JP5787090B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5787090B2
JP5787090B2 JP2012008190A JP2012008190A JP5787090B2 JP 5787090 B2 JP5787090 B2 JP 5787090B2 JP 2012008190 A JP2012008190 A JP 2012008190A JP 2012008190 A JP2012008190 A JP 2012008190A JP 5787090 B2 JP5787090 B2 JP 5787090B2
Authority
JP
Japan
Prior art keywords
urea water
reducing agent
addition
amount
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012008190A
Other languages
Japanese (ja)
Other versions
JP2013147982A (en
Inventor
太田 裕彦
裕彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012008190A priority Critical patent/JP5787090B2/en
Priority to DE102013200445.1A priority patent/DE102013200445B4/en
Publication of JP2013147982A publication Critical patent/JP2013147982A/en
Application granted granted Critical
Publication of JP5787090B2 publication Critical patent/JP5787090B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/105Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気通路に設けられた触媒の上流側から添加機構を通じて液状の還元剤を添加することにより排気に含まれる窒素酸化物を同触媒上において浄化する内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that purifies nitrogen oxides contained in exhaust gas on the catalyst by adding a liquid reducing agent from the upstream side of the catalyst provided in the exhaust passage of the internal combustion engine through an addition mechanism. About.

従来、内燃機関の排気に含まれる窒素酸化物(以下、NOx)を浄化すべく、図9に示すように、内燃機関の排気通路102に選択還元型触媒(以下、触媒104)を設けるとともに、同触媒104に対しその上流側から還元剤としての尿素水を添加する添加弁144を設けるようにした排気浄化装置が周知である(例えば特許文献1参照)。尿素水は車両に搭載される専用のタンク110内に貯留されており、タンク110と添加弁144とを接続する供給管130の途中に設けられたポンプ142によってタンク110内の尿素水が添加弁144に圧送されるようになっている。こうした排気浄化装置によれば、高温下の排気に対し添加弁144により尿素水を添加することにより、尿素水がアンモニアに分解され、触媒104上においてアンモニアにより排気に含まれるNOxが還元されて浄化される。   Conventionally, in order to purify nitrogen oxides (hereinafter referred to as NOx) contained in the exhaust gas of an internal combustion engine, a selective reduction catalyst (hereinafter referred to as catalyst 104) is provided in the exhaust passage 102 of the internal combustion engine as shown in FIG. An exhaust emission control device in which an addition valve 144 for adding urea water as a reducing agent from the upstream side of the catalyst 104 is provided is well known (see, for example, Patent Document 1). The urea water is stored in a dedicated tank 110 mounted on the vehicle, and the urea water in the tank 110 is added by the pump 142 provided in the middle of the supply pipe 130 connecting the tank 110 and the addition valve 144. 144 to be pumped. According to such an exhaust purification device, urea water is decomposed into ammonia by adding urea water to the exhaust under high temperature by the addition valve 144, and NOx contained in the exhaust is reduced and purified on the catalyst 104 by ammonia. Is done.

ところで、尿素水は−7℃以下になると凍結し始める。そこで、タンク110内に尿素水を加熱する電熱ヒータ120を設け、尿素水が凍結しているときに電熱ヒータ120に対して通電することにより尿素水の解凍を図るようにしたものが提案されている(例えば特許文献2参照)。ちなみに、電熱ヒータ120はタンク110内において供給管130が接続される部位の近傍に設けられている。   By the way, urea water starts to freeze when it becomes -7 ° C. or lower. Therefore, an electric heater 120 for heating urea water in the tank 110 is provided, and the urea water is defrosted by energizing the electric heater 120 when the urea water is frozen. (For example, refer to Patent Document 2). Incidentally, the electric heater 120 is provided in the tank 110 in the vicinity of a portion to which the supply pipe 130 is connected.

特開2010―71270号公報JP 2010-71270 A 特開2008−115784号公報JP 2008-115784 A

ところで、タンク110内の尿素水が完全に凍結している状態から内燃機関が始動され、これに伴って電熱ヒータ120による加熱が行なわれると、タンク110内の尿素水は電熱ヒータ120周辺から順に解凍されるようになる。ここで、内燃機関の運転継続時間が短い場合、すなわち電熱ヒータ120による加熱時間が短い場合には、電熱ヒータ120周辺の尿素水のみが解凍される。そのため、解凍された尿素水全てが添加弁144を通じて添加されることで添加可能な液状の尿素水がなくなると、図9に一点鎖線にて示すように、タンク110内において供給管130の接続部近傍に空洞が生じる。このような状況においてポンプ142や添加弁144等の添加機構の駆動が継続される、すなわち、空打ちが行なわれると、尿素水を添加することができない他、添加機構の駆動部の摩耗が生じやすくなるといった問題が生じる。   By the way, when the internal combustion engine is started from the state in which the urea water in the tank 110 is completely frozen, and the heating by the electric heater 120 is performed along with this, the urea water in the tank 110 is sequentially supplied from the periphery of the electric heater 120. It will be thawed. Here, when the operation continuation time of the internal combustion engine is short, that is, when the heating time by the electric heater 120 is short, only the urea water around the electric heater 120 is thawed. Therefore, when all the thawed urea water is added through the addition valve 144 and there is no liquid urea water that can be added, as shown by a one-dot chain line in FIG. A cavity is created in the vicinity. In such a situation, the driving of the addition mechanism such as the pump 142 and the addition valve 144 is continued, that is, if the idle driving is performed, the urea water cannot be added and wear of the drive part of the addition mechanism occurs. The problem that it becomes easy arises.

こうした問題に対して、タンク内の尿素水が完全に解凍されるまで添加機構の駆動を禁止することが考えられる。すなわち、尿素水が完全に解凍されるまでに要する時間(以下、所要時間)を予め設定し、同所要時間が経過するまでは添加機構の駆動を禁止する。しかしながらこの場合には、還元剤の添加を早期に開始することができないといった別の問題が生じることとなる。   For such a problem, it is conceivable to prohibit the addition mechanism from being driven until the urea water in the tank is completely thawed. That is, the time required for the urea water to be completely thawed (hereinafter referred to as required time) is set in advance, and the drive of the addition mechanism is prohibited until the required time elapses. However, in this case, another problem arises that the addition of the reducing agent cannot be started at an early stage.

尚、こうした問題は尿素水を用いる排気浄化装置に限られるものではなく、低温下において凍結する液状の還元剤を用いる排気浄化装置であれば同様にして生じる。
本発明は、こうした実情に鑑みてなされたものであり、その目的は、タンク内の還元剤が凍結しているときに還元剤の添加を早期に開始しつつ、添加機構の劣化を的確に抑制することのできる内燃機関の排気浄化装置を提供することにある。
Such a problem is not limited to the exhaust gas purification apparatus using urea water, but similarly occurs in an exhaust gas purification apparatus using a liquid reducing agent that freezes at a low temperature.
The present invention has been made in view of such circumstances, and its purpose is to accurately suppress deterioration of the addition mechanism while starting the addition of the reducing agent early when the reducing agent in the tank is frozen. An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can be used.

以下、上記課題を解決するための手段及びその作用効果について記載する。
求項1に記載の発明は、内燃機関の排気通路に設けられた触媒の上流側から添加機構を通じて液状の還元剤を添加することにより排気に含まれる窒素酸化物を同触媒上において浄化する排気浄化装置であって、前記還元剤を貯留するタンク内に設けられて前記還元剤を加熱する加熱装置を備える内燃機関の排気浄化装置において、前記タンク内の還元剤が凍結しているとき、前記加熱装置による加熱を行なうとともに前記添加機構による還元剤の添加を制限するものであって、当該加熱が開始されてからの該還元剤の総解凍量に応じて還元剤の添加の制限態様を変更するものであり、当該加熱が開始されてから添加された還元剤の総量を該還元剤の総添加量とし、該還元剤の総解凍量が該還元剤の総添加量未満であるときには還元剤の添加を禁止することをその要旨としている。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
The invention described in Motomeko 1 purifies nitrogen oxides contained in exhaust the addition of the liquid reducing agent through an addition mechanism from the upstream side of the catalyst provided in an exhaust passage of the internal combustion engine on the catalyst In the exhaust gas purification apparatus for an internal combustion engine, the exhaust gas purification apparatus comprising a heating device provided in a tank for storing the reducing agent and heating the reducing agent, when the reducing agent in the tank is frozen, The heating device is used for heating and the addition of the reducing agent by the addition mechanism is restricted, and the addition of the reducing agent is limited according to the total thawing amount of the reducing agent after the heating is started. The total amount of reducing agent added since the start of heating is defined as the total amount of reducing agent added, and when the total thawing amount of the reducing agent is less than the total amount of reducing agent added, the reducing agent is reduced. Additive It has as its subject matter that is prohibited.

同構成によれば、タンク内の還元剤が凍結しているとき、加熱装置による加熱が行なわれることで還元剤が解凍されるようになる。また、解凍された尿素水が添加機構を通じて触媒の上流側から添加されるようになる。このとき、上記構成によれば、当該加熱が開始されてから解凍された還元剤の総量である総解凍量に応じて還元剤の添加の制限態様が変更されるようになる。すなわち、総解凍量が多く、添加可能な液状の還元剤が多いときには還元剤の添加の制限が緩和されるようになる。一方、該還元剤の総解凍量が少なく、添加可能な液状の還元剤が少ないときには還元剤の添加の制限が強化されるようになる。したがって、本発明によれば、タンク内の還元剤が凍結しているときに還元剤の添加を早期に開始しつつ、添加機構の劣化を的確に抑制することができるようになる。   According to this configuration, when the reducing agent in the tank is frozen, the reducing agent is thawed by heating with the heating device. In addition, the thawed urea water is added from the upstream side of the catalyst through the addition mechanism. At this time, according to the above configuration, the restriction mode of addition of the reducing agent is changed according to the total thawing amount, which is the total amount of the reducing agent thawed after the start of the heating. That is, when the total thawing amount is large and the amount of liquid reducing agent that can be added is large, the restriction on the addition of the reducing agent is relaxed. On the other hand, when the total amount of thawing of the reducing agent is small and the amount of liquid reducing agent that can be added is small, the restriction on the addition of the reducing agent is strengthened. Therefore, according to the present invention, it is possible to accurately suppress deterioration of the addition mechanism while starting the addition of the reducing agent at an early stage when the reducing agent in the tank is frozen.

さらに同構成によれば、該還元剤の総解凍量が、当該加熱が開始されてから添加された還元剤の総量である総添加量未満であるときには、還元剤の添加が禁止されるようになる。このため、例えば前回の機関運転時においてタンク内における加熱装置周辺の還元剤のみが解凍され、当該解凍された還元剤を全て添加して消費してしまったことで、添加可能な液状の還元剤が存在しない状況下にあっては、添加機構の駆動、いわゆる空打ちが行なわれなくなる。したがって、添加機構の劣化を一層的確に抑制することができるようになる。  Further, according to the same configuration, when the total thawing amount of the reducing agent is less than the total addition amount that is the total amount of the reducing agent added since the start of the heating, the addition of the reducing agent is prohibited. Become. For this reason, for example, during the previous engine operation, only the reducing agent around the heating device in the tank has been thawed, and all the thawed reducing agent has been added and consumed, so that the liquid reducing agent that can be added In a situation where no is present, the driving of the addition mechanism, so-called idling is not performed. Therefore, deterioration of the addition mechanism can be suppressed more accurately.
なお、該還元剤の総添加量は、請求項2に記載の発明によるように、内燃機関の運転が開始されてからの車両の走行距離に基づいて推定することができる。  The total amount of the reducing agent added can be estimated based on the travel distance of the vehicle after the operation of the internal combustion engine is started, as in the second aspect of the invention.

ちなみに、加熱装置による加熱履歴に基づき該還元剤の総解凍量を推定することが望ましい。例えば加熱装置から還元剤に対して単位時間当たりに投入される熱量が一定とされる場合には、加熱装置による加熱時間が長くなるほど、解凍された還元剤の総量は多くなる。また、他の条件が一定であれば、加熱装置から還元剤に対して単位時間当たりに投入される熱量が大きくなるほど、解凍された還元剤の総量は多くなる。これらのことから、加熱装置による加熱履歴に基づき該還元剤の総解凍量を推定するようにすれば、当該総解凍量を精度良く推定することができるようになる。   Incidentally, it is desirable to estimate the total thawing amount of the reducing agent based on the heating history of the heating device. For example, when the amount of heat input from the heating device to the reducing agent per unit time is constant, the total amount of the thawed reducing agent increases as the heating time by the heating device increases. If other conditions are constant, the total amount of the thawed reducing agent increases as the amount of heat input from the heating device to the reducing agent per unit time increases. Therefore, if the total thawing amount of the reducing agent is estimated based on the heating history of the heating device, the total thawing amount can be estimated with high accuracy.

また、内燃機関の運転履歴及び車両の走行履歴の少なくとも一つに基づき該還元剤の総添加量を推定することが望ましい。例えば内燃機関の運転継続時間が長くなるほど添加された還元剤の総量は多くなる。また、車両の走行距離が長くなるほど添加された還元剤の総量は多くなる。これらのことから、内燃機関の運転履歴及び車両の走行履歴の少なく一方に基づき該還元剤の総添加量を推定するようにすれば、当該総添加量を精度良く推定することができるようになる。   It is desirable to estimate the total amount of the reducing agent based on at least one of the operation history of the internal combustion engine and the travel history of the vehicle. For example, the total amount of the reducing agent added increases as the operation duration time of the internal combustion engine increases. Moreover, the total amount of the reducing agent added increases as the travel distance of the vehicle increases. For these reasons, if the total addition amount of the reducing agent is estimated based on at least one of the operation history of the internal combustion engine and the travel history of the vehicle, the total addition amount can be estimated with high accuracy. .

本発明の第1実施形態に係る内燃機関の排気浄化装置について、全体構成を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the whole structure about the exhaust gas purification apparatus of the internal combustion engine which concerns on 1st Embodiment of this invention. 同実施形態における尿素水の添加制限ルーチンの実行手順を示すフローチャート。The flowchart which shows the execution procedure of the addition restriction routine of urea water in the same embodiment. 同実施形態における凍結フラグ設定ルーチンの実行手順を示すフローチャート。The flowchart which shows the execution procedure of the freezing flag setting routine in the embodiment. 尿素水の体積と凍結時間との関係を尿素水の温度毎に規定したマップ。A map that defines the relationship between the volume of urea water and the freezing time for each temperature of urea water. 内燃機関の運転継続時間と尿素水の総解凍量推定値との関係を規定したマップ。The map which prescribed | regulated the relationship between the driving | operation continuation time of an internal combustion engine, and the total defrosting amount estimated value of urea water. 車両の走行距離と尿素水の総添加量推定値との関係を規定したマップ。The map which prescribed | regulated the relationship between the travel distance of a vehicle, and the total addition amount estimated value of urea water. 第3実施形態における尿素水の添加制限ルーチンの実行手順を示すフローチャート。The flowchart which shows the execution procedure of the urea water addition restriction | limiting routine in 3rd Embodiment. 尿素水の総解凍量推定値と遅延時間との関係を規定したマップ。A map that defines the relationship between the estimated amount of total thawing amount of urea water and the delay time. 従来の内燃機関の排気浄化装置について、電熱ヒータ周辺の尿素水のみが解凍されているときのタンクの断面構造を示す断面図。Sectional drawing which shows the cross-section of a tank when only the urea water around an electric heater is thawed | decompressed about the conventional exhaust gas purification apparatus of an internal combustion engine.

<第1実施形態>
以下、図1〜図6を参照して、本発明に係る内燃機関の排気浄化装置を具体化した一実施形態について説明する。
<First Embodiment>
Hereinafter, an embodiment embodying an exhaust emission control device for an internal combustion engine according to the present invention will be described with reference to FIGS.

図1に示すように、本実施形態における排気浄化装置は、車載内燃機関の排気通路2に設けられた選択還元型触媒(以下、触媒4)と、同触媒4の上流側から液状の尿素水を添加する添加弁44とを備えている。尚、添加弁44の駆動制御は電子制御装置50により実行される。そして、添加弁44から尿素水を添加することにより排気に含まれる窒素酸化物(以下、NOx)が同触媒4上において浄化されるようになっている。   As shown in FIG. 1, the exhaust purification apparatus according to this embodiment includes a selective reduction catalyst (hereinafter referred to as catalyst 4) provided in an exhaust passage 2 of an in-vehicle internal combustion engine, and liquid urea water from the upstream side of the catalyst 4. And an addition valve 44 for adding. The drive control of the addition valve 44 is executed by the electronic control unit 50. Nitrogen oxide (hereinafter referred to as NOx) contained in the exhaust gas is purified on the catalyst 4 by adding urea water from the addition valve 44.

また、排気浄化装置は、タンク10を備えており、同タンク10内には尿素水が貯留されている。タンク10の底面14(鉛直方向下側の面)には凹部14aが形成されており、同凹部14aには添加弁44に対して尿素水を供給するための供給管30が接続されている。また、供給管30の途中には尿素水を圧送するためのポンプ42が設けられている。尚、ポンプ42の駆動制御は電子制御装置50により実行される。   Further, the exhaust purification device includes a tank 10 in which urea water is stored. A concave portion 14 a is formed on the bottom surface 14 (surface on the lower side in the vertical direction) of the tank 10, and a supply pipe 30 for supplying urea water to the addition valve 44 is connected to the concave portion 14 a. A pump 42 for pumping urea water is provided in the supply pipe 30. The drive control of the pump 42 is executed by the electronic control unit 50.

また、凹部14a内には尿素水を加熱する加熱装置20が設けられている。加熱装置20は、通電されることにより発熱する電熱コイル22と、同電熱コイル22の両端から延びるとともにタンク10の底面14に沿って延びる金属片24とを有している。尚、電熱コイル22への通電制御、すなわち加熱装置20による加熱制御は電子制御装置50により実行される。   A heating device 20 for heating urea water is provided in the recess 14a. The heating device 20 includes an electric heating coil 22 that generates heat when energized, and a metal piece 24 that extends from both ends of the electric heating coil 22 and extends along the bottom surface 14 of the tank 10. The energization control to the electrothermal coil 22, that is, the heating control by the heating device 20, is executed by the electronic control device 50.

電子制御装置50には、尿素水の温度を検出する温度センサ51や尿素水の液位を検出する液位センサ52の他、内燃機関の運転状態や車両の走行状態を検出する各種センサが接続されている。   In addition to a temperature sensor 51 that detects the temperature of urea water and a liquid level sensor 52 that detects the liquid level of urea water, various sensors that detect the operating state of the internal combustion engine and the running state of the vehicle are connected to the electronic control unit 50. Has been.

さて、本実施形態では、電子制御装置50を通じて、タンク10内の尿素水が完全に凍結しているか否かを判断するとともに、尿素水が完全に凍結していると判断した場合には加熱装置20への通電を行なうことにより同尿素水の解凍を図るようにしている。ここで、加熱装置20により尿素水に対して単位時間当たりに投入される熱量が一定となるように電熱コイル22への通電制御が行なわれる。   In the present embodiment, it is determined whether or not the urea water in the tank 10 is completely frozen through the electronic control unit 50, and when it is determined that the urea water is completely frozen, the heating device is used. The urea water is defrosted by energizing 20. Here, energization control to the electric heating coil 22 is performed so that the amount of heat input per unit time to the urea water by the heating device 20 becomes constant.

ところで、前述したように、タンク10内の尿素水が完全に凍結している状態から内燃機関が始動され、これに伴って加熱装置20による加熱が行なわれると、タンク10内の尿素水は加熱装置20周辺から順に解凍されるようになる。ここで、内燃機関の運転継続時間、すなわち加熱装置20による加熱時間が短い場合には、加熱装置20周辺の尿素水のみが解凍される。そのため、解凍された尿素水全てが添加弁44を通じて添加されることで添加可能な液状の尿素水がなくなると、タンク10内において供給管30の接続部近傍に空洞が生じる。このような状況においてポンプ42や添加弁44の駆動が継続される、すなわち、空打ちが行なわれると、尿素水を添加することができない他、ポンプ42や添加弁44の駆動部の摩耗が生じやすくなるといった問題が生じる。   By the way, as described above, when the internal combustion engine is started from a state in which the urea water in the tank 10 is completely frozen, and the heating device 20 is heated along with this, the urea water in the tank 10 is heated. The decompression starts from the periphery of the apparatus 20. Here, when the operation duration time of the internal combustion engine, that is, the heating time by the heating device 20 is short, only the urea water around the heating device 20 is thawed. Therefore, when all the thawed urea water is added through the addition valve 44 and there is no liquid urea water that can be added, a cavity is formed in the tank 10 near the connection portion of the supply pipe 30. In such a situation, if the pump 42 and the addition valve 44 continue to be driven, that is, if idle driving is performed, urea water cannot be added, and wear of the drive parts of the pump 42 and the addition valve 44 occurs. The problem that it becomes easy arises.

そこで、本実施形態では、こうした不都合の発生を解消すべく、タンク10内の尿素水が凍結しているとき、尿素水を解凍すべく加熱装置20による加熱を行なうとともに、当該加熱が開始されてからの尿素水の総解凍量推定値VAが尿素水の総添加量推定値VBを上回っている場合にはポンプ42及び添加弁44の駆動を許容するようにしている。また、尿素水の総解凍量推定値VAが尿素水の総添加量推定値VB未満のときにはポンプ42及び添加弁44の駆動を禁止して還元剤の添加を禁止するようにしている。   Therefore, in this embodiment, when the urea water in the tank 10 is frozen in order to eliminate such inconvenience, the heating device 20 performs heating to thaw the urea water, and the heating is started. When the total thawing amount estimated value VA of the urea water exceeds the total addition amount estimated value VB of the urea water, the pump 42 and the addition valve 44 are allowed to be driven. Further, when the estimated total thawing amount value VA of the urea water is less than the estimated total addition amount value VB of the urea water, the pump 42 and the addition valve 44 are prohibited from being added and the addition of the reducing agent is prohibited.

次に、図2を参照して、尿素水の添加を制限するルーチンの実行手順について説明する。尚、このルーチンは内燃機関の運転中において所定期間毎に繰り返し実行される。
図2に示すように、この一連の処理では、まず、凍結フラグF1が「ON」であるか否かを判断する(ステップS1)。凍結フラグF1はタンク10内の尿素水が完全に凍結していると判断した場合に「ON」にされるフラグである。
Next, with reference to FIG. 2, the execution procedure of the routine for restricting the addition of urea water will be described. This routine is repeatedly executed at predetermined intervals during the operation of the internal combustion engine.
As shown in FIG. 2, in this series of processing, it is first determined whether or not the freezing flag F1 is “ON” (step S1). The freezing flag F1 is a flag that is set to “ON” when it is determined that the urea water in the tank 10 is completely frozen.

ここで、図3を参照して、凍結フラグF1を設定するルーチンの実行手順について説明する。尚、同ルーチンは機関停止中において所定期間毎に繰り返し実行される。また凍結フラグF1は当初、「OFF」に設定されている。   Here, with reference to FIG. 3, the execution procedure of the routine for setting the freezing flag F1 will be described. The routine is repeatedly executed every predetermined period while the engine is stopped. The freezing flag F1 is initially set to “OFF”.

図3に示すように、この一連の処理では、まず、機関停止直後における尿素水の体積Vureaを読み込む(ステップS11)。尚、尿素水の体積Vureaはタンク10内の尿素水が完全に解凍されている状態において液位センサ52の検出結果に基づき周知の態様にて算出される。そして、次に、そのときの尿素水の温度Tureaを読み込む(ステップS12)。   As shown in FIG. 3, in this series of processing, first, the volume Vurea of urea water immediately after the engine is stopped is read (step S11). The volume Vurea of the urea water is calculated in a known manner based on the detection result of the liquid level sensor 52 in a state where the urea water in the tank 10 is completely thawed. Next, the temperature of the urea water at that time is read (step S12).

こうして尿素水の温度Tureaを読み込むと、次に、尿素水の温度Tureaが凝固点温度Tfrz以下であるか否かを判断する(ステップS13)。ここで、尿素水の温度Tureaが凝固点以下ではない場合(ステップS13:「NO」)には、尿素水が凍結していないとして、凍結フラグF1を「OFF」のままにしてこの一連の処理を一旦終了する。   When the urea water temperature Turea is thus read, it is next determined whether or not the urea water temperature Turea is equal to or lower than the freezing point temperature Tfrz (step S13). Here, when the temperature Turea of the urea water is not below the freezing point (step S13: “NO”), it is determined that the urea water is not frozen, and this series of processing is performed with the freezing flag F1 kept “OFF”. Exit once.

一方、尿素水の温度Tureaが凝固点温度Tfrz以下である場合(ステップS13:「YES」)には、次に、図4に示すマップ(MAP1)を参照して、尿素水の体積Vurea及び尿素水の温度Tureaに基づき凍結時間βを導出する(ステップS14)。凍結時間βは、当該尿素水が完全に凍結するまでに要する時間であり、図4に示すように、尿素水の体積Vureaが一定であれば(例えばV1)、尿素水の温度が低いほど(T1<T2<T3)、小さな値に設定される(β1<β2<β3)。尚、尿素水の体積Vurea及び尿素水の温度Tureaと凍結時間βとの関係は、実験等を通じて予め設定されている。   On the other hand, if the temperature Turea of the urea water is equal to or lower than the freezing point temperature Tfrz (step S13: “YES”), then referring to the map (MAP1) shown in FIG. 4, the volume Vurea of the urea water and the urea water The freezing time β is derived based on the temperature Turea (step S14). The freezing time β is the time required until the urea water is completely frozen. As shown in FIG. 4, if the volume Vurea of the urea water is constant (for example, V1), the lower the temperature of the urea water ( T1 <T2 <T3), which is set to a small value (β1 <β2 <β3). The relationship between the urea water volume Vurea, the urea water temperature Turea, and the freezing time β is set in advance through experiments and the like.

こうして凍結時間βを導出すると、次に、機関運転が停止されてからの経過時間である停止後経過時間Δtstpが上記凍結時間β以上であるか否かを判断する(ステップS15)。その結果、停止後経過時間Δtstpが凍結時間β以上ではない場合(ステップS15:「NO」)には、尿素水が完全には凍結していないとして、凍結フラグF1を「OFF」のままにしてこの一連の処理を一旦終了する。   If the freezing time β is derived in this way, it is next determined whether or not the post-stop elapsed time Δtstp, which is the elapsed time since the engine operation was stopped, is equal to or greater than the freezing time β (step S15). As a result, when the post-stop elapsed time Δtstp is not equal to or longer than the freezing time β (step S15: “NO”), the urea water is not completely frozen and the freezing flag F1 is kept “OFF”. This series of processes is temporarily terminated.

一方、停止後経過時間Δtstpが凍結時間β以上である場合(ステップS15:「YES」)には、尿素水が完全に凍結しているとして、次に、凍結フラグF1を「ON」にして(ステップS16)、この一連の処理を一旦終了する。   On the other hand, when the post-stop elapsed time Δtstp is equal to or longer than the freezing time β (step S15: “YES”), it is assumed that the urea water is completely frozen, and then the freezing flag F1 is set to “ON” ( Step S16), this series of processes is temporarily terminated.

さて、先の図2に示すように、凍結フラグF1が「ON」ではない場合(ステップS1:「NO」)には、尿素水の添加を行なうことができるとして、次に、尿素水の添加を許可して(ステップS6)、この一連の処理を終了する。   As shown in FIG. 2, when the freezing flag F1 is not “ON” (step S1: “NO”), it is assumed that urea water can be added. Next, urea water is added. Is permitted (step S6), and this series of processing is terminated.

一方、凍結フラグF1が「ON」である場合(ステップS1:「YES」)には、次に、電熱コイル22への通電を開始する(ステップS2)。
そして次に、図5に示すマップ(MAP2)を参照して、内燃機関の運転継続時間ΔtAに基づき当該加熱が開始されてから解凍された尿素水の総量である総解凍量推定値VAを算出する(ステップS3)。
On the other hand, when the freezing flag F1 is “ON” (step S1: “YES”), energization to the electric heating coil 22 is started (step S2).
Then, referring to a map (MAP2) shown in FIG. 5, a total thawing amount estimated value VA that is the total amount of urea water thawed after the start of heating is calculated based on the operation duration time ΔtA of the internal combustion engine. (Step S3).

加熱装置20から尿素水に対して単位時間当たりに投入される熱量が一定とされることから、加熱装置20による加熱時間が長くなるほど解凍された尿素水の総量は多くなる。また、加熱装置20による加熱時間は内燃機関の運転継続時間ΔtAと略同じである。したがって、運転継続時間ΔtAに基づき総解凍量推定値VAを精度良く算出することができる。尚、運転継続時間ΔtAと総解凍量推定値VAとの図5に示す関係は予め実験等を通じて設定されている。   Since the amount of heat input per unit time from the heating device 20 to the urea water is constant, the total amount of thawed urea water increases as the heating time by the heating device 20 increases. The heating time by the heating device 20 is substantially the same as the operation duration time ΔtA of the internal combustion engine. Therefore, the total defrosting amount estimated value VA can be accurately calculated based on the operation duration time ΔtA. The relationship shown in FIG. 5 between the operation continuation time ΔtA and the total thawing amount estimation value VA is set in advance through experiments or the like.

そして次に、図6に示すマップ(MAP3)を参照して、内燃機関の運転が開始されてからの車両の走行距離Dに基づき当該加熱が開始されてから添加された尿素水の総量である総添加量推定値VBを算出する(ステップS4)。   Then, referring to the map (MAP3) shown in FIG. 6, the total amount of urea water added since the start of the heating based on the travel distance D of the vehicle since the operation of the internal combustion engine was started. A total addition amount estimated value VB is calculated (step S4).

車両の走行距離Dが長くなるほど添加された尿素水の総量は多くなる。したがって、車両の走行距離Dに基づき総添加量推定値VBを精度良く算出することができる。尚、車両の走行距離Dと総添加量推定値VBとの図6に示す関係は予め実験等を通じて設定されている。   The total amount of urea water added increases as the travel distance D of the vehicle increases. Therefore, the total addition amount estimated value VB can be accurately calculated based on the travel distance D of the vehicle. The relationship shown in FIG. 6 between the vehicle travel distance D and the total addition amount estimated value VB is set in advance through experiments or the like.

こうして総解凍量推定値VAと総添加量推定値VBとを算出すると、次に、総解凍量推定値VAが総添加量推定値VB未満であるか否かを判断する(ステップS5)。その結果、総解凍量推定値VAが総添加量推定値VB未満でない、すなわち総解凍量推定値VAが総添加量推定値VB以上である場合(ステップS5:「NO」)には、タンク10内に添加可能な液状の尿素水が存在する状況であるとして、次に、尿素水の添加を許可して(ステップS7)、この一連の処理を終了する。   When the total thawing amount estimation value VA and the total addition amount estimation value VB are thus calculated, it is next determined whether or not the total thawing amount estimation value VA is less than the total addition amount estimation value VB (step S5). As a result, when the total thawing amount estimation value VA is not less than the total addition amount estimation value VB, that is, when the total thawing amount estimation value VA is equal to or greater than the total addition amount estimation value VB (step S5: “NO”), the tank 10 Assuming that there is a liquid urea solution that can be added, the addition of the urea solution is permitted (step S7), and this series of processing is terminated.

一方、総解凍量推定値VAが総添加量推定値VB未満である場合(ステップS5:「YES」)には、タンク10内に添加可能な液状の尿素水が存在しない状況であるとして、次に、尿素水の添加を禁止して、この一連の処理を終了する。   On the other hand, when the total thawing amount estimated value VA is less than the total addition amount estimated value VB (step S5: “YES”), it is assumed that there is no liquid urea water that can be added in the tank 10, and In addition, the addition of urea water is prohibited, and this series of processing ends.

以下、本実施形態の作用について説明する。
タンク10内の尿素水が凍結しているとき、加熱装置20による加熱が行なわれることで尿素水が解凍されるようになる。また、解凍された尿素水が添加弁44を通じて触媒4の上流側から添加されるようになる。
Hereinafter, the operation of the present embodiment will be described.
When the urea water in the tank 10 is frozen, the urea water is defrosted by heating by the heating device 20. Further, the thawed urea water is added from the upstream side of the catalyst 4 through the addition valve 44.

ここで、尿素水の総解凍量推定値VAが総添加量推定値VB未満であるときには、ポンプ42及び添加弁44の駆動が禁止されるようになる。このため、例えば前回の機関運転時においてタンク10内における加熱装置20周辺の尿素水のみが解凍され、当該解凍された尿素水を全て添加して消費してしまったことで、添加可能な液状の尿素水が存在しない状況下にあっては、ポンプ42及び添加弁44の駆動、いわゆる空打ちが行なわれなくなる。   Here, when the total thawing amount estimated value VA of urea water is less than the total addition amount estimated value VB, the driving of the pump 42 and the addition valve 44 is prohibited. For this reason, for example, only the urea water around the heating device 20 in the tank 10 was thawed at the time of the previous engine operation, and all the thawed urea water was added and consumed. Under the situation where urea water does not exist, the pump 42 and the addition valve 44 are not driven, so-called idle driving.

また、総解凍量推定値VAが総添加量推定値VB以上であるときにはポンプ42及び添加弁44の駆動が許容されるようになる。このため、タンク10内の尿素水が完全に解凍されていなくとも、添加可能な液状の尿素水が存在する状況となると尿素水の添加が行なわれるようになる。   Further, when the total thawing amount estimation value VA is equal to or greater than the total addition amount estimation value VB, the pump 42 and the addition valve 44 are allowed to be driven. For this reason, even if the urea water in the tank 10 is not completely thawed, the urea water is added when there is a liquid urea water that can be added.

以上説明した本実施形態に係る内燃機関の排気浄化装置によれば、以下に示す効果(1)〜(3)が得られるようになる。
(1)電子制御装置50を通じて、タンク10内の尿素水が凍結しているとき、尿素水を解凍すべく加熱装置20による加熱を行なうようにした。また、当該加熱が開始されてからの尿素水の総解凍量推定値VAが尿素水の総添加量推定値VB以上のときにはポンプ42及び添加弁44の駆動を許容する一方、総解凍量推定値VAが総添加量推定値VB未満であるときにはポンプ42及び添加弁44の駆動を禁止するようにした。したがって、タンク10内の尿素水が凍結しているときに尿素水の添加を早期に開始しつつ、ポンプ42及び添加弁44の劣化を的確に抑制することができるようになる。
According to the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment described above, the following effects (1) to (3) can be obtained.
(1) When the urea water in the tank 10 is frozen through the electronic control device 50, the heating device 20 performs heating to thaw the urea water. In addition, when the estimated total thawing amount VA of urea water after the start of heating is equal to or greater than the total estimated amount VB of urea water, the pump 42 and the addition valve 44 are allowed to be driven, while the estimated total thawing amount is estimated. When the VA is less than the total addition amount estimated value VB, the driving of the pump 42 and the addition valve 44 is prohibited. Therefore, when the urea water in the tank 10 is frozen, the deterioration of the pump 42 and the addition valve 44 can be accurately suppressed while starting the addition of the urea water at an early stage.

(2)運転継続時間ΔtAに基づき総解凍量推定値VAを算出するようにした。すなわち、加熱装置20による加熱履歴に基づき総解凍量推定値VAを算出するようにした。したがって、総解凍量推定値VAを簡易且つ精度良く算出することができるようになる。   (2) The estimated total thawing amount VA is calculated based on the operation continuation time ΔtA. That is, the total thawing amount estimated value VA is calculated based on the heating history by the heating device 20. Therefore, the total defrosting amount estimated value VA can be calculated easily and accurately.

(3)内燃機関の運転が開始されてからの車両の走行距離Dに基づき総添加量推定値VBを算出するようにした。したがって、総添加量推定値VBを簡易且つ精度良く算出することができるようになる。   (3) The total addition amount estimated value VB is calculated based on the travel distance D of the vehicle after the operation of the internal combustion engine is started. Therefore, the total addition amount estimated value VB can be calculated easily and accurately.

<第2実施形態>
以下、本発明の第2実施形態について説明する。
先の第1実施形態では、総解凍量推定値VAが総添加量推定値VBを上回っている場合にはポンプ42及び添加弁44の駆動を許容するようにした。
Second Embodiment
Hereinafter, a second embodiment of the present invention will be described.
In the first embodiment, the pump 42 and the addition valve 44 are allowed to be driven when the total thawing amount estimation value VA exceeds the total addition amount estimation value VB.

ところが、添加可能な液状の尿素水がわずかに生成されたことをもって直ぐさまポンプ42及び添加弁44が駆動されると、その後直ぐに添加可能な液状の尿素水が存在しなくなり、尿素水の添加を、ある程度の期間にわたり継続することができなくなる。   However, if the pump 42 and the addition valve 44 are actuated immediately after a slight amount of liquid urea water that can be added is generated, there is no liquid urea water that can be added immediately thereafter, and urea water is added. , You will not be able to continue for a certain period of time.

そこで、本実施形態では、総解凍量推定値VAが総添加量推定値VB未満となることでポンプ42及び添加弁44の駆動が禁止された場合には、当該禁止されたタイミングから所定時間τが経過するまではポンプ42及び添加弁44の駆動禁止を継続し、同所定時間τが経過した後にポンプ42及び添加弁44の駆動を許容するようにしている。   Therefore, in the present embodiment, when the driving of the pump 42 and the addition valve 44 is prohibited because the total thawing amount estimated value VA is less than the total addition amount estimated value VB, the predetermined time τ from the prohibited timing. Until the time elapses, the drive inhibition of the pump 42 and the addition valve 44 is continued, and the drive of the pump 42 and the addition valve 44 is allowed after the lapse of the predetermined time τ.

ここで、ポンプ42及び添加弁44の駆動を許容して尿素水の添加を再開する際、要求される尿素水の添加態様はそのときどきの内燃機関の運転状態や車両の走行状態によって異なる。   Here, when the addition of the urea water is resumed while allowing the pump 42 and the addition valve 44 to be driven, the required manner of adding the urea water varies depending on the operation state of the internal combustion engine and the running state of the vehicle at that time.

そこで、本実施形態では、内燃機関の運転状態に基づき上記所定時間τを可変設定するようにしている。具体的には、エアフロメータにより検出される吸入空気量やNOxセンサにより検出されるNOxの濃度からNOxの流量を把握するとともに、該NOxを浄化するために必要となる尿素水の添加量(以下、要求添加量)を算出する。そして、要求添加量が多いときほど所定時間τを長く設定するようにしている。   Therefore, in the present embodiment, the predetermined time τ is variably set based on the operating state of the internal combustion engine. Specifically, the flow rate of NOx is grasped from the amount of intake air detected by the air flow meter and the concentration of NOx detected by the NOx sensor, and the amount of urea water added to purify the NOx (hereinafter referred to as “NOx”). , Required addition amount). The longer the required addition amount, the longer the predetermined time τ is set.

以上説明した本実施形態に係る内燃機関の排気浄化装置によれば、先の第1実施形態の効果(1)〜(3)に加え、新たに以下に示す効果(4)、(5)が得られるようになる。   According to the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment described above, the following effects (4) and (5) are newly added to the effects (1) to (3) of the first embodiment. It will be obtained.

(4)総解凍量推定値VAが総添加量推定値VB未満となることでポンプ42及び添加弁44の駆動が禁止されてから所定時間τが経過した後にこれらポンプ42及び添加弁44の駆動を許容するようにした。これにより、ポンプ42及び添加弁44の駆動を再開した際に、尿素水の添加を、ある程度の期間にわたり好適に継続することができるようになる。   (4) The pump 42 and the addition valve 44 are driven after a predetermined time τ has elapsed since the drive of the pump 42 and the addition valve 44 is prohibited by the total thawing amount estimation value VA being less than the total addition amount estimation value VB. Was allowed. Thereby, when the drive of the pump 42 and the addition valve 44 is restarted, the addition of urea water can be suitably continued for a certain period of time.

(5)内燃機関の運転状態、具体的には尿素水の要求添加量に基づき所定時間τを可変設定するようにした。これにより、尿素水の添加を的確に継続することができるようになる。   (5) The predetermined time τ is variably set based on the operating state of the internal combustion engine, specifically, the required addition amount of urea water. Thereby, the addition of urea water can be continued accurately.

<第3実施形態>
以下、図7及び図8を参照して、本発明の第3実施形態について説明する。
先の第1、2実施形態では、総解凍量推定値VAと総添加量推定値VBとを比較するとともに、総解凍量推定値VAが総添加量推定値VB未満であるときに尿素水の添加を禁止するようにした。
<Third Embodiment>
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS.
In the first and second embodiments, the total thawing amount estimation value VA and the total addition amount estimation value VB are compared, and when the total thawing amount estimation value VA is less than the total addition amount estimation value VB, The addition was prohibited.

これに対して、本実施形態では、尿素水の総解凍量推定値VAが少ないときには多いときに比べて尿素水の添加開始時期を遅延させるようにしている。
以下、先の第1、2実施形態との相違点を中心に説明する。
On the other hand, in the present embodiment, the urea water addition start timing is delayed as compared to when the urea water total thawing amount estimation value VA is small compared to when it is large.
Hereinafter, the difference from the first and second embodiments will be mainly described.

次に、図7を参照して、尿素水の添加を制限するルーチンの実行手順について説明する。尚、このルーチンは内燃機関の運転中において所定期間毎に繰り返し実行される。
図7に示すように、この一連の処理では、まず、遅延時間Δtdlyが設定されていないか否かを判断する(ステップS21)。遅延時間Δtdlyは後のステップS26において設定されるものである。このため、最初の制御周期においては、ステップS21において肯定判断され、次に、凍結フラグF1が「ON」であるか否かを判断する(ステップS22)。
Next, with reference to FIG. 7, the routine execution procedure for limiting the addition of urea water will be described. This routine is repeatedly executed at predetermined intervals during the operation of the internal combustion engine.
As shown in FIG. 7, in this series of processing, it is first determined whether or not the delay time Δtdly is set (step S21). The delay time Δtdly is set in the subsequent step S26. Therefore, in the first control cycle, an affirmative determination is made in step S21, and then it is determined whether or not the freezing flag F1 is “ON” (step S22).

ここで、凍結フラグF1が「ON」ではない場合(ステップS22:「NO」)には、次に、尿素水の添加を許可して(ステップS29)、この一連の処理を終了する。
一方、凍結フラグF1が「ON」である場合(ステップS22:「YES」)には、次に、電熱コイル22への通電を開始する(ステップS23)。そして、次に、尿素水の添加要求が出されているか否かを判断する(ステップS24)。ここで、尿素水の添加要求が出されていない場合(ステップS24:「NO」)には、そもそも尿素水を添加する必要がなく、その制限をする状況ではないとして、この一連の処理を一旦終了する。
Here, when the freezing flag F1 is not “ON” (step S22: “NO”), the addition of urea water is then permitted (step S29), and this series of processing ends.
On the other hand, when the freezing flag F1 is “ON” (step S22: “YES”), next, energization to the electric heating coil 22 is started (step S23). Next, it is determined whether or not a urea water addition request has been issued (step S24). Here, when the urea water addition request is not issued (step S24: “NO”), it is not necessary to add the urea water in the first place, and this series of processes is temporarily performed, assuming that the situation is not limited. finish.

一方、尿素水の添加要求が出されている場合(ステップS24:「YES」)には、次に、図5に示すマップ(MAP2)を参照して、内燃機関の運転継続時間ΔtAに基づき尿素水の総解凍量推定値VAを算出する(ステップS25)。   On the other hand, if the urea water addition request has been issued (step S24: “YES”), then referring to the map (MAP2) shown in FIG. 5, urea is determined based on the operation duration time ΔtA of the internal combustion engine. A water total thawing amount estimation value VA is calculated (step S25).

そして次に、図8に示すマップ(MAP4)を参照して、尿素水の総解凍量推定値VAに基づき遅延時間Δtdlyを設定する(ステップS26)。遅延時間Δtdlyは尿素水の添加要求が出されてから実際に尿素水の添加が開始されるまでの時間、すなわち、尿素水の添加開始時期を遅延させるための時間である。ここでは、図8に示すように、総解凍量推定値VAが小さいときほど遅延時間Δtdlyが大きな値とされる。すなわち、尿素水の添加要求が出されたときに、尿素水の総解凍量推定値VAが多いときには添加可能な液状の尿素水が多いとして尿素水の添加開始時期が早くされるようになる。一方、尿素水の総解凍量推定値VAが少ないときには、添加可能な液状の尿素水が少なく、多くの尿素水が解凍されるのを待って尿素の添加を開始する必要があるとして尿素水の添加開始時期が遅くされるようになる。尚、総解凍量推定値VAと遅延時間Δtdlyとの図8に示す関係は予め実験等を通じて設定されている。   Next, with reference to the map (MAP4) shown in FIG. 8, the delay time Δtdly is set based on the total thawing amount estimated value VA of the urea water (step S26). The delay time Δtdly is a time from when the urea water addition request is issued until the urea water addition actually starts, that is, a time for delaying the urea water addition start timing. Here, as shown in FIG. 8, the delay time Δtdly is set to a larger value as the total defrosting amount estimated value VA is smaller. That is, when the urea water addition request is issued, when the total thawing amount estimated value VA of the urea water is large, it is determined that the amount of liquid urea water that can be added is large, and the urea water addition start timing is advanced. On the other hand, when the estimated total thawing amount VA of the urea water is small, the amount of liquid urea water that can be added is small, and it is necessary to start adding urea after waiting for a lot of urea water to be thawed. The addition start time is delayed. The relationship shown in FIG. 8 between the total defrosting amount estimated value VA and the delay time Δtdly is set in advance through experiments or the like.

こうして遅延時間Δtdlyを設定すると、次に、尿素水の添加要求が出されたタイミングから遅延時間Δtdlyが経過していないか否かを判断する(ステップS27)。その結果、遅延時間Δtdlyが経過していない場合(ステップS27:「YES」)には、次に、尿素水の添加を禁止して(ステップS28)、この一連の処理を一旦終了する。   If the delay time Δtdly is thus set, it is next determined whether or not the delay time Δtdly has elapsed since the timing when the urea water addition request was issued (step S27). As a result, when the delay time Δtdly has not elapsed (step S27: “YES”), the addition of urea water is then prohibited (step S28), and this series of processes is temporarily terminated.

一方、次回以降の制御周期において、ステップS21において否定判断されると、次に、ステップS27に進み、遅延時間Δtdlyが経過していないか否かを再び判断する。そして、遅延時間Δtdlyが経過している場合(ステップS27:「NO」)には、次に、尿素水の添加を許可して(ステップS29)、この一連の処理を一旦終了する。   On the other hand, if a negative determination is made in step S21 in the subsequent control cycle, the process proceeds to step S27, and it is determined again whether or not the delay time Δtdly has elapsed. If the delay time Δtdly has elapsed (step S27: “NO”), the addition of urea water is then permitted (step S29), and this series of processes is temporarily terminated.

以上説明した本実施形態に係る内燃機関の排気浄化装置によれば、以下に示す効果(6)が得られるようになる。
(6)尿素水の総解凍量推定値VAが少ないときには多いときに比べて尿素水の添加開始時期を遅延させるようにした。こうした構成によれば、タンク10内の尿素水が凍結しているときに尿素水の添加を早期に開始しつつ、ポンプ42及び添加弁44の劣化を的確に抑制することができるようになる。
According to the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment described above, the following effect (6) can be obtained.
(6) The urea water addition start timing is delayed when the total thawing amount estimated value VA of the urea water is small compared to when it is large. According to such a configuration, deterioration of the pump 42 and the addition valve 44 can be accurately suppressed while starting the addition of the urea water at an early stage when the urea water in the tank 10 is frozen.

尚、本発明に係る内燃機関の排気浄化装置は、上記実施形態にて例示した構成に限定されるものではなく、これを適宜変更した例えば次のような形態として実施することもできる。   The exhaust gas purification apparatus for an internal combustion engine according to the present invention is not limited to the configuration exemplified in the above embodiment, and can be implemented as, for example, the following form appropriately modified.

・上記第2実施形態では、機関運転状態に基づきNOxの流量を把握するようにしているが、これに代えて、車速等の車両の走行状態から間接的にNOxの流量を把握するようにしてもよい。   In the second embodiment, the NOx flow rate is grasped based on the engine operating state. Instead, the NOx flow rate is indirectly grasped from the traveling state of the vehicle such as the vehicle speed. Also good.

・上記第2実施形態では、所定時間τを尿素水の要求添加量に基づき可変設定するようにした。これに代えて、所定時間を固定値とすることもできる。この場合、電子制御装置50における演算負荷の増大を好適に抑制することができる。   In the second embodiment, the predetermined time τ is variably set based on the required addition amount of urea water. Alternatively, the predetermined time can be a fixed value. In this case, an increase in calculation load in the electronic control device 50 can be suitably suppressed.

・上記実施形態では、内燃機関の運転が開始されてからの車両の走行距離Dに基づき尿素水の総添加量推定値VBを算出するようにしたが、これに代えて、カーナビゲーションシステム等から把握することのできる車両の位置情報等、車両の走行履歴に関する他のパラメータに基づき尿素水の総添加量推定値を算出するようにしてもよい。また、こうした車両の走行履歴の他、内燃機関の機関回転速度や機関負荷等の運転履歴に基づき尿素水の総添加量推定値を算出することもできる。   In the above-described embodiment, the total addition amount estimated value VB of urea water is calculated based on the travel distance D of the vehicle after the operation of the internal combustion engine is started, but instead of this, from a car navigation system or the like You may make it calculate the total addition amount estimated value of urea water based on the other parameter regarding the driving | running | working log | history of vehicles, such as the positional information on the vehicle which can be grasped | ascertained. In addition to the traveling history of the vehicle, it is also possible to calculate the estimated total addition amount of urea water based on the operating history such as the engine speed of the internal combustion engine and the engine load.

・上記各実施形態では、加熱装置20により尿素水に対して単位時間当たりに投入される熱量が一定となるように電熱コイル22への通電制御が行なわれるものとした。また、内燃機関の運転継続時間ΔtAに基づき尿素水の総解凍量推定値VAを算出するようにした。しかしながら本発明はこうした態様に限られるものではない。他に例えば、加熱装置により尿素水に対して単位時間当たりに投入される熱量が可変される態様とすることもできる。この場合、加熱装置により尿素水に対して単位時間当たりに投入される熱量を積算することで同加熱装置により尿素水に対して投入された総熱量を算出し、同総熱量に基づき尿素水の総解凍量推定値を算出するようにすればよい。   In each of the above embodiments, the energization control of the electric heating coil 22 is performed so that the amount of heat input to the urea water per unit time by the heating device 20 is constant. Further, the total thawing amount estimated value VA of urea water is calculated based on the operation duration time ΔtA of the internal combustion engine. However, the present invention is not limited to such an embodiment. In addition, for example, it is possible to change the amount of heat input per unit time with respect to the urea water by the heating device. In this case, the total amount of heat input to the urea water by the heating device is calculated by integrating the amount of heat input to the urea water by the heating device per unit time, and the urea water is calculated based on the total heat amount. What is necessary is just to calculate the total defrosting amount estimated value.

・上記各実施形態及びその変形例では、加熱装置により尿素水に対して投入される総熱量から尿素水の総解凍量推定値を算出するようにした。これに加えて、外気温センサにより検出される外気温に基づき総解凍量推定値を算出するようにすれば、総解凍量推定値を一層精度よく算出することができるようになる。   In each of the above embodiments and modifications thereof, the estimated total defrosting amount of urea water is calculated from the total amount of heat input to the urea water by the heating device. In addition to this, if the total defrost amount estimated value is calculated based on the outside air temperature detected by the outside air temperature sensor, the total defrost amount estimated value can be calculated with higher accuracy.

・本発明に係る還元剤は尿素水に限られるものではなく、排気に含まれる窒素酸化物を同触媒上において浄化するものであれば、他の成分の還元剤に置換することができる。   The reducing agent according to the present invention is not limited to urea water, and can be replaced with reducing agents of other components as long as nitrogen oxides contained in exhaust gas are purified on the catalyst.

2,102…排気通路、4,104…触媒、10,110…タンク、14…底面、14a…凹部、20…加熱装置、22…電熱コイル、24…金属片、30,130…供給管、42,142…ポンプ、44,144…添加弁、50…電子制御装置、51…温度センサ、52…液位センサ、120…電熱ヒータ。   DESCRIPTION OF SYMBOLS 2,102 ... Exhaust passage, 4,104 ... Catalyst, 10,110 ... Tank, 14 ... Bottom surface, 14a ... Recess, 20 ... Heating device, 22 ... Electric heating coil, 24 ... Metal piece, 30, 130 ... Supply pipe, 42 , 142 ... pump, 44, 144 ... addition valve, 50 ... electronic control device, 51 ... temperature sensor, 52 ... liquid level sensor, 120 ... electric heater.

Claims (2)

内燃機関の排気通路に設けられた触媒の上流側から添加機構を通じて液状の還元剤を添加することにより排気に含まれる窒素酸化物を同触媒上において浄化する排気浄化装置であって、前記還元剤を貯留するタンク内に設けられて前記還元剤を加熱する加熱装置を備える内燃機関の排気浄化装置において、
前記タンク内の還元剤が凍結しているとき、前記加熱装置による加熱を行なうとともに前記添加機構による還元剤の添加を制限するものであって、当該加熱が開始されてからの該還元剤の総解凍量に応じて還元剤の添加の制限態様を変更するものであり、
当該加熱が開始されてから添加された還元剤の総量を該還元剤の総添加量とし、
該還元剤の総解凍量が該還元剤の総添加量未満であるときには還元剤の添加を禁止する
ことを特徴とする内燃機関の排気浄化装置。
An exhaust purification device for purifying nitrogen oxides contained in exhaust gas on the catalyst by adding a liquid reducing agent from an upstream side of a catalyst provided in an exhaust passage of an internal combustion engine through an addition mechanism, the reducing agent In an exhaust gas purification apparatus for an internal combustion engine comprising a heating device provided in a tank for storing the reducing agent,
When the reducing agent in the tank is frozen, heating by the heating device is restricted and addition of the reducing agent by the addition mechanism is restricted, and the total amount of the reducing agent after the heating is started. The mode of limiting the addition of the reducing agent is changed according to the amount of thawing ,
The total amount of reducing agent added since the start of heating is defined as the total amount of reducing agent added,
An exhaust gas purification apparatus for an internal combustion engine, wherein addition of a reducing agent is prohibited when the total thawing amount of the reducing agent is less than the total adding amount of the reducing agent .
請求項1に記載の内燃機関の排気浄化装置において、
内燃機関の運転が開始されてからの車両の走行距離に基づき、該還元剤の総添加量を推定する
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 1,
An exhaust emission control device for an internal combustion engine , wherein the total addition amount of the reducing agent is estimated based on a travel distance of the vehicle after the operation of the internal combustion engine is started .
JP2012008190A 2012-01-18 2012-01-18 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5787090B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012008190A JP5787090B2 (en) 2012-01-18 2012-01-18 Exhaust gas purification device for internal combustion engine
DE102013200445.1A DE102013200445B4 (en) 2012-01-18 2013-01-15 Emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008190A JP5787090B2 (en) 2012-01-18 2012-01-18 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013147982A JP2013147982A (en) 2013-08-01
JP5787090B2 true JP5787090B2 (en) 2015-09-30

Family

ID=48868434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008190A Expired - Fee Related JP5787090B2 (en) 2012-01-18 2012-01-18 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5787090B2 (en)
DE (1) DE102013200445B4 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062771B2 (en) * 2013-03-07 2017-01-18 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE102013220808B4 (en) * 2013-10-15 2017-01-19 Continental Automotive Gmbh Injection control for liquid reducing agents for exhaust aftertreatment in internal combustion engines
US9957862B2 (en) 2014-04-03 2018-05-01 Robert Bosch Gmbh Secondary heating device for diesel exhaust fluid tank
JP6062906B2 (en) * 2014-10-23 2017-01-18 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
DE102015206592B3 (en) * 2015-04-14 2016-07-07 Continental Automotive Gmbh Method and control device for influencing a supply of a liquid reducing agent to a catalyst
JP6665523B2 (en) * 2015-12-22 2020-03-13 三菱自動車工業株式会社 Exhaust gas purification device
SE541370C2 (en) * 2017-09-22 2019-08-27 Scania Cv Ab A system and a method for determining safe start-up of a reducing agent provision configuration
WO2019186968A1 (en) * 2018-03-29 2019-10-03 日立建機株式会社 Work machine
JP7265948B2 (en) * 2019-07-18 2023-04-27 株式会社小松製作所 Prediction device, prediction method and work vehicle
CN114483262B (en) * 2021-12-29 2023-05-23 潍柴动力股份有限公司 Urea pump, control method and control system of urea pump

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933798C2 (en) * 1999-07-19 2001-06-21 Siemens Ag Device and method for exhaust gas aftertreatment in an internal combustion engine
JP4447142B2 (en) * 2000-10-06 2010-04-07 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2008115784A (en) * 2006-11-06 2008-05-22 Hino Motors Ltd Urea water storage device
JP2008163795A (en) * 2006-12-27 2008-07-17 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP5294446B2 (en) * 2008-02-08 2013-09-18 ボッシュ株式会社 Temperature sensor rationality diagnostic device, rationality diagnostic method, and exhaust purification device for internal combustion engine
JP5326461B2 (en) * 2008-09-22 2013-10-30 マツダ株式会社 Engine exhaust purification system
JP4978635B2 (en) * 2009-02-12 2012-07-18 株式会社デンソー Control device for exhaust purification system
JP4911193B2 (en) * 2009-04-28 2012-04-04 株式会社デンソー Exhaust gas purification system for internal combustion engine
JP5671840B2 (en) * 2010-05-17 2015-02-18 いすゞ自動車株式会社 SCR decompression control system

Also Published As

Publication number Publication date
JP2013147982A (en) 2013-08-01
DE102013200445A1 (en) 2013-08-14
DE102013200445B4 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP5787090B2 (en) Exhaust gas purification device for internal combustion engine
JP4978635B2 (en) Control device for exhaust purification system
JP6062771B2 (en) Exhaust gas purification device for internal combustion engine
JP4706627B2 (en) Engine exhaust purification system
US10371029B2 (en) Exhaust gas control apparatus for internal combustion engine
JP2010248963A (en) Exhaust emission control device for internal combustion engine
JP5880514B2 (en) Engine exhaust purification system
WO2018079524A1 (en) Urea water supply system and control method therefor
JP5136450B2 (en) Abnormality diagnosis device for exhaust purification system
JP5769514B2 (en) Abnormality discrimination device for exhaust purification system
JP2020180590A (en) Exhaust emission control device for internal combustion engine
US20150330275A1 (en) Exhaust Purification System for Internal Combustion Engine
US10077699B2 (en) Exhaust purifying system
US9464554B2 (en) Exhaust gas purification system for internal combustion engine
JP6112093B2 (en) Exhaust purification system
JP2014092115A (en) Control device for internal combustion engine
JP2012215152A (en) Exhaust gas purification device of internal combustion engine
JP2009228433A (en) Urea water supplying device and exhaust emission control system
JP6728829B2 (en) Electronic control unit
JPWO2018047554A1 (en) Control device
JP6062906B2 (en) Exhaust gas purification device for internal combustion engine
JP5541006B2 (en) Liquid volume and liquid state sensor
JP2020180584A (en) Exhaust emission control system
JP2016079957A (en) Control device for vehicle
JP5668695B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R151 Written notification of patent or utility model registration

Ref document number: 5787090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees