JP5446498B2 - Thermoacoustic engine - Google Patents

Thermoacoustic engine Download PDF

Info

Publication number
JP5446498B2
JP5446498B2 JP2009145295A JP2009145295A JP5446498B2 JP 5446498 B2 JP5446498 B2 JP 5446498B2 JP 2009145295 A JP2009145295 A JP 2009145295A JP 2009145295 A JP2009145295 A JP 2009145295A JP 5446498 B2 JP5446498 B2 JP 5446498B2
Authority
JP
Japan
Prior art keywords
tube
loop
prime mover
thermoacoustic engine
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009145295A
Other languages
Japanese (ja)
Other versions
JP2011002152A (en
Inventor
真也 長谷川
智久 窄
宏太 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009145295A priority Critical patent/JP5446498B2/en
Publication of JP2011002152A publication Critical patent/JP2011002152A/en
Application granted granted Critical
Publication of JP5446498B2 publication Critical patent/JP5446498B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、ループ管型の熱音響機関に係り、特に、多くの音響強度をループ管内に励起でき、発振温度差が小さい熱音響機関に関するものである。   The present invention relates to a loop tube type thermoacoustic engine, and more particularly to a thermoacoustic engine that can excite a large amount of acoustic intensity in a loop tube and has a small oscillation temperature difference.

廃熱からエネルギを取り出すためにスターリングエンジンの開発研究が活発に行われている。スターリングエンジンの形式には、α型、β型、γ型、フリーピストン型など、様々な形式がある。これに対し、最近では、米国を中心として構造が単純で、ピストン等の可動部を有さない熱音響機関の開発研究が活発に行われるようになった。   In order to extract energy from waste heat, research and development of Stirling engines have been actively conducted. There are various types of Stirling engines, such as α type, β type, γ type, and free piston type. On the other hand, recently, research and development of a thermoacoustic engine having a simple structure and no moving parts such as pistons has been actively conducted mainly in the United States.

管の中に薄板や細管を束ねた再生器を配置し、その両端に加熱器、冷却器を設置して温度差を与える(管内の気柱を局部的に加熱または冷却する)と、熱エネルギの一部が力学的エネルギに変換され、管内の気柱が自励振動を起こし音波(音響振動)が発生する。この作用は、熱力学的には、プライムムーバ(原動機)と見ることができる。この現象を利用したものが熱音響機関である。   If a regenerator with thin plates or thin tubes bundled in a tube and a heater or cooler is installed at each end to give a temperature difference (the air column in the tube is heated or cooled locally), heat energy Is converted into mechanical energy, the air column in the tube undergoes self-excited vibration, and sound waves (acoustic vibration) are generated. This action can be seen thermodynamically as a prime mover. A thermoacoustic engine uses this phenomenon.

逆に、管の一端に音波を加えると加熱器と冷却器とに挟まれた再生器の両端に温度差が生じる。この現象を利用することで、冷凍装置(冷却装置)、昇温装置を実現することが可能である。   Conversely, when a sound wave is applied to one end of the tube, a temperature difference occurs between both ends of the regenerator sandwiched between the heater and the cooler. By utilizing this phenomenon, it is possible to realize a refrigeration apparatus (cooling apparatus) and a temperature raising apparatus.

図3に示すように、従来の熱音響機関31は、冷却器(低温側熱交換器)32、再生器(蓄熱器、スタック)33、加熱器(高温側熱交換器)34からなる原動機35をループ管36に1組有するものが一般的である(例えば、特許文献1,2参照)。この熱音響機関31に、気柱の振動を熱エネルギに変換する受動機(冷凍機、冷却機)を組み込むと、熱音響冷凍機が構成される。   As shown in FIG. 3, a conventional thermoacoustic engine 31 includes a prime mover 35 including a cooler (low temperature side heat exchanger) 32, a regenerator (heat accumulator, stack) 33, and a heater (high temperature side heat exchanger) 34. Is generally included in the loop pipe 36 (see, for example, Patent Documents 1 and 2). When a passive machine (refrigerator, cooler) that converts vibrations of the air column into heat energy is incorporated in the thermoacoustic engine 31, a thermoacoustic refrigerator is configured.

熱音響機関は、建造物や移動体において居室の冷房装置や物品の冷蔵・冷凍装置に応用される。例えば、熱音響機関31を車両に搭載する場合、原動機35の加熱器34にエンジンの排気熱を高温源として供給し、原動機35の冷却器32に大気を低温源として供給すると共に、受動機の高温側熱交換器に大気を高温源として供給することで、受動機の低温側熱交換器側から大気より低い温度の冷熱出力を取り出すことができる。この冷熱出力を用いて、例えば、車両に搭載された各種クーラ(例えば、車室冷房用クーラ、オイルクーラ、キャニスタなど)を機能させることができる。   The thermoacoustic engine is applied to a cooling device for a living room and a refrigeration / freezing device for articles in a building or a moving body. For example, when the thermoacoustic engine 31 is mounted on a vehicle, the engine exhaust heat is supplied to the heater 34 of the prime mover 35 as a high temperature source, the atmosphere is supplied to the cooler 32 of the prime mover 35 as a low temperature source, and the passive machine By supplying air to the high temperature side heat exchanger as a high temperature source, it is possible to extract a cold output having a temperature lower than that of the atmosphere from the low temperature side heat exchanger side of the passive device. Using this cold output, for example, various coolers mounted on the vehicle (for example, a cooling air conditioner, an oil cooler, a canister, etc.) can be functioned.

特許第3050543号公報Japanese Patent No. 3050543 特開2006−149176号公報JP 2006-149176 A

しかしながら、図3のようなループ管型の熱音響機関31では、音波の発生源である熱交換器(冷却器32、加熱器34)が必ず音圧の腹(定在波の腹)に位置してしまう。音圧の腹では、流体変位が微小であるために大きな熱交換を行うことができない。そのため、ループ管36のみで形成された従来の熱音響機関31では、大きな出力を発揮することができなかった。   However, in the loop tube type thermoacoustic engine 31 as shown in FIG. 3, the heat exchanger (cooler 32, heater 34), which is a sound wave generation source, is always located at the antinode of the sound pressure (the antinode of the standing wave). Resulting in. At the antinode of sound pressure, large heat exchange cannot be performed because the fluid displacement is minute. Therefore, the conventional thermoacoustic engine 31 formed only by the loop tube 36 cannot exert a large output.

また、熱音響機関31において原動機35で自励発振を発生させるには、冷却器32に供給する低温源を大気とした場合、加熱器34に供給する高温源として300℃程度の熱源が必要となる。しかし、低温熱源の利用等を考慮すると、発振温度差は小さいことが望ましい。発振温度差とは、原動機35が自励発振を発生するときの冷却器32と加熱器34の温度差のことである。   Further, in order to generate self-excited oscillation by the prime mover 35 in the thermoacoustic engine 31, when the low temperature source supplied to the cooler 32 is the atmosphere, a heat source of about 300 ° C. is required as the high temperature source supplied to the heater 34. Become. However, considering the use of a low-temperature heat source, it is desirable that the oscillation temperature difference is small. The oscillation temperature difference is a temperature difference between the cooler 32 and the heater 34 when the prime mover 35 generates self-excited oscillation.

そこで、本発明の目的は、多くの音響強度をループ管内に励起でき、発振温度差が小さい熱音響機関を提供することにある。   Accordingly, an object of the present invention is to provide a thermoacoustic engine that can excite a large amount of acoustic intensity in a loop tube and has a small oscillation temperature difference.

本発明は上記目的を達成するために創案されたものであり、ループ管に、熱エネルギを前記ループ管内の音響エネルギに変換する加熱器・蓄熱器・冷却器からなる原動機が設けられた熱音響機関において、前記ループ管に縮小管を設けた熱音響機関である。   The present invention was devised to achieve the above object, and a thermoacoustic provided with a prime mover comprising a heater, a heat accumulator, and a cooler that converts thermal energy into acoustic energy in the loop tube. The engine is a thermoacoustic engine in which a reduction pipe is provided in the loop pipe.

前記縮小管は、前記ループ管の前記原動機を設けた位置を起点とし、前記原動機の加熱器側から前記ループ管の全長の30〜35%、または80〜85%の位置に設けられてもよい。   The contraction pipe may be provided at a position of 30 to 35% or 80 to 85% of the total length of the loop pipe from the heater side of the prime mover starting from a position where the prime mover of the loop pipe is provided. .

振動モードがn次(nは1以上の自然数)であり、前記縮小管は、前記ループ管の前記原動機を設けた位置を起点として前記ループ管をn等分し、該分割したループ管の前記原動機の加熱器側から30〜35%、または80〜85%の位置に設けられてもよい。   The vibration mode is n-order (n is a natural number of 1 or more), and the reduction tube divides the loop tube into n equal parts starting from the position where the prime mover of the loop tube is provided. It may be provided at a position of 30 to 35% or 80 to 85% from the heater side of the prime mover.

本発明によれば、多くの音響強度をループ管内に励起でき、発振温度差が小さい熱音響機関を提供できる。   According to the present invention, it is possible to provide a thermoacoustic engine that can excite a large amount of acoustic intensity in a loop tube and has a small oscillation temperature difference.

本発明の一実施の形態に係る熱音響機関を示す図であり、(a)は構成図、(b)はその展開図である。It is a figure which shows the thermoacoustic engine which concerns on one embodiment of this invention, (a) is a block diagram, (b) is the expanded view. 本発明において、縮小管の位置を変化させたときの発振温度差の変化を示すグラフ図である。In this invention, it is a graph which shows the change of the oscillation temperature difference when the position of a reduction tube is changed. 従来の熱音響機関の構成図である。It is a block diagram of the conventional thermoacoustic engine.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1(a)は、本実施の形態に係る熱音響機関の構成図である。   Fig.1 (a) is a block diagram of the thermoacoustic engine which concerns on this Embodiment.

図1(a)に示すように、熱音響機関1は、ループ管2に、熱エネルギをループ管2内の音響エネルギに変換する原動機3を設けたものである。   As shown in FIG. 1A, the thermoacoustic engine 1 is provided with a prime mover 3 that converts thermal energy into acoustic energy in the loop tube 2 in the loop tube 2.

原動機3は、冷却器4、再生器5、加熱器6をループ管2の管軸方向に並べたものである。冷却器4、再生器5、加熱器6の詳しい構造は従来技術に属するので、ここでは省略する。   The prime mover 3 includes a cooler 4, a regenerator 5, and a heater 6 arranged in the tube axis direction of the loop tube 2. Since the detailed structures of the cooler 4, the regenerator 5, and the heater 6 belong to the prior art, they are omitted here.

熱音響機関1では、ループ管2に縮小管7が設けられる。縮小管7の径は、ループ管2の径よりも小さく形成され、例えば、ループ管2の径の半分程度に形成される。縮小管7の両端部は、ループ管2との接続部に向かって徐々に拡径するようにテーパ状に形成されている。   In the thermoacoustic engine 1, a reduction tube 7 is provided in the loop tube 2. The diameter of the reduction tube 7 is formed smaller than the diameter of the loop tube 2, and is formed, for example, about half the diameter of the loop tube 2. Both end portions of the reduction tube 7 are formed in a tapered shape so that the diameter gradually increases toward the connection portion with the loop tube 2.

縮小管7は、ループ管2の原動機3を設けた位置(再生器5の管軸方向の中心位置)を起点とし、原動機3の加熱器6側からループ管2の全長の30〜35%の位置A、または80〜85%の位置Bに設けられる。図1(a)では、ループ管2の全長の80〜85%の位置Bに縮小管7を設けた場合を示している。   The reduction pipe 7 starts from the position where the prime mover 3 of the loop pipe 2 is provided (the center position in the pipe axis direction of the regenerator 5), and is 30 to 35% of the total length of the loop pipe 2 from the heater 6 side of the prime mover 3. It is provided at position A or position B of 80 to 85%. FIG. 1A shows a case where the reduction tube 7 is provided at a position B that is 80 to 85% of the entire length of the loop tube 2.

縮小管7の長さ(管軸方向の長さ)は、例えば、ループ管2の全長の3%程度とされる。縮小管7は、その管軸方向の中心が上述の位置A,Bとなるようにループ管2に設けられる。   The length of the reduction tube 7 (the length in the tube axis direction) is, for example, about 3% of the entire length of the loop tube 2. The contraction tube 7 is provided in the loop tube 2 so that the center in the tube axis direction is the positions A and B described above.

図1(a)の熱音響機関1において、ループ管2を直線状に展開した展開図を図1(b)に示す。なお、図1(b)では、縮小管7を省略している。   In the thermoacoustic engine 1 of FIG. 1A, a development view in which the loop tube 2 is developed linearly is shown in FIG. In FIG. 1B, the reduction tube 7 is omitted.

図1(b)に示すように、縮小管7は、ループ管2を管軸方向に20分割したときに、原動機3を設けた位置から加熱器6側に6/20〜7/20の範囲である位置A、あるいは16/20〜17/20の範囲である位置Bのいずれかに配置される。なお、縮小管7はどちらかの位置A,Bに一つだけ取り付ければよい。   As shown in FIG. 1B, the reduction tube 7 has a range of 6/20 to 7/20 from the position where the prime mover 3 is provided to the heater 6 side when the loop tube 2 is divided into 20 in the tube axis direction. Is located at either position A or position B in the range of 16/20 to 17/20. It should be noted that only one reduction tube 7 has to be attached at either position A or B.

ここで、縮小管7を設ける位置をループ管2の全長の30〜35%の位置A、または80〜85%の位置Bとする理由について説明する。   Here, the reason why the position where the reduction tube 7 is provided is 30 to 35% of the total length of the loop tube 2 or 80 to 85% of the position B will be described.

ループ管2の全長を約3000mmとし、縮小管7を設ける位置(縮小管位置;再生器5の中心位置からの距離)を変更して、各々の位置に縮小管7を設けたときの発振温度差(原動機3が自励発振を発生するときの冷却器4と加熱器6の温度差)を測定した。測定結果を図2に示す。   The oscillation temperature when the total length of the loop tube 2 is about 3000 mm, the position at which the reduction tube 7 is provided (reduction tube position; distance from the center position of the regenerator 5) is changed, and the reduction tube 7 is provided at each position. The difference (temperature difference between the cooler 4 and the heater 6 when the prime mover 3 generates self-excited oscillation) was measured. The measurement results are shown in FIG.

図2に示すように、再生器5の中心位置から約1000mmの位置、あるいは2500mmの位置に縮小管7を設けたときに、発振温度差が最も小さくなることが分かる。つまり、ループ管2の全長の30〜35%の位置A、または80〜85%の位置Bに縮小管7を設けたときに、発振温度差が最も小さくなる。   As shown in FIG. 2, it can be seen that the oscillation temperature difference becomes the smallest when the reduction tube 7 is provided at a position of about 1000 mm from the center position of the regenerator 5 or at a position of 2500 mm. That is, when the reduction tube 7 is provided at the position A of 30 to 35% of the entire length of the loop tube 2 or the position B of 80 to 85%, the oscillation temperature difference becomes the smallest.

以上説明したように、本実施の形態に係る熱音響機関1では、ループ管2の原動機3を設けた位置を起点とし、原動機3の加熱器6側からループ管2の全長の30〜35%の位置A、または80〜85%の位置Bに、縮小管7を設けている。   As described above, in the thermoacoustic engine 1 according to the present embodiment, the position where the prime mover 3 of the loop pipe 2 is provided as a starting point, and 30 to 35% of the total length of the loop pipe 2 from the heater 6 side of the prime mover 3. The contraction tube 7 is provided at the position A or 80 to 85% of the position B.

上述のように、従来の熱音響機関では、音波の発生源である熱交換器が必ず音圧の腹に位置してしまうため、熱交換器にて大きな熱交換を行うことができなかった。   As described above, in the conventional thermoacoustic engine, the heat exchanger, which is a sound wave generation source, is always located at the antinode of the sound pressure, and thus it has not been possible to perform large heat exchange with the heat exchanger.

熱音響機関1では、ループ管2の上述の位置A,Bいずれかに縮小管7を設けているため、ループ管2内に封入された作動流体の流速が縮小管7を設けた部分でのみ速くなる。その結果、定常状態での音圧の位相(定在波の位相)が変化し、熱交換器(冷却器4、加熱器6)が音圧の腹(定在波の腹)に位置しなくなる。つまり、熱交換器4,6において適切な流体変位を保つことが可能となり、熱交換器4,6における作動流体の流体変位が大きくなる。よって、熱交換器にて大きな熱交換を行うことが可能となり、エネルギ変換効率が向上し、多くの音響強度をループ管2内に励起することが可能となる。   In the thermoacoustic engine 1, the reduction tube 7 is provided at any one of the above-described positions A and B of the loop tube 2, so that the flow velocity of the working fluid enclosed in the loop tube 2 is only at the portion where the reduction tube 7 is provided. Get faster. As a result, the phase of the sound pressure in the steady state (the phase of the standing wave) changes, and the heat exchanger (the cooler 4 and the heater 6) is not positioned at the antinode of the sound pressure (the antinode of the standing wave). . That is, it is possible to maintain an appropriate fluid displacement in the heat exchangers 4 and 6, and the fluid displacement of the working fluid in the heat exchangers 4 and 6 increases. Therefore, large heat exchange can be performed in the heat exchanger, energy conversion efficiency is improved, and a large amount of acoustic intensity can be excited in the loop tube 2.

したがって、熱音響機関1に受動機を組み込んで熱音響冷凍装置として用いた場合、従来と比較して、低温を実現することができる。また、熱音響機関1に音響エネルギを電気エネルギに変換する発電機を組み込んで熱音響発電装置として用いた場合、従来と比較して、発電量の向上が可能である。   Therefore, when a passive machine is incorporated in the thermoacoustic engine 1 and used as a thermoacoustic refrigeration apparatus, a low temperature can be realized as compared with the conventional one. Further, when a generator for converting acoustic energy into electric energy is incorporated in the thermoacoustic engine 1 and used as a thermoacoustic power generator, the amount of power generation can be improved as compared with the conventional case.

また、熱音響機関1によれば、ループ管2の上述の位置A,Bいずれかに縮小管7を設けているため、発振温度差を大幅に下げることが可能となり、少ない投入エネルギ量での発振が可能となる。そのため、装置全体の小型化が可能となり、機器全体の体積を減少させることが可能である。   Further, according to the thermoacoustic engine 1, since the reduction tube 7 is provided at any one of the above-described positions A and B of the loop tube 2, it is possible to greatly reduce the oscillation temperature difference, and with a small amount of input energy. Oscillation is possible. Therefore, the entire apparatus can be reduced in size, and the volume of the entire apparatus can be reduced.

上記実施の形態では、振動モードが1次である場合を説明したが、1次以上のn次(nは1以上の自然数)の振動モードで用いる場合、ループ管2の原動機3を設けた位置を起点としてループ管2をn等分し、分割したループ管2の原動機3の加熱器6側から30〜35%、または80〜85%の位置に、縮小管7を設けるようにすればよい。縮小管7は分割したループ管2それぞれに設ける必要はなく、ループ管2全体で1つ設ければよい。   In the above embodiment, the case where the vibration mode is the first order has been described. However, when the vibration mode is used in the first or higher order n order (n is a natural number of 1 or more), the position where the prime mover 3 of the loop pipe 2 is provided. The loop tube 2 is divided into n equal to the starting point, and the reduced tube 7 may be provided at a position of 30 to 35% or 80 to 85% from the heater 6 side of the prime mover 3 of the divided loop tube 2. . The reduction tube 7 does not need to be provided for each of the divided loop tubes 2 and may be provided for the entire loop tube 2.

1 熱音響機関
2 ループ管
3 原動機
4 冷却器
5 再生器
6 加熱器
7 縮小管
1 Thermoacoustic engine 2 Loop pipe 3 Motor 4 Cooler 5 Regenerator 6 Heater 7 Reduced pipe

Claims (2)

ループ管に、熱エネルギを前記ループ管内の音響エネルギに変換する加熱器・蓄熱器・冷却器からなる原動機が設けられた熱音響機関において、
前記ループ管に縮小管を設け
前記縮小管は、前記ループ管の前記原動機を設けた位置を起点とし、前記原動機の加熱器側から前記ループ管の全長の30〜35%、または80〜85%の位置に設けられることを特徴とする熱音響機関。
In a thermoacoustic engine provided with a prime mover composed of a heater, a heat accumulator, and a cooler that converts heat energy into acoustic energy in the loop tube,
A reduction pipe is provided in the loop pipe ,
The contraction pipe is provided at a position of 30 to 35% or 80 to 85% of the total length of the loop pipe from the heater side of the prime mover starting from the position where the prime mover of the loop pipe is provided. A thermoacoustic engine.
ループ管に、熱エネルギを前記ループ管内の音響エネルギに変換する加熱器・蓄熱器・冷却器からなる原動機が設けられた熱音響機関において、In a thermoacoustic engine provided with a prime mover composed of a heater, a heat accumulator, and a cooler that converts heat energy into acoustic energy in the loop tube,
前記ループ管に縮小管を設け、A reduction pipe is provided in the loop pipe,
振動モードがn次(nは1以上の自然数)であり、The vibration mode is n-order (n is a natural number of 1 or more),
前記縮小管は、前記ループ管の前記原動機を設けた位置を起点として前記ループ管をn分割し、該分割したループ管の前記原動機の加熱器側から30〜35%、または80〜85%の位置に設けられることを特徴とする熱音響機関。The reduction pipe divides the loop pipe into n starting from the position where the prime mover of the loop pipe is provided, and is 30 to 35%, or 80 to 85% from the heater side of the prime mover of the divided loop pipe. A thermoacoustic engine provided at a position.
JP2009145295A 2009-06-18 2009-06-18 Thermoacoustic engine Expired - Fee Related JP5446498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145295A JP5446498B2 (en) 2009-06-18 2009-06-18 Thermoacoustic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145295A JP5446498B2 (en) 2009-06-18 2009-06-18 Thermoacoustic engine

Publications (2)

Publication Number Publication Date
JP2011002152A JP2011002152A (en) 2011-01-06
JP5446498B2 true JP5446498B2 (en) 2014-03-19

Family

ID=43560248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145295A Expired - Fee Related JP5446498B2 (en) 2009-06-18 2009-06-18 Thermoacoustic engine

Country Status (1)

Country Link
JP (1) JP5446498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043704A1 (en) 2021-02-11 2022-08-17 Bayerische Motoren Werke Aktiengesellschaft Vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032464A (en) * 1999-01-20 2000-03-07 Regents Of The University Of California Traveling-wave device with mass flux suppression
US6637211B1 (en) * 2002-08-13 2003-10-28 The Regents Of The University Of California Circulating heat exchangers for oscillating wave engines and refrigerators
DE112007002060T5 (en) * 2006-09-02 2009-07-09 The Doshisha Thermoacoustic device
CN101236025B (en) * 2008-03-04 2012-03-07 武汉工程大学 Double-drive stirling travelling wave refrigerating device

Also Published As

Publication number Publication date
JP2011002152A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
US9777951B2 (en) Thermoacoustic engine
JP2012112621A (en) Thermoacoustic engine
US6560970B1 (en) Oscillating side-branch enhancements of thermoacoustic heat exchangers
JP2007237020A (en) Thermoacoustic device
JP5423531B2 (en) Thermoacoustic engine
JP5453950B2 (en) Thermoacoustic engine
JP2007530911A (en) Cryogenic cooler system with frequency-converting mechanical resonator
CN1768238A (en) Pulse tube refrigerator
JP5655313B2 (en) Thermoacoustic engine
JP2017219273A (en) Thermoacoustic engine, and method of designing thermoacoustic engine
JP2007154792A (en) Energy recovery device of internal combustion engine
JP5446498B2 (en) Thermoacoustic engine
JP2010071559A (en) Thermoacoustic cooling device
JP5434680B2 (en) Thermoacoustic engine
JP5526600B2 (en) Thermoacoustic engine
JP5310287B2 (en) Thermoacoustic engine
Panara et al. Thermoacoustic refrigeration system setup
JP5453910B2 (en) Thermoacoustic engine
JP5532959B2 (en) Thermoacoustic engine
JP2005188841A (en) Thermoacoustic engine and thermoacoustic refrigerator
JP2006145176A (en) Thermoacoustic engine
JP5453954B2 (en) Thermoacoustic engine
JP5768687B2 (en) Thermoacoustic refrigeration equipment
JP7057224B2 (en) Thermoacoustic device
JP2010286203A (en) Thermoacoustic engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees