JP5188477B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP5188477B2
JP5188477B2 JP2009198045A JP2009198045A JP5188477B2 JP 5188477 B2 JP5188477 B2 JP 5188477B2 JP 2009198045 A JP2009198045 A JP 2009198045A JP 2009198045 A JP2009198045 A JP 2009198045A JP 5188477 B2 JP5188477 B2 JP 5188477B2
Authority
JP
Japan
Prior art keywords
exhaust
catalyst
casing
basic unit
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009198045A
Other languages
Japanese (ja)
Other versions
JP2011047349A (en
Inventor
信彦 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2009198045A priority Critical patent/JP5188477B2/en
Publication of JP2011047349A publication Critical patent/JP2011047349A/en
Application granted granted Critical
Publication of JP5188477B2 publication Critical patent/JP5188477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排気中の有害物質を浄化する排気浄化装置に関する。   The present invention relates to an exhaust gas purification device that purifies harmful substances in exhaust gas.

エンジンから排出される排気には、一酸化炭素(CO),炭化水素(HC),窒素酸化物(NOx),粒子状物質(PM)などの有害物質が含まれている。このため、担体に活性成分及び添加成分を担持させた触媒を排気通路に配設し、有害物質を化学反応によって無害物質に転換する排気浄化装置、ディーゼル酸化触媒(DOC)及びディーゼルパティキュレートフィルタ(DPF)を排気通路に配設し、PMを連続的に捕集除去する排気浄化装置が実用化されている。このような排気浄化装置の一例を列挙すると、特開2009−114994号公報(特許文献1)に記載される「三元触媒」,特開2000−27627号公報(特許文献2)に記載される「尿素SCR(Selective Catalytic Reduction)触媒」,特開2002−339733号公報(特許文献3)に記載される「連続再生式DPF」などがある。   Exhaust gas discharged from the engine contains harmful substances such as carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and particulate matter (PM). For this reason, an exhaust gas purification device, a diesel oxidation catalyst (DOC), and a diesel particulate filter (having a catalyst in which an active component and an additive component are supported on a carrier are disposed in an exhaust passage to convert a harmful material into a harmless material by a chemical reaction) DPF) is disposed in the exhaust passage, and an exhaust purification device that continuously collects and removes PM has been put into practical use. One example of such an exhaust purification device is described in “three-way catalyst” described in Japanese Patent Application Laid-Open No. 2009-114994 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-27627 (Patent Document 2). "Urea SCR (Selective Catalytic Reduction) catalyst", "Continuous regeneration type DPF" described in JP-A-2002-339733 (Patent Document 3), and the like.

特開2009−114994号公報JP 2009-114994 A 特開2000−27627号公報JP 2000-27627 A 特開2002−339733号公報JP 2002-339733 A

ところで、化学反応を利用する排気浄化装置では、有害物質を効率的に浄化するために、少なくとも活性成分が活性化されていなければならず、触媒の温度(触媒温度)を活性温度以上に維持する必要がある。しかし、触媒が配設された排気通路の周壁から大気中に放熱されるため、例えば、冬季など外気温度が低いときには、触媒温度が活性温度に到達せず、又は、触媒温度が活性温度まで上昇せず、所要の排気浄化性能が発揮できなくなるおそれがあった。   By the way, in an exhaust gas purification apparatus using a chemical reaction, in order to efficiently purify harmful substances, at least an active component must be activated, and the temperature of the catalyst (catalyst temperature) is maintained above the activation temperature. There is a need. However, since the heat is radiated to the atmosphere from the peripheral wall of the exhaust passage where the catalyst is disposed, for example, when the outside air temperature is low such as in winter, the catalyst temperature does not reach the activation temperature or the catalyst temperature rises to the activation temperature. Without this, the required exhaust purification performance may not be exhibited.

そこで、本発明は従来技術の問題点に鑑み、触媒の周囲に排気を通過させることで、触媒温度の低下を抑制した排気浄化装置を提供することを目的とする。   Therefore, in view of the problems of the prior art, an object of the present invention is to provide an exhaust purification device that suppresses a decrease in catalyst temperature by allowing exhaust to pass around the catalyst.

このため、本発明では、一端が開口する有底筒状のケーシングと、ケーシングの内周面及び底面との間に隙間ができるように内挿され、ケーシングの軸方向に沿った直線においてのみケーシングの内周面と接触する触媒と、ケーシングの開口を閉塞すると共に、ケーシングの内周面と触媒との間に位置する隙間に排気を導入する排気導入路、及び、ケーシングの開口側に位置する触媒の端面を覆い、触媒を通過した排気を外部へと導出する排気導出路が夫々形成されたキャップと、を有する基本ユニットを、排気通路に少なくとも1つ配設する。 For this reason, in the present invention, the casing is inserted only in a straight line along the axial direction of the casing, so that a gap is formed between the bottomed cylindrical casing having one end opened and the inner peripheral surface and the bottom surface of the casing. The catalyst is in contact with the inner peripheral surface of the casing, the opening of the casing is closed, the exhaust introduction path for introducing exhaust gas into the gap located between the inner peripheral surface of the casing and the catalyst, and the opening side of the casing At least one basic unit that covers the end face of the catalyst and has a cap formed with exhaust exhaust passages for exhausting exhaust that has passed through the catalyst to the outside is disposed in the exhaust passage.

本発明によれば、基本ユニットにおいて、キャップの排気導入路から内部へと導入された排気は、ケーシングの内周面と触媒との間に位置する隙間を通って、ケーシングの最奥部へと流れていく。ケーシングの最奥部へと流れた排気は、ケーシングの底面で折り返されつつ、その全量が触媒へと流れ込む。触媒を通過した排気は、キャップの排気導出路を通って、外部へと導出される。従って、触媒の周囲に排気が通過することとなり、ケーシングの周壁から大気中へと放出される熱量が減少し、いわゆる「保温構造」が実現される。そして、基本ユニットからの放熱が抑制されることから、触媒温度の低下を抑制することができる。   According to the present invention, in the basic unit, the exhaust gas introduced into the inside from the exhaust introduction passage of the cap passes through the gap located between the inner peripheral surface of the casing and the catalyst and goes to the innermost part of the casing. It flows. The exhaust gas flowing to the innermost part of the casing is folded back at the bottom surface of the casing, and the entire amount flows into the catalyst. The exhaust gas that has passed through the catalyst is led out through the exhaust lead-out passage of the cap. Therefore, the exhaust gas passes around the catalyst, and the amount of heat released from the peripheral wall of the casing into the atmosphere is reduced, so that a so-called “heat insulation structure” is realized. And since the heat dissipation from a basic unit is suppressed, the fall of catalyst temperature can be suppressed.

排気浄化装置の第1実施形態を示す全体構成図Overall configuration diagram showing a first embodiment of an exhaust purification device 基本ユニットの詳細を示す斜視図Perspective view showing details of basic unit 基本ユニットの連結状態を示す斜視図The perspective view which shows the connection state of a basic unit 第1実施形態に係る排気浄化装置の作用及び効果の説明図Explanatory drawing of an effect | action and effect of the exhaust gas purification apparatus which concerns on 1st Embodiment. 排気浄化装置の第2実施形態の要部を示す部分断面図Partial sectional view showing the main part of the second embodiment of the exhaust emission control device 排気浄化装置の第3実施形態の要部を示す部分断面図Partial sectional view showing the main part of the third embodiment of the exhaust emission control device ケーシングに対する触媒の内挿方法の変形例の説明図Explanatory drawing of the modification of the method of inserting the catalyst with respect to the casing

以下、添付された図面を参照して本発明を詳述する。
図1は、液体還元剤の前駆体としての尿素水溶液を使用し、ディーゼルエンジン(以下「エンジン」という)の排気に含まれるNOxを選択的に還元浄化する排気浄化装置の一例を示す。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an example of an exhaust purification device that uses an aqueous urea solution as a precursor of a liquid reducing agent and selectively reduces and purifies NOx contained in exhaust gas from a diesel engine (hereinafter referred to as “engine”).

エンジン10の排気マニフォールド12に接続される排気管14(排気通路)には、排気流通方向に沿って、一酸化窒素(NO)を二酸化窒素(NO2)へと酸化させるDOC16と、尿素水溶液から生成されるアンモニアの供給を受けてNOxを選択還元浄化するSCR触媒18と、SCR触媒18を通過したアンモニアを酸化させるアンモニア酸化触媒20と、がこの順番で配設される。 An exhaust pipe 14 (exhaust passage) connected to the exhaust manifold 12 of the engine 10 includes a DOC 16 that oxidizes nitrogen monoxide (NO) into nitrogen dioxide (NO 2 ) along the exhaust flow direction, and an aqueous urea solution. An SCR catalyst 18 for selectively reducing and purifying NOx upon receipt of the generated ammonia, and an ammonia oxidation catalyst 20 for oxidizing the ammonia that has passed through the SCR catalyst 18 are arranged in this order.

排気管14にDOC16,SCR触媒18及びアンモニア酸化触媒20を配設する方法として、図2に示すような基本ユニット22を使用する。
即ち、基本ユニット22は、一端が開口する有底筒状のケーシング24と、ケーシング24の内周面及び底面との間に隙間ができるように内挿(格納)されるDOC16,SCR触媒18又はアンモニア酸化触媒20(以下、特に区別しないときは「触媒26」という)と、ケーシング24の開口を閉塞するキャップ28と、を含んで構成される。キャップ28には、ケーシング24の内周面と触媒26との間に位置する隙間に排気を導入する排気導入路28Aと、ケーシング24の開口側に位置する触媒26の端面を覆い、触媒26を通過した排気を外部へと導出する排気導出路28Bと、が夫々形成される。なお、キャップ28の排気導入路28Aは、その形成を容易にするため、単なる「開口」とすることが望ましい。また、ケーシング24及び触媒26の横断面は、図示する略円形に限らず、例えば、各丸四角形などであってもよい。
As a method of disposing the DOC 16, the SCR catalyst 18 and the ammonia oxidation catalyst 20 in the exhaust pipe 14, a basic unit 22 as shown in FIG. 2 is used.
That is, the basic unit 22 includes the DOC 16, the SCR catalyst 18 or the SCR catalyst 18 inserted (stored) so that a gap is formed between the bottomed cylindrical casing 24 whose one end is open and the inner peripheral surface and the bottom surface of the casing 24. The ammonia oxidation catalyst 20 (hereinafter referred to as “catalyst 26” unless otherwise specified) and a cap 28 that closes the opening of the casing 24 are included. The cap 28 covers an exhaust introduction path 28 </ b> A for introducing exhaust into a gap located between the inner peripheral surface of the casing 24 and the catalyst 26, and an end face of the catalyst 26 located on the opening side of the casing 24. An exhaust lead-out path 28B for leading the exhaust that has passed through to the outside is formed. The exhaust introduction path 28A of the cap 28 is preferably a simple “opening” in order to facilitate the formation thereof. Further, the cross sections of the casing 24 and the catalyst 26 are not limited to the substantially circular shape shown in the figure, and may be, for example, each round rectangle.

ここで、ケーシング24の内周面及び底面と触媒26との間に位置する隙間は、排気通路の一部として機能する。また、基本ユニット22を複数連結することを踏まえ、排気導出路28Bの排気出口が、他の基本ユニット22の排気導入路28Aの排気入口に対応する位置になるようにすることが望ましい。さらに、ケーシング24の内周面の一部に接触するように触媒26を内挿し、この接触箇所においてケーシング24に対して触媒26を固定支持するようにすれば、例えば、触媒26を固定支持するステーなどが不要となり、部品点数の削減を図ることができる。   Here, the gaps located between the inner peripheral surface and the bottom surface of the casing 24 and the catalyst 26 function as a part of the exhaust passage. Further, considering that a plurality of basic units 22 are connected, it is desirable that the exhaust outlet of the exhaust lead-out path 28 </ b> B is located at a position corresponding to the exhaust inlet of the exhaust introduction path 28 </ b> A of the other basic unit 22. Further, if the catalyst 26 is inserted so as to contact a part of the inner peripheral surface of the casing 24 and the catalyst 26 is fixedly supported with respect to the casing 24 at this contact location, for example, the catalyst 26 is fixedly supported. A stay or the like is not necessary, and the number of parts can be reduced.

そして、DOC16,SCR触媒18及びアンモニア酸化触媒20を内挿する3つの基本ユニット22は、一の基本ユニット22の排気導出路28Bを他の基本ユニット22の排気導入路28Aに接続することで、図3に示すように、全体的にコンパクトなものとなる。   The three basic units 22 interpolating the DOC 16, the SCR catalyst 18, and the ammonia oxidation catalyst 20 connect the exhaust lead-out path 28B of one basic unit 22 to the exhaust introduction path 28A of the other basic unit 22, As shown in FIG. 3, it becomes compact as a whole.

また、DOC16とSCR触媒18との間に位置する排気通路、具体的には、DOC16を内挿する基本ユニット22のキャップ28には、排気の温度(排気温度)を測定する温度センサ30と、尿素水溶液を噴霧状態で噴射供給する噴射ノズル32と、が夫々取り付けられる。   In addition, a temperature sensor 30 for measuring the temperature of exhaust gas (exhaust temperature) is provided in an exhaust passage located between the DOC 16 and the SCR catalyst 18, specifically, a cap 28 of the basic unit 22 in which the DOC 16 is inserted, An injection nozzle 32 that supplies the urea aqueous solution in an atomized state is attached.

還元剤タンク34に貯蔵される尿素水溶液は、還元剤添加コントロールユニット(以下「DCU(Dosing Control Unit)」という)36により電子制御される還元剤添加装置38を経由して噴射ノズル32へと供給される。DCU36には、温度センサ30の出力信号が入力されると共に、エンジン10の回転速度及び負荷を読み込み可能とすべく、CAN(Controller Area Network)などを介して、エンジンコントロールユニット(以下「ECU」という)40が接続される。ここで、エンジン10の負荷としては、燃料噴射量,アクセル操作量,スロットル開度,吸気流量,吸気負圧,過給圧力などの公知の状態量を採用することができる。なお、エンジン10の回転速度及び負荷は、公知のセンサを用いて直接検出するようにしてもよい。   The aqueous urea solution stored in the reducing agent tank 34 is supplied to the injection nozzle 32 via a reducing agent addition device 38 that is electronically controlled by a reducing agent addition control unit (hereinafter referred to as “DCU (Dosing Control Unit)”) 36. Is done. The output signal of the temperature sensor 30 is input to the DCU 36, and an engine control unit (hereinafter referred to as “ECU”) is connected via a CAN (Controller Area Network) or the like so that the rotational speed and load of the engine 10 can be read. ) 40 is connected. Here, as the load of the engine 10, known state quantities such as a fuel injection amount, an accelerator operation amount, a throttle opening, an intake flow rate, an intake negative pressure, a supercharging pressure, and the like can be employed. The rotational speed and load of the engine 10 may be directly detected using a known sensor.

かかる排気浄化装置において、噴射ノズル32から噴射供給された尿素水溶液は、排気熱及び排気中の水蒸気により加水分解され、還元剤として機能するアンモニアが生成される。尿素水溶液から生成されたアンモニアは、SCR触媒18において排気中のNOxと選択還元反応し、無害な水(H2O)及び窒素(N2)へと転換されることは知られたことである。このとき、SCR触媒18におけるNOx浄化効率を向上させるべく、DOC16によりNOがNO2へと酸化され、排気中のNOとNO2との割合が選択還元反応に適したものに改善される。一方、SCR触媒18を通過したアンモニアは、SCR触媒18の排気下流に配設されたアンモニア酸化触媒20により酸化されるので、アンモニアがそのまま大気中に放出されることが抑制される。 In such an exhaust purification device, the urea aqueous solution injected and supplied from the injection nozzle 32 is hydrolyzed by the exhaust heat and the water vapor in the exhaust to produce ammonia that functions as a reducing agent. It is known that ammonia generated from the urea aqueous solution undergoes a selective reduction reaction with NOx in the exhaust gas in the SCR catalyst 18 and is converted into harmless water (H 2 O) and nitrogen (N 2 ). . At this time, in order to improve the NOx purification efficiency in the SCR catalyst 18, NO is oxidized to NO 2 by the DOC 16, and the ratio of NO and NO 2 in the exhaust is improved to be suitable for the selective reduction reaction. On the other hand, the ammonia that has passed through the SCR catalyst 18 is oxidized by the ammonia oxidation catalyst 20 disposed downstream of the SCR catalyst 18, so that the ammonia is suppressed from being released into the atmosphere as it is.

DOC16,SCR触媒18及びアンモニア酸化触媒20は、図4に示すように、その周囲に排気が通過することで、触媒温度の低下が抑制される。即ち、DOC16が内挿された基本ユニット22において、キャップ28の排気導入路28Aから基本ユニット22の内部へと導入された排気は、ケーシング24とDOC16との間に位置する隙間を通過して、ケーシング24の最奥部へと流れていく。ケーシング24の最奥部へと流れた排気は、ケーシング24の底面で折り返されつつ、その全量がDOC16へと流れ込む。DOC16を通過した排気は、キャップ28の排気導出路28Bを通って、SCR触媒18が内挿された基本ユニット22へと流入する。そして、DOC16が内挿された基本ユニット22と同様な過程を経て、アンモニア酸化触媒20が内挿された基本ユニット22の排気導出路28Bから排気が大気中へと放出される。   As shown in FIG. 4, the DOC 16, the SCR catalyst 18, and the ammonia oxidation catalyst 20 are prevented from lowering the catalyst temperature when exhaust gas passes through them. That is, in the basic unit 22 in which the DOC 16 is inserted, the exhaust gas introduced from the exhaust gas introduction path 28A of the cap 28 into the basic unit 22 passes through a gap located between the casing 24 and the DOC 16, It flows to the innermost part of the casing 24. The exhaust gas that has flowed to the innermost part of the casing 24 is folded back at the bottom surface of the casing 24, and the entire amount thereof flows into the DOC 16. Exhaust gas that has passed through the DOC 16 passes through the exhaust outlet passage 28B of the cap 28 and flows into the basic unit 22 in which the SCR catalyst 18 is inserted. Then, through a process similar to that of the basic unit 22 in which the DOC 16 is inserted, exhaust gas is discharged into the atmosphere from the exhaust lead-out path 28B of the basic unit 22 in which the ammonia oxidation catalyst 20 is inserted.

基本ユニット22に流入した排気は、ケーシング24と触媒26との間に位置する隙間を流れるので、触媒26の周囲に排気が通過することとなる。このため、触媒26の周囲に排気が存在することで、ケーシング24の周壁から大気中へと放出される熱量が減少し、いわゆる「保温構造」が実現される。そして、基本ユニット22からの放熱が抑制されることから、触媒温度の低下を抑制することができる。よって、触媒26の触媒温度が低下し難くなり、NOx浄化効率の低下を抑制することができる。   Since the exhaust gas flowing into the basic unit 22 flows through a gap located between the casing 24 and the catalyst 26, the exhaust gas passes around the catalyst 26. For this reason, the presence of exhaust gas around the catalyst 26 reduces the amount of heat released from the peripheral wall of the casing 24 into the atmosphere, thereby realizing a so-called “heat insulation structure”. And since the heat radiation from the basic unit 22 is suppressed, it is possible to suppress a decrease in the catalyst temperature. Therefore, the catalyst temperature of the catalyst 26 is difficult to decrease, and a decrease in NOx purification efficiency can be suppressed.

なお、本発明は、NOxを選択的に還元浄化する排気浄化装置に限らず、DOC16及びCSF(Catalyzed Soot Filter)42を直列に配設した「連続再生式DPF」(図5参照)、DOC16,CSF42,SCR触媒18及びアンモニア酸化触媒20を直列に配設した「DPF+尿素SCR触媒」(図6参照)、ガソリンエンジンの「三元触媒」などにも適用することができる。ここで、「CSF」とは、活性成分及び添加成分を担持したDPFである。   The present invention is not limited to an exhaust purification device that selectively reduces and purifies NOx, but a “continuous regeneration type DPF” (see FIG. 5), in which a DOC 16 and a CSF (Catalyzed Soot Filter) 42 are arranged in series, DOC 16, The present invention can also be applied to a “DPF + urea SCR catalyst” (see FIG. 6) in which the CSF 42, the SCR catalyst 18 and the ammonia oxidation catalyst 20 are arranged in series, a “three-way catalyst” of a gasoline engine, and the like. Here, “CSF” is a DPF carrying an active ingredient and an additive ingredient.

また、触媒26は、図7に示すように、ケーシング24の内周面との間に円筒形状の隙間ができるように、ケーシング24に内挿するようにしてもよい。このようにすれば、ケーシング24に対して触媒26を固定するステーなどが必要となるが、ケーシング24の内周面と触媒26との間に位置する隙間が円筒形状をなしているので、この隙間を通過する排気流速のばらつきが少なくなり、触媒温度の均一化を促進することができる。   Further, the catalyst 26 may be inserted into the casing 24 so that a cylindrical gap is formed between the catalyst 26 and the inner peripheral surface of the casing 24 as shown in FIG. In this case, a stay or the like for fixing the catalyst 26 to the casing 24 is required. However, the gap located between the inner peripheral surface of the casing 24 and the catalyst 26 has a cylindrical shape. Variations in the exhaust flow velocity passing through the gap are reduced, and the catalyst temperature can be made uniform.

14 排気管
16 DOC
18 SCR触媒
20 アンモニア酸化触媒
22 基本ユニット
24 ケーシング
26 触媒
28 キャップ
28A 排気導入路
28B 排気導出路
42 CSF
14 Exhaust pipe 16 DOC
18 SCR catalyst 20 Ammonia oxidation catalyst 22 Basic unit 24 Casing 26 Catalyst 28 Cap 28A Exhaust inlet path 28B Exhaust outlet path 42 CSF

Claims (4)

一端が開口する有底筒状のケーシングと、
前記ケーシングの内周面及び底面との間に隙間ができるように内挿され、前記ケーシングの軸方向に沿った直線においてのみ該ケーシングの内周面と接触する触媒と、
前記ケーシングの開口を閉塞すると共に、前記ケーシングの内周面と触媒との間に位置する隙間に排気を導入する排気導入路、及び、前記ケーシングの開口側に位置する触媒の端面を覆い、前記触媒を通過した排気を外部へと導出する排気導出路が夫々形成されたキャップと、
を有する基本ユニットを、排気通路に少なくとも1つ配設したことを特徴とする排気浄化装置。
A bottomed cylindrical casing with one end open;
A catalyst that is inserted so that a gap is formed between the inner peripheral surface and the bottom surface of the casing, and that contacts the inner peripheral surface of the casing only in a straight line along the axial direction of the casing ;
The opening of the casing is closed, the exhaust introduction path for introducing exhaust into a gap located between the inner peripheral surface of the casing and the catalyst, and the end face of the catalyst located on the opening side of the casing are covered, Caps each having exhaust outlet passages for exhausting exhaust that has passed through the catalyst to the outside;
An exhaust emission control device characterized in that at least one basic unit having the above is disposed in the exhaust passage.
前記基本ユニットを複数備え、
一の基本ユニットの排気導出路は、他の基本ユニットの排気導入路に接続されることを特徴とする請求項1記載の排気浄化装置。
A plurality of the basic units are provided,
The exhaust emission control device according to claim 1 , wherein the exhaust lead-out path of one basic unit is connected to the exhaust introduction path of another basic unit .
前記排気導入路は、前記キャップに開設された開口からなることを特徴とする請求項1又は請求項2に記載の排気浄化装置。 The exhaust emission control device according to claim 1 or 2, wherein the exhaust introduction path includes an opening formed in the cap . 前記基本ユニットを複数並列に並べた状態において、一の基本ユニットの排気導出路は、他の基本ユニットの排気導入路に対応する位置に形成されたことを特徴とする請求項1〜請求項3のいずれか1つに記載の排気浄化装置。 4. The exhaust lead-out path of one basic unit is formed at a position corresponding to the exhaust lead-in path of another basic unit in a state where a plurality of the basic units are arranged in parallel. The exhaust emission control device according to any one of the above.
JP2009198045A 2009-08-28 2009-08-28 Exhaust purification device Expired - Fee Related JP5188477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198045A JP5188477B2 (en) 2009-08-28 2009-08-28 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198045A JP5188477B2 (en) 2009-08-28 2009-08-28 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2011047349A JP2011047349A (en) 2011-03-10
JP5188477B2 true JP5188477B2 (en) 2013-04-24

Family

ID=43833920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198045A Expired - Fee Related JP5188477B2 (en) 2009-08-28 2009-08-28 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP5188477B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178832A1 (en) * 2013-04-30 2014-11-06 Faurecia Emissions Control Technologies Cast mounted sub-structure for end module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134821U (en) * 1978-03-13 1979-09-19
JPH0161417U (en) * 1987-10-12 1989-04-19
JPH023013U (en) * 1988-06-17 1990-01-10
JPH0296418U (en) * 1989-01-19 1990-08-01
DE19955013B4 (en) * 1999-11-16 2008-04-03 Volkswagen Ag Exhaust system of an internal combustion engine
JP2006112253A (en) * 2004-10-12 2006-04-27 Mitsubishi Heavy Ind Ltd Exhaust gas aftertreatment device provided with oxidation catalyst

Also Published As

Publication number Publication date
JP2011047349A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
RU121371U1 (en) EXHAUST GAS SAMPLER (OPTIONS)
US8479500B2 (en) Exhaust treatment system for an internal combustion engine
US20100199643A1 (en) Exhaust gas purification system
JP4507901B2 (en) Exhaust gas purification system and exhaust gas purification method thereof
US20100319324A1 (en) Exhaust Gas Treatment System Including an HC-SCR and Two-way Catalyst and Method of Using the Same
JP4450257B2 (en) Exhaust purification device
JP2006527815A (en) Control method of reductant addition
WO2011045847A1 (en) Exhaust purification device for engine
US8978368B2 (en) Exhaust-gas aftertreatment system and method for exhaust-gas aftertreatment
US8783022B2 (en) Retrofit aftertreatment system for treating diesel exhaust
JP2013142363A (en) Exhaust emission control device of diesel engine
JP2008138654A (en) Exhaust emission control device
EP2299080B1 (en) Exhaust gas purification apparatus
JP5258426B2 (en) Engine exhaust purification system
GB2512896A (en) A mixer module and an emissions cleaning module
EP2655819A1 (en) Integrated exhaust gas after-treatment system for diesel fuel engines
JP5020185B2 (en) Exhaust purification device
KR20140062899A (en) Exhaust gas purification system of vehicle
JP5688963B2 (en) Engine exhaust purification system
JP2010242515A (en) Exhaust emission control system and exhaust emission control method
JP5188477B2 (en) Exhaust purification device
JP6020105B2 (en) Diesel engine exhaust gas purification method and exhaust gas purification system
JP2011033001A (en) Exhaust emission control device
US20120237408A1 (en) Exhaust gas purification apparatus for engine
JP2012092746A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees