JP5434680B2 - Thermoacoustic engine - Google Patents

Thermoacoustic engine Download PDF

Info

Publication number
JP5434680B2
JP5434680B2 JP2010045724A JP2010045724A JP5434680B2 JP 5434680 B2 JP5434680 B2 JP 5434680B2 JP 2010045724 A JP2010045724 A JP 2010045724A JP 2010045724 A JP2010045724 A JP 2010045724A JP 5434680 B2 JP5434680 B2 JP 5434680B2
Authority
JP
Japan
Prior art keywords
cross
sectional area
heater
working fluid
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010045724A
Other languages
Japanese (ja)
Other versions
JP2011179774A (en
Inventor
阿部  誠
真也 長谷川
康 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010045724A priority Critical patent/JP5434680B2/en
Publication of JP2011179774A publication Critical patent/JP2011179774A/en
Application granted granted Critical
Publication of JP5434680B2 publication Critical patent/JP5434680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、反射波の増加による出力低下を防止する熱音響機関に関する。   The present invention relates to a thermoacoustic engine that prevents a decrease in output due to an increase in reflected waves.

廃熱からエネルギを取り出すためにスターリングエンジンの開発研究が活発に行われている。スターリングエンジンの形式には、α型、β型、γ型、フリーピストン型などがある。これに対し、最近では、米国などにおいて、構造が単純でピストンやクランクで構成された可動部を有さない熱音響機関の開発研究が活発に行われるようになった。   In order to extract energy from waste heat, research and development of Stirling engines have been actively conducted. Stirling engine types include α type, β type, γ type, and free piston type. On the other hand, in recent years, research and development of thermoacoustic engines that have a simple structure and do not have moving parts composed of pistons and cranks have been actively conducted in the United States and the like.

熱音響機関は、管の軸方向に、高温熱源との熱交換を行う加熱器と、低温熱源との熱交換を行う冷却器と、これら加熱器と冷却器との間で温度勾配を保持する再生器とを配置して構成される。管内の作動流体をある場所で局部的に加熱し、別のある場所で冷却すると、熱エネルギの一部が力学的エネルギである音響エネルギに変換されて管内の作動流体が自励振動を起こし、管内に音響振動すなわち音波が発生する。   The thermoacoustic engine maintains a temperature gradient between the heater and the cooler in the axial direction of the tube, a heater that exchanges heat with the high-temperature heat source, a cooler that exchanges heat with the low-temperature heat source, and the like. A regenerator is arranged. When the working fluid in the tube is locally heated in one place and cooled in another, a part of the heat energy is converted into acoustic energy, which is mechanical energy, and the working fluid in the tube undergoes self-excited vibration, Acoustic vibration, that is, sound waves are generated in the tube.

図3に示されるように、従来の熱音響機関51においては、円筒管をループ状に閉じてなるループ管52に作動流体が満たされ、このループ管52に作動流体に外部からの熱を取り込むためのフィンを有する加熱器53と作動流体から外部に熱を取り出すためのフィンを有する冷却器55とが円筒管の長手方向に間隔をあけて配置され、加熱器53と冷却器55の間に再生器54が配置されてなる。加熱器53と再生器54と冷却器55を順に並べて原動機(プライムムーバ)56が構成される。   As shown in FIG. 3, in a conventional thermoacoustic engine 51, a working fluid is filled in a loop tube 52 formed by closing a cylindrical tube in a loop shape, and heat from outside is taken into the loop fluid 52. A heater 53 having fins for cooling and a cooler 55 having fins for extracting heat from the working fluid to the outside are disposed at intervals in the longitudinal direction of the cylindrical tube, and between the heater 53 and the cooler 55. A regenerator 54 is arranged. A prime mover (prime mover) 56 is configured by sequentially arranging the heater 53, the regenerator 54, and the cooler 55.

特開2008−101910号公報JP 2008-101910A 特許第3050543号公報Japanese Patent No. 3050543 特開2001−207909号公報JP 2001-207909 A

従来の熱音響機関51では、作動流体の流路断面積がループ全長にわたり均一とはなっておらず、原動機56のところで流路断面積が減少している。   In the conventional thermoacoustic engine 51, the flow passage cross-sectional area of the working fluid is not uniform over the entire length of the loop, and the flow passage cross-sectional area is reduced at the prime mover 56.

図4に詳しく示したように、加熱器53は、ループ管52に対して断面輪郭の形状と寸法が同じで両端が開放された加熱器円筒管71を有し、加熱器円筒管71の内部には流路と平行な複数の内部フィン72が並べられ、加熱器円筒管71の外周には複数の外部フィン73が設けられる。冷却器55も同様に、ループ管52に対して断面輪郭の形状と寸法が同じで両端が開放された冷却器円筒管74を有し、冷却器円筒管74の内部には流路と平行な複数の内部フィン75が並べられ、冷却器円筒管の外周には複数の外部フィン76が設けられる。再生器54は、ループ管52に対して断面輪郭の形状と寸法が同じで両端が開放された再生器円筒管77を有し、再生器円筒管77の内部に流路を横断する複数の金網78が長手方向に積層される。これにより、片側のループ管52から加熱器円筒管71、再生器円筒管77、冷却器円筒管74、反対側のループ管52まで、形状と寸法が同じ断面輪郭のまま連通している。   As shown in detail in FIG. 4, the heater 53 has a heater cylindrical tube 71 having the same shape and dimensions as the cross-sectional contour with respect to the loop tube 52 and open at both ends, and the inside of the heater cylindrical tube 71. Are arranged with a plurality of internal fins 72 parallel to the flow path, and a plurality of external fins 73 are provided on the outer periphery of the heater cylindrical tube 71. Similarly, the cooler 55 has a cooler cylindrical tube 74 having the same shape and dimensions as the cross-sectional contour with respect to the loop tube 52 and open at both ends, and the cooler cylindrical tube 74 is parallel to the flow path. A plurality of internal fins 75 are arranged, and a plurality of external fins 76 are provided on the outer periphery of the cooler cylindrical tube. The regenerator 54 has a regenerator cylindrical tube 77 having the same cross-sectional outline shape and dimensions as the loop tube 52 and open at both ends, and a plurality of wire meshes traversing the flow path inside the regenerator cylindrical tube 77. 78 are stacked in the longitudinal direction. As a result, the loop tube 52 on one side communicates with the heater cylindrical tube 71, the regenerator cylindrical tube 77, the cooler cylindrical tube 74, and the loop tube 52 on the opposite side with the same cross-sectional outline and shape.

原動機56では、加熱器53において、外部の熱が外部フィン73に吸収され、その熱が内部フィン72に伝導され、内部フィン72から作動流体に熱が放出される。冷却器55においては、加熱器53とは逆の熱交換が行われる。   In the prime mover 56, in the heater 53, external heat is absorbed by the external fins 73, the heat is conducted to the internal fins 72, and heat is released from the internal fins 72 to the working fluid. In the cooler 55, heat exchange opposite to that of the heater 53 is performed.

原動機56では、加熱器53も冷却器55も、内部フィン72,75の伝熱性能を確保するために、内部フィン72,75の厚さをあまり薄くすることはできない。一方、ループ管52と同一サイズの加熱器円筒管71あるいは冷却器円筒管74の内部に内部フィン72,75が存在することで、加熱器円筒管71あるいは冷却器円筒管74内における作動流体の流路断面積はループ管52における作動流体の流路断面積に比べて小さくなる。内部フィン72,75の厚さを厚くすると、加熱器円筒管71あるいは冷却器円筒管74内における流路断面積はいっそう小さくなる。再生器54においても、再生器円筒管77内に金網78が存在するため、流路断面積はループ管52における流路断面積に比べて小さくなる。   In the prime mover 56, neither the heater 53 nor the cooler 55 can reduce the thickness of the internal fins 72, 75 so as to ensure the heat transfer performance of the internal fins 72, 75. On the other hand, the presence of the internal fins 72 and 75 in the heater cylindrical tube 71 or the cooler cylindrical tube 74 having the same size as the loop tube 52 allows the working fluid in the heater cylindrical tube 71 or the cooler cylindrical tube 74 to flow. The cross-sectional area of the flow path is smaller than the cross-sectional area of the working fluid in the loop pipe 52. When the thickness of the internal fins 72 and 75 is increased, the flow path cross-sectional area in the heater cylindrical tube 71 or the cooler cylindrical tube 74 is further reduced. Also in the regenerator 54, since the wire mesh 78 exists in the regenerator cylindrical pipe 77, the flow path cross-sectional area becomes smaller than the flow path cross-sectional area in the loop pipe 52.

ところで、一般に熱音響機関では、発生した音波の反射を少なくすることが望ましい。音波の反射が発生すると、進行波から定在波が励起される。熱音響機関の熱力学的サイクルは、進行波により実現されるため、進行波成分の割合を定在波成分の割合よりも高くすることが望ましい。したがって、音波の反射を抑えることが熱音響機関の出力向上のための必要課題となる。   Incidentally, in general, in a thermoacoustic engine, it is desirable to reduce reflection of generated sound waves. When reflection of a sound wave occurs, a standing wave is excited from a traveling wave. Since the thermodynamic cycle of the thermoacoustic engine is realized by traveling waves, it is desirable to make the proportion of the traveling wave component higher than the proportion of the standing wave component. Therefore, suppressing reflection of sound waves is a necessary issue for improving the output of the thermoacoustic engine.

音波の反射は、作動流体の流路の断面積が変化する場所で発生する。逆に、作動流体の流路の断面積の変化をなるべく少なくすることが音波の反射を抑えるのに有効である。   The reflection of the sound wave occurs at a place where the cross-sectional area of the working fluid flow path changes. Conversely, reducing the change in the cross-sectional area of the working fluid flow path as much as possible is effective in suppressing reflection of sound waves.

図3の熱音響機関51は、原動機56において、作動流体の流路断面積が顕著に減少しているため、音波の反射が著しく、熱音響機関51の出力を低下させる原因となっている。   In the prime mover 56, the thermoacoustic engine 51 of FIG. 3 has a markedly reduced flow path cross-sectional area, so that the reflection of sound waves is significant, causing the output of the thermoacoustic engine 51 to decrease.

そこで、本発明の目的は、上記課題を解決し、反射波の増加による出力低下を防止する熱音響機関を提供することにある。   Accordingly, an object of the present invention is to provide a thermoacoustic engine that solves the above-described problems and prevents a decrease in output due to an increase in reflected waves.

上記目的を達成するために本発明は、作動流体が充填されたループ管に、内部フィンを有する加熱器と金網を収容した再生器と内部フィンを有する冷却器とからなる原動機が設置された熱音響機関において、前記原動機における作動流体の流路断面積が前記ループ管における作動流体の断面積と同じであるものである。   In order to achieve the above object, the present invention provides a heat exchanger in which a prime mover comprising a heater having internal fins, a regenerator containing a wire mesh, and a cooler having internal fins is installed in a loop tube filled with a working fluid. In the acoustic engine, the cross-sectional area of the working fluid in the prime mover is the same as the cross-sectional area of the working fluid in the loop pipe.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)反射波の増加による出力低下を防止することができる。   (1) A decrease in output due to an increase in reflected waves can be prevented.

本発明の一実施形態を示す熱音響機関の構成図である。It is a block diagram of the thermoacoustic engine which shows one Embodiment of this invention. 図1の熱音響機関の原動機付近の側断面図及び流路断面積分布図である。FIG. 2 is a side cross-sectional view and flow path cross-sectional area distribution diagram in the vicinity of a prime mover of the thermoacoustic engine of FIG. 1. 従来の原動機を備えた熱音響機関の構成図である。It is a block diagram of the thermoacoustic engine provided with the conventional motor | power_engine. 従来の熱音響機関の原動機付近の側断面図及び流路断面積分布図である。It is a side sectional view and a flow path sectional area distribution map in the vicinity of a prime mover of a conventional thermoacoustic engine.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る熱音響機関1は、作動流体が充填されたループ管2に、内部フィンを有する加熱器3と金網を収容した再生器4と内部フィンを有する冷却器5とからなる原動機6が設置された熱音響機関1において、原動機6における作動流体の流路断面積がループ管2における作動流体の断面積と同じかやや大きいものである。   As shown in FIG. 1, a thermoacoustic engine 1 according to the present invention includes a loop tube 2 filled with a working fluid, a heater 3 having internal fins, a regenerator 4 containing a wire mesh, and a cooling having internal fins. In the thermoacoustic engine 1 in which the prime mover 6 composed of the vessel 5 is installed, the cross-sectional area of the working fluid in the prime mover 6 is the same as or slightly larger than the cross-sectional area of the working fluid in the loop tube 2.

ループ管2は、円筒管がループ状に閉じられたものであり、内部に作動流体が充填される。作動流体には、空気、ヘリウム、窒素、アルゴンなどの気体を用いるのが好ましい。   The loop tube 2 is a cylindrical tube closed in a loop shape, and is filled with a working fluid. The working fluid is preferably a gas such as air, helium, nitrogen, or argon.

図2に詳しく示したように、加熱器3は、ループ管2よりも寸法が大きい両端が開放された加熱器円筒管21を有し、加熱器円筒管21の内部には流路と平行な複数の内部フィン22が並べられ、加熱器円筒管21の外周には複数の外部フィン23が設けられる。冷却器5も同様に、ループ管よりも寸法が大きい両端が開放された冷却器円筒管24を有し、冷却器円筒管24の内部には流路と平行な複数の内部フィン22が並べられ、冷却器円筒管24の外周には複数の外部フィン23が設けられる。再生器4は、ループ管2よりも寸法が大きい両端が開放された再生器円筒管25を有し、再生器円筒管25の内部に流路を横断する複数の金網26が長手方向に積層される。   As shown in detail in FIG. 2, the heater 3 includes a heater cylindrical tube 21 having both ends that are larger than the loop tube 2 and open at both ends, and the heater cylindrical tube 21 is parallel to the flow path. A plurality of internal fins 22 are arranged, and a plurality of external fins 23 are provided on the outer periphery of the heater cylindrical tube 21. Similarly, the cooler 5 has a cooler cylindrical tube 24 whose both ends are larger than the loop tube, and a plurality of internal fins 22 parallel to the flow path are arranged inside the cooler cylindrical tube 24. A plurality of external fins 23 are provided on the outer periphery of the cooler cylindrical tube 24. The regenerator 4 has a regenerator cylindrical tube 25 whose both ends are larger than the loop tube 2, and a plurality of wire meshes 26 that cross the flow path are laminated in the longitudinal direction inside the regenerator cylindrical tube 25. The

これにより、片側のループ管2と加熱器円筒管21の境界、及び冷却器円筒管24と反対側のループ管2の境界にて、寸法(内径)が段階的に増減している。   As a result, the dimension (inner diameter) increases or decreases stepwise at the boundary between the loop tube 2 on one side and the heater cylindrical tube 21 and the boundary between the loop tube 2 on the opposite side of the cooler cylindrical tube 24.

一方、加熱器3における流路断面積は、加熱器円筒管21の断面積から内部フィン22の総断面積を引いて求められる。流路断面積の分布を見ると、加熱器3における流路断面積は、破線で示されるように、ループ管2における流路断面積と同じか、実線で示されるように、ループ管2における流路断面積よりも大きい。冷却器5における流路断面積も同様に、ループ管2における流路断面積と同じかそれより大きい。再生器4における流路断面積は、再生器円筒管25の断面積から金網26の骨格部分の総断面積を引いて求められる。再生器4における流路断面積は、破線で示されるように、ループ管2における流路断面積と同じか、実線で示されるように、ループ管2における流路断面積よりも大きく、さらに、ここでは加熱器3及び冷却器5における流路断面積よりも大きい。   On the other hand, the flow path cross-sectional area in the heater 3 is obtained by subtracting the total cross-sectional area of the internal fins 22 from the cross-sectional area of the heater cylindrical tube 21. Looking at the distribution of the cross-sectional area of the flow path, the cross-sectional area of the flow path in the heater 3 is the same as the cross-sectional area of the flow path in the loop pipe 2 as indicated by the broken line or in the loop pipe 2 as indicated by the solid line. It is larger than the channel cross-sectional area. Similarly, the channel cross-sectional area in the cooler 5 is equal to or larger than the channel cross-sectional area in the loop pipe 2. The flow path cross-sectional area in the regenerator 4 is obtained by subtracting the total cross-sectional area of the skeleton portion of the wire mesh 26 from the cross-sectional area of the regenerator cylindrical tube 25. The flow path cross-sectional area in the regenerator 4 is the same as the flow path cross-sectional area in the loop pipe 2 as shown by a broken line or larger than the flow path cross-sectional area in the loop pipe 2 as shown by a solid line, Here, the flow path cross-sectional area in the heater 3 and the cooler 5 is larger.

以下、本発明の熱音響機関1の動作を説明する。   Hereinafter, the operation of the thermoacoustic engine 1 of the present invention will be described.

本発明の熱音響機関1は、原動機6における作動流体の流路断面積がループ管2における作動流体の断面積と同じかそれより大きい。   In the thermoacoustic engine 1 of the present invention, the cross-sectional area of the working fluid in the prime mover 6 is equal to or larger than the cross-sectional area of the working fluid in the loop pipe 2.

原動機6における作動流体の流路断面積がループ管2における作動流体の断面積と同じである場合、熱音響機関1のループ全長(ループ管2と原動機6を合わせた長さ)にわたり流路断面積の変化が全くないため、流路断面積の変化箇所における音波の反射が生じることがない。その結果、定在波に比して進行波が多く得られ、反射波の増加による出力低下を防止することができ、熱音響機関1の出力を大きくすることができる。   When the cross-sectional area of the working fluid in the prime mover 6 is the same as the cross-sectional area of the working fluid in the loop pipe 2, the flow path breaks over the entire loop length of the thermoacoustic engine 1 (the combined length of the loop pipe 2 and the prime mover 6). Since there is no change in the area, there is no reflection of sound waves at the change location of the channel cross-sectional area. As a result, more traveling waves are obtained as compared to standing waves, output reduction due to an increase in reflected waves can be prevented, and the output of the thermoacoustic engine 1 can be increased.

原動機6における作動流体の流路断面積がループ管2における作動流体の断面積より大きい場合は、原動機6における流路の抵抗が小さくなるので、音波の減衰が抑制される。   When the cross-sectional area of the working fluid in the prime mover 6 is larger than the cross-sectional area of the working fluid in the loop pipe 2, the resistance of the flow passage in the prime mover 6 is reduced, so that sound wave attenuation is suppressed.

以上説明したように、本発明は、原動機6が設置された熱音響機関1において、原動機6における作動流体の流路断面積がループ管2における作動流体の断面積と同じである。これにより、エネルギ変換効率が向上するので、従来に比べて発振開始温度(発振に必要な加熱器3と冷却器5の温度差)が低くなるという効果が得られる。従来では、例えば、原動機6において冷却器5が常温であるとすると常温よりかなり高い温度の加熱器3を必要としたのに対し、本発明では、冷却器5が常温であるならば常温よりそれほど高くない温度の加熱器3が利用できる。   As described above, according to the present invention, in the thermoacoustic engine 1 in which the prime mover 6 is installed, the cross-sectional area of the working fluid in the prime mover 6 is the same as the cross-sectional area of the working fluid in the loop pipe 2. As a result, the energy conversion efficiency is improved, so that the effect of lowering the oscillation start temperature (temperature difference between the heater 3 and the cooler 5 necessary for oscillation) can be obtained compared to the conventional case. Conventionally, for example, when the cooler 5 in the prime mover 6 is at a normal temperature, the heater 3 having a temperature considerably higher than the normal temperature is required. A heater 3 with a low temperature can be used.

また、本発明によれば、エネルギ変換効率が向上するので、従来より大きな音響強度が得られる。   In addition, according to the present invention, the energy conversion efficiency is improved, so that a greater acoustic intensity can be obtained than before.

また、本発明によれば、エネルギ変換効率が向上するので、従来より少ない投入エネルギ量で発振が可能となる。   In addition, according to the present invention, since the energy conversion efficiency is improved, it is possible to oscillate with a smaller amount of input energy than before.

また、本発明によれば、少ない投入エネルギ量で発振が可能になるため、小型化が可能となる。小型化により、熱音響機関1の体積を従来より小さくすることができる。   In addition, according to the present invention, it is possible to oscillate with a small amount of input energy, and thus it is possible to reduce the size. By miniaturization, the volume of the thermoacoustic engine 1 can be made smaller than before.

1 熱音響機関
2 ループ管
3 加熱器
4 再生器
5 冷却器
6 原動機
1 Thermoacoustic Engine 2 Loop Tube 3 Heater 4 Regenerator 5 Cooler 6 Motor

Claims (1)

作動流体が充填されたループ管に、内部フィンを有する加熱器と金網を収容した再生器と内部フィンを有する冷却器とからなる原動機が設置された熱音響機関において、
前記原動機における作動流体の流路断面積が前記ループ管における作動流体の断面積と同じであることを特徴とする熱音響機関。
In a thermoacoustic engine in which a prime mover comprising a heater having internal fins, a regenerator containing a wire mesh, and a cooler having internal fins is installed in a loop tube filled with a working fluid,
The thermoacoustic engine, wherein a cross-sectional area of a working fluid in the prime mover is the same as a cross-sectional area of the working fluid in the loop pipe.
JP2010045724A 2010-03-02 2010-03-02 Thermoacoustic engine Expired - Fee Related JP5434680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045724A JP5434680B2 (en) 2010-03-02 2010-03-02 Thermoacoustic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045724A JP5434680B2 (en) 2010-03-02 2010-03-02 Thermoacoustic engine

Publications (2)

Publication Number Publication Date
JP2011179774A JP2011179774A (en) 2011-09-15
JP5434680B2 true JP5434680B2 (en) 2014-03-05

Family

ID=44691461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045724A Expired - Fee Related JP5434680B2 (en) 2010-03-02 2010-03-02 Thermoacoustic engine

Country Status (1)

Country Link
JP (1) JP5434680B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423531B2 (en) * 2010-03-30 2014-02-19 いすゞ自動車株式会社 Thermoacoustic engine
JP5786658B2 (en) * 2011-11-07 2015-09-30 いすゞ自動車株式会社 Thermoacoustic engine
CN108759086B (en) * 2018-05-29 2020-09-08 华中科技大学 Sealed thermoacoustic heater capable of heating uniformly
JP7202095B2 (en) * 2018-07-27 2023-01-11 株式会社Csイノベーション alarm device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114380A (en) * 1977-03-03 1978-09-19 Peter Hutson Ceperley Traveling wave heat engine
JP2960908B2 (en) * 1997-12-19 1999-10-12 株式会社移動体通信先端技術研究所 Regenerator
JP3050543B1 (en) * 1999-01-08 2000-06-12 株式会社移動体通信先端技術研究所 Cooling and refrigeration facilities using air column resonance wave refrigeration
JP3776276B2 (en) * 2000-01-24 2006-05-17 株式会社サクション瓦斯機関製作所 Stirling cycle and heat exchanger
JP2003148822A (en) * 2001-11-12 2003-05-21 Fuji Electric Co Ltd Cold storage unit for very low temperature refrigerator
JP2005253240A (en) * 2004-03-05 2005-09-15 Denso Corp Thermoacoustic power generator
JP4117489B2 (en) * 2004-10-04 2008-07-16 独立行政法人 宇宙航空研究開発機構 Fluid vibration or fluid noise suppression device for fluid machinery
JP4652821B2 (en) * 2005-01-07 2011-03-16 学校法人同志社 Thermoacoustic device
JP2006214406A (en) * 2005-02-07 2006-08-17 Denso Corp Thermoacoustic device
JP2007147193A (en) * 2005-11-29 2007-06-14 Sumitomo Heavy Ind Ltd Thermoacoustic refrigerating machine
JP4958910B2 (en) * 2006-09-02 2012-06-20 学校法人同志社 Thermoacoustic device
JP2008101910A (en) * 2008-01-16 2008-05-01 Doshisha Thermoacoustic device

Also Published As

Publication number Publication date
JP2011179774A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5423531B2 (en) Thermoacoustic engine
US20050284691A1 (en) Integrated heat exchanger and muffler unit
JP5434680B2 (en) Thermoacoustic engine
US9021800B2 (en) Heat exchanger and associated method employing a stirling engine
JP5453950B2 (en) Thermoacoustic engine
JP5768688B2 (en) Thermoacoustic refrigeration equipment
JP5655313B2 (en) Thermoacoustic engine
JP5434613B2 (en) Thermoacoustic engine
JP2011122567A (en) Thermoacoustic engine and alpha-type stirling engine
JP2012067657A (en) Egr gas cooling device
JP5862250B2 (en) Thermoacoustic refrigeration equipment
JP5532959B2 (en) Thermoacoustic engine
JP6205936B2 (en) Heat accumulator
JP2011002119A (en) Thermoacoustic engine
CN201285193Y (en) Thermoacoustic refrigerating device based on oscillatory flow heat pipe
JP6498008B2 (en) Thermoacoustic engine
JP6298335B2 (en) Internal combustion engine
JP5446498B2 (en) Thermoacoustic engine
JP2010270926A (en) Thermoacoustic engine
CN110273778B (en) Heater for Stirling engine and Stirling cycle system
Zhou et al. Designing thermoacoustic engines for automotive exhaust waste heat recovery
JP5786658B2 (en) Thermoacoustic engine
JP5299107B2 (en) Thermoacoustic engine
JP5799780B2 (en) Thermoacoustic refrigeration equipment
JP2012067656A (en) Egr gas cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5434680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees