WO2014203350A1 - Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof - Google Patents

Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof Download PDF

Info

Publication number
WO2014203350A1
WO2014203350A1 PCT/JP2013/066847 JP2013066847W WO2014203350A1 WO 2014203350 A1 WO2014203350 A1 WO 2014203350A1 JP 2013066847 W JP2013066847 W JP 2013066847W WO 2014203350 A1 WO2014203350 A1 WO 2014203350A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
casing
reducing agent
precursor
tank
Prior art date
Application number
PCT/JP2013/066847
Other languages
French (fr)
Japanese (ja)
Inventor
慶太郎 渡邉
Original Assignee
ボルボ ラストバグナー アクチエボラグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ ラストバグナー アクチエボラグ filed Critical ボルボ ラストバグナー アクチエボラグ
Priority to PCT/JP2013/066847 priority Critical patent/WO2014203350A1/en
Publication of WO2014203350A1 publication Critical patent/WO2014203350A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/105Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/148Arrangement of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1486Means to prevent the substance from freezing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust purification device that selectively reduces and purifies nitrogen oxide (NOx) in exhaust gas, and a method for thawing a liquid reducing agent or a precursor thereof used in the exhaust purification device.
  • NOx nitrogen oxide
  • SCR converter using ammonia generated by hydrolysis by injecting urea aqueous solution according to engine operating condition upstream of exhaust of selective reduction catalyst (SCR: Selective Catalytic Reduction) converter installed in engine exhaust pipe
  • SCR selective Catalytic Reduction
  • An exhaust gas purification device that purifies NOx to a harmless component by a selective reduction reaction is known. Since the urea aqueous solution freezes at about ⁇ 11 ° C., as described in Japanese Patent Application Laid-Open No. 2010-19134 (Patent Document 1), exhaust is led around the tank storing the urea aqueous solution, and the heat of the exhaust is used. A technique for thawing the aqueous urea solution in the tank has been proposed.
  • the exhaust purification element including the SCR converter and the tank are separated to some extent so that the heat of the exhaust purification element is not transmitted to the tank. It is necessary to. For this reason, the space occupied by the exhaust purification element and the tank tends to be large, and for example, it is difficult to secure a space for mounting other components outside the frame of the vehicle body.
  • an object of the present invention is to provide an exhaust purification device and a method for thawing a liquid reducing agent or a precursor thereof that can reduce the space occupied by the exhaust purification element and the tank.
  • the exhaust purification device includes an exhaust purification element including an SCR converter that purifies NOx in exhaust, an injection nozzle that injects a liquid reducing agent or a precursor thereof upstream of the SCR converter, and a liquid that is supplied from the injection nozzle.
  • An exhaust purification element including an SCR converter that purifies NOx in exhaust, an injection nozzle that injects a liquid reducing agent or a precursor thereof upstream of the SCR converter, and a liquid that is supplied from the injection nozzle.
  • a tank that stores the reducing agent or its precursor, and a casing that houses the tank so that an exhaust passage is formed between the tank and the tank.
  • the casing of the exhaust purification element and the casing are integrated with a heat insulating member interposed therebetween, and at least a part of the exhaust gas that has passed through the exhaust purification element is introduced into the exhaust passage of the casing.
  • a method for thawing a liquid reducing agent or a precursor thereof stores a casing of an exhaust purification element including an SCR converter that purifies NOx in exhaust gas, and a liquid reducing agent or a precursor thereof that is supplied by injection upstream of the exhaust of the SCR converter.
  • the casing containing the tank is integrated with a heat insulating member interposed therebetween, and at least a part of the exhaust gas that has passed through the exhaust purification element is introduced into the casing, so that the liquid reducing agent in the tank or a precursor thereof is added. Decompress.
  • the space occupied by the exhaust purification element and the tank can be reduced, and for example, other parts can be attached to the outside of the frame of the vehicle body.
  • FIG. 1 shows an example of an exhaust purification device that purifies particulate matter (PM) and NOx in exhaust gas.
  • An intake pipe 120 connected to the intake manifold 110 of the diesel engine 100 includes an air cleaner 130 that filters dust and the like in the intake air along a direction of intake air flow, a compressor 142 of the turbocharger 140 that supercharges intake air, and a compressor 142.
  • An intercooler 150 that cools the intake air that has passed and an intake collector 160 that smoothes the intake pulsation are arranged in this order.
  • an exhaust pipe 180 connected to an exhaust manifold 170 of the diesel engine 100 is provided with a turbine 144 of a turbocharger 140, a continuously regenerating diesel particulate filter (hereinafter referred to as “DPF”) along the exhaust circulation direction.
  • DPF diesel particulate filter
  • the oxidation catalytic converter 220 to be operated is arranged in this order.
  • the continuous regeneration type DPF device 190 includes a DOC (Diesel Oxidation Catalyst) converter 192 that oxidizes at least NO (nitrogen monoxide) to NO 2 (nitrogen dioxide), and a DPF 194 that collects and removes PM.
  • DOC Diesel Oxidation Catalyst
  • DPF 194 that collects and removes PM.
  • a CSF Catalyzed Soot Filter
  • a catalyst active component and additive component
  • the aqueous urea solution stored in the reducing agent tank 230 is supplied to the injection nozzle 200 via a reducing agent addition unit 240 having a built-in pump and flow control valve.
  • the reducing agent addition unit 240 may be divided into a pump module with a built-in pump and a dosing module with a built-in flow control valve.
  • the reducing agent tank 230 can be mentioned as an example of a tank.
  • a temperature sensor 250 for measuring the exhaust gas temperature is attached to the exhaust pipe 180 located between the continuous regeneration type DPF device 190 and the injection nozzle 200 in order to grasp the active state of the SCR converter 210. Further, a temperature sensor 260 for measuring the temperature of the urea aqueous solution (urea aqueous solution temperature) is attached to the reducing agent tank 230. The output signals of the temperature sensors 250 and 260 are input to a reducing agent addition control unit (DCU: Dosing Control Unit) 270 having a built-in computer.
  • DCU Dosing Control Unit
  • the DCU 270 electronically controls the diesel engine 100 via an in-vehicle network such as CAN (Controller Area Network) so that the rotation speed and load as an example of the engine operating state can be read at an arbitrary time.
  • a unit (ECU: Engine Control Unit) 280 is communicably connected.
  • the DCU 270 executes a control program stored in a nonvolatile memory such as a flash ROM (Read Only Memory), thereby controlling the pump and the flow rate of the reducing agent addition unit 240 based on the exhaust temperature, the rotation speed, and the load. Electronically control the valve. Further, the DCU 270 executes a control program to execute a urea aqueous solution thawing process, which will be described later, based on the urea aqueous solution temperature.
  • a nonvolatile memory such as a flash ROM (Read Only Memory)
  • a state quantity closely related to the engine torque such as a fuel injection amount, an intake air flow rate, an intake pressure, a supercharging pressure, and an accelerator opening degree can be used.
  • the rotational speed and load of the diesel engine 100 may be directly detected using a known sensor instead of reading from the ECU 280.
  • exhaust from the diesel engine 100 is introduced into the DOC converter 192 of the continuous regeneration type DPF device 190 through the exhaust manifold 170 and the turbine 144 of the turbocharger 140.
  • the exhaust gas introduced into the DOC converter 192 flows to the DPF 194 while NO is oxidized to NO 2 .
  • NO is oxidized to NO 2 .
  • PM in the exhaust gas is collected, and PM is continuously oxidized (incinerated) using NO 2 generated by the DOC converter 192.
  • the urea aqueous solution supplied (added) from the injection nozzle 200 according to the engine operating state is hydrolyzed using exhaust heat and water vapor in the exhaust, and converted into ammonia that functions as a reducing agent.
  • This ammonia is known to be selectively reduced with NOx in the exhaust gas in the SCR converter 210 and purified to harmless H 2 O (water) and N 2 (nitrogen).
  • NO is oxidized to NO 2 by the DOC converter 192, and the ratio of NO to NO 2 in the exhaust gas is improved to be suitable for the selective reduction reaction, so that the NOx purification rate in the SCR converter 210 is improved. be able to.
  • the ammonia that has passed through the SCR converter 210 is oxidized by the oxidation catalyst converter 220 disposed downstream of the exhaust gas, so that it is possible to suppress the ammonia from being released into the atmosphere as it is.
  • FIG. 2 shows an example of the layout of a vehicle equipped with an exhaust emission control device.
  • a front wheel FW as a driven wheel having a steering mechanism is attached to a front portion of a ladder-shaped frame FRM extending in the front-rear direction of the vehicle body.
  • a rear wheel RW as a drive wheel to which the driving force of the diesel engine 100 is transmitted is attached to the rear portion of the frame FRM.
  • the exhaust purification element refers to an element having a function of purifying exhaust, such as the DOC converter 192, the DPF 194, the SCR converter 210, and the oxidation catalyst converter 220.
  • a battery BTR, a spare tire STR, and three air reservoir tanks ARV are attached in this order from the front to the rear of the vehicle.
  • the exhaust purification apparatus 300 includes a first casing 310 that stores an exhaust purification element, a second casing 320 that stores a reducing agent tank 230, a first casing 310, and a second casing. 320, and a heat insulating member 330 interposed therebetween. Therefore, the first casing 310 and the second casing 320 are integrated with the heat insulating member 330 interposed therebetween.
  • the heat insulating member 330 for example, high silicate glass fiber having high temperature heat resistance can be used.
  • the 1st casing 310 can be mentioned as an example of another casing
  • the 2nd casing 320 can be mentioned as an example of a casing.
  • the first casing 310 includes a cylindrical first casing 312, a second cylindrical casing 314 that also has a cylindrical shape, and the far ends of the first casing 312 and the second casing 314. And a communication pipe 316 that communicates with each other.
  • the first housing 312 and the second housing 314 are arranged side by side so that the respective axes are substantially parallel (they may be just parallel in appearance; the same applies hereinafter).
  • the communication pipe 316 is also piped so that its axis is substantially parallel to the axis of the first casing 312 and the axis of the second casing 314.
  • the first casing 312 has an inlet 312A at the exhaust upstream end and an outlet 312B at the exhaust downstream end.
  • a continuous regenerative DPF device 190 that is, a DOC converter 192 and a DPF 194 is accommodated between the inlet 312A and the outlet 312B.
  • the second casing 314 has an inlet 314A formed at the exhaust upstream end and an outlet 314B formed at the exhaust downstream end.
  • the SCR converter 210 and the oxidation catalyst converter 220 are accommodated between the inlet 314A and the outlet 314B.
  • the communication pipe 316 is the exhaust downstream side of the first housing 312, which is the far ends of the first housing 312 and the second housing 314, in other words, the far ends located on the opposite sides of each other.
  • the exhaust port 312B is communicated with the inflow port 314A at the exhaust upstream end of the second housing 314. Therefore, the exhaust from the diesel engine 100 flows into the first casing 312 from the inlet 312A, passes through the DOC converter 192 and the DPF 194, and enters the communication pipe 316 from the outlet 312B.
  • the exhaust gas flows into the second casing 314 from the inlet 314A through the communication pipe 316, passes through the SCR converter 210 and the oxidation catalyst converter 220, and passes from the outlet 314B to the inside of the first casing 310. Discharged. That is, the exhaust passage extending from the first housing 312 to the second housing 314 via the communication pipe 316 is folded once by the communication pipe 316.
  • the communication pipe 316 is a straight straight pipe having bent portions formed at both ends for connection between the outlet 312B of the first casing 312 and the inlet 314A of the second casing 314.
  • the injection nozzle 200 is attached to the bent portion with respect to the discharge port 312B, and the urea aqueous solution is injected and supplied into the linear pipe. Thereby, the linear length required for the uniform diffusion of the urea aqueous solution into the exhaust gas is secured.
  • a mesh-like diffusion member may be installed in the communication pipe 316.
  • the first casing 310 is made of a metal material such as iron or stainless steel and has a capacity capable of exhibiting a muffler function as a muffler.
  • a discharge port 310 ⁇ / b> A is formed in the peripheral wall of the first casing 310 to discharge the exhaust discharged inside thereof to the outside. Accordingly, the exhaust discharged into the first casing 310 from the discharge port 314B of the second housing 314 is silenced by being expanded inside the second casing 310 and discharged from the discharge port 310A. Since the discharge port 310A of the first casing 310 can be formed at any position except the surface facing the second casing 320, it is possible to avoid interference with other parts arranged around the discharge port 310A. .
  • the second casing 320 is made of a metal material such as iron or stainless steel and has a capacity capable of forming an exhaust passage with the outer wall of the reducing agent tank 230.
  • the second casing 320 is communicated with the first casing 310 via a passage formed by a communication pipe 340 having a cylindrical shape.
  • the communication pipe 340 penetrates the heat insulating member 330 and communicates the first casing 310 and the second casing 320, the overall length thereof is shortened, and for example, an increase in weight can be suppressed. it can. Therefore, at least a part of the exhaust flowing inside the first casing 310 can be guided to the exhaust passage of the second casing 320 via the communication pipe 340.
  • the peripheral wall of the second casing 320 is formed with a discharge port 320 ⁇ / b> A for discharging the exhaust led from the first casing 310 to the exhaust passage to the outside. Since the discharge port 320A of the second casing 320 can be formed at any position except the surface facing the first casing 310, it is possible to avoid interference with other parts arranged around the discharge port 320A. .
  • the communication pipe 340 is provided with a shutter 360 such as a butterfly valve that is opened and closed by a remotely operable actuator 350 such as an electric motor or an air motor in order to open and close the exhaust passage.
  • a shutter 360 such as a butterfly valve that is opened and closed by a remotely operable actuator 350 such as an electric motor or an air motor in order to open and close the exhaust passage.
  • the DCU 270 determines that the urea aqueous solution is frozen based on the urea aqueous solution temperature measured by the temperature sensor 260, the DCU 270 outputs a valve opening signal to the actuator 350, and at least a part of the exhaust is reduced.
  • Guide around tank 230 The exhaust led to the periphery of the reducing agent tank 230 exchanges heat with the urea aqueous solution to defrost the urea aqueous solution, and is discharged to the outside through the discharge port 320A.
  • the shutter 360 may be disposed in the discharge port 310 ⁇ / b> A
  • a reducing agent addition unit 240 is attached to the upper surface of the second casing 320 that houses the reducing agent tank 230.
  • the supply pipe 370 for supplying the urea aqueous solution from the reducing agent addition unit 240 to the injection nozzle 200 is piped at least along the upper surface of the first casing 310, that is, at a position for receiving heat from the exhaust purification element. . Therefore, the supply pipe 370 can efficiently thaw the urea aqueous solution frozen inside by receiving heat of the exhaust gas from the first casing 310 without using a thawing device such as an electric heater, for example. Can do.
  • FIG. 4 shows an example of a control program that the DCU 270 repeatedly executes at predetermined time intervals when the ignition switch is turned on, for example.
  • step 1 abbreviated as “S1” in FIG. 4, the same applies hereinafter
  • the DCU 270 reads the urea aqueous solution temperature from the temperature sensor 260.
  • Step 2 the DCU 270 determines whether or not the urea aqueous solution stored in the reducing agent tank 230 is frozen. Specifically, the DCU 270 determines whether the urea aqueous solution temperature is equal to or lower than the freezing temperature of the urea aqueous solution.
  • the freezing temperature of the urea aqueous solution can be set slightly higher than ⁇ 11 ° C. in consideration of the possibility of freezing by running wind or the like. If the DCU 270 determines that the urea aqueous solution is frozen, the process proceeds to step 3 (Yes), whereas if it determines that the urea aqueous solution is not frozen, the process proceeds to step 4 (No).
  • step 3 the DCU 270 outputs a valve opening signal to the actuator 350, thereby opening the shutter 360 and causing the first casing 310 and the second casing 320 to communicate with each other.
  • a part of the exhaust gas that has passed through the exhaust purification element is guided from the first casing 310 to the second casing 320 through the communication pipe 340.
  • the exhaust gas guided to the second casing 320 contacts the peripheral wall of the reducing agent tank 230 to exchange heat with the urea aqueous solution, and thaws the urea aqueous solution frozen by the heat.
  • the urea aqueous solution frozen in the reducing agent tank 230 can be thawed in a short time.
  • the exhaust gas that has not been introduced from the first casing 310 into the second casing 320 is exhausted to the outside through the first casing outlet 310A, and the exhaust gas that has been introduced into the second casing 320 is 2 is discharged to the outside through the outlet 320A of the casing 320.
  • step 4 the DCU 270 outputs a valve closing signal to the actuator 350, thereby closing the shutter 360 and blocking communication between the first casing 310 and the second casing 320.
  • the urea aqueous solution stored in the reducing agent tank 230 does not excessively rise in temperature. It can suppress chemical reaction.
  • the urea aqueous solution is frozen is determined based on the temperature of the urea aqueous solution stored in the reducing agent tank 230.
  • a part of the exhaust gas is introduced from the first casing 310 to the second casing 320, and heat exchange is performed with the urea aqueous solution in the reducing agent tank 230. Thaw the frozen urea solution.
  • the occupied space in the frame FRM can be reduced as shown in FIG. For this reason, it becomes possible to arrange
  • the heat insulating member 330 makes it difficult for heat of the exhaust to be transmitted from the first casing 310 to the second casing 320, no problem occurs even if the exhaust purification element and the reducing agent tank 230 are arranged close to each other.
  • the exhaust purification element of the exhaust purification apparatus 300 it is only necessary to include at least the SCR converter 210 among the DOC converter 192, the DPF 194, the SCR converter 210, and the oxidation catalyst converter 220 as shown in FIGS.
  • the exhaust purification device 300 includes only the SCR converter 210, as shown in FIG. 5, the first casing 312 is accommodated in the first casing 310, and the second casing 314 and the communication pipe are accommodated. 316 becomes unnecessary.
  • one of the DPF 192 and the DOC converter 194 is accommodated in the first housing 312.
  • At least one of the first casing 310 and the second casing 320 in the exhaust purification apparatus 300 is not limited to the configuration in which the first casing 310 and the second casing 320 are arranged in the horizontal direction, as shown in FIGS. Thus, it can also be arranged in the vertical direction.
  • the communication pipe 316 that communicates the first housing 312 and the second housing 314 is the proximal end of the first housing 312 and the second housing 314. The parts communicate with each other.
  • the exhaust purification apparatus 300 includes a first casing 312 (which may be the second casing 314 or both) in which the exhaust purification element is accommodated, and a second casing 320, and a heat insulating member 330. May be integrated.
  • casing 312 can be mentioned as an example of a casing.
  • the liquid reducing agent or its precursor is not limited to an aqueous urea solution, and an ammonia aqueous solution, a light oil mainly composed of hydrocarbons, or the like is used depending on the function of the exhaust purification element that purifies exhaust harmful substances. You can also.
  • the freezing temperature for determining whether or not the liquid reducing agent or its precursor is frozen may be appropriately selected according to the characteristics.

Abstract

Provided is an exhaust gas purification device wherein the housing for exhaust gas purification elements and the casing for a tank are formed into one body with a heat-insulating member interposed therebetween, said exhaust gas purification elements including a selective catalytic reduction (SCR) converter for purifying NOx in exhaust gas, and said tank storing a liquid reducing agent or a precursor thereof which is to be supplied by injection to the exhaust gas upstream of the SCR converter. Then, at least a portion of the exhaust gas that has passed through the exhaust gas purification elements is introduced into the casing in order to thaw the liquid reducing agent or the precursor thereof in the tank.

Description

排気浄化装置、液体還元剤又はその前駆体の解凍方法Exhaust purification device, method for thawing liquid reducing agent or precursor thereof
 本発明は、排気中の窒素酸化物(NOx)を選択還元浄化する排気浄化装置、並びに、排気浄化装置で使用する液体還元剤又はその前駆体の解凍方法に関する。 The present invention relates to an exhaust purification device that selectively reduces and purifies nitrogen oxide (NOx) in exhaust gas, and a method for thawing a liquid reducing agent or a precursor thereof used in the exhaust purification device.
 エンジンの排気管に配設された選択還元触媒(SCR:Selective Catalytic Reduction)コンバータの排気上流に、エンジン運転状態に応じた尿素水溶液を噴射し、加水分解により生成されるアンモニアを用いて、SCRコンバータでNOxを選択還元反応させて無害成分へと浄化する排気浄化装置が知られている。尿素水溶液は約-11℃で凍結するため、特開2010-19134号公報(特許文献1)に記載されるように、尿素水溶液を貯蔵するタンクの周囲に排気を導き、排気の熱を利用してタンク内の尿素水溶液を解凍する技術が提案されている。 SCR converter using ammonia generated by hydrolysis by injecting urea aqueous solution according to engine operating condition upstream of exhaust of selective reduction catalyst (SCR: Selective Catalytic Reduction) converter installed in engine exhaust pipe An exhaust gas purification device that purifies NOx to a harmless component by a selective reduction reaction is known. Since the urea aqueous solution freezes at about −11 ° C., as described in Japanese Patent Application Laid-Open No. 2010-19134 (Patent Document 1), exhaust is led around the tank storing the urea aqueous solution, and the heat of the exhaust is used. A technique for thawing the aqueous urea solution in the tank has been proposed.
特開2010-19134号公報JP 2010-19134 A
 しかしながら、排気浄化装置においては、タンク内の尿素水溶液が化学反応を起こさないようにすべく、SCRコンバータを含む排気浄化エレメントとタンクとをある程度離間させ、排気浄化エレメントの熱がタンクに伝達されないようにする必要がある。このため、排気浄化エレメント及びタンクが占有するスペースが大きくなりがちであり、例えば、車体のフレームの外方に他の部品を取り付けるスペースを確保することが困難であった。 However, in the exhaust purification device, in order to prevent the urea aqueous solution in the tank from causing a chemical reaction, the exhaust purification element including the SCR converter and the tank are separated to some extent so that the heat of the exhaust purification element is not transmitted to the tank. It is necessary to. For this reason, the space occupied by the exhaust purification element and the tank tends to be large, and for example, it is difficult to secure a space for mounting other components outside the frame of the vehicle body.
 そこで、本発明は、排気浄化エレメント及びタンクの占有スペースを削減可能な、排気浄化装置並びに液体還元剤又はその前駆体の解凍方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an exhaust purification device and a method for thawing a liquid reducing agent or a precursor thereof that can reduce the space occupied by the exhaust purification element and the tank.
 排気浄化装置は、排気中のNOxを浄化するSCRコンバータを含む排気浄化エレメントと、SCRコンバータの排気上流に液体還元剤又はその前駆体を噴射供給する噴射ノズルと、噴射ノズルから噴射供給される液体還元剤又はその前駆体を貯蔵するタンクと、タンクとの間に排気通路が形成されるようにタンクを収納するケーシングと、を有する。そして、排気浄化エレメントの筐体とケーシングとを断熱部材を介在させて一体化すると共に、排気浄化エレメントを通過した排気の少なくとも一部をケーシングの排気通路に導入する。 The exhaust purification device includes an exhaust purification element including an SCR converter that purifies NOx in exhaust, an injection nozzle that injects a liquid reducing agent or a precursor thereof upstream of the SCR converter, and a liquid that is supplied from the injection nozzle. A tank that stores the reducing agent or its precursor, and a casing that houses the tank so that an exhaust passage is formed between the tank and the tank. The casing of the exhaust purification element and the casing are integrated with a heat insulating member interposed therebetween, and at least a part of the exhaust gas that has passed through the exhaust purification element is introduced into the exhaust passage of the casing.
 液体還元剤又はその前駆体の解凍方法は、排気中のNOxを浄化するSCRコンバータを含む排気浄化エレメントの筐体と、SCRコンバータの排気上流に噴射供給する液体還元剤又はその前駆体を貯蔵するタンクを収納するケーシングとを、断熱部材を介在させて一体化すると共に、排気浄化エレメントを通過した排気の少なくとも一部をケーシングの内部に導入して、タンク内の液体還元剤又はその前駆体を解凍する。 A method for thawing a liquid reducing agent or a precursor thereof stores a casing of an exhaust purification element including an SCR converter that purifies NOx in exhaust gas, and a liquid reducing agent or a precursor thereof that is supplied by injection upstream of the exhaust of the SCR converter. The casing containing the tank is integrated with a heat insulating member interposed therebetween, and at least a part of the exhaust gas that has passed through the exhaust purification element is introduced into the casing, so that the liquid reducing agent in the tank or a precursor thereof is added. Decompress.
 本発明によれば、排気浄化エレメント及びタンクの占有スペースを削減でき、例えば、車体のフレームの外方に他の部品を取り付けることができる。 According to the present invention, the space occupied by the exhaust purification element and the tank can be reduced, and for example, other parts can be attached to the outside of the frame of the vehicle body.
排気浄化装置の一例を示す全体構成図である。It is a whole lineblock diagram showing an example of an exhaust-air-purification device. 排気浄化装置を搭載した車両のレイアウトの一例を示す平面図である。It is a top view which shows an example of the layout of the vehicle carrying an exhaust gas purification apparatus. 排気浄化装置の具体的構造の一例を示す構成図である。It is a block diagram which shows an example of the specific structure of an exhaust gas purification apparatus. 制御プログラムの一例を示すフローチャートである。It is a flowchart which shows an example of a control program. 排気浄化装置の具体的構造の第1変形例を示す構成図である。It is a block diagram which shows the 1st modification of the specific structure of an exhaust gas purification apparatus. 排気浄化装置の具体的構造の第2変形例を示す構成図である。It is a block diagram which shows the 2nd modification of the concrete structure of an exhaust gas purification apparatus. 排気浄化装置の具体的構造の第3変形例を示す構成図である。It is a block diagram which shows the 3rd modification of the specific structure of an exhaust gas purification apparatus. 排気浄化装置のレイアウトの第1実施例を示す斜視図である。It is a perspective view which shows 1st Example of the layout of an exhaust gas purification apparatus. 排気浄化装置のレイアウトの第2実施例を示す斜視図である。It is a perspective view which shows 2nd Example of the layout of an exhaust gas purification apparatus. 排気浄化装置のレイアウトの第3実施例を示す斜視図である。It is a perspective view which shows 3rd Example of the layout of an exhaust gas purification apparatus. 排気浄化装置のレイアウトの第4実施例を示す斜視図である。It is a perspective view which shows 4th Example of the layout of an exhaust gas purification apparatus. 排気浄化装置のレイアウトの第5実施例を示す斜視図である。It is a perspective view which shows 5th Example of the layout of an exhaust gas purification apparatus.
 以下、添付された図面を参照し、本発明を実施するための実施形態について詳述する。
 図1は、排気中の粒子状物質(PM:Particulate Matter)及びNOxを浄化する排気浄化装置の一例を示す。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an example of an exhaust purification device that purifies particulate matter (PM) and NOx in exhaust gas.
 ディーゼルエンジン100の吸気マニフォールド110に接続された吸気管120には、吸気流通方向に沿って、吸気中の埃などを濾過するエアクリーナ130、吸気を過給するターボチャージャ140のコンプレッサ142、コンプレッサ142を通過した吸気を冷却するインタークーラ150、吸気脈動を平滑化する吸気コレクタ160がこの順番で配設される。 An intake pipe 120 connected to the intake manifold 110 of the diesel engine 100 includes an air cleaner 130 that filters dust and the like in the intake air along a direction of intake air flow, a compressor 142 of the turbocharger 140 that supercharges intake air, and a compressor 142. An intercooler 150 that cools the intake air that has passed and an intake collector 160 that smoothes the intake pulsation are arranged in this order.
 一方、ディーゼルエンジン100の排気マニフォールド170に接続された排気管180には、排気流通方向に沿って、ターボチャージャ140のタービン144、連続再生式ディーゼルパティキュレートフィルタ(Diesel Particulate Filter、以下「DPF」という)装置190、還元剤前駆体としての尿素水溶液を噴射供給する噴射ノズル200、尿素水溶液から生成されるアンモニアを使用してNOxを選択還元浄化するSCRコンバータ210、SCRコンバータ210を通過したアンモニアを酸化させる酸化触媒コンバータ220がこの順番で配設される。連続再生式DPF装置190は、少なくともNO(一酸化窒素)をNO(二酸化窒素)へと酸化させるDOC(Diesel Oxidation Catalyst)コンバータ192と、PMを捕集・除去するDPF194と、を有する。なお、DPF194の代わりに、その表面に触媒(活性成分及び添加成分)を担持させたCSF(Catalyzed Soot Filter)を使用することもできる。 On the other hand, an exhaust pipe 180 connected to an exhaust manifold 170 of the diesel engine 100 is provided with a turbine 144 of a turbocharger 140, a continuously regenerating diesel particulate filter (hereinafter referred to as “DPF”) along the exhaust circulation direction. ) Device 190, injection nozzle 200 for injecting and supplying urea aqueous solution as a reducing agent precursor, SCR converter 210 for selectively reducing and purifying NOx using ammonia generated from urea aqueous solution, and oxidizing ammonia that has passed through SCR converter 210 The oxidation catalytic converter 220 to be operated is arranged in this order. The continuous regeneration type DPF device 190 includes a DOC (Diesel Oxidation Catalyst) converter 192 that oxidizes at least NO (nitrogen monoxide) to NO 2 (nitrogen dioxide), and a DPF 194 that collects and removes PM. Instead of DPF 194, a CSF (Catalyzed Soot Filter) having a catalyst (active component and additive component) supported on its surface can be used.
 還元剤タンク230に貯蔵された尿素水溶液は、ポンプ及び流量制御弁が内蔵された還元剤添加ユニット240を介して、噴射ノズル200に供給される。ここで、還元剤添加ユニット240としては、ポンプが内蔵されたポンプモジュールと、流量制御弁が内蔵されたドージングモジュールと、に2分割されていてもよい。なお、還元剤タンク230が、タンクの一例として挙げることができる。 The aqueous urea solution stored in the reducing agent tank 230 is supplied to the injection nozzle 200 via a reducing agent addition unit 240 having a built-in pump and flow control valve. Here, the reducing agent addition unit 240 may be divided into a pump module with a built-in pump and a dosing module with a built-in flow control valve. In addition, the reducing agent tank 230 can be mentioned as an example of a tank.
 連続再生式DPF装置190と噴射ノズル200との間に位置する排気管180には、SCRコンバータ210の活性状態を把握するため、排気の温度(排気温度)を測定する温度センサ250が取り付けられる。また、還元剤タンク230には、尿素水溶液の温度(尿素水溶液温度)を測定する温度センサ260が取り付けられる。温度センサ250及び260の各出力信号は、コンピュータを内蔵した還元剤添加コントロールユニット(DCU:Dosing Control Unit)270に入力される。また、DCU270は、エンジン運転状態の一例としての回転速度及び負荷を任意の時点で読み込み可能とすべく、CAN(Controller Area Network)などの車載ネットワークを介して、ディーゼルエンジン100を電子制御するエンジンコントロールユニット(ECU:Engine Control Unit)280と通信可能に接続される。 A temperature sensor 250 for measuring the exhaust gas temperature (exhaust gas temperature) is attached to the exhaust pipe 180 located between the continuous regeneration type DPF device 190 and the injection nozzle 200 in order to grasp the active state of the SCR converter 210. Further, a temperature sensor 260 for measuring the temperature of the urea aqueous solution (urea aqueous solution temperature) is attached to the reducing agent tank 230. The output signals of the temperature sensors 250 and 260 are input to a reducing agent addition control unit (DCU: Dosing Control Unit) 270 having a built-in computer. In addition, the DCU 270 electronically controls the diesel engine 100 via an in-vehicle network such as CAN (Controller Area Network) so that the rotation speed and load as an example of the engine operating state can be read at an arbitrary time. A unit (ECU: Engine Control Unit) 280 is communicably connected.
 そして、DCU270は、フラッシュROM(Read Only Memory)などの不揮発性メモリに格納された制御プログラムを実行することで、排気温度、回転速度及び負荷に基づいて、還元剤添加ユニット240のポンプ及び流量制御弁を電子制御する。また、DCU270は、制御プログラムを実行することで、尿素水溶液温度に基づいて、後述する尿素水溶液の解凍処理を実行する。 The DCU 270 executes a control program stored in a nonvolatile memory such as a flash ROM (Read Only Memory), thereby controlling the pump and the flow rate of the reducing agent addition unit 240 based on the exhaust temperature, the rotation speed, and the load. Electronically control the valve. Further, the DCU 270 executes a control program to execute a urea aqueous solution thawing process, which will be described later, based on the urea aqueous solution temperature.
 ここで、ディーゼルエンジン100の負荷としては、例えば、燃料噴射量、吸気流量、吸気圧力、過給圧力、アクセル開度など、エンジントルクと密接に関連する状態量を使用することができる。また、ディーゼルエンジン100の回転速度及び負荷は、ECU280から読み込む代わりに、公知のセンサを使用して直接検出するようにしてもよい。 Here, as the load of the diesel engine 100, for example, a state quantity closely related to the engine torque, such as a fuel injection amount, an intake air flow rate, an intake pressure, a supercharging pressure, and an accelerator opening degree can be used. Further, the rotational speed and load of the diesel engine 100 may be directly detected using a known sensor instead of reading from the ECU 280.
 かかる排気浄化装置において、ディーゼルエンジン100の排気は、排気マニフォールド170、ターボチャージャ140のタービン144を経て、連続再生式DPF装置190のDOCコンバータ192へと導入される。DOCコンバータ192へと導入された排気は、NOがNOへと酸化されつつDPF194へと流れる。DPF194では、排気中のPMが捕集されると共に、DOCコンバータ192により生成されたNOを使用してPMが連続的に酸化(焼却)される。 In such an exhaust purification device, exhaust from the diesel engine 100 is introduced into the DOC converter 192 of the continuous regeneration type DPF device 190 through the exhaust manifold 170 and the turbine 144 of the turbocharger 140. The exhaust gas introduced into the DOC converter 192 flows to the DPF 194 while NO is oxidized to NO 2 . In the DPF 194, PM in the exhaust gas is collected, and PM is continuously oxidized (incinerated) using NO 2 generated by the DOC converter 192.
 また、エンジン運転状態に応じて噴射ノズル200から噴射供給(添加)された尿素水溶液は、排気熱及び排気中の水蒸気を使用して加水分解され、還元剤として機能するアンモニアへと転化される。このアンモニアは、SCRコンバータ210において排気中のNOxと選択還元反応し、無害なHO(水)及びN(窒素)へと浄化されることは知られたことである。このとき、DOCコンバータ192によりNOがNOへと酸化され、排気中のNOとNOとの比率が選択還元反応に適したものに改善されるため、SCRコンバータ210におけるNOx浄化率を向上させることができる。一方、SCRコンバータ210を通過したアンモニアは、その排気下流に配設された酸化触媒コンバータ220により酸化されるので、アンモニアがそのまま大気中に放出されることを抑制できる。 Further, the urea aqueous solution supplied (added) from the injection nozzle 200 according to the engine operating state is hydrolyzed using exhaust heat and water vapor in the exhaust, and converted into ammonia that functions as a reducing agent. This ammonia is known to be selectively reduced with NOx in the exhaust gas in the SCR converter 210 and purified to harmless H 2 O (water) and N 2 (nitrogen). At this time, NO is oxidized to NO 2 by the DOC converter 192, and the ratio of NO to NO 2 in the exhaust gas is improved to be suitable for the selective reduction reaction, so that the NOx purification rate in the SCR converter 210 is improved. be able to. On the other hand, the ammonia that has passed through the SCR converter 210 is oxidized by the oxidation catalyst converter 220 disposed downstream of the exhaust gas, so that it is possible to suppress the ammonia from being released into the atmosphere as it is.
 図2は、排気浄化装置を搭載した車両のレイアウトの一例を示す。
 車体の前後方向に延びる梯子形のフレームFRMの前部には、操舵機構を備えた従動輪としての前輪FWが取り付けられる。また、フレームFRMの後部には、ディーゼルエンジン100の駆動力が伝達される、駆動輪としての後輪RWが取り付けられる。フレームFRMの右側面であって、前輪FWと後輪RWとの間には、車両前方から後方にかけて、排気浄化エレメント及び還元剤タンク230が一体化された排気浄化装置300、燃料タンクFTKがこの順番で取り付けられる。ここで、排気浄化エレメントとは、DOCコンバータ192、DPF194、SCRコンバータ210及び酸化触媒コンバータ220のように、排気を浄化する機能を備えたエレメントのことをいう。一方、フレームFRMの左側面であって、前輪FWと後輪RWとの間には、車両前方から後方にかけて、バッテリBTR、スペアタイヤSTR、3つのエアリザーバタンクARVがこの順番で取り付けられる。
FIG. 2 shows an example of the layout of a vehicle equipped with an exhaust emission control device.
A front wheel FW as a driven wheel having a steering mechanism is attached to a front portion of a ladder-shaped frame FRM extending in the front-rear direction of the vehicle body. Further, a rear wheel RW as a drive wheel to which the driving force of the diesel engine 100 is transmitted is attached to the rear portion of the frame FRM. On the right side of the frame FRM, between the front wheel FW and the rear wheel RW, there is an exhaust purification device 300 in which an exhaust purification element and a reducing agent tank 230 are integrated from the front to the rear of the vehicle, and a fuel tank FTK. Installed in order. Here, the exhaust purification element refers to an element having a function of purifying exhaust, such as the DOC converter 192, the DPF 194, the SCR converter 210, and the oxidation catalyst converter 220. On the other hand, on the left side surface of the frame FRM, between the front wheel FW and the rear wheel RW, a battery BTR, a spare tire STR, and three air reservoir tanks ARV are attached in this order from the front to the rear of the vehicle.
 排気浄化装置300は、図3に示すように、排気浄化エレメントを収納する第1のケーシング310と、還元剤タンク230を収納する第2のケーシング320と、第1のケーシング310と第2のケーシング320との間に介在された断熱部材330と、を有する。従って、第1のケーシング310と第2のケーシング320とは、断熱部材330を介在させて一体化されている。ここで、断熱部材330としては、高温耐熱性を有する、例えば、高珪酸ガラス繊維などを使用することができる。なお、第1のケーシング310が、他のケーシングの一例として挙げることができると共に、第2のケーシング320が、ケーシングの一例として挙げることができる。 As shown in FIG. 3, the exhaust purification apparatus 300 includes a first casing 310 that stores an exhaust purification element, a second casing 320 that stores a reducing agent tank 230, a first casing 310, and a second casing. 320, and a heat insulating member 330 interposed therebetween. Therefore, the first casing 310 and the second casing 320 are integrated with the heat insulating member 330 interposed therebetween. Here, as the heat insulating member 330, for example, high silicate glass fiber having high temperature heat resistance can be used. In addition, while the 1st casing 310 can be mentioned as an example of another casing, the 2nd casing 320 can be mentioned as an example of a casing.
 第1のケーシング310は、筒型をなす第1の筐体312と、同じく筒形をなす第2の筐体314と、第1の筐体312及び第2の筐体314の遠端部同士を連通させる連通管316と、を収納する。第1の筐体312と第2の筐体314とは、各軸線が略平行(見た目で平行という程度でよい。以下同様。)となるように、互いに並べて配置される。また、連通管316も、その軸線が、第1の筐体312の軸線及び第2の筐体314の軸線と略平行となるように配管される。 The first casing 310 includes a cylindrical first casing 312, a second cylindrical casing 314 that also has a cylindrical shape, and the far ends of the first casing 312 and the second casing 314. And a communication pipe 316 that communicates with each other. The first housing 312 and the second housing 314 are arranged side by side so that the respective axes are substantially parallel (they may be just parallel in appearance; the same applies hereinafter). The communication pipe 316 is also piped so that its axis is substantially parallel to the axis of the first casing 312 and the axis of the second casing 314.
 第1の筐体312は、排気上流端部に流入口312Aが形成され、排気下流端部に排出口312Bが形成される。そして、流入口312Aと排出口312Bとの間には、連続再生式DPF装置190、即ち、DOCコンバータ192及びDPF194が収納される。 The first casing 312 has an inlet 312A at the exhaust upstream end and an outlet 312B at the exhaust downstream end. A continuous regenerative DPF device 190, that is, a DOC converter 192 and a DPF 194 is accommodated between the inlet 312A and the outlet 312B.
 第2の筐体314は、排気上流端部に流入口314Aが形成され、排気下流端部に排出口314Bが形成される。そして、流入口314Aと排出口314Bとの間には、SCRコンバータ210及び酸化触媒コンバータ220が収納される。 The second casing 314 has an inlet 314A formed at the exhaust upstream end and an outlet 314B formed at the exhaust downstream end. The SCR converter 210 and the oxidation catalyst converter 220 are accommodated between the inlet 314A and the outlet 314B.
 連通管316は、第1の筐体312及び第2の筐体314の遠端部同士、要するに、互いに反対側に位置する遠い方の端部である、第1の筐体312の排気下流側の排出口312Bと、第2の筐体314の排気上流端部の流入口314Aと、を連通させる。従って、ディーゼルエンジン100の排気は、流入口312Aから第1の筐体312に流入し、DOCコンバータ192及びDPF194を通過して排出口312Bから連通管316の中へと入る。そして、排気は、連通管316を経て流入口314Aから第2の筐体314へと流入し、SCRコンバータ210及び酸化触媒コンバータ220を通過して排出口314Bから第1のケーシング310の内部へと排出される。即ち、第1の筐体312から連通管316を経由して第2の筐体314へと至る排気の通路は、連通管316により一度折り返されている。 The communication pipe 316 is the exhaust downstream side of the first housing 312, which is the far ends of the first housing 312 and the second housing 314, in other words, the far ends located on the opposite sides of each other. The exhaust port 312B is communicated with the inflow port 314A at the exhaust upstream end of the second housing 314. Therefore, the exhaust from the diesel engine 100 flows into the first casing 312 from the inlet 312A, passes through the DOC converter 192 and the DPF 194, and enters the communication pipe 316 from the outlet 312B. Then, the exhaust gas flows into the second casing 314 from the inlet 314A through the communication pipe 316, passes through the SCR converter 210 and the oxidation catalyst converter 220, and passes from the outlet 314B to the inside of the first casing 310. Discharged. That is, the exhaust passage extending from the first housing 312 to the second housing 314 via the communication pipe 316 is folded once by the communication pipe 316.
 また、連通管316は、第1の筐体312の排出口312Bと第2の筐体314の流入口314Aとの接続のために曲折部分が両端に形成された直線状の直管であって、排出口312Bに対する曲折部分に噴射ノズル200が取り付けられ、直線状の管内に尿素水溶液が噴射供給される。これにより、排気中への尿素水溶液の均一拡散に必要な直線長さが確保されている。なお、尿素水溶液の均一拡散を促進するために、例えば、連通管316に網目状などの拡散部材を設置してもよい。 The communication pipe 316 is a straight straight pipe having bent portions formed at both ends for connection between the outlet 312B of the first casing 312 and the inlet 314A of the second casing 314. The injection nozzle 200 is attached to the bent portion with respect to the discharge port 312B, and the urea aqueous solution is injected and supplied into the linear pipe. Thereby, the linear length required for the uniform diffusion of the urea aqueous solution into the exhaust gas is secured. In order to promote uniform diffusion of the urea aqueous solution, for example, a mesh-like diffusion member may be installed in the communication pipe 316.
 第1のケーシング310は、鉄、ステンレスなどの金属材料からなり、マフラーとしての消音機能を発揮可能な容量を有する。第1のケーシング310の周壁には、その内部に排出された排気を外部に排出するための排出口310Aが形成される。従って、第2の筐体314の排出口314Bから第1のケーシング310の内部に排出された排気は、第2のケーシング310の内部で膨張することで消音され、排出口310Aから排出される。第1のケーシング310の排出口310Aは、第2のケーシング320に対面する面を除く任意の位置に形成可能であるため、その周囲に配置される他の部品との干渉を回避することができる。 The first casing 310 is made of a metal material such as iron or stainless steel and has a capacity capable of exhibiting a muffler function as a muffler. A discharge port 310 </ b> A is formed in the peripheral wall of the first casing 310 to discharge the exhaust discharged inside thereof to the outside. Accordingly, the exhaust discharged into the first casing 310 from the discharge port 314B of the second housing 314 is silenced by being expanded inside the second casing 310 and discharged from the discharge port 310A. Since the discharge port 310A of the first casing 310 can be formed at any position except the surface facing the second casing 320, it is possible to avoid interference with other parts arranged around the discharge port 310A. .
 第2のケーシング320は、鉄、ステンレスなどの金属材料からなり、還元剤タンク230の外壁との間に排気通路を形成可能な容量を有する。また、第2のケーシング320は、円筒形状をなす連通管340により形成される通路を介して、第1のケーシング310に連通される。ここで、連通管340は、断熱部材330を貫通して第1のケーシング310と第2のケーシング320とを連通しているため、その全長が短くなり、例えば、重量増加などを抑制することができる。従って、第1のケーシング310の内部を流れる排気の少なくとも一部を、連通管340を介して第2のケーシング320の排気通路へと導くことができる。このため、第2のケーシング320の周壁には、第1のケーシング310から排気通路へと導かれた排気を外部に排出するための排出口320Aが形成される。第2のケーシング320の排出口320Aは、第1のケーシング310に対面する面を除く任意の位置に形成可能であるため、その周囲に配置される他の部品との干渉を回避することができる。 The second casing 320 is made of a metal material such as iron or stainless steel and has a capacity capable of forming an exhaust passage with the outer wall of the reducing agent tank 230. The second casing 320 is communicated with the first casing 310 via a passage formed by a communication pipe 340 having a cylindrical shape. Here, since the communication pipe 340 penetrates the heat insulating member 330 and communicates the first casing 310 and the second casing 320, the overall length thereof is shortened, and for example, an increase in weight can be suppressed. it can. Therefore, at least a part of the exhaust flowing inside the first casing 310 can be guided to the exhaust passage of the second casing 320 via the communication pipe 340. For this reason, the peripheral wall of the second casing 320 is formed with a discharge port 320 </ b> A for discharging the exhaust led from the first casing 310 to the exhaust passage to the outside. Since the discharge port 320A of the second casing 320 can be formed at any position except the surface facing the first casing 310, it is possible to avoid interference with other parts arranged around the discharge port 320A. .
 連通管340には、その排気通路を開閉するために、例えば、電動モータ、エアモータなどの遠隔操作可能なアクチュエータ350により開閉動作する、バタフライ弁などのシャッタ360が配設される。そして、DCU270は、温度センサ260により測定された尿素水溶液温度に基づいて尿素水溶液が凍結していると判定した場合、アクチュエータ350に対して開弁信号を出力し、排気の少なくとも一部を還元剤タンク230の周囲に導く。還元剤タンク230の周囲に導かれた排気は、尿素水溶液との間で熱交換をして尿素水溶液を解凍し、排出口320Aから外部へと排出される。ここで、シャッタ360は、第1のケーシング310の排出口310Aに配設されていてもよい。なお、DCU270が、コントロールユニットの一例として挙げることができる。 The communication pipe 340 is provided with a shutter 360 such as a butterfly valve that is opened and closed by a remotely operable actuator 350 such as an electric motor or an air motor in order to open and close the exhaust passage. When the DCU 270 determines that the urea aqueous solution is frozen based on the urea aqueous solution temperature measured by the temperature sensor 260, the DCU 270 outputs a valve opening signal to the actuator 350, and at least a part of the exhaust is reduced. Guide around tank 230. The exhaust led to the periphery of the reducing agent tank 230 exchanges heat with the urea aqueous solution to defrost the urea aqueous solution, and is discharged to the outside through the discharge port 320A. Here, the shutter 360 may be disposed in the discharge port 310 </ b> A of the first casing 310. The DCU 270 can be cited as an example of a control unit.
 還元剤タンク230を収納する第2のケーシング320の上面には、還元剤添加ユニット240が取り付けられる。そして、還元剤添加ユニット240から噴射ノズル200へと尿素水溶液を供給する供給配管370が、少なくとも、第1のケーシング310の上面に沿った状態、要するに、排気浄化エレメントから受熱する位置に配管される。従って、供給配管370は、例えば、電熱ヒータなどの解凍装置を併設しなくても、第1のケーシング310から排気の熱を受熱することで、その内部で凍結した尿素水溶液を効率良く解凍することができる。 A reducing agent addition unit 240 is attached to the upper surface of the second casing 320 that houses the reducing agent tank 230. The supply pipe 370 for supplying the urea aqueous solution from the reducing agent addition unit 240 to the injection nozzle 200 is piped at least along the upper surface of the first casing 310, that is, at a position for receiving heat from the exhaust purification element. . Therefore, the supply pipe 370 can efficiently thaw the urea aqueous solution frozen inside by receiving heat of the exhaust gas from the first casing 310 without using a thawing device such as an electric heater, for example. Can do.
 図4は、例えば、イグニッションスイッチがONになったことを契機として、DCU270が所定時間ごとに繰り返し実行する制御プログラムの一例を示す。
 ステップ1(図4では「S1」と略記する。以下同様。)では、DCU270が、温度センサ260から尿素水溶液温度を読み込む。
FIG. 4 shows an example of a control program that the DCU 270 repeatedly executes at predetermined time intervals when the ignition switch is turned on, for example.
In step 1 (abbreviated as “S1” in FIG. 4, the same applies hereinafter), the DCU 270 reads the urea aqueous solution temperature from the temperature sensor 260.
 ステップ2では、DCU270が、還元剤タンク230に貯蔵されている尿素水溶液が凍結しているか否かを判定する。具体的には、DCU270は、尿素水溶液温度が尿素水溶液の凍結温度以下であるか否かを判定する。ここで、尿素水溶液は約-11℃で凍結するので、例えば、走行風などで凍結する可能性を考慮し、尿素水溶液の凍結温度を-11℃よりも若干高い温度とすることができる。そして、DCU270は、尿素水溶液が凍結していると判定すれば処理をステップ3へと進める一方(Yes)、尿素水溶液が凍結していないと判定すれば処理をステップ4へと進める(No)。 In Step 2, the DCU 270 determines whether or not the urea aqueous solution stored in the reducing agent tank 230 is frozen. Specifically, the DCU 270 determines whether the urea aqueous solution temperature is equal to or lower than the freezing temperature of the urea aqueous solution. Here, since the urea aqueous solution freezes at about −11 ° C., for example, the freezing temperature of the urea aqueous solution can be set slightly higher than −11 ° C. in consideration of the possibility of freezing by running wind or the like. If the DCU 270 determines that the urea aqueous solution is frozen, the process proceeds to step 3 (Yes), whereas if it determines that the urea aqueous solution is not frozen, the process proceeds to step 4 (No).
 ステップ3では、DCU270が、アクチュエータ350に対して開弁信号を出力することで、シャッタ360を開いて、第1のケーシング310と第2のケーシング320とを連通させる。このようにすれば、排気浄化エレメントを通過した排気の一部は、連通管340を通って第1のケーシング310から第2のケーシング320へと導かれる。そして、第2のケーシング320へと導かれた排気は、還元剤タンク230の周壁と接触することで尿素水溶液と熱交換し、その熱によって凍結した尿素水溶液を解凍する。このとき、排気温度は負荷に応じて変化するため、例えば、ディーゼルエンジン100の始動直後であっても、還元剤タンク230の内部で凍結した尿素水溶液を短時間で解凍することができる。なお、第1のケーシング310から第2のケーシング320へと導入されなかった排気は、第1のケーシングの排出口310Aから外部に排出され、第2のケーシング320へと導入された排気は、第2のケーシング320の排出口320Aから外部に排出される。 In step 3, the DCU 270 outputs a valve opening signal to the actuator 350, thereby opening the shutter 360 and causing the first casing 310 and the second casing 320 to communicate with each other. In this way, a part of the exhaust gas that has passed through the exhaust purification element is guided from the first casing 310 to the second casing 320 through the communication pipe 340. Then, the exhaust gas guided to the second casing 320 contacts the peripheral wall of the reducing agent tank 230 to exchange heat with the urea aqueous solution, and thaws the urea aqueous solution frozen by the heat. At this time, since the exhaust temperature changes depending on the load, for example, even immediately after the diesel engine 100 is started, the urea aqueous solution frozen in the reducing agent tank 230 can be thawed in a short time. The exhaust gas that has not been introduced from the first casing 310 into the second casing 320 is exhausted to the outside through the first casing outlet 310A, and the exhaust gas that has been introduced into the second casing 320 is 2 is discharged to the outside through the outlet 320A of the casing 320.
 ステップ4では、DCU270が、アクチュエータ350に対して閉弁信号を出力することで、シャッタ360を閉じて、第1のケーシング310と第2のケーシング320との連通を遮断させる。このようにすれば、第1のケーシング310から第2のケーシング320へと排気が導入されないため、還元剤タンク230に貯蔵される尿素水溶液が過度に昇温することがなく、例えば、尿素水溶液が化学反応することを抑制できる。 In step 4, the DCU 270 outputs a valve closing signal to the actuator 350, thereby closing the shutter 360 and blocking communication between the first casing 310 and the second casing 320. In this way, since exhaust gas is not introduced from the first casing 310 to the second casing 320, the urea aqueous solution stored in the reducing agent tank 230 does not excessively rise in temperature. It can suppress chemical reaction.
 かかる排気浄化装置300によれば、還元剤タンク230に貯蔵されている尿素水溶液の温度に基づいて、尿素水溶液が凍結しているか否かが判定される。そして、尿素水溶液が凍結している場合には、第1のケーシング310から第2のケーシング320へと排気の一部を導入し、還元剤タンク230の尿素水溶液との間で熱交換することで、凍結した尿素水溶液を解凍させる。 According to the exhaust gas purification apparatus 300, whether or not the urea aqueous solution is frozen is determined based on the temperature of the urea aqueous solution stored in the reducing agent tank 230. When the urea aqueous solution is frozen, a part of the exhaust gas is introduced from the first casing 310 to the second casing 320, and heat exchange is performed with the urea aqueous solution in the reducing agent tank 230. Thaw the frozen urea solution.
 第1のケーシング310と第2のケーシング320とは、断熱部材330を介在させて一体化されているため、図2に示すように、フレームFRMにおける占有スペースを削減することができる。このため、その周囲に他の部品を配置することが可能となり、車両スペースの有効利用を促進することができる。このとき、断熱部材330は、第1のケーシング310から第2のケーシング320へと排気の熱を伝わり難くするため、排気浄化エレメントと還元剤タンク230とを近接配置しても不具合が発生しない。 Since the first casing 310 and the second casing 320 are integrated with the heat insulating member 330 interposed therebetween, the occupied space in the frame FRM can be reduced as shown in FIG. For this reason, it becomes possible to arrange | position other parts around it, and can promote the effective utilization of vehicle space. At this time, since the heat insulating member 330 makes it difficult for heat of the exhaust to be transmitted from the first casing 310 to the second casing 320, no problem occurs even if the exhaust purification element and the reducing agent tank 230 are arranged close to each other.
 排気浄化装置300の排気浄化エレメントとしては、DOCコンバータ192、DPF194、SCRコンバータ210及び酸化触媒コンバータ220のうち、図5~図7に示すように、少なくともSCRコンバータ210を備えていればよい。排気浄化装置300がSCRコンバータ210のみを備えている場合には、図5に示すように、第1のケーシング310には第1の筐体312が収納され、第2の筐体314及び連通管316は不要となる。図6に示す例では、第1の筐体312に、DPF192又はDOCコンバータ194の一方が収納されている。 As the exhaust purification element of the exhaust purification apparatus 300, it is only necessary to include at least the SCR converter 210 among the DOC converter 192, the DPF 194, the SCR converter 210, and the oxidation catalyst converter 220 as shown in FIGS. When the exhaust purification device 300 includes only the SCR converter 210, as shown in FIG. 5, the first casing 312 is accommodated in the first casing 310, and the second casing 314 and the communication pipe are accommodated. 316 becomes unnecessary. In the example illustrated in FIG. 6, one of the DPF 192 and the DOC converter 194 is accommodated in the first housing 312.
 また、排気浄化装置300における第1のケーシング310及び第2のケーシング320の少なくとも一方は、図8及び図9に示すように、水平方向に配置する構成に限らず、図10及び図11に示すように、垂直方向に配置することもできる。なお、図9及び図11に示す例では、第1の筐体312と第2の筐体314とを連通する連通管316は、第1の筐体312及び第2の筐体314の近接端部同士を連通している。 Further, at least one of the first casing 310 and the second casing 320 in the exhaust purification apparatus 300 is not limited to the configuration in which the first casing 310 and the second casing 320 are arranged in the horizontal direction, as shown in FIGS. Thus, it can also be arranged in the vertical direction. In the example shown in FIGS. 9 and 11, the communication pipe 316 that communicates the first housing 312 and the second housing 314 is the proximal end of the first housing 312 and the second housing 314. The parts communicate with each other.
 排気浄化装置300は、図12に示すように、排気浄化エレメントが収納される第1の筐体312(第2の筐体314又は両方でもよい)と第2のケーシング320とが、断熱部材330を介在させて一体化されていてもよい。この場合、第1の筐体312が、ケーシングの一例として挙げることができる。 As shown in FIG. 12, the exhaust purification apparatus 300 includes a first casing 312 (which may be the second casing 314 or both) in which the exhaust purification element is accommodated, and a second casing 320, and a heat insulating member 330. May be integrated. In this case, the 1st housing | casing 312 can be mentioned as an example of a casing.
 さらに、液体還元剤又はその前駆体としては、尿素水溶液に限らず、排気の有害物質を浄化する排気浄化エレメントの機能などに応じて、アンモニア水溶液、炭化水素を主成分とする軽油などを使用することもできる。この場合には、液体還元剤又はその前駆体が凍結しているか否かを判定するための凍結温度は、その特性に応じて適宜選定すればよい。 Furthermore, the liquid reducing agent or its precursor is not limited to an aqueous urea solution, and an ammonia aqueous solution, a light oil mainly composed of hydrocarbons, or the like is used depending on the function of the exhaust purification element that purifies exhaust harmful substances. You can also. In this case, the freezing temperature for determining whether or not the liquid reducing agent or its precursor is frozen may be appropriately selected according to the characteristics.
  192 DOCコンバータ
  194 DPF
  200 噴射ノズル
  210 SCRコンバータ
  220 酸化触媒コンバータ
  230 還元剤タンク
  260 温度センサ
  270 DCU
  300 排気浄化装置
  310 第1のケーシング
  312 第1の筐体
  314 第2の筐体
  320 第2のケーシング
  330 断熱部材
  340 連通管
  350 アクチュエータ
  360 シャッタ
  370 供給配管
192 DOC Converter 194 DPF
200 Injection nozzle 210 SCR converter 220 Oxidation catalytic converter 230 Reductant tank 260 Temperature sensor 270 DCU
DESCRIPTION OF SYMBOLS 300 Exhaust gas purification device 310 1st casing 312 1st housing | casing 314 2nd housing | casing 320 2nd casing 330 Heat insulation member 340 Communication pipe 350 Actuator 360 Shutter 370 Supply piping

Claims (11)

  1.  排気中の窒素酸化物を浄化する選択還元触媒コンバータを含む排気浄化エレメントと、
     前記選択還元触媒コンバータの排気上流に液体還元剤又はその前駆体を噴射供給する噴射ノズルと、
     前記噴射ノズルから噴射供給される液体還元剤又はその前駆体を貯蔵するタンクと、
     前記タンクとの間に排気通路が形成されるように当該タンクを収納するケーシングと、
     を有し、
     前記排気浄化エレメントの筐体と前記ケーシングとが断熱部材を介在させて一体化されていると共に、前記排気浄化エレメントを通過した排気の少なくとも一部が前記ケーシングの排気通路に導入される、
     ことを特徴とする排気浄化装置。
    An exhaust purification element including a selective reduction catalytic converter that purifies nitrogen oxides in the exhaust;
    An injection nozzle for injecting and supplying a liquid reducing agent or a precursor thereof upstream of the exhaust of the selective catalytic reduction converter;
    A tank for storing a liquid reducing agent sprayed from the spray nozzle or a precursor thereof;
    A casing that houses the tank so that an exhaust passage is formed between the tank and the tank;
    Have
    The casing of the exhaust purification element and the casing are integrated with a heat insulating member interposed therebetween, and at least a part of the exhaust gas that has passed through the exhaust purification element is introduced into the exhaust passage of the casing.
    An exhaust purification device characterized by that.
  2.  前記排気浄化エレメントを通過した排気の一部を前記ケーシングの排気通路に導入する通路を開閉する遠隔操作可能なシャッタと、
     前記タンクに貯蔵される液体還元剤又はその前駆体の温度を測定する温度センサと、
     前記温度センサにより測定された温度に基づいて前記シャッタを開閉するコントロールユニットと、
     を更に有することを特徴とする請求項1に記載の排気浄化装置。
    A remotely operable shutter that opens and closes a passage for introducing a portion of the exhaust that has passed through the exhaust purification element into the exhaust passage of the casing;
    A temperature sensor for measuring the temperature of the liquid reducing agent or its precursor stored in the tank;
    A control unit that opens and closes the shutter based on the temperature measured by the temperature sensor;
    The exhaust emission control device according to claim 1, further comprising:
  3.  前記コントロールユニットは、前記温度センサにより測定された温度に基づいて、前記タンクに貯蔵された液体還元剤又はその前駆体が凍結しているか否かを判定し、前記液体還元剤又はその前駆体が凍結していると判定した場合に、前記シャッタを開く、
     ことを特徴とする請求項2に記載の排気浄化装置。
    The control unit determines whether the liquid reducing agent or its precursor stored in the tank is frozen based on the temperature measured by the temperature sensor, and the liquid reducing agent or its precursor is Open the shutter when it is determined that it is frozen,
    The exhaust emission control device according to claim 2.
  4.  前記排気浄化エレメントの筐体を収納する他のケーシングを更に有し、
     前記ケーシングと前記他のケーシングとが前記断熱部材を介在させて一体化されている、
     ことを特徴とする請求項1~請求項3のいずれか1つに記載の排気浄化装置。
    It further has another casing for housing the exhaust purification element casing,
    The casing and the other casing are integrated with the heat insulating member interposed therebetween,
    The exhaust emission control device according to any one of claims 1 to 3, wherein:
  5.  前記排気浄化エレメントは、前記選択還元触媒コンバータの排気上流に、少なくとも排気中の一酸化炭素を二酸化炭素へと酸化させるディーゼル酸化触媒コンバータを有する、
     ことを特徴とする請求項1~請求項4のいずれか1つに記載の排気浄化装置。
    The exhaust purification element has a diesel oxidation catalytic converter that oxidizes at least carbon monoxide in the exhaust into carbon dioxide upstream of the exhaust of the selective catalytic reduction converter.
    The exhaust emission control device according to any one of claims 1 to 4, wherein:
  6.  前記排気浄化エレメントは、前記選択還元触媒コンバータと前記ディーゼル酸化触媒コンバータとの間に、排気中の粒子状物質を捕集するディーゼルパティキュレートフィルタを有する、
     ことを特徴とする請求項5に記載の排気浄化装置。
    The exhaust purification element has a diesel particulate filter that collects particulate matter in the exhaust between the selective reduction catalytic converter and the diesel oxidation catalytic converter.
    The exhaust emission control device according to claim 5.
  7.  前記排気浄化エレメントは、前記選択還元触媒コンバータの排気下流に、当該選択還元触媒コンバータを通過した液体還元剤又はその前駆体を酸化させる酸化触媒コンバータを有する、
     ことを特徴とする請求項1~請求項6のいずれか1つに記載の排気浄化装置。
    The exhaust purification element has an oxidation catalytic converter that oxidizes a liquid reducing agent or a precursor thereof that has passed through the selective catalytic reduction converter downstream of the selective catalytic reduction converter.
    The exhaust emission control device according to any one of claims 1 to 6, wherein:
  8.  前記排気浄化エレメントを通過した排気の一部を前記ケーシング内に導入する通路は、前記断熱部材を貫通する、
     ことを特徴とする請求項1~請求項7のいずれか1つに記載の排気浄化装置。
    A passage for introducing a part of the exhaust gas that has passed through the exhaust purification element into the casing penetrates the heat insulating member.
    The exhaust emission control device according to any one of claims 1 to 7, wherein:
  9.  前記タンクから前記噴射ノズルに液体還元剤又はその前駆体を供給する供給配管が、前記排気浄化エレメントから受熱する位置に配管される、
     ことを特徴とする請求項1~請求項8のいずれか1つに記載の排気浄化装置。
    A supply pipe for supplying a liquid reducing agent or a precursor thereof from the tank to the injection nozzle is piped to a position for receiving heat from the exhaust purification element.
    The exhaust emission control device according to any one of claims 1 to 8, wherein
  10.  前記液体還元剤又はその前駆体は、尿素水溶液である、
     ことを特徴とする請求項1~請求項9のいずれか1つに記載の排気浄化装置。
    The liquid reducing agent or a precursor thereof is an aqueous urea solution.
    The exhaust emission control device according to any one of claims 1 to 9, wherein
  11.  排気中の窒素酸化物を浄化する選択還元触媒コンバータを含む排気浄化エレメントの筐体と、前記選択還元触媒コンバータの排気上流に噴射供給する液体還元剤又はその前駆体を貯蔵するタンクを収納するケーシングとを、断熱部材を介在させて一体化すると共に、前記排気浄化エレメントを通過した排気の少なくとも一部を前記ケーシングの内部に導入して、前記タンク内の液体還元剤又はその前駆体を解凍する、
     ことを特徴とする液体還元剤又はその前駆体の解凍方法。
    A casing for housing a casing for an exhaust purification element including a selective reduction catalytic converter for purifying nitrogen oxide in exhaust gas, and a tank for storing a liquid reducing agent to be injected and supplied upstream of the selective reduction catalytic converter or a precursor thereof. Are integrated with a heat insulating member interposed therebetween, and at least a part of the exhaust gas that has passed through the exhaust purification element is introduced into the casing to defrost the liquid reducing agent or the precursor thereof in the tank. ,
    A method for thawing a liquid reducing agent or a precursor thereof.
PCT/JP2013/066847 2013-06-19 2013-06-19 Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof WO2014203350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066847 WO2014203350A1 (en) 2013-06-19 2013-06-19 Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066847 WO2014203350A1 (en) 2013-06-19 2013-06-19 Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof

Publications (1)

Publication Number Publication Date
WO2014203350A1 true WO2014203350A1 (en) 2014-12-24

Family

ID=52104114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066847 WO2014203350A1 (en) 2013-06-19 2013-06-19 Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof

Country Status (1)

Country Link
WO (1) WO2014203350A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150128570A1 (en) * 2012-07-24 2015-05-14 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
JP2017053327A (en) * 2015-09-11 2017-03-16 日野自動車株式会社 Exhaust emission control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003729A (en) * 1999-06-18 2001-01-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2006025110A1 (en) * 2004-09-02 2006-03-09 Nissan Diesel Motor Co., Ltd. Exhaust gas purifier
JP2008101496A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Exhaust system heat exchanger
JP2010019134A (en) * 2008-07-09 2010-01-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal-combustion engine
JP2010138883A (en) * 2008-12-15 2010-06-24 Denso Corp Control device for exhaust emission control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003729A (en) * 1999-06-18 2001-01-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2006025110A1 (en) * 2004-09-02 2006-03-09 Nissan Diesel Motor Co., Ltd. Exhaust gas purifier
JP2008101496A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Exhaust system heat exchanger
JP2010019134A (en) * 2008-07-09 2010-01-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal-combustion engine
JP2010138883A (en) * 2008-12-15 2010-06-24 Denso Corp Control device for exhaust emission control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150128570A1 (en) * 2012-07-24 2015-05-14 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
US9732650B2 (en) * 2012-07-24 2017-08-15 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
JP2017053327A (en) * 2015-09-11 2017-03-16 日野自動車株式会社 Exhaust emission control device

Similar Documents

Publication Publication Date Title
JP5859651B2 (en) Exhaust purification device, method for thawing liquid reducing agent or precursor thereof
JP4656039B2 (en) Engine exhaust purification system
JP4592504B2 (en) Exhaust purification device
US20130000281A1 (en) Def pump mounted to tank
JP2008267682A (en) Fluid heating device and exhaust gas post-treatment device equipped with same
US20190226377A1 (en) Exhaust system and control method of amount of urea supply
CN107109981B (en) Exhaust gas purification device for engine
JP2010180863A (en) Exhaust pipe liquid injection system, exhaust emission control system, exhaust pipe liquid injection method and exhaust emission control method
US8850799B2 (en) Exhaust purification apparatus for engine
JP2005256727A (en) Exhaust emission control device of engine
JP5159739B2 (en) Engine exhaust purification system
US20130283770A1 (en) Integrated Exhaust Gas After-Treatment System for Diesel Fuel Engines
KR101028556B1 (en) System for purifying exhaust gas
JP5258426B2 (en) Engine exhaust purification system
JP5020185B2 (en) Exhaust purification device
JP5688963B2 (en) Engine exhaust purification system
US20100229539A1 (en) Hydrocarbon scr aftertreatment system
WO2014203350A1 (en) Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof
WO2011067966A1 (en) Engine exhaust-air purifying apparatus
JP2010150978A (en) Exhaust emission control device
KR100980631B1 (en) Heating apparatus for pipe and tank of urea-SCR system
JP5543725B2 (en) Exhaust purification device
JP5188477B2 (en) Exhaust purification device
WO2007108169A1 (en) Exhaust purification apparatus for engine
JP4308066B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13887252

Country of ref document: EP

Kind code of ref document: A1