JP2010019134A - Exhaust emission control device of internal-combustion engine - Google Patents

Exhaust emission control device of internal-combustion engine Download PDF

Info

Publication number
JP2010019134A
JP2010019134A JP2008178933A JP2008178933A JP2010019134A JP 2010019134 A JP2010019134 A JP 2010019134A JP 2008178933 A JP2008178933 A JP 2008178933A JP 2008178933 A JP2008178933 A JP 2008178933A JP 2010019134 A JP2010019134 A JP 2010019134A
Authority
JP
Japan
Prior art keywords
exhaust gas
storage tank
exhaust
exhaust passage
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008178933A
Other languages
Japanese (ja)
Inventor
Keisuke Abe
慶介 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2008178933A priority Critical patent/JP2010019134A/en
Publication of JP2010019134A publication Critical patent/JP2010019134A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine equipped with defrosting function capable of quickly defrosting urea solution inside a urea solution storage tank even when the urea solution is frozen. <P>SOLUTION: The exhaust emission control device 2, comprising a catalyst device 8 provided for an exhaust gas passage 10 of an engine 4 and containing an SCR catalyst 28 and an injection nozzle unit 32 for injecting the urea solution stored in the storage tank 38 to the upstream side of the SCR catalyst 28, is equipped with a case 20 for housing the storage tank 38 with play, a sub exhaust gas passage 18 diverging from a main exhaust gas passage 14 at the downstream side of the catalyst device 8 and interposed by the case 20 at the middle part, and a switching valve 16 provided at the diverging position of the sub exhaust gas passage 18 for switching a flowing direction of exhaust gas. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は内燃機関(以下、エンジンという。)の排ガス中の窒素酸化物を還元剤により還元処理して排ガスを浄化する排気浄化装置に係り、詳しくは還元剤が凍結した際、短時間で解凍できる解凍機能を備えた排気浄化装置に関するものである。   The present invention relates to an exhaust gas purification apparatus that purifies exhaust gas by reducing nitrogen oxides in exhaust gas of an internal combustion engine (hereinafter referred to as an engine) with a reducing agent, and more particularly, when the reducing agent is frozen, it is thawed in a short time. The present invention relates to an exhaust purification device having a thawing function that can be performed.

エンジンの排ガス中の窒素酸化物を浄化する排気浄化装置としては、添加剤として尿素を利用した選択還元触媒システム(以下、尿素SCRシステムという)が知られている。この尿素SCRシステムは、排気通路内の選択還元型NOx触媒(以下、SCR触媒という。)の上流側に噴射ノズルユニットを備え、この噴射ノズルユニットから尿素水溶液を噴射供給することで、排ガス中に尿素を供給し、斯かる尿素を加水分解してアンモニアを生成し、このアンモニアによりSCR触媒において、排ガス中の窒素酸化物を無害な窒素と水に還元するというものである。   As an exhaust purification device for purifying nitrogen oxides in engine exhaust gas, a selective reduction catalyst system (hereinafter referred to as a urea SCR system) using urea as an additive is known. This urea SCR system includes an injection nozzle unit on the upstream side of a selective reduction type NOx catalyst (hereinafter referred to as SCR catalyst) in an exhaust passage, and an aqueous urea solution is injected and supplied from the injection nozzle unit into the exhaust gas. Urea is supplied and the urea is hydrolyzed to produce ammonia, and the ammonia is used to reduce nitrogen oxides in the exhaust gas to harmless nitrogen and water in the SCR catalyst.

この尿素SCRシステムにおいて、尿素水溶液は貯蔵タンクに貯蔵されており、この貯蔵タンクから噴射ノズルユニットに向けて尿素水溶液が供給される。
ところで、尿素水溶液は、−11℃以下になると凍結する。そのため、尿素SCRシステムを搭載した自動車が寒冷地で使用される場合、あるいは、高地など寒冷地域を通過するような場合、貯蔵タンク内の尿素水溶液が凍結し、尿素水溶液を噴射ノズルに供給できず、この噴射ノズルから尿素水溶液が噴射できない不具合が生じることがある。
In this urea SCR system, the aqueous urea solution is stored in a storage tank, and the aqueous urea solution is supplied from the storage tank toward the injection nozzle unit.
By the way, the urea aqueous solution freezes when it becomes −11 ° C. or lower. Therefore, when an automobile equipped with the urea SCR system is used in a cold region, or when passing through a cold region such as a highland, the urea aqueous solution in the storage tank is frozen and the urea aqueous solution cannot be supplied to the injection nozzle. There may be a problem that the urea aqueous solution cannot be injected from the injection nozzle.

そこで、このような尿素水溶液の凍結を防止する機能を備えた尿素SCRシステムを採用した排気浄化装置として、例えば、特許文献1に記載のエンジンの排気浄化装置等が挙げられる。
特許文献1に記載の排気浄化装置は、尿素水溶液の貯蔵タンク内を通過すべくエンジンクーラントの循環通路を配設し、エンジンの冷却に用いられ高温になったエンジンクーラントの熱により、尿素水溶液の凍結防止あるいは解凍を行うというものである。
特開2005−083223号公報
Therefore, as an exhaust emission control device that employs a urea SCR system having a function of preventing the urea aqueous solution from freezing, for example, an exhaust emission control device for an engine described in Patent Document 1 can be cited.
The exhaust emission control device described in Patent Document 1 is provided with a circulation path for engine coolant to pass through a storage tank for urea aqueous solution, and the heat of the engine coolant that has been used for cooling the engine and has become high temperature causes Freezing prevention or thawing is performed.
Japanese Patent Laying-Open No. 2005-083223

ところで、特許文献1の排気浄化装置においては、周囲の温度が尿素水溶液の凝固点以下となる環境下で尿素水溶液が完全に凍結してしまったような場合、エンジンを始動しても、エンジンクーラントの温度上昇は遅れ、尿素水溶液の解凍に時間がかかる。尿素水溶液の解凍が完了しなければ、尿素水溶液の噴射ができないので、尿素SCRシステムは機能せず、それ故、尿素水溶液が完全に解凍されるまでの間、排ガス中の窒素酸化物の浄化ができないという問題が生じる。   By the way, in the exhaust emission control device of Patent Document 1, when the urea aqueous solution is completely frozen in an environment where the ambient temperature is lower than or equal to the freezing point of the urea aqueous solution, The temperature rise is delayed and it takes time to thaw the urea aqueous solution. If the urea aqueous solution is not thawed, the urea aqueous solution cannot be injected, so the urea SCR system does not function. Therefore, the nitrogen oxides in the exhaust gas cannot be purified until the urea aqueous solution is completely thawed. The problem that it is not possible arises.

また、特許文献1の排気浄化装置においては、貯蔵タンクからSCR触媒に尿素水溶液を供給する供給通路が長くなり、斯かる供給通路に解凍及び保温用のヒータ装置を別途設ける対策が必要となるので、製造コストが嵩む問題は避けられない。更に、尿素水溶液供給通路内で凍結した尿素水溶液の解凍に比べ、尿素水溶液貯蔵タンク内で凍結した尿素水溶液の解凍にはより長い時間を要するため、尿素水溶液貯蔵タンクにおける尿素水溶液の解凍の促進が必要である。   Further, in the exhaust gas purification device of Patent Document 1, a supply passage for supplying the urea aqueous solution from the storage tank to the SCR catalyst becomes long, and it is necessary to take a measure for separately providing a heater device for thawing and heat retention in the supply passage. The problem of increased manufacturing costs is inevitable. Furthermore, the thawing of the urea aqueous solution frozen in the urea aqueous solution storage tank takes a longer time than the thawing of the urea aqueous solution frozen in the urea aqueous solution supply passage. is necessary.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、尿素水溶液の貯蔵タンク内の尿素水溶液が凍結しても、この尿素水溶液を急速に解凍することができる解凍機能を備えた内燃機関の排気浄化装置を提供することにある。   The present invention has been made to solve such problems, and the object of the present invention is to rapidly thaw the urea aqueous solution even if the urea aqueous solution in the urea aqueous solution storage tank is frozen. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine having a thawing function.

上記目的を達成するため、本発明の内燃機関の排気浄化装置は、内燃機関のメイン排気通路に設けられ、選択還元型NOx触媒と、貯蔵タンク内の尿素水溶液を前記選択還元型NOx触媒の上流の排ガス中に供給する尿素水溶液供給手段とを含む内燃機関の排気浄化装置において、前記貯蔵タンクを遊びを存して収容するケースと、前記メイン排気通路内を流れる排ガスを迂回させ、前記ケース内を通過させて導く排ガス迂回手段とを備えたことを特徴とするものである(請求項1)。   In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in a main exhaust passage of an internal combustion engine, and a selective reduction type NOx catalyst and an aqueous urea solution in a storage tank are placed upstream of the selective reduction type NOx catalyst. In the exhaust gas purification apparatus for an internal combustion engine, including a urea aqueous solution supply means for supplying the exhaust gas into the exhaust gas, a case in which the storage tank is accommodated with play and an exhaust gas flowing in the main exhaust passage are bypassed, The exhaust gas bypass means for guiding the exhaust gas through the exhaust gas is provided (claim 1).

請求項1の内燃機関の排気浄化装置によれば、始動直後から比較的高温である内燃機関の排ガスが、尿素水溶液の貯蔵タンクが収容されているケースに導入されるので、斯かる排ガスにより貯蔵タンクが暖められ、これにより、凍結した尿素水溶液を短時間で解凍することができる。
具体的には、前記排ガス迂回手段は、前記選択還元型NOx触媒の下流側にて前記メイン排気通路から分岐され、その途中に前記ケースを介挿させたサブ排気通路と、前記サブ排気通路の分岐位置に設けられ、排ガスの流れ方向を切り替える切替弁とを含み、前記切替弁は、前記メイン排気通路の上流側部分と下流側部分とを接続する一方、前記サブ排気通路を閉じる第1切替位置と、前記メイン排気通路の上流側部分と前記サブ排気通路とを接続する一方、前記メンイン排気通路の下流側部分を閉じる第2切替位置とを有する構成とすることが好ましい(請求項2)。
According to the exhaust gas purification apparatus for an internal combustion engine of claim 1, since the exhaust gas of the internal combustion engine that is relatively hot immediately after the start is introduced into the case in which the storage tank for the aqueous urea solution is accommodated, the exhaust gas is stored by such exhaust gas. The tank is warmed, so that the frozen urea aqueous solution can be thawed in a short time.
Specifically, the exhaust gas bypass means is branched from the main exhaust passage on the downstream side of the selective reduction type NOx catalyst, the sub exhaust passage having the case interposed in the middle thereof, and the sub exhaust passage A switching valve that is provided at the branch position and switches the flow direction of the exhaust gas, and the switching valve connects the upstream portion and the downstream portion of the main exhaust passage, and closes the sub exhaust passage. It is preferable that the position includes a second switching position that connects the upstream portion of the main exhaust passage and the sub exhaust passage, and closes the downstream portion of the men-in exhaust passage. .

請求項2の内燃機関の排気浄化装置によれば、切替弁により高温の排ガスを尿素水溶液の貯蔵タンクが収容されるケース内に簡単に導入することができる。
また、前記ケースはその内面と前記貯蔵タンクの上面を除く外面との間に間隙を確保すべく、前記貯蔵タンクを収容している構成とすることが好ましい(請求項3)。
請求項3の内燃機関の排気浄化装置によれば、ケースの内面と尿素水溶液の貯蔵タンクとの間に間隙が確保されており、この間隙に高温の排ガスが導入される。このため、貯蔵タンクの外周の広い範囲が高温の排ガスと接するので凍結した尿素水溶液を効率よく解凍ができる。
According to the exhaust gas purification apparatus for an internal combustion engine according to the second aspect, the high-temperature exhaust gas can be easily introduced into the case in which the storage tank for the urea aqueous solution is accommodated by the switching valve.
Further, it is preferable that the case has a configuration in which the storage tank is accommodated so as to ensure a gap between an inner surface of the case and an outer surface excluding the upper surface of the storage tank.
According to the exhaust gas purification apparatus for an internal combustion engine of the third aspect, a gap is secured between the inner surface of the case and the urea aqueous solution storage tank, and high-temperature exhaust gas is introduced into this gap. For this reason, since the wide range of the outer periphery of the storage tank is in contact with the high temperature exhaust gas, the frozen urea aqueous solution can be thawed efficiently.

更に、前記貯蔵タンク内に配設された温度センサと、前記温度センサからの情報に基づき前記切替弁の切り替えを制御する制御手段とを含む構成とすることが好ましい(請求項4)。
請求項4の内燃機関の排気浄化装置によれば、尿素水溶液の貯蔵タンク内の温度を温度センサで検出し、尿素水溶液が凍結していることを検知したとき、切替弁を駆動制御し、排ガスをサブ排気通路に流れるようにし、ケース内に高温の排ガスを導入する。そして、解凍が完了し、尿素水溶液が所定温度に達したら、切替弁を駆動制御し、排ガスをメイン排気通路にのみ流すようにすることができる。これにより、尿素水溶液の温度制御が簡単に行うことができる。
Further, it is preferable to include a temperature sensor disposed in the storage tank and a control unit that controls switching of the switching valve based on information from the temperature sensor.
According to the exhaust gas purification apparatus for an internal combustion engine of claim 4, the temperature of the urea aqueous solution storage tank is detected by the temperature sensor, and when the urea aqueous solution is detected to be frozen, the switching valve is driven and controlled, To flow into the sub exhaust passage, and high temperature exhaust gas is introduced into the case. When the thawing is completed and the urea aqueous solution reaches a predetermined temperature, the switching valve is driven and controlled so that the exhaust gas flows only into the main exhaust passage. Thereby, temperature control of urea aqueous solution can be performed easily.

請求項1乃至4に記載の内燃機関の排気浄化装置によれば、尿素水溶液が凍結したとしても、短時間で解凍できるので、エンジン始動後早期に排ガスの浄化を行うことができる。このため、排ガス中の窒素酸化物の浄化ができない時間を極力短くでき、エンジン始動後早期に浄化装置を有効に機能させることができ、従来に比べ排ガスの浄化効率が上がる。   According to the exhaust gas purification apparatus for an internal combustion engine according to the first to fourth aspects, even if the urea aqueous solution is frozen, it can be thawed in a short time, so that the exhaust gas can be purified early after the engine is started. For this reason, the time during which the nitrogen oxides in the exhaust gas cannot be purified can be shortened as much as possible, the purification device can function effectively early after the engine is started, and the purification efficiency of the exhaust gas is increased as compared with the prior art.

また、尿素水溶液の解凍に排ガスを利用するため、尿素水溶液の貯蔵タンクを排気浄化用の触媒の近傍に設置できる。このため、エンジンからのクーラントの循環通路をエンジンから離れた場所まで引き回す必要はなく、尿素水溶液解凍用の装置を簡略化でき、製造コストの削減、故障発生の抑制、レイアウトの自由化に寄与する。   Further, since the exhaust gas is used for thawing the urea aqueous solution, a storage tank for the urea aqueous solution can be installed in the vicinity of the exhaust purification catalyst. For this reason, it is not necessary to route the coolant circulation path from the engine to a place away from the engine, and the apparatus for thawing urea aqueous solution can be simplified, contributing to reduction of manufacturing cost, suppression of failure occurrence, and freedom of layout. .

以下、本発明に係る排気浄化装置の実施の形態を、図面を参照して説明する。
図1は実施例に係るディーゼルエンジンの排気浄化装置の構成を示す。
この排気浄化装置2は、直列6気筒の内燃機関として構成されているエンジン4の排気通路10に設けられている。
エンジン4の排ガスは、排気マニホールド6から排気通路10を通じて排出され、この際、排気通路10に配設された排気浄化装置2が排ガス中の有害成分を浄化する。
Hereinafter, an embodiment of an exhaust emission control device according to the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of an exhaust emission control device for a diesel engine according to an embodiment.
The exhaust purification device 2 is provided in an exhaust passage 10 of an engine 4 configured as an in-line 6-cylinder internal combustion engine.
The exhaust gas of the engine 4 is discharged from the exhaust manifold 6 through the exhaust passage 10, and at this time, the exhaust purification device 2 disposed in the exhaust passage 10 purifies harmful components in the exhaust gas.

排気浄化装置2は、排気通路10内に配設された触媒装置8を備え、この触媒装置8は筐体22を有する。この筐体22内には、上流側より順に前段酸化触媒24、ディーゼルパティキュレートフィルタ(以下、DPFという。)26、SCR触媒28及び後段酸化触媒30が収容されている。そして、DPF26とSCR触媒28との間には噴射ノズルユニット32の噴射ノズル34が配置され、この噴射ノズル34はSCR触媒28に添加剤としての尿素を供給すべく、尿素水溶液を噴射する。より詳しくは、噴射ノズルユニット32は、噴射ノズル34の基端に連結された電磁弁36を更に含んでおり、電磁弁36は筐体22の外面に取り付けられている。   The exhaust purification device 2 includes a catalyst device 8 disposed in the exhaust passage 10, and the catalyst device 8 has a housing 22. In this case 22, a front-stage oxidation catalyst 24, a diesel particulate filter (hereinafter referred to as DPF) 26, an SCR catalyst 28, and a rear-stage oxidation catalyst 30 are accommodated in this order from the upstream side. An injection nozzle 34 of the injection nozzle unit 32 is disposed between the DPF 26 and the SCR catalyst 28. The injection nozzle 34 injects urea aqueous solution to supply urea as an additive to the SCR catalyst 28. More specifically, the injection nozzle unit 32 further includes an electromagnetic valve 36 connected to the base end of the injection nozzle 34, and the electromagnetic valve 36 is attached to the outer surface of the housing 22.

そして、噴射ノズル34の電磁弁36は、供給ポンプを(図示しない)を備えた循環経路41を介して尿素水溶液の貯蔵タンク38に接続されている。この貯蔵タンク38はステンレス鋼製の箱形状をなし、貯蔵タンク38からは所定圧に加圧された尿素水溶液が電磁弁36を通じて噴射ノズル34に供給可能となっている。それ故、電磁弁36が開弁されたとき、噴射ノズル34はその先端の噴射孔(図示しない)から排ガス中に尿素水溶液を噴射する。なお、図1中、循環経路41の供給配管及び戻り配管は参照符号40,42で示され、供給配管40は貯蔵タンク38内の尿素水溶液中に位置付けられた吸込み口50を有し、戻り配管42は、尿素水溶液の液面上方に位置付けられた吐出口52を有する。また、貯蔵タンク38は、尿素水溶液を補充するため補給口(図示しない)をも有する。   And the solenoid valve 36 of the injection nozzle 34 is connected to the storage tank 38 of urea aqueous solution via the circulation path 41 provided with the supply pump (not shown). The storage tank 38 has a box shape made of stainless steel, and an aqueous urea solution pressurized to a predetermined pressure can be supplied from the storage tank 38 to the injection nozzle 34 through the electromagnetic valve 36. Therefore, when the electromagnetic valve 36 is opened, the injection nozzle 34 injects the urea aqueous solution into the exhaust gas from the injection hole (not shown) at the tip thereof. In FIG. 1, the supply pipe and return pipe of the circulation path 41 are indicated by reference numerals 40 and 42, and the supply pipe 40 has a suction port 50 positioned in the urea aqueous solution in the storage tank 38, and the return pipe. 42 has a discharge port 52 positioned above the surface of the urea aqueous solution. The storage tank 38 also has a supply port (not shown) for replenishing the urea aqueous solution.

更に、貯蔵タンク38はセンサユニット44を備えている。このセンサユニット44は、温度センサ、濃度センサ等を含んでおり、これらセンサは、電子コントロールユニット(以下、ECUという。)54に電気的に接続されている。また、ECU54には、その他の図示しないセンサやデバイス類とともに、前述した電磁弁36が電気的に接続されている。ECU54は、センサユニット44に加え、各種のセンサからの情報を基に最適な尿素水溶液の噴射量を算出し、この噴出量に従って電磁弁36の開閉を制御し、噴射ノズル34から尿素水溶液を噴射させる。   Further, the storage tank 38 includes a sensor unit 44. The sensor unit 44 includes a temperature sensor, a concentration sensor, and the like, and these sensors are electrically connected to an electronic control unit (hereinafter referred to as ECU) 54. The above-described electromagnetic valve 36 is electrically connected to the ECU 54 together with other sensors and devices (not shown). In addition to the sensor unit 44, the ECU 54 calculates an optimal urea aqueous solution injection amount based on information from various sensors, controls the opening and closing of the electromagnetic valve 36 according to the injection amount, and injects the urea aqueous solution from the injection nozzle 34. Let

図1から明らかなように貯蔵タンク38は、ケース20内に収容されている。
ケース20もまたステンレス鋼製の箱形状をなし、その内部に、貯蔵タンク38を余裕をもって収容できる大きさを有する。より詳しくは、貯蔵タンク38は、その上壁46がケース20から露出した状態で収容され、この上壁46に上述した補給口が設けられ、また、各配管40,42及びセンサユニット44は上壁46を貫通して、この上壁46に取り付けられている。このように上壁46を露出させる構成により、貯蔵タンク38のメンテナンスを容易に行うことができる。
As apparent from FIG. 1, the storage tank 38 is accommodated in the case 20.
The case 20 also has a box shape made of stainless steel, and has a size capable of accommodating the storage tank 38 with a margin. More specifically, the storage tank 38 is accommodated with the upper wall 46 exposed from the case 20, the above-described replenishing port is provided in the upper wall 46, and each of the pipes 40, 42 and the sensor unit 44 are located at The wall 46 passes through and is attached to the upper wall 46. Thus, the structure which exposes the upper wall 46 can perform maintenance of the storage tank 38 easily.

具体的には、ケース20はその上壁56に、貯蔵タンク38の挿通が可能な貫通孔58が設けられている。それ故、貯蔵タンク38は貫通孔58を通じてケース20内に収容され、貯蔵タンク38の上端外周が貫通孔58の内周に溶接されている。これにより、ケース20の上壁56と貯蔵タンク38の上壁46とは面一となる。このとき、ケース20と貯蔵タンク38との接合は、気密性を保てるものであればどのような接合方法を採用しても構わない。溶接の他、例えば、貯蔵タンク38の上端外周にフランジを設け、このフランジ部分をケース20の上壁56にシール部材を介してボルトにより締結してもよい。   Specifically, the case 20 is provided with a through hole 58 in the upper wall 56 through which the storage tank 38 can be inserted. Therefore, the storage tank 38 is accommodated in the case 20 through the through hole 58, and the outer periphery of the upper end of the storage tank 38 is welded to the inner periphery of the through hole 58. As a result, the upper wall 56 of the case 20 and the upper wall 46 of the storage tank 38 are flush with each other. At this time, any joining method may be employed for joining the case 20 and the storage tank 38 as long as airtightness can be maintained. In addition to welding, for example, a flange may be provided on the outer periphery of the upper end of the storage tank 38, and the flange portion may be fastened to the upper wall 56 of the case 20 with a bolt via a seal member.

図1から明らかなように、ケース20内に収容された貯蔵タンク38の周囲には間隙60が確保されており、この間隙60は、貯蔵タンク38の周壁及び底と、ケース20の対応する内面との間に形成されている。
上述した間隙60は、サブ排気通路18の一部をなす。即ち、ケース20の一側壁62には導入口64が形成され、この導入口64からサブ排気通路18の上流排気管69が延びている。ケース20の一側壁62と対向する他側壁66には導出口68が設けられており、この導出口68から、サブ排気通路18の下流排気管70が延びている。
As is apparent from FIG. 1, a gap 60 is secured around the storage tank 38 accommodated in the case 20. The gap 60 is formed on the peripheral wall and bottom of the storage tank 38 and the corresponding inner surface of the case 20. Is formed between.
The gap 60 described above forms part of the sub exhaust passage 18. That is, an inlet 64 is formed in one side wall 62 of the case 20, and an upstream exhaust pipe 69 of the sub exhaust passage 18 extends from the inlet 64. A lead-out port 68 is provided in the other side wall 66 facing the one side wall 62 of the case 20, and a downstream exhaust pipe 70 of the sub exhaust passage 18 extends from the lead-out port 68.

上流排気管69は、触媒装置8の下流位置にて、メイン排気通路14の分岐ポート72に切替弁16を介して接続されている。この切替弁16は、エンジン4から排ガスをメイン排気通路14及びサブ排気通路18(上流排気管69)の何れに流すべく切替作動される。
即ち、切替弁16は、弁ハウジング71を備え、この弁ハウジング71は前述の分岐ポート72に加えて、メイン排気通路14の上流側部分及び下流側部分を接続する入口ポート74及び出口ポート76を有する。そして、弁ハウジング71内には弁体78が配置され、この弁体78は、入口ポート74と出口ポート76とを連通し且つ分岐ポート72を閉じる第1切替位置と、入口ポート74と分岐ポート72とを連通し且つ出口ポート76を閉じる第2切替位置とを有し、これらの切替位置間にて切替作動可能となっている。
The upstream exhaust pipe 69 is connected to the branch port 72 of the main exhaust passage 14 via the switching valve 16 at a downstream position of the catalyst device 8. The switching valve 16 is switched to flow exhaust gas from the engine 4 to either the main exhaust passage 14 or the sub exhaust passage 18 (upstream exhaust pipe 69).
That is, the switching valve 16 includes a valve housing 71. In addition to the aforementioned branch port 72, the valve housing 71 includes an inlet port 74 and an outlet port 76 that connect the upstream side portion and the downstream side portion of the main exhaust passage 14. Have. A valve body 78 is disposed in the valve housing 71. The valve body 78 communicates the inlet port 74 and the outlet port 76 and closes the branch port 72, and the inlet port 74 and the branch port. 72 and a second switching position for closing the outlet port 76, and switching operation is possible between these switching positions.

このため、切替弁16は弁体78の切替作動をなす駆動部(図示しない)を更に備え、この駆動部が前述したECU54に電気的に接続されている。ECU54は、前述した貯蔵タンク38内のセンサユニット44からの尿素水溶液の温度情報に基づき、駆動部を介して弁体78の切替作動させる。
また、エンジン4の燃料噴射弁(図示しない)もまたECU54に電気的に接続されている。ECU54は、エンジン回転速度Ne及びアクセル操作量θaccに基づいて燃料噴射量を設定するマップ(図示しない)と、エンジン回転速度Ne及び燃料噴射量に基づいて燃料噴射時期を設定するマップ(図示しない)をそれぞれ有し、これらマップに従って設定された燃料噴射量及び燃料噴射時期に基づき、燃料噴射弁を介してエンジン4を駆動する。
Therefore, the switching valve 16 further includes a drive unit (not shown) for switching the valve body 78, and this drive unit is electrically connected to the ECU 54 described above. The ECU 54 performs the switching operation of the valve body 78 through the drive unit based on the temperature information of the aqueous urea solution from the sensor unit 44 in the storage tank 38 described above.
A fuel injection valve (not shown) of the engine 4 is also electrically connected to the ECU 54. The ECU 54 sets a fuel injection amount (not shown) based on the engine rotational speed Ne and the accelerator operation amount θacc, and a map (not shown) sets the fuel injection timing based on the engine rotational speed Ne and the fuel injection amount. The engine 4 is driven via the fuel injection valve based on the fuel injection amount and the fuel injection timing set according to these maps.

エンジン4の駆動中、エンジン4からの排ガスは排気マニホールド6及び排気通路10のメイン排気通路14を経て触媒装置8内に導入される。導入された排ガスは、前段酸化触媒24にて、排ガス中の炭化水素及び一酸化炭素が二酸化炭素と水に変化され、DPF26にて、排ガス中のパティキュレートマター(以下、PMという。)が捕集される。
その後、排ガスは、下流側のSCR触媒36に到達する。
During driving of the engine 4, exhaust gas from the engine 4 is introduced into the catalyst device 8 through the exhaust manifold 6 and the main exhaust passage 14 of the exhaust passage 10. In the introduced exhaust gas, hydrocarbons and carbon monoxide in the exhaust gas are changed to carbon dioxide and water by the pre-stage oxidation catalyst 24, and particulate matter (hereinafter referred to as PM) in the exhaust gas is captured by the DPF 26. Be collected.
Thereafter, the exhaust gas reaches the SCR catalyst 36 on the downstream side.

ここで、貯蔵タンク38内の尿素水溶液が凍結しておらず、尿素水溶液の温度が適温である場合、貯蔵タンク38内のセンサユニット44の温度センサは尿素水溶液が適温であることを示す情報をECU54に送り、この情報に基づき、ECU54は切替弁16の駆動部を介して、その弁体78を図1中のAで示す第1切替位置に切替作動させ、弁体78によりサブ排気通路18の上流排気管69を閉鎖し、メイン排気通路14を開く。また、ECU54による制御を受け、排ガス中に噴射ノズル34から尿素水溶液が最適な噴射量にて噴射される。この結果、SCR触媒28は、排ガスに対するNOx浄化作用を効率良く発揮する。   Here, when the urea aqueous solution in the storage tank 38 is not frozen and the temperature of the urea aqueous solution is an appropriate temperature, the temperature sensor of the sensor unit 44 in the storage tank 38 indicates information indicating that the urea aqueous solution is an appropriate temperature. Based on this information, the ECU 54 switches the valve body 78 to the first switching position indicated by A in FIG. 1 via the drive portion of the switching valve 16, and the valve body 78 causes the sub exhaust passage 18 to switch. The upstream exhaust pipe 69 is closed and the main exhaust passage 14 is opened. Further, under the control of the ECU 54, the urea aqueous solution is injected from the injection nozzle 34 into the exhaust gas at an optimal injection amount. As a result, the SCR catalyst 28 efficiently exhibits the NOx purification action for the exhaust gas.

それ故、浄化された排ガスは、切替弁16を介してメイン排気管14の下流部分80を通じて外部へ排出される。
一方、エンジンが寒冷地などで使用され、貯蔵タンク38内の尿素水溶液が凍結している場合、ECU54は尿素水溶液の解凍作業をなすべく、切替弁16の切替制御を以下のように実施する。
Therefore, the purified exhaust gas is discharged to the outside through the switching valve 16 and the downstream portion 80 of the main exhaust pipe 14.
On the other hand, when the engine is used in a cold region and the urea aqueous solution in the storage tank 38 is frozen, the ECU 54 performs the switching control of the switching valve 16 as follows in order to perform the thawing operation of the urea aqueous solution.

すなわち、まず、貯蔵タンク38内のセンサユニット44、即ち、その温度センサが、貯蔵タンク38内の尿素水溶液が−11℃以下であることを検出し、尿素水溶液が凍結しているという情報をECU54に送ると、その情報に基づき、ECU54は駆動部を介して切替弁16の弁体78を図1中のBで示す第2切替位置に切替作動させる。それ故、この場合には、メイン排気通路14は切替弁16よりも下流部分80にて閉じられ、メイン排気通路14はサブ排気通路18に接続される。一方、このとき、ECU54は、噴射ノズル34からの尿素水溶液の噴射を中止させる。   That is, first, the sensor unit 44 in the storage tank 38, that is, its temperature sensor detects that the urea aqueous solution in the storage tank 38 is −11 ° C. or less, and informs the ECU 54 that the urea aqueous solution is frozen. , The ECU 54 switches the valve body 78 of the switching valve 16 to the second switching position indicated by B in FIG. 1 based on the information. Therefore, in this case, the main exhaust passage 14 is closed at the downstream portion 80 from the switching valve 16, and the main exhaust passage 14 is connected to the sub exhaust passage 18. On the other hand, at this time, the ECU 54 stops the injection of the urea aqueous solution from the injection nozzle 34.

この状態で、エンジン4が運転されても、触媒装置8のSCR触媒は機能していないので排ガス中のNOxの浄化は行われていない。しかしながら、酸化触媒により排ガス中の炭化水素及び一酸化炭素は浄化され、DPFによりPMが捕集された排ガスが排出される。斯かる排ガスは、切替弁16を通じてサブ排気通路18の上流排気管69内に導かれ、そして、ケース20の間隙60に導入される。この後、排ガスは、ケース20からサブ排気通路18の下流排気管70を介して外部に排出される。ここで、エンジン4より排出された排ガスの温度は十分に高いので、間隙60内に導入された高温の排ガスは貯蔵タンク38内の凍結した尿素水溶液を解凍する。   Even if the engine 4 is operated in this state, the SCR catalyst of the catalyst device 8 is not functioning, so NOx in the exhaust gas is not purified. However, hydrocarbons and carbon monoxide in the exhaust gas are purified by the oxidation catalyst, and the exhaust gas in which PM is collected by the DPF is discharged. Such exhaust gas is introduced into the upstream exhaust pipe 69 of the sub exhaust passage 18 through the switching valve 16 and introduced into the gap 60 of the case 20. Thereafter, the exhaust gas is discharged from the case 20 to the outside through the downstream exhaust pipe 70 of the sub exhaust passage 18. Here, since the temperature of the exhaust gas discharged from the engine 4 is sufficiently high, the high-temperature exhaust gas introduced into the gap 60 thaws the frozen urea aqueous solution in the storage tank 38.

この後、貯蔵タンク38内の尿素水溶液が解凍され、その温度が適温となると、前述したように切替弁16の弁体78は再び、図1中のAの第1切替位置に切替作動される。これにより、サブ排気通路18の上流排気管69は閉鎖され、それ以上ケース20内に排ガスは導入されなくなる。一方、ECU54は、噴射ノズル34から尿素水溶液を噴射させ、これにより、SCR触媒28による排ガス中のNOxの浄化が行われる。   Thereafter, when the urea aqueous solution in the storage tank 38 is thawed and the temperature reaches an appropriate temperature, the valve body 78 of the switching valve 16 is again switched to the first switching position A in FIG. 1 as described above. . As a result, the upstream exhaust pipe 69 of the sub exhaust passage 18 is closed, and no further exhaust gas is introduced into the case 20. On the other hand, the ECU 54 injects the urea aqueous solution from the injection nozzle 34, whereby the SCR catalyst 28 purifies NOx in the exhaust gas.

また、車両が走行中に寒冷地を通過する場合、貯蔵タンク38内の尿素水溶液の温度が低下し、凍結することもある。このような場合にも、切替弁16の切替作動及び噴射ノズル34の噴射制御が同様にして実施され、尿素水溶液の解凍が速やかに行われる。
以上のように、本発明の排気浄化装置2は、尿素水溶液の解凍に排ガスを使うものであるが、エンジンの始動直後でも、排ガスの温度は、エンジンクーラントの温度に比べ格段に高いので、エンジンクーラントにより凍結した尿素水溶液を解凍する場合に比べ短時間で解凍が完了し、エンジン始動後、早期に噴射ノズル34からの尿素水溶液の噴射が可能となる。このため、寒冷地などでの始動時も、NOxの排出は極力短時間に抑えることができる。
In addition, when the vehicle passes through a cold region while traveling, the temperature of the aqueous urea solution in the storage tank 38 may decrease and freeze. Even in such a case, the switching operation of the switching valve 16 and the injection control of the injection nozzle 34 are similarly performed, and the urea aqueous solution is quickly thawed.
As described above, the exhaust gas purification device 2 of the present invention uses exhaust gas for thawing the urea aqueous solution. Even immediately after the engine is started, the exhaust gas temperature is much higher than the engine coolant temperature. Thawing is completed in a shorter time than when the aqueous urea solution frozen by the coolant is thawed, and the aqueous urea solution can be injected from the injection nozzle 34 at an early stage after the engine is started. For this reason, NOx emissions can be suppressed as short as possible even when starting in cold regions.

また、本発明の排気浄化装置2においては、触媒装置8の近傍に貯蔵タンク38を含むケース20を配設することができるので、貯蔵タンク38から尿素水溶液を噴射ノズルユニット32まで供給するための配管も短くすることができる。このため、斯かる配管に凍結防止用のヒータを取り付ける場合、短い範囲にヒータを敷設するだけで済み、尿素SCRシステムの製造コスト削減に寄与する。   Further, in the exhaust purification device 2 of the present invention, the case 20 including the storage tank 38 can be disposed in the vicinity of the catalyst device 8, so that the urea aqueous solution is supplied from the storage tank 38 to the injection nozzle unit 32. The piping can also be shortened. For this reason, when a heater for preventing freezing is attached to such a pipe, it is only necessary to lay the heater in a short range, which contributes to a reduction in the manufacturing cost of the urea SCR system.

本発明は上述した実施例に限定されるものではなく、種々の変形が可能である。例えば上記実施例では、NOx浄化用にSCR触媒28を備えたディーゼルエンジン4の排気浄化装置について説明したが、本発明の排気浄化装置は、尿素SCRシステムを備えたガソリンエンジンに用いても構わない。   The present invention is not limited to the above-described embodiments, and various modifications can be made. For example, in the above embodiment, the exhaust gas purification device of the diesel engine 4 provided with the SCR catalyst 28 for NOx purification has been described. However, the exhaust gas purification device of the present invention may be used for a gasoline engine provided with a urea SCR system. .

実施例1のディーゼルエンジンの排気浄化装置を示す全体構成図である。1 is an overall configuration diagram illustrating an exhaust emission control device for a diesel engine according to Embodiment 1. FIG.

符号の説明Explanation of symbols

2 排気浄化装置
4 エンジン(内燃機関)
10 排気通路
14 メイン排気通路
16 切替弁
18 サブ排気通路
20 ケース
28 SCR触媒
38 貯蔵タンク
60 間隙
64 導入口
68 導出口
69 上流排気管
70 下流排気管
2 Exhaust purification device 4 Engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 10 Exhaust passage 14 Main exhaust passage 16 Switching valve 18 Sub exhaust passage 20 Case 28 SCR catalyst 38 Storage tank 60 Gap 64 Inlet port 68 Outlet port 69 Upstream exhaust pipe 70 Downstream exhaust pipe

Claims (4)

内燃機関のメイン排気通路に設けられ、選択還元型NOx触媒と、貯蔵タンク内の尿素水溶液を前記選択還元型NOx触媒の上流の排ガス中に供給する尿素水溶液供給手段とを含む内燃機関の排気浄化装置において、
前記貯蔵タンクを遊びを存して収容するケースと、
前記メイン排気通路内を流れる排ガスを迂回させ、前記ケース内を通過させて導く排ガス迂回手段と
を備えたことを特徴とする内燃機関の排気浄化装置。
Exhaust gas purification of an internal combustion engine provided in a main exhaust passage of the internal combustion engine and including a selective reduction type NOx catalyst and urea aqueous solution supply means for supplying urea aqueous solution in a storage tank into exhaust gas upstream of the selective reduction type NOx catalyst In the device
A case for accommodating the storage tank with play;
An exhaust gas purification apparatus for an internal combustion engine, comprising exhaust gas bypass means for bypassing exhaust gas flowing in the main exhaust passage and guiding the exhaust gas through the case.
前記排ガス迂回手段は、
前記選択還元型NOx触媒の下流側にて前記メイン排気通路から分岐され、その途中に前記ケースを介挿させたサブ排気通路と、
前記サブ排気通路の分岐位置に設けられ、排ガスの流れ方向を切り替える切替弁と
を含み、
前記切替弁は、前記メイン排気通路の上流側部分と下流側部分とを接続する一方、前記サブ排気通路を閉じる第1切替位置と、前記メイン排気通路の上流側部分と前記サブ排気通路とを接続する一方、前記メンイン排気通路の下流側部分を閉じる第2切替位置とを有することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The exhaust gas bypass means is
A sub-exhaust passage branched from the main exhaust passage on the downstream side of the selective reduction type NOx catalyst and having the case interposed in the middle thereof;
A switching valve that is provided at a branch position of the sub exhaust passage and switches a flow direction of the exhaust gas,
The switching valve connects an upstream portion and a downstream portion of the main exhaust passage, and has a first switching position for closing the sub exhaust passage, an upstream portion of the main exhaust passage, and the sub exhaust passage. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, further comprising a second switching position for connecting and closing a downstream portion of the men-in exhaust passage.
前記ケースはその内面と前記貯蔵タンクの上面を除く外面との間に間隙を確保すべく、前記貯蔵タンクを収容していることを特徴とする請求項1または2に記載の内燃機関の排気浄化装置。   The exhaust purification of an internal combustion engine according to claim 1 or 2, wherein the case contains the storage tank so as to secure a gap between an inner surface thereof and an outer surface excluding the upper surface of the storage tank. apparatus. 前記貯蔵タンク内に配設された温度センサと、
前記温度センサからの情報に基づき前記切替弁の切り替えを制御する制御手段と
を含むことを特徴とする請求項1〜3の何れかに記載の内燃機関の排気浄化装置。
A temperature sensor disposed in the storage tank;
The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 3, further comprising control means for controlling switching of the switching valve based on information from the temperature sensor.
JP2008178933A 2008-07-09 2008-07-09 Exhaust emission control device of internal-combustion engine Pending JP2010019134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008178933A JP2010019134A (en) 2008-07-09 2008-07-09 Exhaust emission control device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008178933A JP2010019134A (en) 2008-07-09 2008-07-09 Exhaust emission control device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JP2010019134A true JP2010019134A (en) 2010-01-28

Family

ID=41704296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178933A Pending JP2010019134A (en) 2008-07-09 2008-07-09 Exhaust emission control device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JP2010019134A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145569A1 (en) * 2010-05-17 2011-11-24 いすゞ自動車株式会社 Competency diagnosis system for urea water temperature sensor
US20130074479A1 (en) * 2011-09-26 2013-03-28 Kia Motors Corporation Urea heating system and heating method thereof
DE102011119242A1 (en) 2011-11-22 2013-05-23 Daimler Ag Exhaust gas purification device for cleaning exhaust gas flow of combustion engine of motor vehicle, has exhaust gas guide unit with catalytic unit, and storage unit arranged in direct heat transfer contact and adjacent to catalytic unit
CN103133095A (en) * 2011-11-25 2013-06-05 北汽福田汽车股份有限公司 Heating device and automobile comprising the same
JP2013245652A (en) * 2012-05-29 2013-12-09 Isuzu Motors Ltd Urea water thawing device
WO2014016909A1 (en) * 2012-07-24 2014-01-30 Udトラックス株式会社 Exhaust gas purification device, and method for thawing liquid reducing agent or precursor thereof
WO2014203350A1 (en) * 2013-06-19 2014-12-24 ボルボ ラストバグナー アクチエボラグ Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof
US8919103B2 (en) 2011-07-01 2014-12-30 Hyundai Motor Company System for purifying exhaust gas and exhaust system having the same
CN109026296A (en) * 2018-08-27 2018-12-18 潍柴动力股份有限公司 A kind of heating device, heating means and the vehicle of urea for vehicle system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003729A (en) * 1999-06-18 2001-01-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2004324651A (en) * 2003-04-29 2004-11-18 Man Nutzfahrzeuge Ag Liquid tank for automobile
JP2004538424A (en) * 2001-08-18 2004-12-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for storing and metering a reducing agent
EP1602805A1 (en) * 2004-06-02 2005-12-07 MAN Nutzfahrzeuge Aktiengesellschaft Method and device for heating a reductant for exhaust gas treatment carried in a vessel of an vehicle
JP2006316684A (en) * 2005-05-12 2006-11-24 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2008101535A (en) * 2006-10-19 2008-05-01 Denso Corp Exhaust emission control device for engine
JP2008101496A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Exhaust system heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003729A (en) * 1999-06-18 2001-01-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2004538424A (en) * 2001-08-18 2004-12-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for storing and metering a reducing agent
JP2004324651A (en) * 2003-04-29 2004-11-18 Man Nutzfahrzeuge Ag Liquid tank for automobile
EP1602805A1 (en) * 2004-06-02 2005-12-07 MAN Nutzfahrzeuge Aktiengesellschaft Method and device for heating a reductant for exhaust gas treatment carried in a vessel of an vehicle
JP2006316684A (en) * 2005-05-12 2006-11-24 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2008101496A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Exhaust system heat exchanger
JP2008101535A (en) * 2006-10-19 2008-05-01 Denso Corp Exhaust emission control device for engine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8683855B2 (en) 2010-05-17 2014-04-01 Isuzu Motors Limited Competence diagnosis system for urea water temperature sensor
JP2011241739A (en) * 2010-05-17 2011-12-01 Isuzu Motors Ltd Validity diagnosis system for urea water temperature sensor
WO2011145569A1 (en) * 2010-05-17 2011-11-24 いすゞ自動車株式会社 Competency diagnosis system for urea water temperature sensor
US8919103B2 (en) 2011-07-01 2014-12-30 Hyundai Motor Company System for purifying exhaust gas and exhaust system having the same
US20130074479A1 (en) * 2011-09-26 2013-03-28 Kia Motors Corporation Urea heating system and heating method thereof
DE102011119242A1 (en) 2011-11-22 2013-05-23 Daimler Ag Exhaust gas purification device for cleaning exhaust gas flow of combustion engine of motor vehicle, has exhaust gas guide unit with catalytic unit, and storage unit arranged in direct heat transfer contact and adjacent to catalytic unit
DE102011119242B4 (en) * 2011-11-22 2014-04-24 Daimler Ag An exhaust gas purification device comprising a heating system for a reducing agent storage device
CN103133095A (en) * 2011-11-25 2013-06-05 北汽福田汽车股份有限公司 Heating device and automobile comprising the same
JP2013245652A (en) * 2012-05-29 2013-12-09 Isuzu Motors Ltd Urea water thawing device
WO2014016909A1 (en) * 2012-07-24 2014-01-30 Udトラックス株式会社 Exhaust gas purification device, and method for thawing liquid reducing agent or precursor thereof
CN104395572A (en) * 2012-07-24 2015-03-04 优迪卡汽车株式会社 Exhaust gas purification device, and method for thawing liquid reducing agent or precursor thereof
US20150128570A1 (en) * 2012-07-24 2015-05-14 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
JP5859651B2 (en) * 2012-07-24 2016-02-10 Udトラックス株式会社 Exhaust purification device, method for thawing liquid reducing agent or precursor thereof
EP2886815A4 (en) * 2012-07-24 2016-03-16 Ud Trucks Corp Exhaust gas purification device, and method for thawing liquid reducing agent or precursor thereof
US9732650B2 (en) 2012-07-24 2017-08-15 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
WO2014203350A1 (en) * 2013-06-19 2014-12-24 ボルボ ラストバグナー アクチエボラグ Exhaust gas purification device and method for thawing liquid reducing agent or precursor thereof
CN109026296A (en) * 2018-08-27 2018-12-18 潍柴动力股份有限公司 A kind of heating device, heating means and the vehicle of urea for vehicle system

Similar Documents

Publication Publication Date Title
JP2010019134A (en) Exhaust emission control device of internal-combustion engine
US6679051B1 (en) Diesel engine system for use with emission control device
US9255511B2 (en) Exhaust purification system and method for controlling exhaust purification system
US8661785B2 (en) System and method for liquid reductant injection
JP5859651B2 (en) Exhaust purification device, method for thawing liquid reducing agent or precursor thereof
WO2015115092A1 (en) Exhaust system structure for internal combustion engine
JPH0996212A (en) Exhaust gas purifier for diesel engine
JP2008101535A (en) Exhaust emission control device for engine
JP6501794B2 (en) Engine exhaust purification system
JP2010185334A (en) Control device for exhaust emission control system
JP2010037979A (en) Exhaust emission control device
JP2008163795A (en) Exhaust emission control device for internal combustion engine
KR100792927B1 (en) Urea supply system of selective catalytic reduction
JP2011144747A (en) Exhaust emission control device of diesel engine
US20110203270A1 (en) Internal combustion engine system and particulate filter unit for such an internal combustion engine system
JP2005264821A (en) Exhaust reflux system of internal combustion engine
KR101766127B1 (en) Urea solution storing tank
EP2682580B1 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
US10400650B2 (en) Injector deposit dissolution system and method
EP2273082A1 (en) Apparatus for maintening a urea solution in a liquid state for treatment of diesel exhaust
US20110005213A1 (en) Apparatus for Maintaining a Urea Solution in a Liquid State for Treatment of Diesel Exhaust
US20200040790A1 (en) Systems and methods for controlling a shut-off valve of a dosing control system
JP2011117386A (en) Engine exhaust emission control device
JP2010150978A (en) Exhaust emission control device
JP4308066B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130130