WO2022191307A1 - Monitoring device and vehicle - Google Patents

Monitoring device and vehicle Download PDF

Info

Publication number
WO2022191307A1
WO2022191307A1 PCT/JP2022/010797 JP2022010797W WO2022191307A1 WO 2022191307 A1 WO2022191307 A1 WO 2022191307A1 JP 2022010797 W JP2022010797 W JP 2022010797W WO 2022191307 A1 WO2022191307 A1 WO 2022191307A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
filter
ash
ratio
regeneration
Prior art date
Application number
PCT/JP2022/010797
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 菅谷
正敏 原
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2022191307A1 publication Critical patent/WO2022191307A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles

Definitions

  • the present disclosure relates to monitoring devices and vehicles.
  • the exhaust passage of an internal combustion engine is provided with an exhaust purification device such as a PM filter that collects PM (Particulate Matter) contained in the exhaust.
  • an exhaust purification device such as a PM filter that collects PM (Particulate Matter) contained in the exhaust.
  • this type of PM filter has an upper limit to the amount of PM that can be captured (the mass of PM), regeneration is performed by burning and removing PM in the PM filter (see Patent Document 1, for example).
  • the operating conditions of the internal combustion engine are changed to raise the temperature of the exhaust gas.
  • Burn off (hereinafter referred to as "forced regeneration").
  • HC Hydrocarbons
  • the injection amount of HC which is the fuel injected from the injector, is increased, and the HC is injected by an oxidation catalyst disposed in front of the PM filter or supported by the PM filter. is oxidized and the heat of HC oxidation generated by the oxidation catalyst is used.
  • An object of the present disclosure is to provide a monitoring device and a vehicle that can prevent engine oil dilution.
  • the monitoring device in the present disclosure A monitoring device for monitoring the amount of ash deposited on a filter arranged in an exhaust passage of an internal combustion engine, a first deposition amount calculation unit that calculates a first deposition amount of deposits deposited in the filter based on a pressure difference that is the difference between the pressure on the upstream side of the exhaust gas and the pressure on the downstream side of the filter; a second deposit amount calculator that calculates a second deposit amount of deposits deposited in the filter based on the history of the operating state of the internal combustion engine; a monitoring unit that monitors the amount of ash based on the ratio of the first deposition amount to the second deposition amount; Prepare.
  • a vehicle in the present disclosure is A monitoring device as described above.
  • engine oil dilution can be prevented.
  • FIG. 1 is a diagram showing the configuration of a vehicle according to one embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing the configuration of an ECU according to one embodiment of the present disclosure.
  • FIG. 3 is a diagram showing the ratio of the first deposition amount to the second deposition amount.
  • FIG. 4 is a diagram showing the relationship between travel distance and regeneration interval.
  • FIG. 5 is a flow chart showing the operation of the ECU according to one embodiment.
  • FIG. 6 is a diagram showing the relationship between the travel distance and the soot deposit amount.
  • FIG. 7 is a diagram showing the relationship between the travel progress rate and the accumulation progress rate.
  • FIG. 1 A configuration of a monitoring apparatus according to an embodiment will be described below with reference to FIG. In this embodiment, a mode in which the monitoring device of the present invention is applied to a diesel engine vehicle will be described.
  • FIG. 1 is a diagram showing the configuration of a vehicle 1 according to one embodiment of the present disclosure.
  • the vehicle 1 includes an engine 10, an intake passage 20, an exhaust passage 30, an air cleaner 21, a turbocharger 22, an intake throttle valve 23, an EGR device 31, an exhaust purification system 40, an ECU 50 (Electronic Control Unit), and the like. Consists of
  • the engine 10 includes combustion chambers, injectors (not shown), and the like.
  • the engine 10 generates power for the vehicle 1 by repeating an air intake stroke, an air compression stroke, a combustion gas expansion stroke, and a combustion gas exhaust stroke in the combustion chamber.
  • the engine 10 changes the fuel injection mode or the like of the injector to a low fuel consumption/low exhaust gas operation mode (hereinafter referred to as "normal operation") in which fuel consumption is prioritized, or a forced regeneration operation mode in which the PM filter 42 is forcibly regenerated. configured to be switchable.
  • normal operation a low fuel consumption/low exhaust gas operation mode
  • forced regeneration operation mode a forced regeneration operation mode in which the PM filter 42 is forcibly regenerated. configured to be switchable.
  • the engine 10 is a four-cylinder engine, and the intake passage 20 branches into four combustion chambers via an intake manifold, and the four combustion chambers join the exhaust passage 30 via an exhaust manifold. It is configured to
  • the intake passage 20 is an intake pipe that takes in fresh air (air) from an intake port 20 a on the upstream side and supplies the fresh air to the engine 10 .
  • an air cleaner 21, a compressor of a turbocharger 22, an intake throttle valve 23, and the like are provided in this order from an intake port 20a on the upstream side to the combustion chamber.
  • the exhaust passage 30 is an exhaust pipe that discharges post-combustion exhaust from the engine 10 to the outside of the vehicle 1 .
  • an EGR device 31 In the exhaust passage 30, an EGR device 31, a turbine of the turbocharger 22, an exhaust purification system 40, and the like are provided in this order from the engine 10 toward the downstream side.
  • the exhaust purification system 40 includes an oxidation catalyst 41 , a PM filter 42 , a differential pressure sensor 43 , an oxygen concentration sensor 44 and a temperature sensor 45 .
  • the oxidation catalyst 41 oxidizes and removes unburned fuel hydrocarbons and carbon monoxide contained in the exhaust gas.
  • the oxidation catalyst 41 may be any known oxidation catalyst such as platinum or cerium oxide.
  • porous ceramics such as cordierite and silicon carbide are used, and catalyst components are supported on these. .
  • the oxidation catalyst 41 is arranged adjacent to the upstream side of the PM filter 42 in the exhaust passage 30 .
  • the oxidation catalyst 41 also functions to oxidize hydrocarbons (HC) in the unburned fuel discharged from the engine 10 side and increase the temperature of the exhaust gas by the heat of oxidation. do.
  • the PM filter 42 (corresponding to the "filter” of the present invention) captures PM contained in the exhaust.
  • a porous ceramic such as cordierite or silicon carbide is typically used as a material.
  • the PM filter 42 has, for example, a honeycomb structure in which inlets and outlets are alternately plugged so that exhaust gas passes through collection walls made of the porous ceramic.
  • the differential pressure sensor 43 detects the differential pressure across the PM filter 42 (the pressure difference between the pressure on the upstream side and the pressure on the downstream side of the PM filter 42).
  • the oxygen concentration sensor 44 detects the oxygen concentration of exhaust gas on the inlet side of the oxidation catalyst 41 .
  • a temperature sensor 45 detects the temperature of exhaust gas on the inlet side of the oxidation catalyst 41 .
  • the differential pressure sensor 43, the oxygen concentration sensor 44, and the temperature sensor 45 each transmit sensor information (hereinafter abbreviated as “sensor information”) related to sensor values detected by themselves to the ECU 50.
  • the ECU 50 includes an electronic control unit that performs regeneration control of the PM filter 42 and the like.
  • the ECU 50 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, an output port, and the like.
  • the ECU 50 communicates with each part of the vehicle 1 to control them and receive data from them. Further, the ECU 50 acquires sensor information from various sensors (in this embodiment, the differential pressure sensor 43, the oxygen concentration sensor 44, and the temperature sensor 45) provided in the vehicle 1, and controls the exhaust purification system 40 and the vehicle 1. It detects the state of each part of Dotted arrows in FIG. 1 indicate signal paths.
  • FIG. 2 is a block diagram showing the configuration of the ECU 50 according to this embodiment.
  • the ECU 50 includes a first accumulation amount calculation section 51 , a second accumulation amount calculation section 52 , a determination section 53 , a filter regeneration control section 54 and a monitoring section 55 .
  • the arrows in FIG. 2 indicate signal paths.
  • the first deposit amount calculation unit 51 calculates the pressure loss caused by deposits (PM and ash) deposited in the PM filter 42 from the differential pressure across the PM filter 42 indicated by the differential pressure sensor 43. , a first deposition amount, which is the mass of PM deposited in the PM filter 42, is calculated.
  • the differential pressure across the PM filter 42 increases as the PM accumulates on the PM filter 42 .
  • the PM filter 42 is regenerated, the PM deposited on the PM filter 42 is burned and removed, so the differential pressure across the PM filter 42 becomes smaller.
  • the first deposition amount calculation unit 51 calculates PM A first deposition amount of the deposit on the filter 42 is calculated. Note that the correspondence relationship between the differential pressure across the PM filter 42 and the first deposition amount of deposits deposited on the PM filter 42 is obtained in advance by experiments or the like, and is stored in a storage unit (eg, ROM) of the ECU 50 or the like. It is
  • the first deposit amount calculated by the first deposit amount calculator 51 is It contains an error component caused by ash.
  • the second deposit amount calculator 52 estimates the second deposit amount deposited on the PM filter 42 based on the history of the operating state of the engine 10 .
  • the second deposit amount calculation unit 52 determines the operating state of the engine 10 (for example, the fuel injection amount, the engine speed, the engine load, and the EGR rate, etc.), the amount of PM discharged from the engine 10 per unit time is calculated. Then, the second deposit amount calculator 52 calculates the mass of deposits (here, PM) deposited on the PM filter 42 at the present time by accumulating the amount of PM discharged from the engine 10 per unit time. A second deposition amount (soot deposition amount) is calculated.
  • the second deposition amount calculation unit 52 calculates the amount of PM burned and removed from the PM filter 42 per unit time based on the operating state of the engine 10 (for example, the temperature of the exhaust gas and the oxygen concentration of the exhaust gas). Calculate quantity. Then, the second deposition amount calculation unit 52 subtracts the amount of PM to be burned and removed per unit time from the second deposition amount of PM deposited on the PM filter 42 at the start of filter regeneration. A second deposition amount of deposits (here, PM) deposited on the PM filter 42 at the present time is calculated.
  • PM second deposition amount of deposits
  • the amount of PM discharged from the engine 10 per unit time and the amount of PM burned and removed from the PM filter 42 per unit time are obtained in advance by experiments or the like, and are associated with the operating state of the engine 10. are stored in the storage unit (for example, ROM) of the ECU 50 or the like.
  • the determination unit 53 determines whether or not the first accumulation amount of PM in the PM filter 42 has exceeded a predetermined threshold.
  • the determination unit 53 transmits the determination result to the filter regeneration control unit 54 .
  • the predetermined threshold value is obtained through experiments, simulations, or the like, and is stored in the storage unit of the ECU 50 or the like.
  • the filter regeneration control unit 54 receives the determination result from the determination unit 53, and executes forced regeneration of the PM filter 42 when the first deposition amount in the PM filter 42 exceeds a predetermined threshold value.
  • the filter regeneration control unit 54 outputs a control signal to the engine 10 to operate the engine 10 in the forced regeneration operation mode, thereby forcibly regenerating the PM filter 42. play.
  • the engine 10 increases the amount of fuel injected from the injectors or performs multi-injection to increase the amount of HC (hydrocarbons) in the exhaust.
  • the HC is oxidized by the oxidation catalyst 41, and the heat of HC oxidation by the oxidation catalyst 41 is used to raise the temperature of the exhaust gas to a predetermined temperature (for example, 600° C.).
  • a predetermined temperature for example, 600° C.
  • the PM filter 42 is heated, and the PM in the PM filter 42 is removed by combustion using O 2 in the exhaust gas.
  • the filter regeneration control unit 54 causes the exhaust pipe injector to inject the additional fuel instead of injecting the additional fuel in the engine 10 or along with this. You can spray it.
  • the filter regeneration control unit 54 determines the amount of deposits in the PM filter 42 calculated by the first deposition amount calculation unit 51. Either the first deposition amount or the second deposition amount of the deposits (here, PM) in the PM filter 42 calculated by the second deposition amount calculation unit 52 may be used. A larger value of the second deposition amount may be used. However, in consideration of the respective characteristics of the calculation method of the first accumulation amount by the first accumulation amount calculation unit 51 and the calculation method of the second accumulation amount by the second accumulation amount calculation unit 52, the filter regeneration control unit 54 Either the first deposition amount or the second deposition amount may be selectively used depending on the timing of grasping the deposition amount of the deposit in the filter 42 .
  • FIG. 3 is a diagram showing the ratio of the first deposition amount to the second deposition amount.
  • the horizontal axis of FIG. 3 indicates the second deposition amount, and the vertical axis indicates the first deposition amount.
  • the ratio indicated by the slope of the solid line in FIG. 3 is "1"
  • the first deposition amount and the second deposition amount are equal.
  • the ratio exceeds 1 it means that the first deposition amount is larger than the second deposition amount.
  • the monitoring unit 55 calculates the second deposition amount for the second deposition amount. Calculate the ratio of one deposition amount.
  • the monitoring unit 55 calculates the ratio for each predetermined time interval between forced regenerations of the PM filter 42 and in regeneration intervals represented by distances. Then, the monitoring unit 55 monitors the amount of ash (mass of ash) deposited on the PM filter 42 based on the calculated ratio.
  • the slope of the dashed line shows the predetermined threshold of the ratio (Ash warning threshold).
  • a predetermined threshold value the hatched area in FIG. 3
  • the monitoring unit 55 outputs information indicating that the amount of ash deposited on the PM filter 42 is excessive (ash deposition warning information).
  • a vehicle ECU (not shown) or the like is notified.
  • a predetermined threshold value may be stored in the storage unit of the ECU 50 .
  • the monitoring unit 55 may issue an ash accumulation warning when the ratio exceeds a predetermined threshold and when the regeneration interval is equal to or less than a predetermined first distance.
  • a predetermined first distance may be stored in the storage unit of the ECU 50 .
  • FIG. 4 is a diagram showing the relationship between travel distance and reproduction interval.
  • the regeneration interval (first distance) of the ash accumulation warning line is set longer than the regeneration interval (second distance) of the dilution limit line.
  • the monitoring unit 55 issues a dilution warning indicating that the engine oil of the engine 10 has been diluted.
  • a predetermined second distance may be stored in the storage unit of the ECU 50 . Since the first distance is longer than the second distance, the ash build-up warning will always occur before the dilution warning.
  • the dilution warning is given before the ash accumulation warning is given, the occupants of the vehicle are encouraged to change the engine oil and then wash the ash. And it will be a hassle twice with the engine oil change.
  • the ash accumulation warning can prompt the occupant of the vehicle to wash the ash and replace the engine oil at the same time. Don't waste your time.
  • Each function of the ECU 46 described above is realized, for example, by the CPU referring to control programs and various data stored in the ROM, RAM, or the like.
  • the function is not limited to processing by software, and can of course be realized by a dedicated hardware circuit.
  • FIG. 5 is a flow chart showing the operation of the ECU 50 according to this embodiment.
  • the flowchart shown in FIG. 5 is, for example, executed by the ECU 50 at predetermined intervals (for example, every 100 ms) according to a computer program.
  • Each function of the determination unit 53 and the monitoring unit 55 will be described as being executed by the ECU 50 .
  • step S100 the ECU 50 determines whether the forced regeneration of the PM filter 42 has been completed.
  • the ECU 50 advances the process to step S110.
  • the forced regeneration of the PM filter 42 is not completed (S100: NO)
  • the ECU 50 terminates the series of processes of the flow in FIG.
  • step S ⁇ b>110 the ECU 50 calculates a first deposition amount of deposits in the PM filter 42 using the first deposition amount calculation unit 51 .
  • step S ⁇ b>120 the ECU 50 calculates a second deposition amount of deposits in the PM filter 42 using the second deposition amount calculation section 52 .
  • step S130 the ECU 50 determines whether or not the ratio of the first accumulation amount to the second accumulation amount exceeds a predetermined threshold. Then, when the ratio exceeds the predetermined threshold value (S130: YES), the ECU 50 advances the process to step S140. On the other hand, if the ratio is equal to or less than the predetermined threshold (S130: NO), the ECU 50 terminates the series of processes of the flow in FIG.
  • step S140 the ECU 50, for example, transmits to the vehicle ECU ash accumulation warning information indicating that the amount of ash accumulated on the PM filter 42 is excessive.
  • the vehicle ECU receives the information from the ECU 50, the vehicle ECU displays the information on the instrument panel or the like of the vehicle 1 to notify the passenger.
  • the ECU 50 prompts the passenger to wash the ash by informing the passenger of the ash accumulation warning information described above. , it is possible to prevent the dilution of the engine oil.
  • the ECU 50 determines the first deposition amount (deposition calculated based on the differential pressure across the PM filter) after regeneration of the PM filter 42 is completed when the ratio in the regeneration interval exceeds a predetermined threshold value. amount) is greater than a predetermined value, an ash accumulation warning may be issued. Even if the ratio (the ratio of the first deposition amount to the second deposition amount) exceeds the predetermined threshold value, if the first deposition amount is less than the predetermined value, the engine oil may not be diluted immediately after. This is because the amount of ash deposited on the PM filter 42 is low and the urgency to prompt ash cleaning is also low. By waiting for the first deposition amount to exceed the predetermined value, the certainty that the amount of ash deposited on the PM filter 42 is excessive increases. Therefore, it is possible to accurately give an ash accumulation warning.
  • FIG. 3 shows the forced regeneration threshold value as a predetermined value.
  • the ECU 50 monitoring unit 55
  • the ECU 50 determines whether the ratio and the first accumulation amount are within the hatched area.
  • the ECU 50 filter regeneration control unit 54
  • the ECU 50 (monitoring unit 55) issues an ash accumulation warning when the ratio in the regeneration interval (the ratio of the first accumulation amount to the second accumulation amount) exceeds a predetermined threshold value. If the ratio in each regeneration interval also exceeds a predetermined threshold, that is, if the ratio in each adjacent regeneration interval exceeds a predetermined threshold, an ash accumulation warning may be issued.
  • FIG. 6 is a diagram showing the relationship between the traveling distance and the amount of accumulated soot.
  • the horizontal axis indicates the traveling distance
  • the vertical axis indicates the accumulated soot amount, count-up status, error count number, and error status.
  • the upper limit is one count-up per one reproduction interval.
  • the ECU 50 commands an error count up if the ratio exceeds a predetermined threshold. This increments the error count by one.
  • the error status is established when the number of error counts is equal to or greater than a predetermined number of consecutive times. On the other hand, the ECU 50 resets the error count when the discontinuity occurs less than the predetermined number of times.
  • the error count number is stored in the storage section (EEPROM, for example) of the ECU 50 .
  • the error count number and error count status can be monitored by an external tool (eg, instrument panel, etc.). As shown in FIG. 6, the error status becomes "2" after two consecutive error counts, and the ECU 50 issues an ash accumulation warning. Since the number of consecutive error counts increases the certainty that the amount of ash deposited on the PM filter 42 is excessive, it is possible to reliably prevent the engine oil from being diluted.
  • the ECU 50 also calculates a travel progress rate indicating the ratio of the traveled distance from the completion of forced regeneration of the PM filter 42 to a predetermined distance regeneration threshold.
  • the ECU 50 also calculates a deposition progress rate indicating the ratio of the total deposition amount (the deposition amount based on the first deposition amount and the second deposition amount) to a predetermined deposition amount regeneration threshold.
  • the deposition progress rate may be a ratio of a predetermined ratio (the ratio of the first deposition amount to the second deposition amount) to a threshold value.
  • the ECU 50 (monitoring unit 55) calculates the ratio of the accumulation progress rate to the travel progress rate. Note that the distance reproduction threshold value and the accumulation amount reproduction threshold value are obtained through experiments, simulations, or the like, and are stored in the storage unit of the ECU 50 or the like.
  • FIG. 7 is a diagram showing the relationship between the travel progress rate and the accumulation progress rate.
  • the horizontal axis indicates the travel progress rate [%]
  • the vertical axis indicates the accumulation progress rate [%].
  • FIG. 7 shows the predetermined threshold value by the slope of the dashed line.
  • the area exceeding the inclination angle of the dashed line is defined as the dangerous area
  • the area below the inclination angle of the dashed line is defined as the safe area.
  • the ECU 50 (monitoring unit 55) issues an ash accumulation warning when the ratio of the accumulation progress rate to the travel progress rate exceeds a predetermined threshold value (when the ratio is within the danger zone).
  • the predetermined threshold value is obtained through experiments, simulations, or the like, and is stored in the storage unit of the ECU 50 or the like. For example, when the running progress rate is low and the amount of accumulated soot is close to the forced regeneration threshold, the ratio is within the danger zone and the risk of engine oil dilution is high, so an ash accumulation warning is issued. On the other hand, even if the differential pressure across the PM filter 42 is high, the ratio is within the safe range and the risk of diluting the engine oil is low, so the ash accumulation warning is not issued. This makes it possible to reliably issue an ash accumulation warning.
  • the functions of the first accumulation amount calculation unit 51, the second accumulation amount calculation unit 52, the determination unit 53, the filter regeneration control unit 54, and the monitoring unit 55 are integrated into a computer.
  • the function of the filter regeneration control unit 54 and the function of the monitoring unit 55 may be installed in separate ECUs.
  • the exhaust purification system 40 can also be applied to a gasoline engine vehicle.
  • the exhaust gas purification system 40 for an internal combustion engine a mode applied to a vehicle has been shown.
  • the exhaust gas purification system 40 according to the present invention can be applied not only to vehicles but also to other apparatuses having internal combustion engines, such as ships and aircraft.
  • the present disclosure is suitably used for vehicles equipped with a monitoring device that requires prevention of engine oil dilution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

With this monitoring device and vehicle, it is possible to prevent dilution of engine oil in advance. This monitoring device monitors the amount of ash deposited on a filter disposed in an exhaust passage of an internal combustion engine. The monitoring device comprises a first deposited amount calculation unit that calculates a first deposited amount of a deposit deposited in the filter on the basis of a pressure difference that is the difference between pressure on an exhaust upstream side of the filter and pressure on an exhaust downstream side, a second deposited amount calculation unit that calculates a second deposited amount of the deposit deposited in the filter on the basis of the history of the operating status of the internal combustion engine, and a monitoring unit that monitors the amount of ash on the basis of the ratio of the first deposited amount relative to the second deposited amount.

Description

監視装置および車両Surveillance equipment and vehicles
 本開示は、監視装置および車両に関する。 The present disclosure relates to monitoring devices and vehicles.
 一般に、内燃機関の排気通路には、排気に含まれるPM(Particulate Matter:粒子状物質)を捕集するPMフィルタ等の排気浄化装置が設けられている。 In general, the exhaust passage of an internal combustion engine is provided with an exhaust purification device such as a PM filter that collects PM (Particulate Matter) contained in the exhaust.
 この種のPMフィルタは、捕集できるPM量(PMの質量)に上限があるため、PMフィルタ中のPMを燃焼除去する再生が行われる(例えば、特許文献1を参照)。 Since this type of PM filter has an upper limit to the amount of PM that can be captured (the mass of PM), regeneration is performed by burning and removing PM in the PM filter (see Patent Document 1, for example).
 PMフィルタを再生する際には、一般に、内燃機関の運転状態を変更して、排気を高温化し、これにより、PMフィルタを加熱し、PMフィルタ中のPMを、排気中のOを用いて燃焼除去する(以下、「強制再生」と称する)。排気を高温化する手法としては、例えば、インジェクタから噴射する燃料であるHC(Hydrocarbons)の噴射量を増加させ、PMフィルタの前段に配設され又はPMフィルタに担持された酸化触媒にて当該HCを酸化し、酸化触媒で発生するHC酸化熱を利用する方法等が用いられる。 When regenerating the PM filter, generally, the operating conditions of the internal combustion engine are changed to raise the temperature of the exhaust gas. Burn off (hereinafter referred to as "forced regeneration"). As a method for raising the temperature of the exhaust gas, for example, the injection amount of HC (Hydrocarbons), which is the fuel injected from the injector, is increased, and the HC is injected by an oxidation catalyst disposed in front of the PM filter or supported by the PM filter. is oxidized and the heat of HC oxidation generated by the oxidation catalyst is used.
日本国特開2015-172341号公報Japanese Patent Application Laid-Open No. 2015-172341
 ところで、この種のPMフィルタには、車両の走行距離や走行時間が長くなるにつれて、煤成分のPMの堆積だけでなく、排気に含まれるエンジンオイルの成分(例えば、CaSO)に起因するアッシュ(灰状物質)が堆積することが知られている。以下の説明において、PMフィルタに堆積するPMおよびアッシュを「堆積物」という場合がある。 By the way, in this type of PM filter, as the traveling distance and the traveling time of the vehicle become longer, not only the deposition of PM of the soot component but also the ash caused by the engine oil component (for example, CaSO 4 ) contained in the exhaust gas. (ash-like matter) is known to accumulate. In the following description, PM and ash deposited on the PM filter may be referred to as "deposits".
 かかるアッシュは、PMを強制再生する際にも除去されず、PMフィルタ中に堆積し続ける。PMフィルタ中に堆積するアッシュは、強制再生回数を増大させる。強制再生時に噴射される燃料の一部がシリンダー壁を伝わってオイルパンに侵入するため、エンジンオイルのダイリューションを引き起こすという問題がある。 Such ash is not removed even during forced regeneration of PM, and continues to accumulate in the PM filter. Ash deposited in the PM filter increases the number of times of forced regeneration. Part of the fuel injected during forced regeneration travels along the cylinder wall and enters the oil pan, causing a problem of engine oil dilution.
 エンジンオイルのダイリューションを未然に防ぐためには、車両の搭乗者にPMフィルタの交換又はアッシュ洗浄を促す必要がある。 In order to prevent engine oil dilution, it is necessary to encourage vehicle passengers to replace the PM filter or wash the ash.
 本開示の目的は、エンジンオイルのダイリューションを未然に防ぐことが可能な監視装置および車両を提供することである。 An object of the present disclosure is to provide a monitoring device and a vehicle that can prevent engine oil dilution.
 上記の目的を達成するため、本開示における監視装置は、
 内燃機関の排気通路内に配置されたフィルタに堆積するアッシュ量を監視する監視装置であって、
 前記フィルタの排気上流側の圧力と排気下流側の圧力との差である圧力差に基づいて、前記フィルタ中に堆積する堆積物の第1堆積量を算出する第1の堆積量算出部と、
 前記内燃機関の運転状態の履歴に基づいて、前記フィルタ中に堆積する堆積物の第2堆積量を算出する第2の堆積量算出部と、
 前記第2堆積量に対する前記第1堆積量の割合に基づいて、前記アッシュ量を監視する監視部と、
 を備える。
To achieve the above objectives, the monitoring device in the present disclosure
A monitoring device for monitoring the amount of ash deposited on a filter arranged in an exhaust passage of an internal combustion engine,
a first deposition amount calculation unit that calculates a first deposition amount of deposits deposited in the filter based on a pressure difference that is the difference between the pressure on the upstream side of the exhaust gas and the pressure on the downstream side of the filter;
a second deposit amount calculator that calculates a second deposit amount of deposits deposited in the filter based on the history of the operating state of the internal combustion engine;
a monitoring unit that monitors the amount of ash based on the ratio of the first deposition amount to the second deposition amount;
Prepare.
 本開示における車両は、
 上記の監視装置を備える。
A vehicle in the present disclosure is
A monitoring device as described above.
 本開示によれば、エンジンオイルのダイリューションを未然に防ぐことができる。 According to the present disclosure, engine oil dilution can be prevented.
図1は、本開示の一実施の形態に係る車両の構成を示す図である。FIG. 1 is a diagram showing the configuration of a vehicle according to one embodiment of the present disclosure. 図2は、本開示の一実施の形態に係るECUの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of an ECU according to one embodiment of the present disclosure. 図3は、第2堆積量に対する第1堆積量の割合を表す図である。FIG. 3 is a diagram showing the ratio of the first deposition amount to the second deposition amount. 図4は、走行距離と再生インターバルとの関係を示す図である。FIG. 4 is a diagram showing the relationship between travel distance and regeneration interval. 図5は、一実施の形態に係るECUの動作を示すフローチャートである。FIG. 5 is a flow chart showing the operation of the ECU according to one embodiment. 図6は、走行距離とスート堆積量との関係を示す図である。FIG. 6 is a diagram showing the relationship between the travel distance and the soot deposit amount. 図7は、走行進捗率と堆積進捗率との関係を示す図である。FIG. 7 is a diagram showing the relationship between the travel progress rate and the accumulation progress rate.
 以下に添付図面を参照しながら、本開示の好適な実施形態について詳細に説明する。尚、本明細書及び図面において、実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functions are denoted by the same reference numerals, thereby omitting redundant description.
[車両の構成]
 以下、図1を参照して、一実施形態に係る監視装置の構成について説明する。本実施形態では、本発明の監視装置を、ディーゼルエンジン車両に適用した態様ついて説明する。
[Vehicle configuration]
A configuration of a monitoring apparatus according to an embodiment will be described below with reference to FIG. In this embodiment, a mode in which the monitoring device of the present invention is applied to a diesel engine vehicle will be described.
 図1は、本開示の一実施の形態に係る車両1の構成を示す図である。 FIG. 1 is a diagram showing the configuration of a vehicle 1 according to one embodiment of the present disclosure.
 本実施形態に係る車両1は、エンジン10、吸気通路20、排気通路30、エアクリーナ21、ターボチャージャ22、吸気スロットルバルブ23、EGR装置31、排気浄化システム40、及び、ECU50(Electronic Control Unit)等を含んで構成される。 The vehicle 1 according to this embodiment includes an engine 10, an intake passage 20, an exhaust passage 30, an air cleaner 21, a turbocharger 22, an intake throttle valve 23, an EGR device 31, an exhaust purification system 40, an ECU 50 (Electronic Control Unit), and the like. Consists of
 エンジン10は、燃焼室及びインジェクタ(図示せず)等を含んで構成される。エンジン10は、燃焼室内で、空気の吸気行程、空気の圧縮行程、燃焼ガスの膨張行程、及び燃焼ガスの排気行程が繰り返し行われることよって、車両1の動力を生成する。 The engine 10 includes combustion chambers, injectors (not shown), and the like. The engine 10 generates power for the vehicle 1 by repeating an air intake stroke, an air compression stroke, a combustion gas expansion stroke, and a combustion gas exhaust stroke in the combustion chamber.
 エンジン10は、インジェクタにおける燃料噴射態様等を、燃費を優先した低燃費・低排ガス運転モード(以下、「通常運転時」と称する)、又は、PMフィルタ42を強制再生する強制再生運転モード等に切り替え可能に構成されている。 The engine 10 changes the fuel injection mode or the like of the injector to a low fuel consumption/low exhaust gas operation mode (hereinafter referred to as "normal operation") in which fuel consumption is prioritized, or a forced regeneration operation mode in which the PM filter 42 is forcibly regenerated. configured to be switchable.
 尚、本実施形態に係るエンジン10は、4気筒エンジンであり、吸気通路20から吸気マニホルドを介して四つの燃焼室に分岐し、当該四つの燃焼室から排気マニホルドを介して排気通路30に合流する構成となっている。 The engine 10 according to the present embodiment is a four-cylinder engine, and the intake passage 20 branches into four combustion chambers via an intake manifold, and the four combustion chambers join the exhaust passage 30 via an exhaust manifold. It is configured to
 吸気通路20は、上流側の吸気口20aから新気(空気)を吸入し、エンジン10に当該新気を供給する吸気管である。吸気通路20には、上流側の吸気口20aから燃焼室にかけて、順に、エアクリーナ21、ターボチャージャ22のコンプレッサ、及び吸気スロットルバルブ23等が設けられている。 The intake passage 20 is an intake pipe that takes in fresh air (air) from an intake port 20 a on the upstream side and supplies the fresh air to the engine 10 . In the intake passage 20, an air cleaner 21, a compressor of a turbocharger 22, an intake throttle valve 23, and the like are provided in this order from an intake port 20a on the upstream side to the combustion chamber.
 排気通路30は、エンジン10から排出される燃焼後の排気を、車両1の外部に排出する排気管である。排気通路30には、エンジン10から下流側に向かって、順に、EGR装置31、ターボチャージャ22のタービン、及び排気浄化システム40等が設けられている。 The exhaust passage 30 is an exhaust pipe that discharges post-combustion exhaust from the engine 10 to the outside of the vehicle 1 . In the exhaust passage 30, an EGR device 31, a turbine of the turbocharger 22, an exhaust purification system 40, and the like are provided in this order from the engine 10 toward the downstream side.
 排気浄化システム40は、酸化触媒41、PMフィルタ42、差圧センサ43、酸素濃度センサ44、及び、温度センサ45を含んで構成される。 The exhaust purification system 40 includes an oxidation catalyst 41 , a PM filter 42 , a differential pressure sensor 43 , an oxygen concentration sensor 44 and a temperature sensor 45 .
 酸化触媒41は、排気中に含まれる未燃焼燃料の炭化水素や一酸化窒炭素を酸化して除去する。酸化触媒41は、白金や酸化セリウム等の公知の任意の酸化触媒であってよく、例えば、コージェライトや炭化ケイ素等の多孔質セラミックが用いられ、これらに触媒成分を担持して形成されている。 The oxidation catalyst 41 oxidizes and removes unburned fuel hydrocarbons and carbon monoxide contained in the exhaust gas. The oxidation catalyst 41 may be any known oxidation catalyst such as platinum or cerium oxide. For example, porous ceramics such as cordierite and silicon carbide are used, and catalyst components are supported on these. .
 酸化触媒41は、排気通路30のPMフィルタ42の上流側に隣接して配設されている。そして、酸化触媒41は、PMフィルタ42の強制再生時には、エンジン10側から排出される未燃焼燃料の炭化水素(HC)を酸化して、当該酸化熱により、排気を高温化するようにも機能する。 The oxidation catalyst 41 is arranged adjacent to the upstream side of the PM filter 42 in the exhaust passage 30 . When the PM filter 42 is forcibly regenerated, the oxidation catalyst 41 also functions to oxidize hydrocarbons (HC) in the unburned fuel discharged from the engine 10 side and increase the temperature of the exhaust gas by the heat of oxidation. do.
 PMフィルタ42(本発明の「フィルタ」に相当)は、排気中に含まれるPMを捕捉する。PMフィルタ42としては、典型的には、コージェライトや炭化ケイ素の多孔質セラミックが素材として用いられる。PMフィルタ42は、例えば、当該多孔質セラミックで形成した捕集壁中を排気が通過するように入口と出口を交互に目封じしたハニカム構造を呈している。 The PM filter 42 (corresponding to the "filter" of the present invention) captures PM contained in the exhaust. As the PM filter 42, a porous ceramic such as cordierite or silicon carbide is typically used as a material. The PM filter 42 has, for example, a honeycomb structure in which inlets and outlets are alternately plugged so that exhaust gas passes through collection walls made of the porous ceramic.
 差圧センサ43は、PMフィルタ42の前後差圧(PMフィルタ42の上流側の圧力と下流側の圧力との圧力差)を検出する。酸素濃度センサ44は、酸化触媒41の入口側にて、排気の酸素濃度を検出する。温度センサ45は、酸化触媒41の入口側にて、排気の温度を検出する。これらのセンサは、公知の任意のセンサで実現され得る。 The differential pressure sensor 43 detects the differential pressure across the PM filter 42 (the pressure difference between the pressure on the upstream side and the pressure on the downstream side of the PM filter 42). The oxygen concentration sensor 44 detects the oxygen concentration of exhaust gas on the inlet side of the oxidation catalyst 41 . A temperature sensor 45 detects the temperature of exhaust gas on the inlet side of the oxidation catalyst 41 . These sensors can be realized with any known sensors.
 差圧センサ43、酸素濃度センサ44、及び、温度センサ45は、それぞれ、自身が検出したセンサ値に係るセンサ情報(以下、「センサ情報」と略称する)をECU50に送信する。 The differential pressure sensor 43, the oxygen concentration sensor 44, and the temperature sensor 45 each transmit sensor information (hereinafter abbreviated as "sensor information") related to sensor values detected by themselves to the ECU 50.
 ECU50は、PMフィルタ42の再生制御等を行う電子制御ユニットを含む。ECU50は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、及び出力ポート等を含んで構成されている。尚、ECU50は、車両1の各部と通信することで、これらを制御したり、これらからデータを受信したりする。又、ECU50は、車両1に設けられた各種センサ(本実施形態では、差圧センサ43、酸素濃度センサ44、及び、温度センサ45)からセンサ情報を取得して、排気浄化システム40や車両1の各部の状態を検出している。図1中の点線矢印は、信号経路を示す。 The ECU 50 includes an electronic control unit that performs regeneration control of the PM filter 42 and the like. The ECU 50 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, an output port, and the like. The ECU 50 communicates with each part of the vehicle 1 to control them and receive data from them. Further, the ECU 50 acquires sensor information from various sensors (in this embodiment, the differential pressure sensor 43, the oxygen concentration sensor 44, and the temperature sensor 45) provided in the vehicle 1, and controls the exhaust purification system 40 and the vehicle 1. It detects the state of each part of Dotted arrows in FIG. 1 indicate signal paths.
[ECUの構成]
 ここで、図2を参照して、本実施形態に係るECU50(本発明の「監視装置」に相当する)の構成の一例について、説明する。
[Configuration of ECU]
Here, an example of the configuration of the ECU 50 (corresponding to the "monitoring device" of the present invention) according to this embodiment will be described with reference to FIG.
 図2は、本実施形態に係るECU50の構成を示すブロック図である。 FIG. 2 is a block diagram showing the configuration of the ECU 50 according to this embodiment.
 ECU50は、第1の堆積量算出部51、第2の堆積量算出部52、判定部53、フィルタ再生制御部54、及び、監視部55を備えている。尚、図2中の矢印は、信号経路を示す。 The ECU 50 includes a first accumulation amount calculation section 51 , a second accumulation amount calculation section 52 , a determination section 53 , a filter regeneration control section 54 and a monitoring section 55 . The arrows in FIG. 2 indicate signal paths.
 第1の堆積量算出部51は、差圧センサ43が示すPMフィルタ42の前後差圧から、PMフィルタ42中に堆積する堆積物(PMおよびアッシュ)に起因する圧力損失を算出し、これによって、PMフィルタ42中に堆積するPMの質量である第1堆積量を算出する。 The first deposit amount calculation unit 51 calculates the pressure loss caused by deposits (PM and ash) deposited in the PM filter 42 from the differential pressure across the PM filter 42 indicated by the differential pressure sensor 43. , a first deposition amount, which is the mass of PM deposited in the PM filter 42, is calculated.
 PMフィルタ42に堆積した堆積物は、排気の流れを妨げるため、PMフィルタ42にPMが堆積するにつれて、PMフィルタ42の前後差圧も大きくなる。一方、PMフィルタ42のフィルタ再生を実行した際には、PMフィルタ42に堆積したPMが、燃焼除去されるため、PMフィルタ42の前後差圧は小さくなる。 Because the deposits deposited on the PM filter 42 obstruct the flow of exhaust gas, the differential pressure across the PM filter 42 increases as the PM accumulates on the PM filter 42 . On the other hand, when the PM filter 42 is regenerated, the PM deposited on the PM filter 42 is burned and removed, so the differential pressure across the PM filter 42 becomes smaller.
 第1の堆積量算出部51は、このようにPMフィルタ42の前後差圧とPMフィルタ42に堆積した堆積物の堆積量との間の相関に基づいて、PMフィルタ42の前後差圧からPMフィルタ42の堆積物の第1堆積量を算出する。尚、PMフィルタ42の前後差圧とPMフィルタ42に堆積する堆積物の第1堆積量との対応関係は、例えば、予め実験等によって求められ、ECU50等の記憶部(例えば、ROM)に記憶されている。 The first deposition amount calculation unit 51 calculates PM A first deposition amount of the deposit on the filter 42 is calculated. Note that the correspondence relationship between the differential pressure across the PM filter 42 and the first deposition amount of deposits deposited on the PM filter 42 is obtained in advance by experiments or the like, and is stored in a storage unit (eg, ROM) of the ECU 50 or the like. It is
 但し、差圧センサ43が示すPMフィルタ42の前後差圧は、PMフィルタ42に堆積したアッシュに起因した圧力損失も含むため、第1の堆積量算出部51が算出する第1堆積量は、アッシュに起因した誤差成分を含むものとなっている。 However, since the differential pressure across the PM filter 42 indicated by the differential pressure sensor 43 also includes the pressure loss caused by the ash deposited on the PM filter 42, the first deposit amount calculated by the first deposit amount calculator 51 is It contains an error component caused by ash.
 第2の堆積量算出部52は、エンジン10の運転状態の履歴に基づいて、PMフィルタ42に堆積する第2堆積量を推定する。 The second deposit amount calculator 52 estimates the second deposit amount deposited on the PM filter 42 based on the history of the operating state of the engine 10 .
 第2の堆積量算出部52は、通常時(フィルタ再生時以外の場合を表す。以下同じ)には、エンジン10の運転状態(例えば、燃料噴射量、エンジン回転数、エンジン負荷、及び、EGR率等)に基づいて、単位時間当たりにエンジン10から排出されるPM量を算出する。そして、第2の堆積量算出部52は、単位時間当たりにエンジン10から排出されるPM量を積算することにより、現時点におけるPMフィルタ42に堆積する堆積物(ここでは、PM)の質量である第2堆積量(スート堆積量)を算出する。 The second deposit amount calculation unit 52 determines the operating state of the engine 10 (for example, the fuel injection amount, the engine speed, the engine load, and the EGR rate, etc.), the amount of PM discharged from the engine 10 per unit time is calculated. Then, the second deposit amount calculator 52 calculates the mass of deposits (here, PM) deposited on the PM filter 42 at the present time by accumulating the amount of PM discharged from the engine 10 per unit time. A second deposition amount (soot deposition amount) is calculated.
 又、第2の堆積量算出部52は、フィルタ再生時には、エンジン10の運転状態に基づいて(例えば、排気の温度、排気の酸素濃度)、単位時間当たりにPMフィルタ42から燃焼除去されるPM量を算出する。そして、第2の堆積量算出部52は、フィルタ再生開始時にPMフィルタ42に堆積していたPMの第2堆積量から、単位時間当たりに燃焼除去されるPM量を減算していくことにより、現時点におけるPMフィルタ42に堆積する堆積物(ここでは、PM)の第2堆積量を算出する。 Further, during filter regeneration, the second deposition amount calculation unit 52 calculates the amount of PM burned and removed from the PM filter 42 per unit time based on the operating state of the engine 10 (for example, the temperature of the exhaust gas and the oxygen concentration of the exhaust gas). Calculate quantity. Then, the second deposition amount calculation unit 52 subtracts the amount of PM to be burned and removed per unit time from the second deposition amount of PM deposited on the PM filter 42 at the start of filter regeneration. A second deposition amount of deposits (here, PM) deposited on the PM filter 42 at the present time is calculated.
 ここで、単位時間当たりにエンジン10から排出されるPM量、及び、単位時間当たりにPMフィルタ42から燃焼除去されるPM量は、例えば、予め実験等により求められ、エンジン10の運転状態と関連付けて、ECU50の記憶部(例えば、ROM)等に記憶されている。 Here, the amount of PM discharged from the engine 10 per unit time and the amount of PM burned and removed from the PM filter 42 per unit time are obtained in advance by experiments or the like, and are associated with the operating state of the engine 10. are stored in the storage unit (for example, ROM) of the ECU 50 or the like.
 判定部53は、PMフィルタ42中のPMの第1堆積量が所定の閾値を超えたか否かについて判定する。判定部53は、判定結果をフィルタ再生制御部54に送信する。所定の閾値は、実験や、シミュレーション等により求められ、ECU50の記憶部等に記憶されている。 The determination unit 53 determines whether or not the first accumulation amount of PM in the PM filter 42 has exceeded a predetermined threshold. The determination unit 53 transmits the determination result to the filter regeneration control unit 54 . The predetermined threshold value is obtained through experiments, simulations, or the like, and is stored in the storage unit of the ECU 50 or the like.
 フィルタ再生制御部54は、判定部53から判定結果を受信し、PMフィルタ42中の第1堆積量が所定の閾値を超えた場合に、PMフィルタ42の強制再生を実行する。フィルタ再生制御部54は、PMフィルタ42を強制再生する際には、例えば、エンジン10に対して制御信号を出力して、エンジン10を強制再生運転モードで運転させることによって、PMフィルタ42の強制再生を行う。 The filter regeneration control unit 54 receives the determination result from the determination unit 53, and executes forced regeneration of the PM filter 42 when the first deposition amount in the PM filter 42 exceeds a predetermined threshold value. When the PM filter 42 is forcibly regenerated, the filter regeneration control unit 54 outputs a control signal to the engine 10 to operate the engine 10 in the forced regeneration operation mode, thereby forcibly regenerating the PM filter 42. play.
 強制再生運転モードにおいては、例えば、エンジン10は、インジェクタから噴射する燃料噴射量を増加したり、マルチ噴射を実行したりして、排気中のHC(炭化水素)量を増加させる。これによって、酸化触媒41で当該HCを酸化させ、酸化触媒41でのHC酸化熱を利用して、排気を所定温度(例えば600℃)程度まで昇温させる。これにより、PMフィルタ42を加熱し、当該PMフィルタ42中のPMを、排気中のOを用いて燃焼除去する。 In the forced regeneration operation mode, for example, the engine 10 increases the amount of fuel injected from the injectors or performs multi-injection to increase the amount of HC (hydrocarbons) in the exhaust. As a result, the HC is oxidized by the oxidation catalyst 41, and the heat of HC oxidation by the oxidation catalyst 41 is used to raise the temperature of the exhaust gas to a predetermined temperature (for example, 600° C.). As a result, the PM filter 42 is heated, and the PM in the PM filter 42 is removed by combustion using O 2 in the exhaust gas.
 但し、強制再生の手法としては、従来公知の種々の手法を適用することが可能である。例えば、車両1が排気管インジェクタを搭載している場合には、フィルタ再生制御部54は、エンジン10にて追加燃料を噴射させる代わりに、又は、これと共に、当該排気管インジェクタにて追加燃料を噴射させてもよい。 However, as a method of forced regeneration, it is possible to apply various conventionally known methods. For example, when the vehicle 1 is equipped with an exhaust pipe injector, the filter regeneration control unit 54 causes the exhaust pipe injector to inject the additional fuel instead of injecting the additional fuel in the engine 10 or along with this. You can spray it.
 尚、ここでは、フィルタ再生制御部54は、PMフィルタ42を強制再生するか否かを判断する際には、第1の堆積量算出部51により算出されたPMフィルタ42中の堆積物の第1堆積量又は第2の堆積量算出部52により算出されたPMフィルタ42中の堆積物(ここではPM)の第2堆積量のいずれの値を用いてもよく、また、第1堆積量および第2堆積量のうちの多い方の値を用いてもよい。但し、第1の堆積量算出部51による第1堆積量の算出方法及び第2の堆積量算出部52による第2堆積量の算出方法それぞれの特性に鑑みて、フィルタ再生制御部54は、PMフィルタ42中の堆積物の堆積量を把握するタイミングに応じて、選択的に、第1堆積量又は第2堆積量のいずれか一方の値を用いてもよい。 Here, when determining whether or not to forcibly regenerate the PM filter 42, the filter regeneration control unit 54 determines the amount of deposits in the PM filter 42 calculated by the first deposition amount calculation unit 51. Either the first deposition amount or the second deposition amount of the deposits (here, PM) in the PM filter 42 calculated by the second deposition amount calculation unit 52 may be used. A larger value of the second deposition amount may be used. However, in consideration of the respective characteristics of the calculation method of the first accumulation amount by the first accumulation amount calculation unit 51 and the calculation method of the second accumulation amount by the second accumulation amount calculation unit 52, the filter regeneration control unit 54 Either the first deposition amount or the second deposition amount may be selectively used depending on the timing of grasping the deposition amount of the deposit in the filter 42 .
 図3は、第2堆積量に対する第1堆積量の割合を表す図である。図3の横軸に第2堆積量を示し、縦軸に第1堆積量を示す。図3に実線の傾きで示す割合が「1」である場合は、第1堆積量と第2堆積量とが等しい場合である。また、割合が1を超える場合は、第1堆積量が第2堆積量よりも多い場合である。監視部55は、第1の堆積量算出部51により算出される第1堆積量と、第2の堆積量算出部52により算出される第2堆積量とに基づいて、第2堆積量に対する第1堆積量の割合を算出する。監視部55は、PMフィルタ42の強制再生の合間であって、距離で表される再生インターバルにおいて、所定の時間間隔毎に上記割合を算出する。そして、監視部55は、算出した割合に基づいて、PMフィルタ42に堆積するアッシュ量(アッシュの質量)を監視する。 FIG. 3 is a diagram showing the ratio of the first deposition amount to the second deposition amount. The horizontal axis of FIG. 3 indicates the second deposition amount, and the vertical axis indicates the first deposition amount. When the ratio indicated by the slope of the solid line in FIG. 3 is "1", the first deposition amount and the second deposition amount are equal. Further, when the ratio exceeds 1, it means that the first deposition amount is larger than the second deposition amount. Based on the first deposition amount calculated by the first deposition amount calculation unit 51 and the second deposition amount calculated by the second deposition amount calculation unit 52, the monitoring unit 55 calculates the second deposition amount for the second deposition amount. Calculate the ratio of one deposition amount. The monitoring unit 55 calculates the ratio for each predetermined time interval between forced regenerations of the PM filter 42 and in regeneration intervals represented by distances. Then, the monitoring unit 55 monitors the amount of ash (mass of ash) deposited on the PM filter 42 based on the calculated ratio.
 図3に破線の傾きで割合の所定の閾値(Ash警告閾値)を示す。監視部55は、算出した割合が所定の閾値を超えている場合(図3にハッチングで示す領域)、PMフィルタ42に堆積するアッシュ量が過多であることを示す情報(アッシュ堆積警告情報)を車両ECU(図示せず)等に報知する。ECU50の記憶部には、所定の閾値が記憶されていてもよい。 In FIG. 3, the slope of the dashed line shows the predetermined threshold of the ratio (Ash warning threshold). When the calculated ratio exceeds a predetermined threshold value (the hatched area in FIG. 3), the monitoring unit 55 outputs information indicating that the amount of ash deposited on the PM filter 42 is excessive (ash deposition warning information). A vehicle ECU (not shown) or the like is notified. A predetermined threshold value may be stored in the storage unit of the ECU 50 .
 なお、監視部55は、上記割合が所定の閾値を超えている場合、かつ、再生インターバルが所定の第1距離以下である場合、アッシュ堆積警告を行ってもよい。ECU50の記憶部には、所定の第1距離が記憶されていてもよい。 Note that the monitoring unit 55 may issue an ash accumulation warning when the ratio exceeds a predetermined threshold and when the regeneration interval is equal to or less than a predetermined first distance. A predetermined first distance may be stored in the storage unit of the ECU 50 .
 図4は、走行距離と再生インターバルとの関係を示す図である。図4に示すように、アッシュ堆積警告ラインの再生インターバル(第1距離)がダイリューション限界ラインの再生インターバル(第2距離)よりも長く設定される。監視部55は、再生インターバルが第2距離になった場合、エンジン10のエンジンオイルが希釈されたことを示すダイリューション警告を行う。ECU50の記憶部には、所定の第2距離が記憶されていてもよい。第1距離が第2距離よりも長いため、ダイリューション警告が行われる前に、アッシュ堆積警告が必ず行われることになる。これに対し、アッシュ堆積警告が行われる前に、ダイリューション警告が行われる場合、車両の搭乗者にエンジンオイルの交換を促した後、アッシュ洗浄を促すことになるため、搭乗者にとってアッシュ洗浄とエンジンオイル交換との二度手間となる。本実施の形態では、アッシュ堆積警告により、車両の搭乗者にアッシュ洗浄およびエンジンオイルの交換のそれぞれを同時に促すことができるため、一度にアッシュ洗浄とエンジンオイル交換とができるため、搭乗者にとって二度手間とならない。 FIG. 4 is a diagram showing the relationship between travel distance and reproduction interval. As shown in FIG. 4, the regeneration interval (first distance) of the ash accumulation warning line is set longer than the regeneration interval (second distance) of the dilution limit line. When the regeneration interval reaches the second distance, the monitoring unit 55 issues a dilution warning indicating that the engine oil of the engine 10 has been diluted. A predetermined second distance may be stored in the storage unit of the ECU 50 . Since the first distance is longer than the second distance, the ash build-up warning will always occur before the dilution warning. On the other hand, if the dilution warning is given before the ash accumulation warning is given, the occupants of the vehicle are encouraged to change the engine oil and then wash the ash. And it will be a hassle twice with the engine oil change. In the present embodiment, the ash accumulation warning can prompt the occupant of the vehicle to wash the ash and replace the engine oil at the same time. Don't waste your time.
 尚、ECU46の上記した各機能は、例えば、CPUがROM、RAM等に記憶された制御プログラムや各種データを参照することによって実現される。但し、当該機能は、ソフトウェアによる処理に限られず、専用のハードウェア回路によっても実現できることは勿論である。 Each function of the ECU 46 described above is realized, for example, by the CPU referring to control programs and various data stored in the ROM, RAM, or the like. However, the function is not limited to processing by software, and can of course be realized by a dedicated hardware circuit.
[ECUの動作]
 次に、図5を参照して、本実施形態に係るECU50の動作の一例について説明する。図5は、本実施形態に係るECU50の動作を示すフローチャートである。図5に示すフローチャートは、例えば、ECU50がコンピュータプログラムに従って、所定間隔(例えば、100ms毎)で実行するものである。判定部53および監視部55のそれぞれの機能はECU50が実行するものとして説明する。
[Operation of ECU]
Next, an example of the operation of the ECU 50 according to this embodiment will be described with reference to FIG. FIG. 5 is a flow chart showing the operation of the ECU 50 according to this embodiment. The flowchart shown in FIG. 5 is, for example, executed by the ECU 50 at predetermined intervals (for example, every 100 ms) according to a computer program. Each function of the determination unit 53 and the monitoring unit 55 will be described as being executed by the ECU 50 .
 ステップS100において、ECU50は、PMフィルタ42の強制再生が完了したか否かを判定する。ここで、PMフィルタ42の強制再生が完了した場合(S100:YES)、ECU50は、ステップS110に処理を進める。一方、PMフィルタ42の強制再生が完了しない場合(S100:NO)、ECU50は、図5の一連のフローの処理を終了する。 In step S100, the ECU 50 determines whether the forced regeneration of the PM filter 42 has been completed. Here, when the forced regeneration of the PM filter 42 is completed (S100: YES), the ECU 50 advances the process to step S110. On the other hand, if the forced regeneration of the PM filter 42 is not completed (S100: NO), the ECU 50 terminates the series of processes of the flow in FIG.
 ステップS110において、ECU50は、第1の堆積量算出部51によって、PMフィルタ42中の堆積物の第1堆積量を算出する。 In step S<b>110 , the ECU 50 calculates a first deposition amount of deposits in the PM filter 42 using the first deposition amount calculation unit 51 .
 次に、ステップS120において、ECU50は、第2の堆積量算出部52によって、PMフィルタ42中の堆積物の第2堆積量を算出する。 Next, in step S<b>120 , the ECU 50 calculates a second deposition amount of deposits in the PM filter 42 using the second deposition amount calculation section 52 .
 次に、ステップS130において、ECU50は、第2堆積量に対する第1堆積量の割合が所定の閾値を超えているか否かについて判定する。そして、当該割合が所定の閾値を超えている場合(S130:YES)、ECU50は、ステップS140に処理を進める。一方、当該割合が所定の閾値以下である場合(S130:NO)、ECU50は、図5の一連のフローの処理を終了する。 Next, in step S130, the ECU 50 determines whether or not the ratio of the first accumulation amount to the second accumulation amount exceeds a predetermined threshold. Then, when the ratio exceeds the predetermined threshold value (S130: YES), the ECU 50 advances the process to step S140. On the other hand, if the ratio is equal to or less than the predetermined threshold (S130: NO), the ECU 50 terminates the series of processes of the flow in FIG.
 ステップS140において、ECU50は、例えば、車両ECUに、PMフィルタ42に堆積するアッシュ量が過多であることを示すアッシュ堆積警告情報を送信する。尚、車両ECUは、ECU50から当該情報を受けた場合、車両1のインストルメントパネル等にその情報を表示し、搭乗者に対して報知する。 In step S140, the ECU 50, for example, transmits to the vehicle ECU ash accumulation warning information indicating that the amount of ash accumulated on the PM filter 42 is excessive. When the vehicle ECU receives the information from the ECU 50, the vehicle ECU displays the information on the instrument panel or the like of the vehicle 1 to notify the passenger.
 本実施形態に係るECU50は、上記のアッシュ堆積警告情報を搭乗者に対して報知することによって、搭乗者にアッシュ洗浄を促し、これにより、アッシュ洗浄およびエンジンオイルの交換が一度に行われることで、エンジンオイルのダイリューションを未然に防ぐことが可能となる。 The ECU 50 according to the present embodiment prompts the passenger to wash the ash by informing the passenger of the ash accumulation warning information described above. , it is possible to prevent the dilution of the engine oil.
 尚、ECU50(監視部55)は、再生インターバルにおける割合が所定の閾値を超える場合、かつ、PMフィルタ42の再生の完了後における第1堆積量(PMフィルタの前後差圧に基づいて算出した堆積量)が所定値よりも多い場合、アッシュ堆積警告を行うようにしてもよい。割合(第2堆積量に対する第1堆積量の割合)が所定の閾値を超えた場合でも、第1堆積量が所定値よりも少ない場合、直後に、エンジンオイルのダイリューションを引き起こす可能性は低く、アッシュ洗浄等を促す緊急性も低いためであり、第1堆積量が所定値よりも多くなることを待つことで、PMフィルタ42に堆積するアッシュ量が過多であることの確実性が上がるため、アッシュ堆積警告を正確に行うことが可能となる。 Note that the ECU 50 (monitoring unit 55) determines the first deposition amount (deposition calculated based on the differential pressure across the PM filter) after regeneration of the PM filter 42 is completed when the ratio in the regeneration interval exceeds a predetermined threshold value. amount) is greater than a predetermined value, an ash accumulation warning may be issued. Even if the ratio (the ratio of the first deposition amount to the second deposition amount) exceeds the predetermined threshold value, if the first deposition amount is less than the predetermined value, the engine oil may not be diluted immediately after. This is because the amount of ash deposited on the PM filter 42 is low and the urgency to prompt ash cleaning is also low. By waiting for the first deposition amount to exceed the predetermined value, the certainty that the amount of ash deposited on the PM filter 42 is excessive increases. Therefore, it is possible to accurately give an ash accumulation warning.
 図3を参照して説明する。図3に、所定値として強制再生閾値を示す。ECU50(監視部55)は、割合が所定の閾値を超えた場合、かつ、第1堆積量が強制再生閾値を超えた場合、つまり、割合および第1堆積量が網掛けのハッチングで示す領域内である場合、アッシュ堆積警告を行うとともに、ECU50(フィルタ再生制御部54)は、PMフィルタ42の強制再生を行う。 Description will be made with reference to FIG. FIG. 3 shows the forced regeneration threshold value as a predetermined value. When the ratio exceeds a predetermined threshold value and the first accumulation amount exceeds the forced regeneration threshold value, the ECU 50 (monitoring unit 55) determines whether the ratio and the first accumulation amount are within the hatched area. , the ECU 50 (filter regeneration control unit 54) performs forced regeneration of the PM filter 42 while issuing an ash accumulation warning.
 また上記では、ECU50(監視部55)は、再生インターバルにおける割合(第2堆積量に対する第1堆積量の割合)が所定の閾値を超える場合、アッシュ堆積警告を行うが、これに代えて、次の再生インターバルにおいても割合が所定の閾値を超える場合、つまり、隣接する再生インターバルのそれぞれにおける割合が所定の閾値を超える場合、アッシュ堆積警告を行うようにしてもよい。 In the above description, the ECU 50 (monitoring unit 55) issues an ash accumulation warning when the ratio in the regeneration interval (the ratio of the first accumulation amount to the second accumulation amount) exceeds a predetermined threshold value. If the ratio in each regeneration interval also exceeds a predetermined threshold, that is, if the ratio in each adjacent regeneration interval exceeds a predetermined threshold, an ash accumulation warning may be issued.
 図6を参照して説明する。図6は、走行距離とスート堆積量との関係等を示す図である。図6の横軸に走行距離、縦軸にスート堆積量、カウントアップステータス、エラーカウント数、及び、エラーステイタスを示す。なお、1再生インターバルに1カウントアップが上限である。ECU50は、割合が所定の閾値を超える場合、エラーカウントアップを指令する。これにより、エラーカウント数が1つ上がる。連続所定回数以上のエラーカウント数でエラーステイタスが成立する。一方、ECU50は、所定回数未満で非連続となった場合エラーカウント数をリセットする。エラーカウント数はECU50の記憶部(例えばEEPROM)に格納される。エラーカウント数およびエラーカウントステイタスは、外部ツール(例えば、インストルメントパネル等)でモニター可能である。図6に示すように、連続2回のエラーカウント数でエラーステイタスが「2」となり、ECU50は、アッシュ堆積警告を行う。連続2回のエラーカウント数で、PMフィルタ42に堆積するアッシュ量が過多であることの確実性が上がるため、エンジンオイルのダイリューションを確実に防止することが可能となる。 Description will be made with reference to FIG. FIG. 6 is a diagram showing the relationship between the traveling distance and the amount of accumulated soot. In FIG. 6, the horizontal axis indicates the traveling distance, and the vertical axis indicates the accumulated soot amount, count-up status, error count number, and error status. Note that the upper limit is one count-up per one reproduction interval. The ECU 50 commands an error count up if the ratio exceeds a predetermined threshold. This increments the error count by one. The error status is established when the number of error counts is equal to or greater than a predetermined number of consecutive times. On the other hand, the ECU 50 resets the error count when the discontinuity occurs less than the predetermined number of times. The error count number is stored in the storage section (EEPROM, for example) of the ECU 50 . The error count number and error count status can be monitored by an external tool (eg, instrument panel, etc.). As shown in FIG. 6, the error status becomes "2" after two consecutive error counts, and the ECU 50 issues an ash accumulation warning. Since the number of consecutive error counts increases the certainty that the amount of ash deposited on the PM filter 42 is excessive, it is possible to reliably prevent the engine oil from being diluted.
 また、ECU50(監視部55)は、予め定められた距離再生閾値に対するPMフィルタ42の強制再生の完了からの走行距離の比率を示す走行進捗率を算出する。また、ECU50(監視部55)は、予め定められた堆積量再生閾値に対する総合堆積量(第1堆積量および第2堆積量に基づく堆積量)の比率を示す堆積進捗率を算出する。なお、堆積進捗率は、予め定められた割合(第2堆積量に対する第1堆積量の割合)の閾値に対する割合でもよい。さらに、ECU50(監視部55)は、走行進捗率に対する堆積進捗率の比率を算出する。なお、距離再生閾値および堆積量再生閾値は、実験や、シミュレーション等により求められ、ECU50の記憶部等に記憶される。 The ECU 50 (monitoring unit 55) also calculates a travel progress rate indicating the ratio of the traveled distance from the completion of forced regeneration of the PM filter 42 to a predetermined distance regeneration threshold. The ECU 50 (monitoring unit 55) also calculates a deposition progress rate indicating the ratio of the total deposition amount (the deposition amount based on the first deposition amount and the second deposition amount) to a predetermined deposition amount regeneration threshold. Note that the deposition progress rate may be a ratio of a predetermined ratio (the ratio of the first deposition amount to the second deposition amount) to a threshold value. Furthermore, the ECU 50 (monitoring unit 55) calculates the ratio of the accumulation progress rate to the travel progress rate. Note that the distance reproduction threshold value and the accumulation amount reproduction threshold value are obtained through experiments, simulations, or the like, and are stored in the storage unit of the ECU 50 or the like.
 図7を参照して説明する。図7は、走行進捗率と堆積進捗率との関係を示す図である。図7の横軸に走行進捗率[%]を示し、縦軸に堆積進捗率[%]を示す。図7に所定の閾値を破線の傾きで示す。ここでは、破線の傾斜角を超える領域を危険領域とし、破線の傾斜角未満の領域を安全領域とする。ECU50(監視部55)は、走行進捗率に対する堆積進捗率の比率が所定の閾値を超えた場合(比率が危険領域内である場合)、アッシュ堆積警告を行う。所定の閾値は、実験や、シミュレーション等により求められ、ECU50の記憶部等に記憶される。例えば、走行進捗率が低い場合でスート堆積量が強制再生閾値に近い場合、比率が危険領域内であって、エンジンオイルのダイリューションを引き起こす危険性が高いため、アッシュ堆積警告を行う。一方で、PMフィルタ42の前後差圧が高い場合であっても、比率が安全領域内であって、エンジンオイルのダイリューションを引き起こす危険性が低いため、アッシュ堆積警告を行わない。これにより、アッシュ堆積警告を確実に行うことが可能となる。 Description will be made with reference to FIG. FIG. 7 is a diagram showing the relationship between the travel progress rate and the accumulation progress rate. In FIG. 7, the horizontal axis indicates the travel progress rate [%], and the vertical axis indicates the accumulation progress rate [%]. FIG. 7 shows the predetermined threshold value by the slope of the dashed line. Here, the area exceeding the inclination angle of the dashed line is defined as the dangerous area, and the area below the inclination angle of the dashed line is defined as the safe area. The ECU 50 (monitoring unit 55) issues an ash accumulation warning when the ratio of the accumulation progress rate to the travel progress rate exceeds a predetermined threshold value (when the ratio is within the danger zone). The predetermined threshold value is obtained through experiments, simulations, or the like, and is stored in the storage unit of the ECU 50 or the like. For example, when the running progress rate is low and the amount of accumulated soot is close to the forced regeneration threshold, the ratio is within the danger zone and the risk of engine oil dilution is high, so an ash accumulation warning is issued. On the other hand, even if the differential pressure across the PM filter 42 is high, the ratio is within the safe range and the risk of diluting the engine oil is low, so the ash accumulation warning is not issued. This makes it possible to reliably issue an ash accumulation warning.
(その他の実施形態)
 本発明は、上記実施形態に限らず、種々に変形態様が考えられる。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and various modifications are conceivable.
 上記実施形態では、ECU50の構成の一例として、第1の堆積量算出部51、第2の堆積量算出部52、判定部53、フィルタ再生制御部54、及び監視部55の機能が一のコンピュータによって実現されるものとして記載したが、複数のコンピュータによって実現されてもよいのは勿論である。例えば、フィルタ再生制御部54の機能と、監視部55の機能とは、それぞれ別個のECUに搭載されてもよい。 In the above-described embodiment, as an example of the configuration of the ECU 50, the functions of the first accumulation amount calculation unit 51, the second accumulation amount calculation unit 52, the determination unit 53, the filter regeneration control unit 54, and the monitoring unit 55 are integrated into a computer. Although described as being implemented by a plurality of computers, it is of course possible. For example, the function of the filter regeneration control unit 54 and the function of the monitoring unit 55 may be installed in separate ECUs.
 又、上記実施形態では、排気浄化システム40を適用する車両1の一例として、ディーゼルエンジン車両に適用した態様ついて説明した。但し、本発明に係る排気浄化システム40は、ガソリンンジン車両にも適用し得る。 Also, in the above embodiment, as an example of the vehicle 1 to which the exhaust gas purification system 40 is applied, a mode in which it is applied to a diesel engine vehicle has been described. However, the exhaust purification system 40 according to the present invention can also be applied to a gasoline engine vehicle.
 又、上記実施形態では、内燃機関の排気浄化システム40の一例として、車両に適用する態様を示した。しかしながら、本発明に係る排気浄化システム40は、車両に限らず、船舶や航空機等、その他の内燃機関を備える装置にも適用し得るのは勿論である。 Also, in the above embodiment, as an example of the exhaust gas purification system 40 for an internal combustion engine, a mode applied to a vehicle has been shown. However, the exhaust gas purification system 40 according to the present invention can be applied not only to vehicles but also to other apparatuses having internal combustion engines, such as ships and aircraft.
 その他、上記実施の形態は、何れも本開示の実施をするにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 In addition, the above-described embodiments are merely examples of specific implementations of the present disclosure, and the technical scope of the present disclosure should not be construed to be limited by these. . That is, the present disclosure can be embodied in various forms without departing from its spirit or key features.
 本出願は、2021年3月11日付けで出願された日本国特許出願(特願2021-039140)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-039140) filed on March 11, 2021, the contents of which are incorporated herein by reference.
 本開示は、エンジンオイルのダイリューションを未然に防ぐことが要求される監視装置を備えた車両に好適に利用される。 The present disclosure is suitably used for vehicles equipped with a monitoring device that requires prevention of engine oil dilution.
 1 車両
 10 エンジン
 20 吸気通路
 21 エアクリーナ
 22 ターボチャージャ
 23 吸気スロットルバルブ
 30 排気通路
 31 EGR装置
 40 排気浄化システム
 41 酸化触媒
 42 PMフィルタ
 43 差圧センサ
 44 酸素濃度センサ
 45 温度センサ
 50 ECU(監視装置)
 51 第1の堆積量算出部
 52 第2の堆積量算出部
 53 判定部
 54 フィルタ再生制御部
 55 監視部
1 vehicle 10 engine 20 intake passage 21 air cleaner 22 turbocharger 23 intake throttle valve 30 exhaust passage 31 EGR device 40 exhaust purification system 41 oxidation catalyst 42 PM filter 43 differential pressure sensor 44 oxygen concentration sensor 45 temperature sensor 50 ECU (monitoring device)
51 First accumulation amount calculator 52 Second accumulation amount calculator 53 Judgment unit 54 Filter regeneration control unit 55 Monitoring unit

Claims (8)

  1.  内燃機関の排気通路内に配置されたフィルタに堆積するアッシュ量を監視する監視装置であって、
     前記フィルタの排気上流側の圧力と排気下流側の圧力との差である圧力差に基づいて、前記フィルタ中に堆積する堆積物の第1堆積量を算出する第1の堆積量算出部と、
     前記内燃機関の運転状態の履歴に基づいて、前記フィルタ中に堆積する堆積物の第2堆積量を算出する第2の堆積量算出部と、
     前記第2堆積量に対する前記第1堆積量の割合に基づいて、前記アッシュ量を監視する監視部と、
     を備える、
     監視装置。
    A monitoring device for monitoring the amount of ash deposited on a filter arranged in an exhaust passage of an internal combustion engine,
    a first deposition amount calculation unit that calculates a first deposition amount of deposits deposited in the filter based on a pressure difference that is the difference between the pressure on the upstream side of the exhaust gas and the pressure on the downstream side of the filter;
    a second deposit amount calculator that calculates a second deposit amount of deposits deposited in the filter based on the history of the operating state of the internal combustion engine;
    a monitoring unit that monitors the amount of ash based on the ratio of the first deposition amount to the second deposition amount;
    comprising
    surveillance equipment.
  2.  前記監視部は、前記フィルタの再生インターバルにおける前記割合が所定の閾値を超えている場合、前記フィルタに堆積する前記アッシュ量が過多であることを示すアッシュ堆積警告を行う、
     請求項1に記載の監視装置。
    When the ratio in the regeneration interval of the filter exceeds a predetermined threshold, the monitoring unit issues an ash deposition warning indicating that the amount of ash deposited on the filter is excessive.
    A monitoring device according to claim 1 .
  3.  前記監視部は、前記再生インターバルが所定の第1距離以下である場合、前記アッシュ堆積警告を行う、
     請求項2に記載の監視装置。
    The monitoring unit issues the ash accumulation warning when the regeneration interval is equal to or less than a predetermined first distance.
    3. A monitoring device according to claim 2.
  4.  前記監視部は、前記再生インターバルが前記所定の第1距離よりも短い所定の第2距離以下である場合、前記内燃機関の潤滑油が希釈されたことを示すダイリューション警告を行う、
     請求項3に記載の監視装置。
    When the regeneration interval is equal to or less than a predetermined second distance that is shorter than the predetermined first distance, the monitoring unit issues a dilution warning indicating that the lubricating oil of the internal combustion engine has been diluted.
    4. A monitoring device according to claim 3.
  5.  前記監視部は、前記再生インターバルにおける前記割合が所定の閾値を超え、かつ、前記再生インターバルの次の再生インターバルにおける前記割合が所定の閾値を超えている場合、前記アッシュ堆積警告を行う、
     請求項2に記載の監視装置。
    The monitoring unit issues the ash accumulation warning when the ratio in the regeneration interval exceeds a predetermined threshold and the ratio in the regeneration interval next to the regeneration interval exceeds a predetermined threshold.
    3. A monitoring device according to claim 2.
  6.  前記フィルタの再生の完了後における前記第1堆積量が所定値よりも多いか否かについて判定する判定部をさらに備え、
     前記監視部は、前記判定部の判定結果と前記割合とに基づいて、前記アッシュ量を監視する、
     請求項1に記載の監視装置。
    further comprising a determination unit that determines whether the first deposition amount after completion of regeneration of the filter is greater than a predetermined value;
    The monitoring unit monitors the amount of ash based on the determination result of the determination unit and the ratio.
    A monitoring device according to claim 1 .
  7.  前記監視部は、前記第1堆積量および前記第2堆積量に基づく堆積量を総合堆積量とし、予め定められた距離再生閾値に対する前記フィルタの再生の完了からの走行距離の比率を示す走行進捗率、および、予め定められた堆積量再生閾値に対する前記総合堆積量の比率を示す堆積進捗率に基づいて、前記アッシュ量を監視する、
     請求項1に記載の監視装置。
    The monitoring unit sets the accumulation amount based on the first accumulation amount and the second accumulation amount as a total accumulation amount, and the running progress indicates a ratio of the traveling distance from completion of regeneration of the filter to a predetermined distance regeneration threshold value. monitoring the ash amount based on a rate and a deposition progress rate indicating a ratio of the total deposition amount to a predetermined deposition amount regeneration threshold;
    A monitoring device according to claim 1 .
  8.  請求項1から7のいずれか一項に記載の監視装置を備える車両。 A vehicle equipped with the monitoring device according to any one of claims 1 to 7.
PCT/JP2022/010797 2021-03-11 2022-03-11 Monitoring device and vehicle WO2022191307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021039140A JP7439782B2 (en) 2021-03-11 2021-03-11 Monitoring equipment and vehicles
JP2021-039140 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022191307A1 true WO2022191307A1 (en) 2022-09-15

Family

ID=83228149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010797 WO2022191307A1 (en) 2021-03-11 2022-03-11 Monitoring device and vehicle

Country Status (2)

Country Link
JP (1) JP7439782B2 (en)
WO (1) WO2022191307A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256628A (en) * 2004-03-09 2005-09-22 Isuzu Motors Ltd Exhaust emission control system
JP2010025043A (en) * 2008-07-23 2010-02-04 Mazda Motor Corp Particulate filter regenerating system
WO2011155587A1 (en) * 2010-06-11 2011-12-15 いすゞ自動車株式会社 Dpf system
JP2013231376A (en) * 2012-04-27 2013-11-14 Iseki & Co Ltd Working vehicle
JP2017025717A (en) * 2015-07-16 2017-02-02 いすゞ自動車株式会社 Pm regeneration control system of fine particle collection device, internal combustion engine, and pm regeneration control method of fine particle collection device
WO2017047349A1 (en) * 2015-09-15 2017-03-23 株式会社豊田自動織機 Exhaust gas purification device
JP2019190348A (en) * 2018-04-24 2019-10-31 株式会社クボタ Exhaust treatment device of diesel engine
WO2020066931A1 (en) * 2018-09-28 2020-04-02 いすゞ自動車株式会社 Estimation device and vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256628A (en) * 2004-03-09 2005-09-22 Isuzu Motors Ltd Exhaust emission control system
JP2010025043A (en) * 2008-07-23 2010-02-04 Mazda Motor Corp Particulate filter regenerating system
WO2011155587A1 (en) * 2010-06-11 2011-12-15 いすゞ自動車株式会社 Dpf system
JP2013231376A (en) * 2012-04-27 2013-11-14 Iseki & Co Ltd Working vehicle
JP2017025717A (en) * 2015-07-16 2017-02-02 いすゞ自動車株式会社 Pm regeneration control system of fine particle collection device, internal combustion engine, and pm regeneration control method of fine particle collection device
WO2017047349A1 (en) * 2015-09-15 2017-03-23 株式会社豊田自動織機 Exhaust gas purification device
JP2019190348A (en) * 2018-04-24 2019-10-31 株式会社クボタ Exhaust treatment device of diesel engine
WO2020066931A1 (en) * 2018-09-28 2020-04-02 いすゞ自動車株式会社 Estimation device and vehicle

Also Published As

Publication number Publication date
JP7439782B2 (en) 2024-02-28
JP2022138960A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
US8181449B2 (en) Control method of exhaust gas purification system and exhaust gas purification system
EP1234959B1 (en) Diesel particulate filter unit and regeneration control method of the same
JP5876714B2 (en) Exhaust gas purification device control method
EP1905992B1 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
US20120023903A1 (en) Apparatus and method for monitoring regeneration frequency of a vehicle particulate filter
EP1400673B1 (en) Internal combustion engine exhaust gas purifying system
WO2007086252A1 (en) Exhaust gas purification method and exhaust gas purification system
JP3951618B2 (en) Diesel particulate filter device and regeneration control method thereof
WO2020066931A1 (en) Estimation device and vehicle
KR101272944B1 (en) System and method for regenerating soot of gasoline engine
WO2022191307A1 (en) Monitoring device and vehicle
US20110232363A1 (en) Process for monitoring the function of a particulate filter
JP4241465B2 (en) Particulate filter regeneration processing device inspection system
JP4957216B2 (en) Exhaust gas purification device for internal combustion engine
JP2003155913A (en) Method and device for cleaning exhaust gas
WO2017130408A1 (en) Exhaust purification device
CN115667680A (en) Filter state detection device
JP2005337153A (en) Exhaust emission control device for internal combustion engine
JP4084289B2 (en) Exhaust purification device
JP2010133307A (en) Exhaust emission control device for engine
JP4081419B2 (en) Exhaust purification device
JP2009209859A (en) Exhaust emission control device for diesel engine
JP4070681B2 (en) Exhaust purification device
JP7283453B2 (en) VEHICLE CONTROL DEVICE, VEHICLE, AND CONTROL METHOD
KR102249588B1 (en) Exhaust gas post processing apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767261

Country of ref document: EP

Kind code of ref document: A1