JP2019105188A - Reducing agent feeding device, exhaust emission control system and control method for reducing agent feeding device - Google Patents

Reducing agent feeding device, exhaust emission control system and control method for reducing agent feeding device Download PDF

Info

Publication number
JP2019105188A
JP2019105188A JP2017237551A JP2017237551A JP2019105188A JP 2019105188 A JP2019105188 A JP 2019105188A JP 2017237551 A JP2017237551 A JP 2017237551A JP 2017237551 A JP2017237551 A JP 2017237551A JP 2019105188 A JP2019105188 A JP 2019105188A
Authority
JP
Japan
Prior art keywords
reducing agent
injection valve
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017237551A
Other languages
Japanese (ja)
Inventor
修一 倉上
Shuichi Kuragami
修一 倉上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2017237551A priority Critical patent/JP2019105188A/en
Publication of JP2019105188A publication Critical patent/JP2019105188A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

To provide a reducing agent feeding device for accurately detecting a temperature of a reducing agent injection valve mounted to an exhaust pipe on the upstream side of a reduction catalyst for reducing and eliminating NOx in exhaust gas in an internal combustion engine, an exhaust emission control system and a control method for a reducing agent feeding device.SOLUTION: A reducing agent feeding device supplies a reducing agent to an exhaust pipe on the upstream side of a reduction catalyst for reducing and eliminating NOx in exhaust gas in an internal combustion engine. The reducing agent feeding device includes: a reducing agent injection valve mounted to the exhaust pipe and injecting the reducing agent into the exhaust pipe; and a control device for controlling the reducing agent injection valve. The control device includes: a reducing agent injection valve coil temperature detection section for detecting a temperature of an electromagnetic coil part of the reducing agent injection valve; an internal combustion engine operating state detection section for detecting an operating state value of the internal combustion engine; and a vehicle traveling state detection section for detecting a traveling state value of a vehicle mounted with the internal combustion engine. A temperature of the reducing agent injection valve is estimated based on the temperature of the electromagnetic coil part of the reducing agent injection valve, the operating state value of the internal combustion engine, and the traveling state value of the vehicle mounted with the internal combustion engine.SELECTED DRAWING: Figure 4

Description

本発明は、内燃機関の排気中のNOxを還元して浄化する還元触媒の上流側の排気管に還元剤を供給する還元剤供給装置、排気浄化システム及び還元剤供給装置の制御方法に関する。   The present invention relates to a reducing agent supply device for supplying a reducing agent to an exhaust pipe upstream of a reduction catalyst that reduces and purifies NOx in the exhaust gas of an internal combustion engine, an exhaust gas purification system, and a control method of the reducing agent supply device.

ディーゼルエンジン等の内燃機関の排気中にNOX(窒素酸化物)が含まれる場合がある。この排気中のNOXを除去するために、NOXを還元して浄化する還元触媒を含む尿素SCR(Selective Catalytic Reduction)システムが備えられる。尿素SCRシステムは、還元剤として尿素水を用いて、尿素水から生成されるアンモニアを排気中のNOXと反応させることによってNOXを分解する。 It might contain NO X in the exhaust gas of an internal combustion engine such as a diesel engine (nitrogen oxides). In order to remove the NO x in the exhaust gas, a urea selective catalytic reduction (SCR) system including a reduction catalyst that reduces and purifies the NO x is provided. Urea SCR systems use urea water as the reducing agent to decompose the NO X by reacting with NO X in the exhaust ammonia produced from urea water.

尿素SCRシステムにおいて、尿素水は、尿素水用のタンクから還元剤噴射弁を介して排気通路内に供給される。尿素水用のタンクには、尿素水温度を検出するための温度センサが設けられているが、排気管の近傍に配置された還元剤噴射弁は、その周囲から加熱または冷却される場合があり、必ずしも、還元剤噴射弁の温度は尿素水用のタンク内での尿素水の温度と同じではない。そこで還元剤噴射弁の温度をより正確に検出する技術が開示されている。   In the urea SCR system, urea water is supplied from a tank for urea water into the exhaust passage via a reductant injection valve. The tank for urea water is provided with a temperature sensor for detecting the temperature of urea water, but the reducing agent injection valve arranged in the vicinity of the exhaust pipe may be heated or cooled from its surroundings However, the temperature of the reducing agent injection valve is not necessarily the same as the temperature of urea water in the tank for urea water. Thus, a technique for more accurately detecting the temperature of the reducing agent injection valve is disclosed.

特開2016−109086号公報JP, 2016-109086, A

特許文献1に記載の排気浄化システムには、インジェクタ(還元剤噴射弁)の温度の検出方法として、インジェクタ温度センサをインジェクタに配置し、インジェクタの温度を直接測定することが記載されている。しかしながら、インジェクタ温度センサをインジェクタに配置した場合には、インジェクタの体格が大きくなってしまい、インジェクタの搭載性が悪くなるという問題があった。また、特許文献1には、インジェクタの温度と、尿素水タンク内の尿素水の温度がほぼ比例の関係にあるとして、尿素水タンク内の尿素水の温度からインジェクタの温度を推定することが開示されている。しかしながら、タンクからインジェクタに供給される過程における熱の供給は必ずしも一定ではなく、インジェクタの温度を正確に推定できないおそれがあった。特に、インジェクタの温度を実際よりも低く推定した場合には、適切な冷却措置を行うことができず、インジェクタの耐熱温度を超えてしまい、インジェクタに熱損傷を与えてしまうおそれがあった。   In the exhaust gas purification system described in Patent Document 1, as a method of detecting the temperature of the injector (reductant injection valve), it is described that an injector temperature sensor is disposed in the injector and the temperature of the injector is directly measured. However, when the injector temperature sensor is disposed in the injector, the size of the injector becomes large, and there is a problem that the mountability of the injector is deteriorated. Further, Patent Document 1 discloses that the temperature of the injector and the temperature of the aqueous urea in the aqueous urea tank are approximately proportional to each other, and the temperature of the injector is estimated from the temperature of the aqueous urea in the aqueous tank. It is done. However, the supply of heat in the process of being supplied from the tank to the injector is not always constant, and there is a possibility that the temperature of the injector can not be accurately estimated. In particular, when the temperature of the injector is estimated to be lower than the actual temperature, appropriate cooling measures can not be performed, the heat resistance temperature of the injector may be exceeded, and the injector may be thermally damaged.

本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、還元剤噴射弁の温度をより正確に検出することが可能で、かつ、還元剤噴射弁の温度が閾値を超えるおそれがある場合には適切な冷却措置をとることが可能な還元剤供給装置、排気浄化システム及び還元剤供給装置の制御方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to be able to more accurately detect the temperature of the reducing agent injection valve, and the temperature of the reducing agent injection valve is An object of the present invention is to provide a reductant supply device, an exhaust gas purification system, and a control method of the reductant supply device capable of taking appropriate cooling measures when there is a possibility that the threshold value is exceeded.

上記課題を解決するために、本発明のある観点によれば、内燃機関の排気中のNOxを還元して浄化する還元触媒の上流側の排気管に還元剤を供給する還元剤供給装置において、前記還元剤供給装置は、前記排気管に取り付けられ、前記還元剤を前記排気管内に噴射する還元剤噴射弁と、前記還元剤噴射弁を制御する制御装置と、を備え、前記制御装置は、還元剤噴射弁の電磁コイル部分の温度を検出する還元剤噴射弁コイル温度検出部と、内燃機関の運転状態値を検出する内燃機関運転状態検出部と、当該内燃機関が搭載された車両の走行状態値を検出する車両走行状態検出部と、前記還元剤噴射弁の電磁コイル部分の温度と、前記内燃機関の運転状態値と、前記内燃機関が搭載された車両の走行状態値と、に基づいて前記還元剤噴射弁の温度を推定する還元剤噴射弁温度推定部と、を有することを特徴とする還元剤供給装置が提供される。   To solve the above problems, according to one aspect of the present invention, in a reducing agent supply device for supplying a reducing agent to an exhaust pipe upstream of a reduction catalyst that reduces and purifies NOx in the exhaust gas of an internal combustion engine, The reducing agent supply device includes a reducing agent injection valve attached to the exhaust pipe and injecting the reducing agent into the exhaust pipe, and a control device that controls the reducing agent injection valve, and the control device includes: A reducing agent injection valve coil temperature detection unit for detecting a temperature of an electromagnetic coil portion of a reducing agent injection valve, an internal combustion engine operation state detection unit for detecting an operation state value of an internal combustion engine, and traveling of a vehicle equipped with the internal combustion engine Based on a vehicle traveling state detecting unit for detecting a state value, a temperature of an electromagnetic coil portion of the reducing agent injection valve, a driving state value of the internal combustion engine, and a traveling state value of a vehicle equipped with the internal combustion engine Temperature of the reducing agent injection valve And a reducing agent injection valve temperature estimating unit for estimating the degree.

また、上記課題を解決するために、本発明の別の観点によれば、内燃機関の排気中のNOxを還元して浄化する還元触媒の上流側の排気管に還元剤を供給する還元剤噴射弁を有する還元剤供給装置の制御方法において、前記制御方法は、還元剤噴射弁の電磁コイル部分の温度を検出するステップと、内燃機関の運転状態値を検出するステップと、当該内燃機関が搭載された車両の走行状態値を検出するステップと、前記還元剤噴射弁の電磁コイル部分の温度と、前記内燃機関の運転状態値と、前記内燃機関が搭載された車両の走行状態値と、に基づいて前記還元剤噴射弁の温度を推定するステップと、を備えることを特徴とする還元剤供給装置の制御方法が提供される。 Further, in order to solve the above-mentioned problems, according to another aspect of the present invention, reducing agent injection for supplying a reducing agent to an exhaust pipe upstream of a reducing catalyst that reduces and purifies NOx in the exhaust of an internal combustion engine In a control method of a reducing agent supply device having a valve, the control method includes a step of detecting a temperature of an electromagnetic coil portion of a reducing agent injection valve, a step of detecting an operating state value of an internal combustion engine, and the internal combustion engine And detecting the driving condition value of the vehicle, the temperature of the electromagnetic coil portion of the reducing agent injection valve, the driving condition value of the internal combustion engine, and the driving condition value of the vehicle on which the internal combustion engine is mounted. And estimating the temperature of the reducing agent injection valve based on the control method.

以上説明したように本発明によれば、還元剤噴射弁の電磁コイル部分の温度と、内燃機関の運転状態値と、内燃機関が搭載された車両の走行状態値と、に基づいて還元剤噴射弁の温度を正確に推定することができるので、例えば、還元剤噴射弁の温度が高温になることが予想される場合には、適切な冷却措置をとることができ、還元剤噴射弁の熱損傷を回避することができる。   As described above, according to the present invention, the reducing agent injection is performed based on the temperature of the electromagnetic coil portion of the reducing agent injection valve, the operating state value of the internal combustion engine, and the traveling state value of the vehicle equipped with the internal combustion engine. Since the temperature of the valve can be accurately estimated, for example, if the temperature of the reducing agent injection valve is expected to be high, appropriate cooling measures can be taken, and the heat of the reducing agent injection valve can be taken. Damage can be avoided.

本発明の実施の形態に係る還元剤供給装置を含む排気浄化システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the exhaust gas purification system containing the reducing agent supply apparatus which concerns on embodiment of this invention. 同実施形態に係る還元剤供給装置の制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control apparatus of the reducing agent supply apparatus which concerns on the embodiment. 同実施形態に係る還元剤供給装置の制御方法の例を示すフローチャートである。It is a flowchart which shows the example of the control method of the reducing agent supply apparatus which concerns on the embodiment. 還元剤噴射弁の先端温度の推定方法の一例を示す説明図である。It is explanatory drawing which shows an example of the estimation method of front-end | tip temperature of a reducing agent injection valve.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. In the present specification and the drawings, components having substantially the same functional configuration will be assigned the same reference numerals and redundant description will be omitted.

<1.車両の排気浄化システムの全体構成>
本実施形態に係る還元剤供給装置が適用され得る車両に搭載される排気浄化の構成例について説明する。図1は、排気浄化システム10の構成例を示す模式図である。
<1. Overall Configuration of Vehicle Exhaust Purification System>
A configuration example of exhaust gas purification mounted on a vehicle to which the reducing agent supply device according to the present embodiment can be applied will be described. FIG. 1 is a schematic view showing a configuration example of an exhaust purification system 10.

排気浄化システム10は、ディーゼルエンジン又はガソリンエンジン等である内燃機関5の排気系に備えられる。本実施形態において、内燃機関5がディーゼルエンジンである例を説明する。排気浄化システム10は、内燃機関5の排気管11に還元触媒13が配設されており、還元触媒13の上流で排気管11内に尿素水を供給する還元剤供給装置30を備える。   The exhaust purification system 10 is provided in an exhaust system of an internal combustion engine 5 such as a diesel engine or a gasoline engine. In the present embodiment, an example in which the internal combustion engine 5 is a diesel engine will be described. In the exhaust gas purification system 10, a reduction catalyst 13 is disposed in the exhaust pipe 11 of the internal combustion engine 5, and includes a reducing agent supply device 30 that supplies urea water into the exhaust pipe 11 upstream of the reduction catalyst 13.

還元触媒13は、内燃機関5の排気中に含まれるNOXを還元する触媒である。還元触媒13は、還元剤供給装置30により供給される尿素水から生成されるアンモニア(NH3)を吸着し、還元触媒13に流入する排気中のNOXとNH3とを還元反応させることによってNOXを水(H2O)や窒素(N2)に分解する。 Reduction catalyst 13 is a catalyst for reducing NO X contained in the exhaust of an internal combustion engine 5. Reduction catalyst 13, by allowing adsorption of ammonia (NH 3) generated from the urea water supplied, the NO X and NH 3 in the exhaust gas flowing into the reduction catalyst 13 is reduced reaction by the reducing agent supply device 30 Decomposition of NO x into water (H 2 O) and nitrogen (N 2 ).

還元剤供給装置30は、還元剤である尿素水を貯蔵する貯蔵タンク50と、還元触媒13よりも上流の排気管11に固定された還元剤噴射弁31と、貯蔵タンク50から汲み出した尿素水を還元剤噴射弁31に圧送するポンプ41と、貯蔵タンク50とポンプ41を連結する還元剤第1通路60と、ポンプ41と還元剤噴射弁31を連結する還元剤第2通路61と、還元剤第2通路61内の還元剤の圧力を測定する圧力センサ43と、貯蔵タンク50に取り付けられ、貯蔵タンク50に貯蔵された還元剤の温度を測定するタンク温度センサ51と、各種センサの信号に基づいてポンプ41や還元剤噴射弁31を制御する還元剤噴射制御装置(制御装置)100等を備える。還元剤である尿素水としては、例えば約32.5%濃度の尿素水が用いられる。還元剤噴射制御装置100は、還元剤の供給量を、排気中に含まれるNOXの濃度や、還元触媒13の温度、還元触媒13におけるNH3の吸着量等に基づいて設定し、還元触媒13の下流側へのNOXあるいはNH3の流出量が許容値を超えないように、ポンプ41や還元剤噴射弁31等を制御する。 The reducing agent supply device 30 includes a storage tank 50 for storing urea water which is a reducing agent, a reducing agent injection valve 31 fixed to the exhaust pipe 11 upstream of the reducing catalyst 13, and urea water pumped out of the storage tank 50. , The reducing agent first passage 60 connecting the storage tank 50 and the pump 41, the reducing agent second passage 61 connecting the pump 41 and the reducing agent injection valve 31, and reduction Pressure sensor 43 for measuring the pressure of the reducing agent in the agent second passage 61, a tank temperature sensor 51 for measuring the temperature of the reducing agent attached to the storage tank 50 and measuring the temperature of the reducing agent, signals of various sensors And a reducing agent injection control device (control device) 100 that controls the pump 41 and the reducing agent injection valve 31 based on the above. As urea water which is a reducing agent, for example, urea water having a concentration of about 32.5% is used. Reducing agent injection control device 100, the supply amount of the reducing agent, and the concentration of NO X contained in the exhaust, the temperature of the reduction catalyst 13, is set on the basis of the amount of adsorption of NH 3 or the like in the reduction catalyst 13, the reducing catalyst outflow of the nO X or NH 3 to the downstream side of the 13 so as not to exceed the allowable value, it controls the pump 41 and the reducing agent injection valve 31 or the like.

ポンプ41としては、例えば電動式のダイヤフラムポンプや電動式のギヤポンプが用いられる。還元剤第2通路61内の還元剤の圧力を測定する圧力センサ43からの信号が、還元剤噴射制御装置100に送信され、還元剤噴射制御装置100は、圧力センサ43のセンサ信号に基づいて、還元剤噴射弁31に供給される還元剤の圧力が所定の目標値で維持されるようにポンプ41の出力をフィードバック制御する。   As the pump 41, for example, an electric diaphragm pump or an electric gear pump is used. A signal from the pressure sensor 43 that measures the pressure of the reducing agent in the reducing agent second passage 61 is transmitted to the reducing agent injection control device 100, and the reducing agent injection control device 100 is based on the sensor signal of the pressure sensor 43. The output of the pump 41 is feedback-controlled so that the pressure of the reducing agent supplied to the reducing agent injection valve 31 is maintained at a predetermined target value.

還元剤噴射弁31としては、例えば通電のオンオフにより開弁及び閉弁が切り替えられる電磁駆動式の還元剤噴射弁が用いられる。電磁駆動式の還元剤噴射弁31は、アクチュエータとしての電磁コイルを備え、電磁コイルへの通電時にピストンが移動して開弁する。本実施形態において、還元剤噴射弁31に供給される還元剤の圧力が所定の目標値となるように制御されており、還元剤噴射制御装置100は、還元剤の指示噴射量に応じて噴射時間を制御する。   As the reducing agent injection valve 31, for example, an electromagnetically driven reducing agent injection valve whose valve opening and closing are switched by turning on and off of the current supply is used. The electromagnetically driven reductant injection valve 31 includes an electromagnetic coil as an actuator, and the piston moves and opens when the electromagnetic coil is energized. In the present embodiment, the pressure of the reducing agent supplied to the reducing agent injection valve 31 is controlled to be a predetermined target value, and the reducing agent injection control device 100 performs the injection according to the instructed injection amount of the reducing agent. Control the time.

排気浄化システム10は、排気温度センサ21、NOX濃度センサ23、及び外気温度センサ25をさらに備える。排気温度センサ21は、還元触媒13よりも上流の排気管11に設けられ、排気温度を検出する。NOX濃度センサ23は、還元触媒13よりも下流の排気管11に設けられ、主として還元触媒13の下流側のNOX濃度(下流側NOX濃度)を検出する。外気温度センサ25は、還元剤噴射弁31の周囲の外気温度を検出する。これらのセンサから出力される信号は、還元剤噴射制御装置100に送信される。 The exhaust purification system 10 further includes an exhaust temperature sensor 21, an NO x concentration sensor 23, and an outside air temperature sensor 25. The exhaust temperature sensor 21 is provided in the exhaust pipe 11 upstream of the reduction catalyst 13 and detects the exhaust temperature. The NO x concentration sensor 23 is provided in the exhaust pipe 11 downstream of the reduction catalyst 13 and mainly detects the NO x concentration (downstream NO x concentration) on the downstream side of the reduction catalyst 13. The outside air temperature sensor 25 detects the outside air temperature around the reducing agent injection valve 31. Signals output from these sensors are transmitted to the reductant injection control device 100.

<2.還元剤噴射制御装置の構成例>
次に、本実施形態に係る還元剤噴射制御装置100の構成例について説明する。図2は、本実施形態に係る還元剤噴射制御装置100の構成例を説明するためのブロック図である。
<2. Configuration Example of Reductant Injection Control Device>
Next, a configuration example of the reducing agent injection control device 100 according to the present embodiment will be described. FIG. 2 is a block diagram for describing a configuration example of the reducing agent injection control device 100 according to the present embodiment.

還元剤噴射制御装置100は、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等のプロセッサと電気回路等を備えて構成され、プロセッサがコンピュータプログラムを実行することにより種々の機能が実現される装置である。   The reducing agent injection control device 100 includes a processor such as a central processing unit (CPU) or a micro processing unit (MPU) and an electric circuit, and the processor executes various computer programs to realize various functions. It is an apparatus.

還元剤噴射制御装置100は、還元剤噴射弁温度推定部112と、還元剤噴射弁コイル温度検出部114と、内燃機関運転状態検出部116と、車両走行状態検出部118と、冷却制御部120と、温度検出部122及び記憶部126等を備える。   The reducing agent injection control device 100 includes a reducing agent injection valve temperature estimating unit 112, a reducing agent injection valve coil temperature detecting unit 114, an internal combustion engine operating condition detecting unit 116, a vehicle traveling condition detecting unit 118, and a cooling control unit 120. And a temperature detection unit 122, a storage unit 126, and the like.

還元剤噴射制御装置100は、還元剤噴射弁31への印加電圧V_inj、還元剤噴射弁31を流れる電流I_injを取得可能なように構成されている。還元剤噴射制御装置100は、この他、NOx濃度センサ23のセンサ信号S_nox、タンク温度センサ51のセンサ信号S_tankt、圧力センサ43のセンサ信号S_pres、排気温度センサ21のセンサ信号S_exht、及び外気温度センサ25のセンサ信号S_atmtを各センサから取得する。さらに、還元剤噴射制御装置100は、内燃機関5の回転数信号S_espeed、内燃機関5の燃料噴射量信号S_fuel、車両1の速度信号S_vspeedを内燃機関制御装置200(図1)から取得可能に構成されている。また、本実施例においては、還元剤噴射制御装置100と内燃機関制御装置200とは別個の制御装置として表されているが、両方の機能を有する一つの制御装置であってもよい。さらに、各センサや制御装置間の通信手段としてCAN(Controller Area Network)等が利用されてもよい。尚、上述のS_fuelはインジェクタ6(図1)から内燃機関5に噴射される燃料噴射量を表す信号であり、S_espeedは内燃機関5の回転数を計測する回転速度センサ7(図1)の出力信号であり、S_vspeedは内燃機関5が搭載された車両1(図1)の速度を検出する車速センサ2(図1)の出力信号である。 The reducing agent injection control device 100 is configured to be able to acquire an applied voltage V_inj to the reducing agent injection valve 31 and a current I_inj flowing through the reducing agent injection valve 31. The reducing agent injection control device 100 additionally includes a sensor signal S_nox of the NOx concentration sensor 23, a sensor signal S_tankt of the tank temperature sensor 51, a sensor signal S_pres of the pressure sensor 43, a sensor signal S_exht of the exhaust temperature sensor 21, and an outside air temperature sensor. Twenty-five sensor signals S_atmt are acquired from each sensor. Furthermore, the reducing agent injection control device 100 is configured to be able to obtain the rotational speed signal S_espeed of the internal combustion engine 5, the fuel injection amount signal S_fuel of the internal combustion engine 5, and the speed signal S_vspeed of the vehicle 1 from the internal combustion engine control device 200 (FIG. 1). It is done. Further, in the present embodiment, the reducing agent injection control device 100 and the internal combustion engine control device 200 are represented as separate control devices, but may be one control device having both functions. Furthermore, CAN (Controller Area Network) etc. may be used as a communication means between each sensor or control device. The above-mentioned S_fuel is a signal representing a fuel injection amount injected from the injector 6 (FIG. 1) to the internal combustion engine 5, and S_espeed is an output of the rotational speed sensor 7 (FIG. 1) for measuring the rotational speed of the internal combustion engine 5. S_vspeed is an output signal of the vehicle speed sensor 2 (FIG. 1) for detecting the speed of the vehicle 1 (FIG. 1) on which the internal combustion engine 5 is mounted.

(2−1.記憶部)
記憶部126は、RAM(Random Access Memory)又はROM(Read Only Memory)等の一つ又は複数の記憶素子で構成されている。記憶部126は、プロセッサにより実行されるコンピュータプログラム、演算に用いられる制御パラメータ、プロセッサによる演算結果、及び取得したセンサ値等を記憶する。
(2-1. Storage unit)
The storage unit 126 is configured of one or more storage elements such as a random access memory (RAM) or a read only memory (ROM). The storage unit 126 stores computer programs executed by the processor, control parameters used for computation, computation results by the processor, acquired sensor values, and the like.

(2−2.還元剤噴射弁コイル温度検出部)
還元剤噴射弁コイル温度検出部114は、還元剤噴射弁31の電磁コイル部分の温度を推定する。すなわち、還元剤噴射弁コイル温度検出部114は、還元剤噴射弁31への印加電圧V_injと、還元剤噴射弁31を流れる電流I_injから還元剤噴射弁31のコイル抵抗値を算出し、そのコイル抵抗値に基づいて還元剤噴射弁31のコイル部分の温度を推定する。例えば、予め測定されたコイル部分の温度とコイル抵抗値の関係がマップとして記憶部126に記憶されていれば、算出されたコイル抵抗値をもとに当該マップから還元剤噴射弁31のコイル部分の温度T_coilを推定することができる。
(2-2. Reductant injection valve coil temperature detection unit)
The reducing agent injection valve coil temperature detection unit 114 estimates the temperature of the electromagnetic coil portion of the reducing agent injection valve 31. That is, the reducing agent injection valve coil temperature detection unit 114 calculates the coil resistance value of the reducing agent injection valve 31 from the voltage V_inj applied to the reducing agent injection valve 31 and the current I_inj flowing through the reducing agent injection valve 31 The temperature of the coil portion of the reducing agent injection valve 31 is estimated based on the resistance value. For example, if the relationship between the temperature of the coil portion measured in advance and the coil resistance value is stored as a map in the storage unit 126, the coil portion of the reducing agent injection valve 31 is calculated based on the calculated coil resistance value. The temperature T_coil of can be estimated.

(2−3.内燃機関運転状態検出部)
内燃機関運転状態検出部116は、内燃機関5の運転状態値を検出する。例えば、内燃機関運転状態検出部116は、内燃機関5の運転状態値として、内燃機関5の回転数信号S_espeedから内燃機関5の回転数Speed_eを、内燃機関5の燃料噴射量信号S_fuelから内燃機関5の燃料噴射量Fuel_eを検出する。
(2-3. Internal combustion engine operating condition detection unit)
Internal combustion engine operating state detection unit 116 detects an operating state value of internal combustion engine 5. For example, the internal combustion engine operating state detection unit 116 uses the rotational speed signal S_espeed of the internal combustion engine 5 as the operating state value of the internal combustion engine 5 to set the rotational speed Speed_e of the internal combustion engine 5 and the fuel injection amount signal S_fuel of the internal combustion engine 5 from the internal combustion engine The fuel injection amount Fuel_e of 5 is detected.

(2−4.車両走行状態検出部)
車両走行状態検出部118は、内燃機関5が搭載された車両1の走行状態値を検出する。例えば、車両走行状態検出部118は、車両1の走行状態値として、車両1の速度信号S_vspeedから車両1の速度Speed_vを検出する。
(2-4. Vehicle running state detection unit)
Vehicle traveling state detection unit 118 detects a traveling state value of vehicle 1 on which internal combustion engine 5 is mounted. For example, the vehicle travel state detection unit 118 detects the speed Speed_v of the vehicle 1 from the speed signal S_vspeed of the vehicle 1 as the travel state value of the vehicle 1.

(2−5.温度検出部)
温度検出部122は、タンク温度センサ51のセンサ信号S_tanktから貯蔵タンク50内の還元剤温度Temp_tankを検出し、排気温度センサ21のセンサ信号S_exhtから排気温度Temp_exhを検出し、外気温度センサ25のセンサ信号S_atmtから還元剤噴射弁31の周囲の外気温度Temp_atmを検出する。
(2-5. Temperature detection unit)
The temperature detection unit 122 detects the reducing agent temperature Temp_tank in the storage tank 50 from the sensor signal S_tankt of the tank temperature sensor 51, detects the exhaust temperature Temp_exh from the sensor signal S_exht of the exhaust temperature sensor 21, and detects the outside air temperature sensor 25. The ambient temperature Temp_atm around the reducing agent injection valve 31 is detected from the signal S_atmt.

(2−6.還元剤噴射弁温度推定部)
還元剤噴射弁温度推定部112は、還元剤噴射弁コイル温度検出部114により推定された還元剤噴射弁31のコイル部分の温度T_coilと、内燃機関運転状態検出部116により検出された内燃機関5の運転状態値と、車両走行状態検出部118により検出された車両1の走行状態値とに基づいて、還元剤噴射弁31の先端温度T_tipを算出する。ここで、還元剤噴射弁31の先端とは、還元剤噴射弁31において還元剤を噴射する噴射孔及びその周辺の部分である。本実施形態において、還元剤噴射弁温度推定部112は、還元剤噴射弁31の電磁コイル部分の温度T_coilを推定するとともに、電磁コイル部分の温度T_coilに対して、内燃機関5の運転状態値に基づいて計算される還元剤噴射弁31の温度上昇量を加算するとともに、車両1の走行状態値に基づいて計算される還元剤噴射弁31の温度低下量を減算して還元剤噴射弁31の先端温度T_tipを算出する。以下、本実施例に係る還元剤噴射弁温度推定部112の一例について図4を用いて詳しく説明する。
(2-6. Reductant injection valve temperature estimation unit)
The reducing agent injection valve temperature estimation unit 112 detects the temperature T_coil of the coil portion of the reducing agent injection valve 31 estimated by the reducing agent injection valve coil temperature detection unit 114 and the internal combustion engine 5 detected by the internal combustion engine operation state detection unit 116. The tip temperature T_tip of the reducing agent injection valve 31 is calculated based on the driving state value of and the traveling state value of the vehicle 1 detected by the vehicle traveling state detection unit 118. Here, the tip of the reducing agent injection valve 31 refers to an injection hole for injecting the reducing agent in the reducing agent injection valve 31 and a portion around the injection hole. In the present embodiment, the reducing agent injection valve temperature estimation unit 112 estimates the temperature T_coil of the electromagnetic coil portion of the reducing agent injection valve 31 and sets the operating state value of the internal combustion engine 5 to the temperature T_coil of the electromagnetic coil portion. The temperature increase amount of the reducing agent injection valve 31 calculated based on the above is added, and the temperature decrease amount of the reducing agent injection valve 31 calculated based on the traveling state value of the vehicle 1 is subtracted to The tip temperature T_tip is calculated. Hereinafter, an example of the reducing agent injection valve temperature estimation unit 112 according to the present embodiment will be described in detail with reference to FIG.

内燃機関5から排出される排気熱量Q1aは、内燃機関5の回転数Speed_e及び燃料噴射量Fuel_eに基づいて計算することができる。図4のA部は回転数Speed_e及び燃料噴射量Fuel_eから内燃機関5から排出される排気熱量Q1aを算出する。さらにA部は、内燃機関5から排出される排気熱量Q1aから還元剤噴射弁31が受ける熱量Q1を算出し、その結果をB部に送る。ここでQ1を算出する際に、還元剤噴射弁31の近傍の排気温度である排気温度Temp_exhを考慮に入れて計算を行ってもよい。例えば排気熱量Q1aに対して排気温度Temp_exhが想定される温度より低い場合には、排気管11が十分に温まっておらず、発生した排気熱が排気管11の昇温に使われ、還元剤噴射弁31が受ける熱量Q1が少なくなっている可能性があるので、これを補正することにより、より正確な還元剤噴射弁31が受ける熱量Q1を算出することができる。尚、A部において回転数Speed_e及び燃料噴射量Fuel_eから排気熱量Q1aを算出するための方法とて、例えば、回転数Speed_e及び燃料噴射量Fuel_eと排気熱量Q1aとの関係を記載したマップが利用されてよく、当該マップは記憶部126に記憶され、還元剤噴射弁温度推定部112はこれを必要に応じて参照し、排気熱量Q1aの算出を行う。排気熱量Q1aから還元剤噴射弁31が受ける熱量Q1を算出する方法についても同様にマップを利用することが考えられる。さらに以下で述べる図4のB部、C部、D部、E部における計算においても、記憶部126に格納された対応するマップが利用されてよい。   The exhaust heat quantity Q1a discharged from the internal combustion engine 5 can be calculated based on the rotational speed Speed_e of the internal combustion engine 5 and the fuel injection amount Fuel_e. Part A of FIG. 4 calculates the exhaust heat quantity Q1a discharged from the internal combustion engine 5 from the rotational speed Speed_e and the fuel injection amount Fuel_e. Further, the part A calculates the amount of heat Q1 received by the reducing agent injection valve 31 from the amount of heat of exhaust Q1a discharged from the internal combustion engine 5, and sends the result to the part B. Here, when calculating Q1, the calculation may be performed taking into consideration the exhaust temperature Temp_exh which is the exhaust temperature near the reducing agent injection valve 31. For example, if the exhaust gas temperature Temp_exh is lower than the expected temperature with respect to the exhaust heat quantity Q1a, the exhaust pipe 11 is not sufficiently warmed, and the generated exhaust heat is used to raise the temperature of the exhaust pipe 11 Since the amount of heat Q1 received by the valve 31 may be small, the amount of heat Q1 received by the reducing agent injection valve 31 can be calculated more accurately by correcting this. As a method for calculating the exhaust heat quantity Q1a from the rotational speed Speed_e and the fuel injection amount Fuel_e in part A, for example, a map describing the relationship between the rotational speed Speed_e and the fuel injection amount Fuel_e and the exhaust heat quantity Q1a is used The map is stored in the storage unit 126, and the reducing agent injection valve temperature estimation unit 112 refers to this as needed to calculate the exhaust heat quantity Q1a. It is conceivable that a map is similarly used for a method of calculating the heat quantity Q1 received by the reducing agent injection valve 31 from the exhaust heat quantity Q1a. Furthermore, the corresponding maps stored in the storage unit 126 may be used also in calculations in portions B, C, D, and E of FIG. 4 described below.

続くB部は、還元剤噴射弁31が受ける熱量Q1からこれを受熱した還元剤噴射弁31の先端部における温度上昇量T1を算出する。 The subsequent part B calculates the temperature rise T1 at the tip of the reducing agent injection valve 31 which has received the heat from the heat quantity Q1 received by the reducing agent injection valve 31.

車両1が走行することにより、排気管11に取り付けられた還元剤噴射弁31は走行風を受け、これにより熱を奪われる。走行速度が速いほど走行風は強くなるので奪われる熱量も大きくなる。この関係に基づき、図4のC部は車両1の速度Speed_vから還元剤噴射弁31からの放熱量Q2を算出し、その結果をD部に送る。尚、外気温度Temp_atmが低いほど放熱効果が高くなるので、Q2を算出する際に、外気温度Temp_atmをこれを考慮に入れてQ2を計算してもよい。 When the vehicle 1 travels, the reducing agent injection valve 31 attached to the exhaust pipe 11 receives the traveling wind and is thus deprived of heat. The higher the traveling speed, the stronger the traveling wind, and therefore the greater the amount of heat that is lost. Based on this relationship, the C portion in FIG. 4 calculates the heat release amount Q2 from the reducing agent injection valve 31 from the speed Speed_v of the vehicle 1, and sends the result to the D portion. Since the heat radiation effect is higher as the outside air temperature Temp_atm is lower, when calculating Q2, the outside air temperature Temp_atm may be taken into consideration to calculate Q2.

続くD部は放熱量Q2から還元剤噴射弁31の先端部における温度低下量T2を算出する。 The subsequent part D calculates the temperature decrease amount T2 at the tip of the reducing agent injection valve 31 from the heat release amount Q2.

還元剤噴射弁温度推定部112は、還元剤噴射弁31のコイル部分の温度T_coilに温度上昇量T1を加算するとともに温度低下量T2を減算し、さらに遅れ時間等の演算処理をE部で行い還元剤噴射弁31の先端温度T_tipを算出する。 The reducing agent injection valve temperature estimating unit 112 adds the temperature increase amount T1 to the temperature T_coil of the coil portion of the reducing agent injection valve 31 and subtracts the temperature decrease amount T2, and further performs arithmetic processing such as delay time in the E portion. The tip temperature T_tip of the reducing agent injection valve 31 is calculated.

(2−6.冷却制御部)
冷却制御部120は、還元剤噴射弁温度推定部112により推定された先端温度T_tipが閾値T_threを超えるときに、冷却制御を行う。例えば、冷却制御部120は、還元剤噴射弁31から噴射する還元剤の噴射量を増大させる。具体的には、冷却制御部120は、排気中のNOXを浄化するために必要なNH3量と目標NH3吸着量に対する過不足のNH3量とを合わせたNH3量を生成可能な算出された尿素水の指示噴射量Q_ureaに対して増量補正する。これにより、還元剤噴射弁31から還元剤への放熱量を増大させて、還元剤噴射弁31の冷却効率を向上する。尚、尿素水の指示噴射量Q_ureaは冷却制御部120で算出されても良いし、還元剤噴射制御装置100内の別の制御部で算出されてもよい。増量補正量を決める際に、貯蔵タンク50内の還元剤温度Temp_tankを考慮して決めても良い。還元剤の温度Temp_tankが低いほど冷却効果が高くなるので、還元剤の温度Temp_tankが低い場合には増量補正量を少なくすることができる。冷却制御部120は、別の冷却方法として、内燃機関5の燃料噴射量を一時的に減少させ排気熱量Q1aを減らすことにより、還元剤噴射弁31の先端温度を低下させることができる。燃料噴射量を減らすための信号は、冷却制御部120で生成され、還元剤噴射制御装置100から内燃機関制御装置200に送られ、内燃機関制御装置200がインジェクタ6からの燃料噴射量を減らすように制御する。
(2-6. Cooling control unit)
The cooling control unit 120 performs cooling control when the tip temperature T_tip estimated by the reducing agent injection valve temperature estimation unit 112 exceeds the threshold T_thre. For example, the cooling control unit 120 increases the injection amount of the reducing agent injected from the reducing agent injection valve 31. Specifically, the cooling control unit 120, capable of generating NH 3 amount of combination of the NH 3 amount of excess or deficiency relative to NH 3 amount and the target adsorbed NH 3 amount needed to purify NO X in the exhaust gas Increase correction is performed on the calculated injection amount Q_urea of urea water. Thus, the amount of heat released from the reducing agent injection valve 31 to the reducing agent is increased, and the cooling efficiency of the reducing agent injection valve 31 is improved. The command injection amount Q_urea of urea water may be calculated by the cooling control unit 120 or may be calculated by another control unit in the reducing agent injection control device 100. When determining the increase correction amount, it may be determined in consideration of the reducing agent temperature Temp_tank in the storage tank 50. The lower the temperature Temp_tank of the reducing agent, the higher the cooling effect. Therefore, when the temperature Temp_tank of the reducing agent is lower, the amount of increase correction can be reduced. As another cooling method, the cooling control unit 120 can decrease the tip temperature of the reducing agent injection valve 31 by temporarily reducing the fuel injection amount of the internal combustion engine 5 to reduce the exhaust heat quantity Q1a. A signal for reducing the fuel injection amount is generated by the cooling control unit 120 and sent from the reductant injection control device 100 to the internal combustion engine control device 200 so that the internal combustion engine control device 200 reduces the fuel injection amount from the injector 6 Control.

<3.還元剤噴射制御装置の動作例>
次に、本実施形態に係る還元剤噴射制御装置100の動作例について説明する。
<3. Operation Example of Reductant Injection Control Device>
Next, an operation example of the reducing agent injection control device 100 according to the present embodiment will be described.

図3は、還元剤噴射弁31の先端温度T_tipを推定する演算処理から冷却制御に至るフローの一例の説明図である。ステップS11において、還元剤噴射弁コイル温度検出部114は還元剤噴射弁31のコイル温度T_coilを算出する。   FIG. 3 is an explanatory diagram of an example of a flow from calculation processing for estimating the tip temperature T_tip of the reducing agent injection valve 31 to cooling control. In step S <b> 11, the reducing agent injection valve coil temperature detection unit 114 calculates the coil temperature T_coil of the reducing agent injection valve 31.

次いで、ステップS13において、内燃機関運転状態検出部116は、内燃機関5の運転状態値を検出する。例えば、内燃機関5の運転状態値とは、内燃機関5の回転数Speed_eと燃料噴射量Fuel_eである。   Next, in step S13, the internal combustion engine operating state detection unit 116 detects the operating state value of the internal combustion engine 5. For example, the operating state value of the internal combustion engine 5 is the rotational speed Speed_e of the internal combustion engine 5 and the fuel injection amount Fuel_e.

次に、ステップS15において、車両走行状態検出部118は、内燃機関5が搭載された車両1の走行状態値を検出する。例えば車両1の走行状態値とは、車両1の速度Speed_vである。尚S11、S13、S15の順番はこの順番に限られるものではなく、いずれのステップが一番目で、いずれのステップが二番目であってもよい。   Next, in step S15, the vehicle travel state detection unit 118 detects a travel state value of the vehicle 1 on which the internal combustion engine 5 is mounted. For example, the traveling state value of the vehicle 1 is the speed Speed_v of the vehicle 1. The order of S11, S13, and S15 is not limited to this order, and any step may be the first and any step may be the second.

次に、ステップS17において、還元剤噴射弁温度推定部112は、還元剤噴射弁31のコイル温度T_coilと、内燃機関5の運転状態値と、車両1の走行状態値とに基づいて還元剤噴射弁の先端温度T_tipを推定する。具体的な推定方法については図4を用いて、上述した通りである。   Next, in step S17, the reducing agent injection valve temperature estimation unit 112 calculates the reducing agent injection based on the coil temperature T_coil of the reducing agent injection valve 31, the operating state value of the internal combustion engine 5, and the traveling state value of the vehicle 1. The tip temperature T_tip of the valve is estimated. The specific estimation method is as described above with reference to FIG.

ステップS19において、冷却制御部120は、先端温度T_tipが閾値T_threを超えているか否かを判別する。閾値T_threは、還元剤噴射弁31の耐熱温度を考慮して、還元剤噴射弁31の熱損傷を生じないように耐熱温度よりも小さい適切な値に設定される。先端温度T_tipが閾値T_thre以下の場合(S19/No)、還元剤噴射弁31の冷却を実行する必要がないため、還元剤噴射制御装置100はステップS11に戻って処理を繰り返す。   In step S19, the cooling control unit 120 determines whether the tip temperature T_tip exceeds a threshold T_thre. The threshold value T_thre is set to an appropriate value smaller than the heat resistant temperature so as not to cause thermal damage to the reducing agent jet valve 31 in consideration of the heat resistant temperature of the reducing agent injection valve 31. If the tip temperature T_tip is less than or equal to the threshold T_thre (S19 / No), the reducing agent injection control device 100 returns to step S11 and repeats the process because it is not necessary to execute the cooling of the reducing agent injection valve 31.

一方、先端温度T_tipが閾値T_threを超えている場合(S19/Yes)、冷却制御部120は、還元剤噴射弁31の冷却制御を実行させる(ステップS21)。例えば、冷却制御部120は、還元剤噴射弁31から噴射する還元剤の噴射量を増大させる。具体的には、排気中のNOXを浄化するために必要なNH3量と目標NH3吸着量に対する過不足のNH3量とを合わせたNH3量を生成可能な算出された尿素水の指示噴射量Q_ureaに対して増量補正する。これにより、還元剤噴射弁31から尿素水への放熱量を増大させて、還元剤噴射弁31の冷却効率を向上する。なお、尿素水の噴射量が増量され、還元触媒13の下流側にNH3が流出した場合であっても、NH3は還元触媒13の下流側に配置されたアンモニアスリップ触媒(図示されない)により酸化されて分解される。この他、冷却制御部は還元剤噴射弁31の冷却制御として、内燃機関5の燃料噴射量を一時的に減少させることもできる。 On the other hand, when the tip end temperature T_tip exceeds the threshold value T_thre (S19 / Yes), the cooling control unit 120 executes the cooling control of the reducing agent injection valve 31 (step S21). For example, the cooling control unit 120 increases the injection amount of the reducing agent injected from the reducing agent injection valve 31. Specifically, the NH 3 amount and the target NH 3 NH 3 amount of urea water that is capable of producing calculates a combination of the NH 3 amount of excess or deficiency relative adsorbed amount needed to purify NO X in the exhaust gas Increase correction is performed on the instructed injection amount Q_urea. Thereby, the amount of heat release from the reducing agent injection valve 31 to the urea water is increased, and the cooling efficiency of the reducing agent injection valve 31 is improved. Even when the injection amount of urea water is increased and NH 3 flows out to the downstream side of the reduction catalyst 13, NH 3 is not removed by the ammonia slip catalyst (not shown) disposed on the downstream side of the reduction catalyst 13. It is oxidized and decomposed. In addition, the cooling control unit can also temporarily decrease the fuel injection amount of the internal combustion engine 5 as cooling control of the reducing agent injection valve 31.

以上説明したように、本実施形態に係る還元剤噴射装置30は、これにより、還元剤噴射弁31の実際の先端温度と、推定される先端温度T_tipとの乖離を小さくすることができる。このため、先端温度T_tipが低く推定されることにより冷却制御を行うことができず、先端温度の過昇温による熱損傷を抑制することができる。あるいは、還元剤噴射弁31の熱損傷を防ぐために、必要以上の冷却用還元剤の消費を抑制することができる。   As described above, the reducing agent injection device 30 according to the present embodiment can thereby reduce the deviation between the actual tip temperature of the reducing agent injector 31 and the tip temperature T_tip that is estimated. For this reason, since the tip end temperature T_tip is estimated to be low, cooling control can not be performed, and thermal damage due to excessive temperature rise of the tip end temperature can be suppressed. Alternatively, in order to prevent the thermal damage of the reducing agent injection valve 31, it is possible to suppress the consumption of the cooling reducing agent more than necessary.

以上の説明において、還元剤噴射弁温度推定部112を含む還元剤噴射制御装置100は、還元剤噴射弁31の先端温度T_tipを推定し、先端温度T_tipが閾値温度を超えないように冷却制御を行うものであるが、還元剤噴射弁31における先端部分以外の温度を推定し、当該部分の温度が閾値温度を超えないように冷却制御を行うものであってもよい、その場合には還元剤噴射弁温度推定部112は、当該先端部分以外の温度を推定するために、上述した先端部分の温度を推定するためのマップとは異なるマップを使用し計算を行う。閾値温度もその部分の耐熱性に基づいて定められる。例えば、還元剤噴射弁31の電気コネクタ部分の温度を推定し、当該電気コネクタ部分が閾値温度を超えないように冷却制御を行うように構成することもできる。 In the above description, the reducing agent injection control device 100 including the reducing agent injection valve temperature estimation unit 112 estimates the tip temperature T_tip of the reducing agent injection valve 31, and performs cooling control so that the tip temperature T_tip does not exceed the threshold temperature. The temperature may be estimated except for the tip portion of the reducing agent injection valve 31, and the cooling control may be performed so that the temperature of the portion does not exceed the threshold temperature. In that case, the reducing agent The injection valve temperature estimation unit 112 performs calculation using a map different from the map for estimating the temperature of the tip portion described above in order to estimate the temperature other than the tip portion. The threshold temperature is also determined based on the heat resistance of that portion. For example, the temperature of the electrical connector portion of the reducing agent injection valve 31 may be estimated, and cooling control may be performed so that the electrical connector portion does not exceed the threshold temperature.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that those skilled in the art to which the present invention belongs can conceive of various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also fall within the technical scope of the present invention.

1 車両
2 車速センサ
5 内燃機関
6 インジェクタ
7 回転速度センサ
10 排気浄化システム
11 排気管
13 還元触媒
21 排気温度センサ
23 下流側NOX濃度センサ
25 外気温度センサ
30 還元剤供給装置
31 還元剤噴射弁
41 ポンプ
43 圧力センサ
50 貯蔵タンク
51 温度センサ
60 還元剤第1通路
61 還元剤第2通路
100 還元剤噴射制御装置(制御装置)
112 還元剤噴射弁温度推定部
114 還元剤噴射弁コイル温度検出部
116 内燃機関運転状態検出部
118 車両走行状態検出部
120 冷却制御部
122 温度検出部
126 記憶部
200 内燃機関制御装置

Reference Signs List 1 vehicle 2 vehicle speed sensor 5 internal combustion engine 6 injector 7 injector 7 rotational speed sensor 11 exhaust purification system 11 exhaust pipe 13 reduction catalyst 21 exhaust temperature sensor 23 downstream NO X concentration sensor 25 ambient temperature sensor 30 reducing agent supply device 31 reducing agent injection valve 41 Pump 43 Pressure sensor 50 Storage tank 51 Temperature sensor 60 Reductant first passage 61 Reductant second passage 100 Reductant injection control device (control device)
112 reductant injection valve temperature estimation unit 114 reductant injection valve coil temperature detection unit 116 internal combustion engine operating condition detection unit 118 vehicle travel condition detection unit 120 cooling control unit 122 temperature detection unit 126 storage unit 200 internal combustion engine control device

Claims (8)

内燃機関の排気中のNOxを還元して浄化する還元触媒の上流側の排気管に還元剤を供給する還元剤供給装置において、
前記還元剤供給装置は、
前記排気管に取り付けられ、前記還元剤を前記排気管内に噴射する還元剤噴射弁と、
前記還元剤噴射弁を制御する制御装置と、
を備え、
前記制御装置は、
還元剤噴射弁の電磁コイル部分の温度を検出する還元剤噴射弁コイル温度検出部と、
内燃機関の運転状態値を検出する内燃機関運転状態検出部と、
当該内燃機関が搭載された車両の走行状態値を検出する車両走行状態検出部と、
前記還元剤噴射弁の電磁コイル部分の温度と、前記内燃機関の運転状態値と、前記内燃機関が搭載された車両の走行状態値と、に基づいて前記還元剤噴射弁の温度を推定する還元剤噴射弁温度推定部と、
を有することを特徴とする還元剤供給装置。
In a reducing agent supply device for supplying a reducing agent to an exhaust pipe upstream of a reduction catalyst that reduces and purifies NOx in the exhaust gas of an internal combustion engine,
The reducing agent supply device
A reducing agent injection valve attached to the exhaust pipe and injecting the reducing agent into the exhaust pipe;
A controller for controlling the reducing agent injection valve;
Equipped with
The controller is
A reducing agent injection valve coil temperature detection unit that detects the temperature of the electromagnetic coil portion of the reducing agent injection valve;
An internal combustion engine operating state detection unit for detecting an operating state value of the internal combustion engine;
A vehicle traveling state detection unit that detects a traveling state value of a vehicle equipped with the internal combustion engine;
The reduction is performed to estimate the temperature of the reducing agent injection valve based on the temperature of the electromagnetic coil portion of the reducing agent injection valve, the operating state value of the internal combustion engine, and the traveling state value of the vehicle on which the internal combustion engine is mounted. Agent injection valve temperature estimation unit,
A reducing agent supply device characterized by having.
前記還元剤噴射弁の電磁コイル部分の温度は、前記還元剤噴射弁のコイルの抵抗値に基づいて決定されることを特徴とする請求項1に記載の還元剤供給装置。 The reducing agent supply device according to claim 1, wherein a temperature of an electromagnetic coil portion of the reducing agent injection valve is determined based on a resistance value of a coil of the reducing agent injection valve. 前記内燃機関の運転状態値とは、前記内燃機関の回転数と、燃料噴射量であることを特徴とする請求項1または2に記載の還元剤供給装置。 The reducing agent supply device according to claim 1 or 2, wherein the operating state value of the internal combustion engine includes a rotation speed of the internal combustion engine and a fuel injection amount. 前記車両の走行状態値とは、前記車両の速度であることを特徴とする請求項1から3のいずれか一項に記載の還元剤供給装置。 The reducing agent supply device according to any one of claims 1 to 3, wherein the traveling state value of the vehicle is a speed of the vehicle. 前記制御装置は、
前記還元剤噴射弁の温度が所定の閾値を超えている場合には、冷却制御を行う冷却制御部をさらに有することを特徴とする請求項1から4のいずれか一項に記載の還元剤供給装置。
The controller is
The reducing agent supply according to any one of claims 1 to 4, further comprising a cooling control unit that performs cooling control when the temperature of the reducing agent injection valve exceeds a predetermined threshold. apparatus.
請求項1から5のいずれか一項に記載の還元剤供給装置を有する排気浄化システム。   An exhaust gas purification system comprising the reducing agent supply device according to any one of claims 1 to 5. 内燃機関の排気中のNOxを還元して浄化する還元触媒の上流側の排気管に還元剤を供給する還元剤噴射弁を有する還元剤供給装置の制御方法において、
前記制御方法は、
還元剤噴射弁の電磁コイル部分の温度を検出するステップと、
内燃機関の運転状態値を検出するステップと、
当該内燃機関が搭載された車両の走行状態値を検出するステップと、
前記還元剤噴射弁の電磁コイル部分の温度と、前記内燃機関の運転状態値と、前記内燃機関が搭載された車両の走行状態値と、に基づいて前記還元剤噴射弁の温度を推定するステップと、
を備えることを特徴とする還元剤供給装置の制御方法。
In a control method of a reducing agent supply device having a reducing agent injection valve for supplying a reducing agent to an exhaust pipe upstream of a reduction catalyst which reduces and purifies NOx in exhaust gas of an internal combustion engine,
The control method is
Detecting the temperature of the electromagnetic coil portion of the reducing agent injection valve;
Detecting an operating state value of the internal combustion engine;
Detecting a traveling state value of a vehicle equipped with the internal combustion engine;
Estimating the temperature of the reducing agent injection valve based on the temperature of the electromagnetic coil portion of the reducing agent injection valve, the operating state value of the internal combustion engine, and the traveling state value of the vehicle on which the internal combustion engine is mounted When,
The control method of the reducing agent supply apparatus characterized by including.
前記制御方法は、
前記還元剤噴射弁の温度が所定の閾値を超えている場合には、冷却制御を行うステップをさらに備えることを特徴とする請求項7に記載の還元剤供給装置の制御方法。
The control method is
The control method of the reducing agent supply device according to claim 7, further comprising the step of performing cooling control when the temperature of the reducing agent injection valve exceeds a predetermined threshold.
JP2017237551A 2017-12-12 2017-12-12 Reducing agent feeding device, exhaust emission control system and control method for reducing agent feeding device Pending JP2019105188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017237551A JP2019105188A (en) 2017-12-12 2017-12-12 Reducing agent feeding device, exhaust emission control system and control method for reducing agent feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017237551A JP2019105188A (en) 2017-12-12 2017-12-12 Reducing agent feeding device, exhaust emission control system and control method for reducing agent feeding device

Publications (1)

Publication Number Publication Date
JP2019105188A true JP2019105188A (en) 2019-06-27

Family

ID=67061870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017237551A Pending JP2019105188A (en) 2017-12-12 2017-12-12 Reducing agent feeding device, exhaust emission control system and control method for reducing agent feeding device

Country Status (1)

Country Link
JP (1) JP2019105188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217584A (en) * 2022-03-01 2022-10-21 广州汽车集团股份有限公司 Exhaust gas treatment device and exhaust gas treatment method for hydrogen engine, and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048632A1 (en) * 2009-10-22 2011-04-28 トヨタ自動車株式会社 Exhaust gas temperature measuring device and exhaust gas temperature measuring method
JP2011127442A (en) * 2009-12-15 2011-06-30 Bosch Corp Control device and control method for reduction agent injection valve
JP2016145520A (en) * 2015-02-06 2016-08-12 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Control device for reducer injection device and control method
US20170044951A1 (en) * 2015-08-14 2017-02-16 GM Global Technology Operations LLC Method for thermally regulating an injector for injecting a reducing agent into an exhaust pipe of an internal combustion engine
JP2017122396A (en) * 2016-01-06 2017-07-13 株式会社Soken Addition control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048632A1 (en) * 2009-10-22 2011-04-28 トヨタ自動車株式会社 Exhaust gas temperature measuring device and exhaust gas temperature measuring method
JP2011127442A (en) * 2009-12-15 2011-06-30 Bosch Corp Control device and control method for reduction agent injection valve
JP2016145520A (en) * 2015-02-06 2016-08-12 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Control device for reducer injection device and control method
US20170044951A1 (en) * 2015-08-14 2017-02-16 GM Global Technology Operations LLC Method for thermally regulating an injector for injecting a reducing agent into an exhaust pipe of an internal combustion engine
JP2017122396A (en) * 2016-01-06 2017-07-13 株式会社Soken Addition control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217584A (en) * 2022-03-01 2022-10-21 广州汽车集团股份有限公司 Exhaust gas treatment device and exhaust gas treatment method for hydrogen engine, and vehicle
CN115217584B (en) * 2022-03-01 2024-03-08 广州汽车集团股份有限公司 Exhaust gas treatment device and exhaust gas treatment method for hydrogen engine, and vehicle

Similar Documents

Publication Publication Date Title
JP4888480B2 (en) Control device for exhaust purification system
US9593611B2 (en) Exhaust gas control apparatus for internal combustion engine
US8176730B2 (en) Exhaust gas purification device of internal combustion engine
JP5482446B2 (en) SCR system
JP5678475B2 (en) SCR system
JP4978635B2 (en) Control device for exhaust purification system
JP5880514B2 (en) Engine exhaust purification system
US20130283769A1 (en) Exhaust gas purification system and method for controlling the same
US20130186069A1 (en) Method and device pertaining to cooling of dosing units of scr systems
US9644521B2 (en) Method for operating an exhaust gas purification system of a motor vehicle combustion engine
US20130111882A1 (en) Method pertaining to air removal from a dosing system at an scr system and a scr system
JP2009281294A (en) Exhaust emission control device for internal combustion engine
US20130104527A1 (en) Method and device pertaining to cooling of dosing units of scr systems
US10443473B2 (en) Exhaust gas purification apparatus for an internal combustion engine
KR102240005B1 (en) Selective catalyst reduction system and method for reducing agent dosing module
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JP2014527599A (en) Method and system for detecting reductant crystals in an SCR exhaust aftertreatment system
KR101664702B1 (en) Control method for UREA injection of SCR system
US20130111883A1 (en) Method and device pertaining to dosing unit of scr system
US20180179936A1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP2019105188A (en) Reducing agent feeding device, exhaust emission control system and control method for reducing agent feeding device
US9523299B2 (en) Method and device pertaining to cooling of dosing units of SCR systems
US9279354B2 (en) Control unit for urea-water adding device
EP2905443B1 (en) Exhaust gas purification apparatus for an internal combustion engine
US9759111B2 (en) Control techniques of exhaust purification system and exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211201