまで繰り返し実行される。 Then, when the SOx purge rich flag F SPR is turned off with the passage of the injection period T F_INJ_1, until interval T F_INT_1 set by PID control has elapsed, SOx purge rich flag F SPR is turned off (time in FIG. 5 t see 2 ~t 3). Further, when the SOx purge rich flag F SPR is turned on by the lapse of the interval T F_INT_1, injection period T F_INJ_2 exhaust pipe injection or post injection according to is performed again (see time t 3 ~t 4 of 5 ). Thereafter, the switching on and off of these SOx purge rich flag F SPR is repeatedly executed until the SOx purge flag F SP is turned off (see time t n in FIG. 5) by the completion judgment of the SOx purge control described later.
このように、本実施形態では、触媒温度を上昇させると共に空気過剰率を第2目標空気過剰率まで低下させる噴射期間TF_INJをエンジン10の運転状態に基づいて参照されるマップから設定すると共に、触媒温度を降下させるインターバルTF_INTをPID制御によって処理するようになっている。これにより、SOxパージ制御中の触媒温度をパージに必要な所望の温度範囲に効果的に維持しつつ、空気過剰率を目標過剰率まで確実に低下させることが可能になる。
As described above, in the present embodiment, the injection period T F_INJ for raising the catalyst temperature and lowering the excess air ratio to the second target excess air ratio is set from a map referred to based on the operating state of the
[SOxパージ制御の終了判定]
SOxパージ制御は、(1)SOxパージフラグFSPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)SOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のSOx吸着量がSOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、SOxパージフラグFSPをオフにして終了される(図2の時刻t4、図5の時刻tn参照)。
[Determining completion of SOx purge control]
SOx purge control, (1) SOx purge flag F from on the SP injection quantity of the exhaust pipe injection or post injection accumulated, when the amount of the cumulative injected has reached the predetermined upper limit threshold amount, of (2) SOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the
このように、本実施形態では、SOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、SOxパージが排気温度の低下等によって進捗しなかった場合に、燃料消費量が過剰になることを効果的に防止することができる。 As described above, in this embodiment, when the SOx purge control end condition is provided with the upper limit of the cumulative injection amount and the elapsed time, the fuel consumption amount when the SOx purge does not progress due to a decrease in the exhaust temperature or the like. Can be effectively prevented from becoming excessive.
[NOxパージ制御]
NOx離脱処理部70は、排気をリッチ雰囲気にしてNOx吸蔵還元型触媒32に吸蔵されているNOxを還元浄化により無害化して放出することで、NOx吸蔵還元型触媒32のNOx吸蔵能力を回復させる制御(以下、この制御をNOxパージ制御という)を実行する。
[NOx purge control]
The NOx
NOxパージ制御を開始するNOxパージフラグFNPは、エンジン10の運転状態から単位時間当たりのNOx排出量を推定し、これを累積計算した推定累積値ΣNOxが所定の閾値を超えるとオンにされる(図6の時刻t1参照)。あるいは、エンジン10の運転状態から推定される触媒上流側のNOx排出量と、NOx/ラムダセンサ45で検出される触媒下流側のNOx量とからNOx吸蔵還元型触媒32によるNOx浄化率を演算し、このNOx浄化率が所定の判定閾値よりも低くなった場合に、NOxパージフラグFNPはオンにされる。
The NOx purge flag F NP for starting the NOx purge control is turned on when the NOx emission amount per unit time is estimated from the operating state of the
本実施形態において、NOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第3目標空気過剰率(例えば、約1.3)まで低下させるNOxパージリーン制御と、噴射系制御によって空気過剰率を第4目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるNOxパージリッチ制御とを併用することで実現される。以下、NOxパージリーン制御及び、NOxパージリッチ制御の詳細について説明する。 In the present embodiment, the enrichment by the NOx purge control is performed on the lean side of the excess air ratio from the stoichiometric air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control. NOx purge lean control for reducing to 3 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the fourth target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) .9) and NOx purge rich control for reducing the pressure to 9). The details of the NOx purge lean control and the NOx purge rich control will be described below.
[NOxパージリーン制御のMAF目標値設定]
図7は、NOxパージリーン制御時のMAF目標値MAFNPL_Trgtの設定処理を示すブロック図である。第3目標空気過剰率設定マップ71は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリーン制御時の空気過剰率目標値λNPL_Trgt(第3目標空気過剰率)が予め実験等に基づいて設定されている。
[NOF purge lean control MAF target value setting]
FIG. 7 is a block diagram showing a setting process of the MAF target value MAF NPL_Trgt at the time of NOx purge lean control. The third target excess air
まず、第3目標空気過剰率設定マップ71から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリーン制御時の空気過剰率目標値λNPL_Trgtが読み取られて、MAF目標値演算部72に入力される。さらに、MAF目標値演算部72では、以下の数式(3)に基づいてNOxパージリーン制御時のMAF目標値MAFNPL_Trgtが演算される。
MAFNPL_Trgt=λNPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(3)
First, the excess air ratio target value λ NPL_Trgt at the time of NOx purge lean control is read from the third target excess air
MAF NPL_Trgt = λ NPL_Trgt × Q fnl_corrd × Ro Fuel × AFR sto / Maf_corr (3)
数式(3)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。 In Equation (3), Q fnl_corrd represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a stoichiometric air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.
MAF目標値演算部72によって演算されたMAF目標値MAFNPL_Trgtは、NOxパージフラグFSPがオン(図6の時刻t1参照)になるとランプ処理部73に入力される。ランプ処理部73は、各ランプ係数マップ73A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFNPL_Trgt_Rampをバルブ制御部74に入力する。
MAF target value MAF NPL_Trgt calculated by the MAF target
バルブ制御部74は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFNPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。
The valve controller 74 throttles the
このように、本実施形態では、第3目標空気過剰率設定マップ71から読み取られる空気過剰率目標値λNPL_Trgtと、各インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFNPL_Trgtを設定し、このMAF目標値MAFNPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
As described above, in the present embodiment, the MAF target value MAF NPL_Trgt is set based on the excess air ratio target value λ NPL_Trgt read from the third target excess air
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFNPL_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each
また、MAF目標値MAFNPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。
Further, by adding a ramp coefficient that is set according to the operating state of the
[NOxパージリッチ制御の燃料噴射量設定]
図8は、NOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QNPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第4目標空気過剰率設定マップ75は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt(第4目標空気過剰率)が予め実験等に基づいて設定されている。
[NOx purge rich control fuel injection amount setting]
FIG. 8 is a block diagram showing processing for setting a target injection amount Q NPR_Trgt (injection amount per unit time) for exhaust pipe injection or post injection in NOx purge rich control. The fourth target excess air
まず、第4目標空気過剰率設定マップ75から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgtが読み取られて噴射量目標値演算部76に入力される。さらに、噴射量目標値演算部76では、以下の数式(4)に基づいてNOxパージリッチ制御時の目標噴射量QNPR_Trgtが演算される。
QNPR_Trgt=MAFNPL_Trgt×Maf_corr/(λNPR_Target×RoFuel×AFRsto)−Qfnl_corrd・・・(4)
First, from the fourth target excess air
Q NPR_Trgt = MAF NPL_Trgt × Maf_corr / (λ NPR_Target × Ro Fuel × AFR sto ) −Q fnl_corrd (4)
数式(4)において、MAFNPL_TrgtはNOxパージリーンMAF目標値であって、前述のMAF目標値演算部72から入力される。また、QfnlRaw_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corは後述するMAF補正係数をそれぞれ示している。
In Formula (4), MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the MAF target
噴射量目標値演算部76によって演算される目標噴射量QNPR_Trgtは、NOxパージフラグFSPがオンになると、排気管噴射装置34又は各インジェクタ11に噴射指示信号として送信される(図6の時刻t1)。この噴射指示信号の送信は、後述するNOxパージ制御の終了判定によってNOxパージフラグFNPがオフ(図6の時刻t2)にされるまで継続される。
The target injection amount Q NPR_Trgt that is calculated by the injection amount target
このように、本実施形態では、第4目標空気過剰率設定マップ75から読み取られる空気過剰率目標値λNPR_Trgtと、各インジェクタ11の燃料噴射量とに基づいて目標噴射量QNPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
As described above, in this embodiment, the target injection amount Q NPR_Trgt is set based on the air excess rate target value λ NPR_Trgt read from the fourth target air excess
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QNPR_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each
[NOxパージ制御の空気系制御禁止]
ECU50は、エンジン10の運転状態が低負荷側の領域では、MAFセンサ40のセンサ値に基づいて吸気スロットルバルブ16やEGRバルブ24の開度をフィードバック制御している。一方、エンジン10の運転状態が高負荷側の領域では、ECU50はブースト圧センサ46のセンサ値に基づいて可変容量型過給機20による過給圧をフィードバック制御している(以下、この領域をブース圧FB制御領域という)。
[No air system control for NOx purge control]
The
このようなブース圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の制御が可変容量型過給機20の制御と干渉してしまう現象が生じる。このため、上述の数式(3)で設定されるMAF目標値MAFNPL_Trgtに基づいて空気系をフィードバック制御するNOxパージリーン制御を実行しても、吸入空気量をMAF目標値NPL_Trgtに維持できない課題がある。その結果、ポスト噴射や排気管噴射を実行するNOxパージリッチ制御を開始しても、空気過剰率をNOxパージに必要な第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させられない可能性がある。
In such a booth pressure FB control region, a phenomenon occurs in which the control of the
このような現象を回避すべく、本実施形態のNOx離脱処理部70は、ブース圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の開度を調整するNOxパージリーン制御を禁止し、排気管噴射又はポスト噴射のみで空気過剰率を第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させる。これにより、ブース圧FB制御領域においても、NOxパージを確実に行うことが可能になる。なお、この場合、上述の数式(4)のMAF目標値MAFNPL_Trgtには、エンジン10の運転状態に基づいて設定されるMAF目標値を適用すればよい。
In order to avoid such a phenomenon, the NOx
[NOxパージ制御の終了判定]
NOxパージ制御は、(1)NOxパージフラグFNPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)NOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のNOx吸蔵量がNOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、NOxパージフラグFNPをオフにして終了される(図6の時刻t2参照)。
[Determining completion of NOx purge control]
In the NOx purge control, (1) when the NOx purge flag F NP is turned on, the injection amount of exhaust pipe injection or post injection is accumulated, and when this cumulative injection amount reaches a predetermined upper limit threshold amount, (2) NOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the
このように、本実施形態では、NOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、NOxパージが排気温度の低下等によって成功しなかった場合に燃料消費量が過剰になることを確実に防止することができる。 As described above, in the present embodiment, the cumulative injection amount and the upper limit of the elapsed time are provided in the end condition of the NOx purge control, so that the fuel consumption amount is reduced when the NOx purge is not successful due to a decrease in the exhaust temperature or the like. It is possible to reliably prevent the excess.
[MAF追従制御]
MAF追従制御部80は、(1)通常運転のリーン状態からSOxパージ制御又はNOxパージ制御によるリッチ状態への切り替え期間及び、(2)SOxパージ制御又はNOxパージ制御によるリッチ状態から通常運転のリーン状態への切り替え期間に、各インジェクタ11の燃料噴射タイミング及び燃料噴射量をMAF変化に応じて補正する制御(以下、この制御をMAF追従制御という)を実行する。
[MAF tracking control]
The MAF follow-up
[噴射量学習補正]
図9に示すように、噴射量学習補正部90は、学習補正係数演算部91と、噴射量補正部92とを有する。
[Injection amount learning correction]
As shown in FIG. 9, the injection amount learning
学習補正係数演算部91は、エンジン10のリーン運転時にNOx/ラムダセンサ45で検出される実ラムダ値λActと、推定ラムダ値λEstとの誤差Δλに基づいて燃料噴射量の学習補正係数FCorrを演算する。排気がリーン状態のときは、酸化触媒31でHCの酸化反応が生じないため、酸化触媒31を通過して下流側のNOx/ラムダセンサ45で検出される排気中の実ラムダ値λActと、エンジン10から排出された排気中の推定ラムダ値λEstとは一致すると考えられる。このため、これら実ラムダ値λActと推定ラムダ値λEstとに誤差Δλが生じた場合は、各インジェクタ11に対する指示噴射量と実噴射量との差によるものと仮定することができる。以下、この誤差Δλを用いた学習補正係数演算部91による学習補正係数の演算処理を図10のフローに基づいて説明する。
The learning correction coefficient calculation unit 91 is based on the error Δλ between the actual lambda value λ Act detected by the NOx /
ステップS300では、エンジン回転数Ne及びアクセル開度Qに基づいて、エンジン10がリーン運転状態にあるか否かが判定される。リーン運転状態にあれば、学習補正係数の演算を開始すべく、ステップS310に進む。
In step S300, based on the engine speed Ne and the accelerator opening Q, it is determined whether or not the
ステップS310では、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK1及び補正感度係数K2を乗じることで、学習値FCorrAdptが演算される(FCorrAdpt=(λEst−λAct)×K1×K2)。推定ラムダ値λEstは、エンジン回転数Neやアクセル開度Qに応じたエンジン10の運転状態から推定演算される。また、補正感度係数K2は、図9に示す補正感度係数マップ91AからNOx/ラムダセンサ45で検出される実ラムダ値λActを入力信号として読み取られる。
In step S310, an error Δλ obtained by subtracting the actual lambda value λ Act detected by the NOx /
ステップS320では、学習値FCorrAdptの絶対値|FCorrAdpt|が所定の補正限界値Aの範囲内にあるか否かが判定される。絶対値|FCorrAdpt|が補正限界値Aを超えている場合、本制御はリターンされて今回の学習を中止する。 In step S320, it is determined whether or not the absolute value | F CorrAdpt | of the learning value F CorrAdpt is within the range of the predetermined correction limit value A. If the absolute value | F CorrAdpt | exceeds the correction limit value A, the control is returned to stop the current learning.
ステップS330では、学習禁止フラグFProがオフか否かが判定される。学習禁止フラグFProとしては、例えば、エンジン10の過渡運転時、SOxパージ制御時(FSP=1)、NOxパージ制御時(FNP=1)等が該当する。これらの条件が成立する状態では、実ラムダ値λActの変化によって誤差Δλが大きくなり、正確な学習を行えないためである。エンジン10が過渡運転状態にあるか否かは、例えば、NOx/ラムダセンサ45で検出される実ラムダ値λActの時間変化量に基づいて、当該時間変化量が所定の閾値よりも大きい場合に過渡運転状態と判定すればよい。
In step S330, it is determined whether the learning prohibition flag FPro is off. The learning prohibition flag F Pro corresponds to, for example, transient operation of the
ステップS340では、エンジン回転数Ne及びアクセル開度Qに基づいて参照される学習値マップ91B(図9参照)が、ステップS310で演算された学習値FCorrAdptに更新される。より詳しくは、この学習値マップ91B上には、エンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、好ましくは、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上され、使用頻度が少ない領域では未学習を効果的に防止することが可能になる。 In step S340, the learning value map 91B (see FIG. 9) referred to based on the engine speed Ne and the accelerator opening Q is updated to the learning value F CorrAdpt calculated in step S310. More specifically, on the learning value map 91B, a plurality of learning areas divided according to the engine speed Ne and the accelerator opening Q are set. These learning regions are preferably set to have a narrower range as the region is used more frequently and to be wider as a region is used less frequently. As a result, learning accuracy is improved in regions where the usage frequency is high, and unlearning can be effectively prevented in regions where the usage frequency is low.
ステップS350では、エンジン回転数Ne及びアクセル開度Qを入力信号として学習値マップ91Bから読み取った学習値に「1」を加算することで、学習補正係数FCorrが演算される(FCorr=1+FCorrAdpt)。この学習補正係数FCorrは、図9に示す噴射量補正部92に入力される。
In step S350, the learning correction coefficient F Corr is calculated by adding “1” to the learning value read from the learning value map 91B using the engine speed Ne and the accelerator opening Q as input signals (F Corr = 1 + F). CorrAdpt ). This learning correction coefficient F Corr is input to the injection
噴射量補正部92は、パイロット噴射QPilot、プレ噴射QPre、メイン噴射QMain、アフタ噴射QAfter、ポスト噴射QPostの各基本噴射量に学習補正係数FCorrを乗算することで、これら燃料噴射量の補正を実行する。
Injection
このように、推定ラムダ値λEstと実ラムダ値λActとの誤差Δλに応じた学習値で各インジェクタ11に燃料噴射量を補正することで、各インジェクタ11の経年劣化や特性変化、個体差等のバラツキを効果的に排除することが可能になる。
In this way, by correcting the fuel injection amount to each
[MAF補正係数]
MAF補正係数演算部95は、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgtの設定及び、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に用いられるMAF補正係数Maf_corrを演算する。
[MAF correction coefficient]
The MAF correction
本実施形態において、各インジェクタ11の燃料噴射量は、NOx/ラムダセンサ45で検出される実ラムダ値λActと推定ラムダ値λEstとの誤差Δλに基づいて補正される。しかしながら、ラムダは空気と燃料の比であるため、誤差Δλの要因が必ずしも各インジェクタ11に対する指示噴射量と実噴射量との差の影響のみとは限らない。すなわち、ラムダの誤差Δλには、各インジェクタ11のみならずMAFセンサ40の誤差も影響している可能性がある。
In the present embodiment, the fuel injection amount of each
図11は、MAF補正係数演算部95によるMAF補正係数Maf_corrの設定処理を示すブロック図である。補正係数設定マップ96は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。
FIG. 11 is a block diagram showing the setting process of the MAF correction coefficient Maf_corr by the MAF correction
MAF補正係数演算部95は、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ96からMAF補正係数Maf_corrを読み取ると共に、このMAF補正係数Maf_corrをMAF目標値演算部62,72及び噴射量目標値演算部66,76に送信する。これにより、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgt、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に、MAFセンサ40のセンサ特性を効果的に反映することが可能になる。
The MAF correction
[その他]
なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.
10 エンジン
11 インジェクタ
12 吸気通路
13 排気通路
16 吸気スロットルバルブ
24 EGRバルブ
31 酸化触媒
32 NOx吸蔵還元型触媒
33 フィルタ
34 排気管噴射装置
40 MAFセンサ
45 NOx/ラムダセンサ
50 ECU
DESCRIPTION OF
Claims (6)
排気をリッチ状態にして前記フィルタに堆積した粒子状物質を燃焼除去させるフィルタ再生を実行する第1再生制御手段と、
排気をリッチ状態にして前記NOx還元型触媒を所定の目標温度まで昇温するリッチ制御と、排気をリーン状態にして前記NOx還元型触媒の温度を降下させるリーン制御とを交互に行うことで前記NOx還元型触媒のNOx浄化能力を回復させる触媒再生を実行する第2再生制御手段と、
前記NOx還元型触媒の触媒温度を取得する温度取得手段と、を備え、
前記第2再生制御手段は、前記第1再生制御手段による前記フィルタ再生によって前記フィルタの粒子状物質堆積量が低下したと判定すると、前記触媒再生を前記リッチ制御から開始し、
前記第2再生制御手段は、前記リーン制御の実行期間を、直前の前記リッチ制御の終了時に前記温度取得手段で取得される触媒温度と前記目標温度との偏差からフィードバック制御によって設定する
排気浄化システム。 An exhaust aftertreatment device in which an exhaust passage of the internal combustion engine is provided with a filter for collecting particulate matter in the exhaust, and a NOx reduction type catalyst for reducing and purifying NOx in the exhaust;
First regeneration control means for performing filter regeneration in which exhaust gas is made rich to burn and remove particulate matter deposited on the filter;
The rich control for raising the temperature of the NOx reduction catalyst to a predetermined target temperature by setting the exhaust to a rich state and the lean control for lowering the temperature of the NOx reduction catalyst by setting the exhaust to a lean state are performed alternately. Second regeneration control means for performing catalyst regeneration for recovering the NOx purification ability of the NOx reduction catalyst;
Temperature acquisition means for acquiring the catalyst temperature of the NOx reduction catalyst ,
When the second regeneration control unit determines that the particulate matter deposition amount of the filter has decreased due to the filter regeneration by the first regeneration control unit, the catalyst regeneration starts from the rich control ,
The second regeneration control means sets an execution period of the lean control by feedback control from a deviation between the catalyst temperature acquired by the temperature acquisition means and the target temperature at the end of the previous rich control. .
請求項1に記載の排気浄化システム。 The exhaust purification system according to claim 1, wherein the feedback control is PID control .
請求項1又は2に記載の排気浄化システム。 The second reproduction control means, the exhaust gas purification system according to claim 1 or 2, set based on execution period of the rich control to the operating condition of the internal combustion engine.
請求項1から3の何れか一項に記載の排気浄化システム。 The second regeneration control means performs the rich control by using post injection or exhaust pipe injection, and calculates the post injection amount or exhaust pipe injection amount as the intake air amount of the internal combustion engine, a predetermined target excess air ratio, and The exhaust purification system according to any one of claims 1 to 3, wherein the exhaust purification system is set based on a fuel injection amount of the internal combustion engine.
請求項4に記載の排気浄化システム。 The second regeneration control means obtains a value obtained by subtracting the fuel injection amount of the internal combustion engine from a value obtained by dividing the intake air amount of the internal combustion engine by the target excess air ratio, the fuel specific gravity, and the theoretical air-fuel ratio. The exhaust purification system according to claim 4, wherein the exhaust purification system is set as a post injection amount or the exhaust pipe injection amount.
前記内燃機関の運転状態から推定した推定ラムダ値と前記ラムダセンサで検出される実ラムダ値との差に基づいて前記内燃機関の燃料噴射量を補正する噴射量補正手段と、をさらに備え、
前記第2再生制御手段は、前記内燃機関の燃料噴射量として前記噴射量補正部による補正後の燃料噴射量を用いる
請求項4又は5に記載の排気浄化システム。 A lambda sensor provided in the exhaust system of the internal combustion engine;
Injection amount correction means for correcting the fuel injection amount of the internal combustion engine based on the difference between the estimated lambda value estimated from the operating state of the internal combustion engine and the actual lambda value detected by the lambda sensor;
The exhaust purification system according to claim 4 or 5, wherein the second regeneration control unit uses the fuel injection amount corrected by the injection amount correction unit as the fuel injection amount of the internal combustion engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014186756A JP6439334B2 (en) | 2014-09-12 | 2014-09-12 | Exhaust purification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014186756A JP6439334B2 (en) | 2014-09-12 | 2014-09-12 | Exhaust purification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016061143A JP2016061143A (en) | 2016-04-25 |
JP6439334B2 true JP6439334B2 (en) | 2018-12-19 |
Family
ID=55795810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014186756A Expired - Fee Related JP6439334B2 (en) | 2014-09-12 | 2014-09-12 | Exhaust purification system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6439334B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6597683B2 (en) * | 2017-03-16 | 2019-10-30 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP2019138162A (en) * | 2018-02-06 | 2019-08-22 | マツダ株式会社 | Control device for engine |
JP2019138160A (en) * | 2018-02-06 | 2019-08-22 | マツダ株式会社 | Control device for engine |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3700221B2 (en) * | 1995-12-01 | 2005-09-28 | 日産自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP3414323B2 (en) * | 1999-06-10 | 2003-06-09 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP3972864B2 (en) * | 2003-06-04 | 2007-09-05 | トヨタ自動車株式会社 | Exhaust gas purification system for internal combustion engine |
JP2005155374A (en) * | 2003-11-21 | 2005-06-16 | Isuzu Motors Ltd | Exhaust emission control method and exhaust emission control system |
JP3876905B2 (en) * | 2004-12-07 | 2007-02-07 | いすゞ自動車株式会社 | Desulfurization control method for exhaust gas purification system and exhaust gas purification system |
JP5900728B2 (en) * | 2011-10-05 | 2016-04-06 | 三菱自動車工業株式会社 | Engine exhaust purification system |
JP5862868B2 (en) * | 2011-11-18 | 2016-02-16 | 三菱自動車工業株式会社 | Engine exhaust purification system |
KR101427919B1 (en) * | 2012-10-11 | 2014-09-23 | 현대자동차 주식회사 | System for purifying exhaust of vehicle and regeneration control method thereof |
-
2014
- 2014-09-12 JP JP2014186756A patent/JP6439334B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016061143A (en) | 2016-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6471857B2 (en) | Exhaust purification system | |
WO2016039451A1 (en) | Exhaust gas purification system | |
WO2016039452A1 (en) | Exhaust gas purification system | |
JP6439334B2 (en) | Exhaust purification system | |
JP6432411B2 (en) | Exhaust purification system | |
WO2016098895A1 (en) | EXHAUST PURIFICATION SYSTEM AND NOx PURIFICATION CAPACITY RECOVERY METHOD | |
JP6405816B2 (en) | Exhaust purification system | |
JP2016223336A (en) | Exhaust emission control device, control device and control method | |
WO2016039453A1 (en) | Exhaust-gas-cleaning system and method for controlling the same | |
WO2016039450A1 (en) | Exhaust-gas-cleaning system and method of controlling same | |
JP6604034B2 (en) | Exhaust purification device | |
JP6435730B2 (en) | Control device for internal combustion engine | |
WO2016104802A1 (en) | Exhaust-gas purification system and exhaust-gas-purification-system controlling method | |
JP6455070B2 (en) | Exhaust purification system | |
JP2016200077A (en) | Exhaust emission control system | |
WO2016039454A1 (en) | Exhaust cleaning system | |
JP2016180383A (en) | Catalyst temperature estimation device | |
JP6550996B2 (en) | Storage amount estimation device | |
JP6398505B2 (en) | Exhaust purification system | |
JP2016084753A (en) | Exhaust emission control system | |
JP2016084752A (en) | Exhaust emission control system | |
JP2016153619A (en) | Exhaust emission control system | |
JP2016133022A (en) | Exhaust emission control system | |
JP2016169720A (en) | Exhaust emission control system | |
JP2016183565A (en) | Storage amount estimation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6439334 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |