JP4117489B2 - Fluid vibration or fluid noise suppression device for fluid machinery - Google Patents

Fluid vibration or fluid noise suppression device for fluid machinery Download PDF

Info

Publication number
JP4117489B2
JP4117489B2 JP2004291734A JP2004291734A JP4117489B2 JP 4117489 B2 JP4117489 B2 JP 4117489B2 JP 2004291734 A JP2004291734 A JP 2004291734A JP 2004291734 A JP2004291734 A JP 2004291734A JP 4117489 B2 JP4117489 B2 JP 4117489B2
Authority
JP
Japan
Prior art keywords
fluid
vibration
heat exchanger
heat
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004291734A
Other languages
Japanese (ja)
Other versions
JP2006105009A (en
Inventor
達哉 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2004291734A priority Critical patent/JP4117489B2/en
Publication of JP2006105009A publication Critical patent/JP2006105009A/en
Application granted granted Critical
Publication of JP4117489B2 publication Critical patent/JP4117489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)

Description

本発明は、流体機械の流体振動若しくは流体騒音抑制装置、特に熱音響現象による流体振動や流体騒音を抑制する装置に関し、より詳細には流体機械において見られる流体振動若しくは流体騒音に対してより一層の抑制効果を得ることができ、また流体機械の負荷に応じて前記抑制効果を簡易に自動調整することができる流体振動若しくは流体騒音抑制装置に関する。   The present invention relates to a fluid vibration or fluid noise suppression device for a fluid machine, and more particularly to a device for suppressing fluid vibration or fluid noise due to a thermoacoustic phenomenon, and more particularly to the fluid vibration or fluid noise found in a fluid machine. In addition, the present invention relates to a fluid vibration or fluid noise suppression device that can obtain the above suppression effect and can easily and automatically adjust the suppression effect according to the load of the fluid machine.

流体に作用して仕事をする又は流体の作用により仕事をされる流体機械、例えばボイラー、熱交換器、ポンプ、ガスタービン、蒸気タービン、空気調和装置、ダクト配管等に於いては、流体の混合拡散、密度変化、相変化等の流体単体が原因となって、又は流体と構造物との間の衝突、渦発生、熱交換等の相互干渉が原因となって、流体振動或いは流体騒音が発生し、それらが場合によっては装置固有の共鳴構造により発達することがある。流体振動、流体騒音及び共鳴の因果関係は多様であり、機械装置が大規模になりかつ運転時の負荷が高くなる程、複雑化する傾向にある。これら因果関係についての幾つかの事例は、非特許文献1等に述べられている。   In fluid machines that work on fluids or work on fluids, such as boilers, heat exchangers, pumps, gas turbines, steam turbines, air conditioners, duct pipes, fluid mixing Fluid vibration or fluid noise occurs due to a single fluid such as diffusion, density change, or phase change, or due to mutual interference such as collision between fluid and structure, vortex generation, heat exchange, etc. However, in some cases, they may develop due to the resonance structure inherent to the device. The causal relationships between fluid vibration, fluid noise, and resonance are diverse, and tend to become more complex as the mechanical device becomes larger and the load during operation increases. Some examples of these causal relationships are described in Non-Patent Document 1 and the like.

流体機械特有の流体振動や流体騒音は、流体と機械及び構造物の干渉や流体運動そのものに起因する事があり、一般の機械振動や機械騒音に比べて対策が体系化されているとは言い難い。従来知られている流体振動或いは流体騒音の対策は、発生源についての対策と伝播経路についての対策の大きく分けて二つある。発生源についての対策の一つは振動や騒音の発生源を弱める事である。具体的には、原因となっている構造振動を緩衝材等で抑制する事や機械装置の運転条件を変更して振動や騒音の発生を弱める事などが挙げられる。しかし、振動或いは騒音の発生源が非常に高温であるとか、渦が原因である場合には、発生源に緩衝材等の付加的対策を施すことは困難である。また、運転条件の変更は、機械装置の主性能に影響を及ぼす事があり望ましくなく、広い運転範囲で振動や騒音が発生する場合もあり得るといった問題点がある。   Fluid vibration and fluid noise peculiar to fluid machinery can be attributed to interference between the fluid and the machine and structure and fluid motion itself, and it is said that measures are systematized compared to general mechanical vibration and mechanical noise. hard. Conventionally known countermeasures against fluid vibrations or fluid noises are roughly divided into two countermeasures: a countermeasure for the source and a countermeasure for the propagation path. One countermeasure for the source is to weaken the source of vibration and noise. Specifically, it is possible to suppress the structural vibration that is the cause by using a cushioning material or the like, or to change the operating conditions of the mechanical device to weaken the generation of vibration or noise. However, when the source of vibration or noise is very high temperature or due to vortices, it is difficult to take additional measures such as a buffer material. In addition, changing the operating conditions is undesirable because it may affect the main performance of the machine, and there is a problem that vibration and noise may occur in a wide operating range.

発生源についてのもう一つの対策は、共振或いは共鳴を抑える事である。共振或いは共鳴が起こる要件は振動或いは騒音の発生源がある事、及び発生源を取り巻く環境が変動周期に近い周期に相当する音響的条件を満たす事であるので、共振或いは共鳴周期を遠ざける様に発生源周囲の構造設計をすれば、振動或いは騒音の振幅は小さい値から発達しない。しかし、装置性能を確保するために構造設計を変更できない場合や既存装置で構造の変更が出来ない場合には共振或いは共鳴の存在を前提に対策を施さなければならないという問題点がある。また、共振或いは共鳴を避けた設計による構造は、別の周期の共振或いは共鳴を発生し得るという問題点がある。   Another countermeasure for the source is to suppress resonance or resonance. The requirement for resonance or resonance is that there is a source of vibration or noise, and that the environment surrounding the source must satisfy an acoustic condition corresponding to a period close to the fluctuation period. If the structure around the source is designed, the vibration or noise amplitude will not develop from a small value. However, when the structural design cannot be changed in order to ensure the device performance, or when the structure cannot be changed with the existing device, there is a problem that countermeasures must be taken on the premise of the presence of resonance or resonance. In addition, a structure designed to avoid resonance or resonance has a problem that resonance or resonance of another period can be generated.

適度な緩衝機構を設ける事も共振或いは共鳴対策の一つである。しかし、緩衝機構は振動或いは騒音発生源で生成される力学的エネルギー量に勝る力学的エネルギー量を吸収するため、緩衝機構が大型化、大容量化するという問題点に加え、多大な緩衝効果は機械装置の主性能を劣化させるという問題点が存在する。   Providing an appropriate buffer mechanism is one of resonance or resonance countermeasures. However, since the buffer mechanism absorbs the amount of mechanical energy that exceeds the amount of mechanical energy generated by the vibration or noise source, in addition to the problem that the buffer mechanism becomes larger and larger in capacity, the great buffer effect is There is a problem of degrading the main performance of the mechanical device.

一方、伝播経路についての対策では、まず配管を音や振動が伝播する場合の対策が挙げられる。例えば、配管等に見られる急拡大部や分岐管は騒音伝播経路の音響インピーダンスを変化させて、騒音の伝播を妨害するため、急拡大部或いは分岐管部で吸音と等価の効果があるとされる。さらに急拡大部や管内面に吸音材を併用することは騒音の透過損失を増加させる効果がある。しかし、配管内に主流が存在する場合には急拡大管は大きな圧力損失となる問題点がある。分岐管はその容量が一定であるため、線形性を仮定すると振動或いは騒音の成長の状態に応じて抑制効果が十分に増えないという問題点がある。   On the other hand, as a countermeasure for the propagation path, first, a countermeasure when sound or vibration propagates through the pipe can be mentioned. For example, a sudden expansion section or branch pipe found in piping or the like changes the acoustic impedance of the noise propagation path and disturbs the propagation of noise. Therefore, the sudden expansion section or branch pipe section has an effect equivalent to sound absorption. The Furthermore, using a sound absorbing material in combination with the rapidly expanding portion or the inner surface of the pipe has an effect of increasing noise transmission loss. However, when there is a main flow in the pipe, there is a problem that the rapid expansion pipe causes a large pressure loss. Since the capacity of the branch pipe is constant, there is a problem that if the linearity is assumed, the suppression effect does not increase sufficiently depending on the state of growth of vibration or noise.

遮蔽も伝播経路の対策のひとつである。発生源から空間を伝播する音については発生源を遮蔽板などで覆う事、機械装置或いは配管を伝わる振動については振動吸収材を配管接合部や機械装置の固定部分に設ける事で振動や騒音を遮断をしている。しかし、遮音材は一般的には質量則に支配されるので遮音効果を持たせるには遮音材の質量を増やすか隔壁を多重とするなどの比較的大規模な対策となる。また、本来不必要な箇所についても遮蔽する事もあるので対策費用がかかるという問題点がある。   Shielding is another countermeasure for the propagation path. Covering the sound source with a shielding plate for sound propagating from the source, and providing vibration absorbers at the pipe joints and fixed parts of the machine device for vibrations transmitted through the machine or piping. Shut off. However, since the sound insulating material is generally governed by the mass law, a relatively large-scale measure such as increasing the mass of the sound insulating material or multiplying the partition walls is necessary to provide a sound insulating effect. In addition, since unnecessary parts are sometimes shielded, there is a problem that countermeasure costs are required.

さらに、伝播経路の対策として、発生源から伝播する振動或いは騒音と同じ大きさで反対の位相を持つ振動或いは騒音を人工的な発生源から発生させて、互いに干渉させて伝播する振動或いは騒音を弱める能動制御法が提案されている。しかし、能動制御法には、二次音が入カセンサーに受信されることによる二次音の発振、信号処理装置の性能の限界による適用周波数の上限、誤差センサーのある位置以外での騒音増加、二次音のパワー限界、気流がある場合の雑音、などの問題点を抱えていて、適用できる事例は限られている。例えば、高圧圧縮機などに見られる高音圧条件やボイラーや燃焼器などに見られる高温条件での適用は極めて困難である。   Furthermore, as a countermeasure for the propagation path, vibration or noise having the same magnitude and opposite phase as the vibration or noise propagating from the source is generated from the artificial source, and the vibration or noise propagating by interfering with each other is generated. Active control methods to weaken have been proposed. However, in the active control method, the secondary sound is oscillated when the secondary sound is received by the input sensor, the upper limit of the applied frequency due to the performance limit of the signal processing device, the noise increase other than the position where the error sensor is located, There are problems such as the power limit of the secondary sound, noise in the presence of airflow, etc., and the cases that can be applied are limited. For example, it is extremely difficult to apply under high sound pressure conditions found in high-pressure compressors and high-temperature conditions found in boilers and combustors.

一方、近年熱音響発生器の研究が活発であり、熱音響発生器は外部から与えられた熱により音響を生じさせる熱、音響エネルギー、ガス圧発振が互いに変換される閉システムであり、ピストンや振動板などの可動部分を持たずに、流体振動或いは流体音を発生する事ができる特性があり、熱音響ヒートポンプ、熱音響冷凍機、スターリングエンジン等に適用されている(例えば、特許文献1〜特許文献3参照)が、熱音響現象によって流体機械における流体振動若しくは流体騒音を抑制する技術的思想は未だ知られてない。逆に、流体機械で不可避的に発生する熱音響現象、例えば、ガスタービンの燃焼室等では熱音響振動がしばしば発生し、燃焼室内の圧力変動や渦の発生をもたらし、燃焼器に機械的な負荷の増大や不均質な燃焼をもたらすなどの不具合現象をもたらすものとしても知られている。そのため、それらの装置で発生する熱音響振動を減少させる方法なども提案されている(例えば、特許文献4,5参照)。
特開2001−330330号公報 特表2001−521125号公報 特開2000−088378号公報 特開平10−068556号公報 特開2002−61521号公報 特開平7−293885号公報 産業環境管理協会「公害防止の技術と法規 騒音編」、日本印刷、(2002) G.B.Swift, "Thermo-acoustic Engines", Journal of Acoustic Society of America, 84-4, (1988), p1145 J.W.S.Rayleigh,"The Theory of Sound", Dover Pub.,(1945) A.A.Putnam,"Combustion Driven Oscillation in Industry", Elesevier Pub.,(1971)
On the other hand, research on thermoacoustic generators has been actively conducted in recent years, and thermoacoustic generators are closed systems in which heat, acoustic energy, and gas pressure oscillations that generate sound by heat given from outside are converted into each other. There is a characteristic that can generate fluid vibration or fluid sound without having a movable part such as a diaphragm, and it is applied to thermoacoustic heat pumps, thermoacoustic refrigerators, Stirling engines, etc. However, a technical idea for suppressing fluid vibration or fluid noise in a fluid machine by a thermoacoustic phenomenon is not yet known. Conversely, thermoacoustic phenomena that inevitably occur in fluid machinery, for example, thermoacoustic vibrations often occur in the combustion chamber of a gas turbine, etc., resulting in the occurrence of pressure fluctuations and vortices in the combustion chamber. It is also known to cause malfunctions such as increased load and inhomogeneous combustion. For this reason, methods for reducing thermoacoustic vibration generated in these devices have also been proposed (see, for example, Patent Documents 4 and 5).
JP 2001-330330 A JP-T-2001-521125 JP 2000-088378 A Japanese Patent Laid-Open No. 10-068556 JP 2002-61521 A Japanese Patent Laid-Open No. 7-293858 Industrial Environment Management Association "Pollution Prevention Technology and Regulations Noise", Nippon Printing, (2002) GBSwift, "Thermo-acoustic Engines", Journal of Acoustic Society of America, 84-4, (1988), p1145 JWSRayleigh, "The Theory of Sound", Dover Pub., (1945) AAPutnam, "Combustion Driven Oscillation in Industry", Elesevier Pub., (1971)

従来、流体機械における流体振動や流体騒音を抑制するには、上記のように種々の方法が提案されているが、これら従来の対策には、さらに次のような(1)〜(4)の解決すべき課題がある。
(1)装置が簡易な構造であること
複雑な機構の装置や特殊な条件でしか作用しない方法では、対策を施す機械装置の制約条件によっては適用できない場合がある上、保守の点で不利となる。振動騒音抑制装置が特殊な回路基板やセンサーを持たずに簡易構造であれば、製作コストを抑え保守点検期間が長くなるという長所が見込まれ、有意義である。また、既存の機械装置へ容易に附加する事ができれば、機械装置の改造や性能劣化を出来るだけ回避できて有利である。
(2)自律機能を有すること
騒音の能動制御装置に見られる二次音源などは、外部電源、状態監視センサー、配線が必要となるため、これらの付帯装置の不具合による動作不良や保守点検項目が増えるなどの問題がある。外部電源を必要とせず、適用する機械装置の排圧や排熱といったエネルギーを利用して自動的に騒音振動抑制機能を発揮する事ができればこれらの問題を解決できる。また、機械装置の出力が低下するか停止した場合に、特殊な監視センサーや配線を必要としないで自動的に騒音振動抑制機能も停止する事ができれば望ましい。
(3)負荷に応じて自動的に効果を調節できること
振動及び騒音の抑制は発生源の程度に応じて必要十分な効果があればよく、過大な低減性能はかえって費用対効果が悪く、対策が大掛かりになる事や機械装置の性能劣化を招く恐れがある。また、一般に機械装置の運転負荷が増すに従い回転数や発熱量が増加するため、これに応じて振動や騒音が増加する傾向がある。反対に機械装置の始動時にのみ振動騒音が著しい場合もある。そこで、機械装置の運転状態が一定の条件に至った時に、機械装置のもたらす排圧や排熱に応じて振動抑制効果を自動調節する事ができれば、振動騒音抑制が不要な運転条件での機械装置の性能劣化を減らす事ができ、操作者による監視や調整のための作業を省力化する事にも繋がる。
(4)発生源に間接的に作用すること
一般に、振動や騒音が発達した状態でこれらを抑制するには、相応のエネルギーを要する。例えば、騒音の能動制御では音源の音響パワーと同程度の音響パワーを持つ二次音源が必要となる。流体関連振動、流体関連騒音についても同様であり、流体の流れ場、温度場、密度場が不均一であると流体自身或いはこれと構造物との干渉が発生源となって大振幅の流体振動又は流体騒音が発生する。一旦発生した流体振動や流体騒音は広い範囲で大きなエネルギーを持つため、これらを直接低減するための装置は広範囲に設置することを要し、且つ振動吸収や吸音のためには所定の容積や力学的エネルギーを供給してやる必要がある。一方、流体振動や流体騒音の発生原因に働きかけて間接的に流体振動や流体騒音の発生を抑制することは、比較的少ない容量や動力を持つ低減装置で済む場合が多い。大きな速度勾配や温度勾配が原因となる流体関連振動や流体関連騒音について、その発生源である例えば、速度勾配や温度勾配の急峻な部分に働きかけて振動や騒音に係る力学的エネルギー増大のメカニズムを破壊する事ができれば、振動騒音抑制装置に係る所要エネルギーを小さくすることが可能となる。
Conventionally, various methods have been proposed to suppress fluid vibration and fluid noise in a fluid machine as described above. These conventional measures include the following (1) to (4). There are issues to be solved.
(1) The device must have a simple structure. It may not be applicable to a device with a complicated mechanism or a method that operates only under special conditions, depending on the constraints of the mechanical device to which countermeasures are taken. Become. If the vibration and noise suppression device has a simple structure without a special circuit board or sensor, it is meaningful that the manufacturing cost can be reduced and the maintenance inspection period can be extended. In addition, if it can be easily added to an existing machine, it is advantageous to avoid remodeling or performance deterioration of the machine as much as possible.
(2) Having an autonomous function Secondary sound sources found in noise active control devices require an external power supply, condition monitoring sensor, and wiring, so there are malfunctions and maintenance inspection items due to problems with these auxiliary devices. There are problems such as an increase. These problems can be solved if an external power supply is not required and the noise vibration suppression function can be automatically exhibited by using energy such as exhaust pressure and exhaust heat of the applied mechanical device. It is also desirable if the noise and vibration suppression function can be automatically stopped without the need for a special monitoring sensor or wiring when the output of the mechanical device is reduced or stopped.
(3) The effect can be automatically adjusted according to the load. Suppression of vibration and noise is sufficient if it is necessary and sufficient depending on the level of the source, and excessive reduction performance is rather cost-effective. There is a risk that it will become a large scale and the performance of the mechanical device will deteriorate. In general, the number of rotations and the amount of heat generated increase as the operating load of the mechanical device increases, so that vibration and noise tend to increase accordingly. On the contrary, the vibration noise may be significant only at the time of starting the mechanical device. Therefore, if the vibration suppression effect can be automatically adjusted according to the exhaust pressure and exhaust heat caused by the mechanical device when the operating state of the mechanical device reaches a certain condition, the machine under the operational condition that does not require vibration noise suppression. It is possible to reduce the performance degradation of the apparatus, and to save labor for monitoring and adjustment by the operator.
(4) Acting indirectly on the generation source Generally, in order to suppress these in a state where vibration and noise are developed, a corresponding energy is required. For example, active control of noise requires a secondary sound source having a sound power comparable to that of the sound source. The same applies to fluid-related vibrations and fluid-related noises. If the flow field, temperature field, and density field of the fluid are non-uniform, the fluid itself or the interference between it and the structure will be the source of the large amplitude fluid vibration. Or fluid noise is generated. Since once generated fluid vibration and fluid noise have a large energy in a wide range, it is necessary to install a device for directly reducing these vibrations, and to absorb and absorb vibration and absorb sound with a predetermined volume and dynamics. It is necessary to supply energy. On the other hand, in many cases, it is only necessary to use a reduction device having a relatively small capacity and power to suppress the occurrence of fluid vibration and fluid noise indirectly by acting on the cause of fluid vibration and fluid noise. For fluid-related vibrations and fluid-related noises caused by large velocity gradients and temperature gradients, for example, the mechanism that increases the mechanical energy related to vibrations and noises by acting on the steep parts of the velocity gradients and temperature gradients. If it can be destroyed, the energy required for the vibration and noise suppression device can be reduced.

本発明は、流体振動や流体騒音の抑制における以上のような解決すべき課題を熱音響現象を利用することにより、解決しようとするものであり、熱音響現象を利用した流体振動や流体騒音を抑制装置を提供することを目的とする。   The present invention intends to solve the above-mentioned problems to be solved in the suppression of fluid vibration and fluid noise by utilizing the thermoacoustic phenomenon, and to solve the fluid vibration and fluid noise using the thermoacoustic phenomenon. An object is to provide a suppression device.

上記課題を解決する本発明の流体振動若しくは流体騒音抑制装置は、流体機械の流体振動や流体騒音を抑制する装置であって、少なくとも一端が開放する管内に高温側熱交換器と低温側熱交換器を隣接して設置して熱音響発生器を構成し、該熱音響発生器をその管の開放端が流体機械の流体流れ場に面するように設置し、前記高温側熱交換器に高温ガスを前記低温側熱交換器に低温流体をそれぞれ導入して前記高温側熱交換器と前記低温側熱交換器間に局所的な温度勾配を形成して、前記熱音響発生器に前記開放端が粒子速度の腹となるように気柱振動を発生させ、前記流体流れ場の速度勾配又は温度勾配の急峻な部分の流体に作用させて、流体の速度勾配や温度勾配を緩和することによって、流体振動や流体騒音を抑制するようにしてなり、前記高温側熱交換器には前記流体機械の駆動によって生じる高温ガスを導入するようにしてなることを特徴とする。 The fluid vibration or fluid noise suppression device of the present invention that solves the above problems is a device that suppresses fluid vibration and fluid noise of a fluid machine, and at least one end of the pipe is open at a high temperature side heat exchanger and a low temperature side heat exchange. A thermoacoustic generator is configured by installing a heat exchanger adjacent to the high temperature side heat exchanger, and the thermoacoustic generator is installed so that the open end of the pipe faces the fluid flow field of the fluid machine. A low temperature fluid is respectively introduced into the low temperature side heat exchanger to form a local temperature gradient between the high temperature side heat exchanger and the low temperature side heat exchanger, and the open end of the thermoacoustic generator By generating air column vibrations so that the particle velocity becomes an antinode, and acting on the fluid of the fluid flow field velocity gradient or temperature gradient steep part, to relax the fluid velocity gradient and temperature gradient, To suppress fluid vibration and fluid noise. Wherein the high-temperature side heat exchanger is characterized by being configured to introduce hot gases caused by the driving of the fluid machine.

前記高温側熱交換器と低温側熱交換器の間に、一方向への整流作用と蓄熱効果を持つ整流蓄熱器を設置することによって、流体は該蓄熱器から熱を受取る過程と蓄熱器に熱を放出する過程を繰返し、当該流体振動の駆動源となる。前記熱音響発生器の管は、一端開他端閉の管又は両端開の管の何れでもよく、一端開他端閉の管の場合は、管内中央に開放端から閉端に向かって低温側熱交換器、高温側熱交換器を配置し、両端開放管の場合は、両開放端から管長のそれぞれ1/4の位置に開放端から中心に向かって低温側熱交換器、高温側熱交換器を配置して構成する。また、前記高温側熱交換器の熱源として、流体機械に応じて種々の熱源が採用でき、例えば微細火炎バーナーや電気ヒータを用いることができる。電気ヒータの場合は、印加電圧を運転負荷に応じて調節するようにするのが望ましい。前記気柱振動を発生させる熱音響発生器の前記管は、1個のみならず長さがそれぞれ異なるものを複数用いる事で発生する粒子速度変動の周波数帯域を広げることができ、多様の流体振動若しくは流体騒音抑制に対応できる。   By installing a rectifying regenerator having a rectifying action and a heat accumulating effect in one direction between the high temperature side heat exchanger and the low temperature side heat exchanger, the fluid receives heat from the heat accumulator and the heat accumulator. The process of releasing heat is repeated to become a driving source for the fluid vibration. The tube of the thermoacoustic generator may be either a tube open at one end and a tube closed at both ends, or a tube open at both ends. In the case of a tube closed at one end and the other end, the low temperature side from the open end to the closed end in the center of the tube. Heat exchanger and high temperature side heat exchanger are arranged, and in the case of open pipes at both ends, the low temperature side heat exchanger and the high temperature side heat exchange from the open end to the center at each 1/4 position of the tube length from both open ends A container is arranged and configured. Moreover, various heat sources can be adopted as the heat source of the high temperature side heat exchanger according to the fluid machine, for example, a fine flame burner or an electric heater can be used. In the case of an electric heater, it is desirable to adjust the applied voltage according to the operating load. The tube of the thermoacoustic generator for generating the air column vibration can widen the frequency band of particle velocity fluctuations generated by using not only one but also a plurality of pipes having different lengths, and various fluid vibrations. Or it can respond to fluid noise suppression.

前記流体振動若しくは流体騒音抑制装置は、ボイラー、ガスタービン等の燃焼器で起こる燃焼振動抑制に適用することができる。その場合は、流体流れ場が、燃焼器の燃焼室であり、前記管の開口端を燃焼用バーナー付近の温度勾配が急峻な位置に設置し、外部から高温ガスを高温側熱交換器に、低温流体を低温側熱交換器にそれぞれ導入し、前記管内に気柱振動を発生させて、開口端の粒子速度変動を引き起こして火炎近傍の高温ガスと未燃低温ガスの混合を促進し、急峻な温度勾配を和らげることで、燃焼室内の燃焼振動の発生と成長を抑制することができる。その場合、高温側熱交換器に導入する高温ガスとして燃焼器内部の高温ガスを採用し、低温側熱交換器に導入する低温ガスとして未燃低温ガスであることが望ましい。また、前記低温側熱交換器に導入する流体を燃焼器内低温ガスや排気ガスとすると、始動時は高温(バーナー付近)と低温(排気ガス等)の間で温度差があるため機能し、始動時の燃焼振動を抑制することができ、効果を負荷に応じて自動的に調整することができる。また、始動時に流体運動が促進され、燃焼器内の混合が進む利点がある。   The fluid vibration or fluid noise suppression device can be applied to suppression of combustion vibration occurring in a combustor such as a boiler or a gas turbine. In that case, the fluid flow field is the combustion chamber of the combustor, the open end of the tube is installed at a position where the temperature gradient near the combustion burner is steep, and the high temperature gas is externally supplied to the high temperature side heat exchanger. Introduce low-temperature fluid into the low-temperature side heat exchanger, generate air column vibrations in the pipe, cause particle velocity fluctuations at the open end, promote mixing of hot gas near the flame and unburned low-temperature gas, steep Reducing the temperature gradient can suppress the occurrence and growth of combustion vibration in the combustion chamber. In that case, it is desirable that the high temperature gas inside the combustor is adopted as the high temperature gas introduced into the high temperature side heat exchanger, and the unburned low temperature gas is introduced as the low temperature gas introduced into the low temperature side heat exchanger. Also, if the fluid introduced into the low temperature side heat exchanger is a low temperature gas or exhaust gas in the combustor, it functions because there is a temperature difference between high temperature (near the burner) and low temperature (exhaust gas, etc.) at the start, Combustion vibration at start-up can be suppressed, and the effect can be automatically adjusted according to the load. In addition, there is an advantage that fluid motion is promoted at start-up, and mixing in the combustor proceeds.

前記流体振動若しくは流体騒音抑制装置は、曲がり管直後の圧縮機など、曲がり部の直後で剥離が生じて後ろにあるインペラ等の回転翼に不均一流れが流入して故障や騒音の原因となる装置に適用することができる。その場合は、前記流体流れ場は、曲がり管直後に回転翼を有する流体機械の曲がり管内であり、前記気柱振動を発生する管を前記曲がり管の曲がり部直前又は曲がり部に開口端が面するように設置し、気柱振動により曲がり部で運動量輸送を促進し、曲がり部で発生する渦の発生を緩和し且つ大規模渦を破砕して下流の回転翼への渦の干渉を緩和して振動騒音を防止するようにしたことを特徴とする。   In the fluid vibration or fluid noise suppression device, separation occurs immediately after the bent portion, such as a compressor immediately after the bent pipe, and a non-uniform flow flows into the rotor blades such as the impeller behind and causes failure and noise. It can be applied to the device. In that case, the fluid flow field is in a bent pipe of a fluid machine having a rotor blade immediately after the bent pipe, and the pipe that generates the air column vibration is located immediately before the bent portion of the bent pipe or the opening end faces the bent portion. It is installed in such a way that momentum transport is promoted at the bend by air column vibration, vortex generation at the bend is mitigated, and large-scale vortices are crushed to reduce vortex interference with downstream rotor blades. This is characterized by preventing vibration noise.

さらに、前記流体振動若しくは流体騒音抑制装置は、流体を噴出するノズルを有する装置に適用することができる。その場合は、前記流体流れ場は、高速ガスを噴出するノズル近傍の低速流れ場であり、ノズル外周のノズル端近傍に前記気柱振動を発生する管を配置することによって、気柱振動によりノズルから排気される高速ガス流とノズル外周に沿う低速空気流の混合を促進し、ノズル端から生じる渦を小規模渦に変換しつつノズルに帰還する干渉波の発生を防止することにより、衝撃波関連騒音やジェット騒音の発生を弱めることができる。   Furthermore, the fluid vibration or fluid noise suppression device can be applied to a device having a nozzle that ejects fluid. In that case, the fluid flow field is a low-speed flow field in the vicinity of the nozzle that ejects high-speed gas, and the nozzle that generates the air column vibration is disposed near the nozzle end on the outer periphery of the nozzle, thereby causing the nozzle to vibrate due to air column vibration. Shock wave-related by preventing the generation of interference waves returning to the nozzle while promoting the mixing of the high-speed gas flow exhausted from the nozzle and the low-speed air flow along the nozzle periphery and converting the vortex generated from the nozzle end into a small-scale vortex Generation of noise and jet noise can be reduced.

前記気柱振動を発生させる管は、前記燃焼用バーナーの火炎、又は前記ノズル端から生じる渦の渦寸法よりも充分小さくなるような管径とし、且つ前記気柱振動の周期が前記バーナー火炎振動周期又は前記渦放出周期よりも充分短くなるような管長とするのが望ましい。また、前記管の断面形状、又は軸方向に断面積を変更し、又は管内部に突起物を設けて音響インピーダンスを変えて、気柱振動発生閾値を使用条件に合わせて調整できるようにすることによって、自立機能を発揮させることが出来る。   The tube for generating the air column vibration has a tube diameter that is sufficiently smaller than the flame of the combustion burner or the vortex dimension of the vortex generated from the nozzle end, and the period of the air column vibration is the burner flame vibration. It is desirable to set the tube length to be sufficiently shorter than the period or the vortex shedding period. In addition, by changing the cross-sectional shape of the tube or the cross-sectional area in the axial direction, or by providing a projection inside the tube to change the acoustic impedance, the air column vibration generation threshold can be adjusted according to the use conditions. Can demonstrate self-supporting function.

この発明に係る流体振動若しくは流体騒音抑制装置は、一端開他端閉又は両端開の管形状の熱音響発生器を構成し、構造が単純で且つ小型に形成することができるので、既存の機械に簡易に付加する事ができる。当該装置は熱源、蓄熱整流器、熱交換器、管だけで構成されており可動部分もなく故障が少ない。そのため、保守に要する時間、費用を節約できる。また、本発明に係る装置は機械装置の運転によってもたらされる高低温度差を利用するので、特定の運転状態に至った時に、センサーや制御装置なしに自立動作することができる(自動ON-OFF機能)。また、振動や騒音が著しい状態でのみ動作し、それ以外の条件では停止するように調整が可能であるので、機械装置の性能劣化に及ぼす影響が少ない。   The fluid vibration or fluid noise suppression device according to the present invention constitutes a tube-shaped thermoacoustic generator with one end open and the other end closed or both ends open, and can be formed in a simple and compact structure. Can be easily added. The device is composed only of a heat source, a heat storage rectifier, a heat exchanger, and a tube, and there are no moving parts and there are few failures. Therefore, the time and cost required for maintenance can be saved. In addition, since the device according to the present invention utilizes the high and low temperature difference caused by the operation of the mechanical device, it can operate independently without a sensor or a control device when it reaches a specific operation state (automatic ON-OFF function) ). Further, the adjustment can be made so that the operation is performed only in a state where the vibration and noise are remarkable and the operation is stopped under other conditions, so that the influence on the performance deterioration of the mechanical device is small.

さらに、本発明に係る流体振動若しくは流体騒音抑制装置又は方法は、局所的な高低温度差が大きいほど、発生する粒子速度変動の大きさなどの作用効果が増加する。そのため、機械装置の運転負荷が増して局所的な温度差が増大するに伴って生ずる流体振動又は流体騒音に対して、振動又は騒音抑制効果をセンサーや制御装置なしに自動調節する事ができる(適応制御機能)。さらにまた、本発明に係る装置又は方法は、機械装置によって形成された振動場又は騒音場に直接作用するものではなく、発生源の振動又は騒音の発生を支配する機構に作用することで、間接的に振動又は騒音の発生を抑制するため、直接作用する場合に比べて所要動力は少なくて済む。また、所要動力を機械装置の余分な排熱から得ることを想定しており、省エネルギーの効果もある。   Furthermore, in the fluid vibration or fluid noise suppression device or method according to the present invention, the larger the local temperature difference, the greater the effects such as the magnitude of the particle velocity fluctuation that occurs. Therefore, the vibration or noise suppression effect can be automatically adjusted without a sensor or a control device for fluid vibration or fluid noise that occurs as the operating load of the mechanical device increases and the local temperature difference increases. Adaptive control function). Furthermore, the apparatus or method according to the present invention does not directly act on the vibration field or noise field formed by the mechanical device, but acts indirectly on the mechanism governing the generation of the vibration or noise of the source. In order to suppress vibration or noise generation, less power is required compared to the case of direct action. In addition, it is assumed that the required power is obtained from excess exhaust heat of the mechanical device, which also has an energy saving effect.

以下、本発明の実施形態を図面を基に詳細に説明する。
図1は本発明の流体振動若しくは流体騒音抑制装置に用いる熱音響発生装置の基本形態を示し、図2はその作動の模式図である。本実施形態の熱音響発生装置1は、一端開他端閉管の熱音響発生装置である。熱音響発生装置は、管内に高低熱源としての熱交換器を近接しておいて、その間に一方向への整流作用と蓄熱効果を持つ整流蓄熱器を置いて、高低両熱源間に局所的な温度勾配を形成することによって、整流蓄熱器を通過する流体と高低両熱源との熱の授受には流体の運動に対して一定の位相差が存在し、熱源からの熱エネルギーが流体振動あるいは流体音という機械的エネルギーとして現れるものである。本実施形態に係る熱音響発生装置1は、中央部分を断熱材で構成された断熱管部3とし、その両端部が管本体部4,5となっている一端閉の管2で構成されている。断熱管部3の内部には多数の蓄熱板6が管軸方向に平行に充填されて蓄熱器7を構成している。蓄熱器7は、平行に配置した多数の蓄熱板が整流格子のような構造となっており、流体の通過は自由である。蓄熱板6(蓄熱器7)の両端に熱交換器を構成する金網8,9が設けられている。
一方、断熱管部3の両端に面する管本体部4、5の端部近傍の管壁には熱交換用配管10,11が埋め込まれており、図示するように閉端側の熱交換用配管10を高温ガスが、開端側の熱交換用配管11を低温流体(例えば冷媒)として、冷却液又は冷却ガスが流れ、金網8,9を一定温度に加熱、冷却する。従って、金網8が高温側熱交換器を構成し、金網9が低温側熱交換器を構成している。前記断熱管部3の中央が管2の管長Lの中央、即ちL/2に位置し、金網8,9が中央部に対して対称に近接して配置されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a basic form of a thermoacoustic generator used in a fluid vibration or fluid noise suppression device of the present invention, and FIG. 2 is a schematic diagram of its operation. The thermoacoustic generator 1 of this embodiment is a thermoacoustic generator with one end open and the other end closed. In the thermoacoustic generator, a heat exchanger as a high and low heat source is placed close to the inside of the pipe, and a rectifying regenerator having a rectifying action and a heat storage effect in one direction is placed between the heat exchangers. By forming a temperature gradient, there is a certain phase difference with respect to the fluid motion in the transfer of heat between the fluid passing through the rectifying regenerator and both the high and low heat sources, and the thermal energy from the heat source is fluid vibration or fluid It appears as mechanical energy called sound. The thermoacoustic generator 1 according to the present embodiment includes a heat-insulating tube portion 3 made of a heat insulating material at a central portion, and both ends of the thermoacoustic generating device 1 are formed of tube ends 2 and 5 that are closed at one end. Yes. A large number of heat storage plates 6 are filled in the heat insulating tube portion 3 in parallel with the tube axis direction to form a heat storage unit 7. In the heat accumulator 7, a large number of heat storage plates arranged in parallel have a structure like a rectifying grid, and fluid can freely pass therethrough. Wire meshes 8 and 9 constituting a heat exchanger are provided at both ends of the heat storage plate 6 (heat storage 7).
On the other hand, heat exchange pipes 10 and 11 are embedded in the pipe wall near the ends of the pipe main body parts 4 and 5 facing both ends of the heat insulation pipe part 3, and as shown in the drawing, for heat exchange on the closed end side. The pipe 10 is heated and the open-end heat exchange pipe 11 is used as a low-temperature fluid (for example, a refrigerant), and a coolant or a cooling gas flows to heat and cool the metal meshes 8 and 9 to a constant temperature. Accordingly, the wire mesh 8 constitutes a high temperature side heat exchanger, and the wire mesh 9 constitutes a low temperature side heat exchanger. The center of the heat insulating pipe part 3 is located at the center of the pipe length L of the pipe 2, that is, L / 2, and the metal meshes 8 and 9 are arranged symmetrically and close to the central part.

なお、熱交換用配管は、上記構成に限らず適宜構成することができる。例えば、熱交換器は、管断面に一様に存在しながらもガスの通過を妨げない構造であればよく、上記のようにメッシュ状の金網8を管壁に固定して管壁を通る熱交換器から熱の授受がされる構造でも良いし、細管をメッシュ状に管断面に配置して、細管内をそれぞれ高温ガスと低温流体を通して管内を通過する空気と熱交換するようにしてもよい。何れにせよ、外部の高温熱源の熱を管内ガスに伝達し、管内ガスから熱を奪って外部の低温熱源に捨てる熱の伝達経路が確立され、管内ガスへの熱交換は管断面一様でかつ管軸方向に極めて短い区間で発生することが要件とされる。熱交換器の間には上記のように整流作用を兼ねた蓄熱器を設置するのが望ましいが、後述するように蓄熱器は設置しなくてもよい。 The heat exchanging pipe is not limited to the above-described configuration, and can be appropriately configured. For example, the heat exchanger only needs to have a structure that is uniformly present in the cross section of the tube but does not hinder the passage of gas. As described above, the mesh wire net 8 is fixed to the tube wall and the heat passing through the tube wall is fixed. A structure in which heat is exchanged from the exchanger may be used, or a thin tube may be arranged in a cross section of the tube in a mesh shape so that heat is exchanged with air passing through the tube through a hot gas and a cold fluid, respectively. . In any event, to transfer heat outside the high-temperature heat source in the tube a gas, the heat transfer path to abandon the outside of the cold heat source takes heat is established from tube gas, heat exchange into the tube gas tube cross section uniform And it must be generated in a very short section in the tube axis direction. It is desirable to install a heat accumulator that also functions as a rectifier as described above between the heat exchangers, but it is not necessary to install a heat accumulator as will be described later.

本実施形態の熱音響発生装置1は、以上のように構成され、高温ガスと低温流体はそれぞれ管本体部4、5の管壁と熱交換して、蓄熱板6に接するそれぞれ金網からなる高温側熱交換器(高温側熱交換器)8、低温熱源(低温側熱交換器)9を所定の温度に保つ。高温ガスと低温流体との温度差が増加すると夫々に該当する金網の温度差が発生し、管軸に沿って蓄熱器7に温度勾配が発生する。蓄熱器7を通過する空気が管軸方向に周期変動すると、蓄熱板と蓄熱板に挟まれた領域にある空気との間の熱流速変動と空気の圧力変動とが所定の位相関係となり、熱エネルギーの一部が力学的エネルギーに変換されて、圧力変動が時間と共に増加する現象を引き起こす。圧力変動は開放端で速度変動の腹を形成し、閉端で圧力変動の腹を形成する。高温ガスと低温流体との温度差が低下すると、高温熱源から低温熱源への熱輸送量が減少して力学的エネルギー生成量も減少するため、前記圧力変動、速度変動が停止する、つまり気柱振動が止む。低温流体温度を一定に保った場合、高温ガスを暖めれば気柱振動が励起され、高温ガスを暖める事を止めると気柱振動は次第に弱くなり、やがて止む。このように、管内で励起される気柱振動が発生するには、高低熱源間の温度差に所定の閾値が存在する。したがって、その閾値によって自立的にオン・オフ機能を有するため、後述する実施例で詳述するように、高温熱源及び低温熱源に導入する流体温度の変化に追従して、特別なセンサーや演算装置を付加しなくても当該装置の作動範囲を自動的に調節することができる。即ち、高温熱源及び低温熱源に導入する流体温度の変化に追従する自律機能を発揮させることが出来る。したがって、熱源に導入する流体として、当該装置を適用する流体機械等の駆動によって生じる排ガス等を利用すれば、流体機械等の負荷(出力)によって排ガス温度が相違することから、例えば始動直後のみ作動するとか、逆に始動時は作動せず定常時のみに作動するとか、負荷に応じて自動的に作動させることが出来る。   The thermoacoustic generator 1 of the present embodiment is configured as described above, and the high-temperature gas and the low-temperature fluid exchange heat with the tube walls of the tube main body portions 4 and 5, respectively, and are made of high-temperature metal wires that are in contact with the heat storage plate 6. The side heat exchanger (high temperature side heat exchanger) 8 and the low temperature heat source (low temperature side heat exchanger) 9 are kept at a predetermined temperature. When the temperature difference between the high temperature gas and the low temperature fluid increases, a corresponding temperature difference of the wire mesh is generated, and a temperature gradient is generated in the heat accumulator 7 along the tube axis. When the air passing through the heat accumulator 7 periodically fluctuates in the tube axis direction, the heat flow fluctuation between the heat storage plate and the air in the region sandwiched between the heat storage plates and the air pressure fluctuation have a predetermined phase relationship, Part of the energy is converted into mechanical energy, causing a phenomenon in which pressure fluctuations increase with time. The pressure fluctuation forms an antinode of speed fluctuation at the open end and an antinode of pressure fluctuation at the closed end. When the temperature difference between the hot gas and the cold fluid decreases, the amount of heat transport from the high temperature heat source to the low temperature heat source decreases and the amount of mechanical energy generation also decreases. Vibration stops. When the temperature of the low temperature fluid is kept constant, air column vibrations are excited if the high temperature gas is heated, and when the high temperature gas is stopped, the air column vibrations gradually weaken and eventually stop. Thus, in order to generate the air column vibration excited in the tube, there is a predetermined threshold for the temperature difference between the high and low heat sources. Therefore, since it has an on / off function autonomously depending on the threshold value, as will be described in detail in the embodiments to be described later, a special sensor or arithmetic device follows a change in the fluid temperature introduced into the high temperature heat source and the low temperature heat source. Even without adding, the operating range of the device can be automatically adjusted. That is, an autonomous function that follows changes in the temperature of the fluid introduced into the high-temperature heat source and the low-temperature heat source can be exhibited. Therefore, if exhaust gas generated by driving a fluid machine or the like to which the device is applied is used as a fluid to be introduced into the heat source, the exhaust gas temperature differs depending on the load (output) of the fluid machine or the like. On the contrary, it does not operate at the time of starting but operates only at the steady state, or can be automatically operated according to the load.

図2〜図6は、熱音響発生装置の上記作用原理をより詳細に説明するための模式図である。熱音響発生器における気柱振動とは、加振源の代わりに高温又は低温熱源によって引き起こされる流体振動を言う。熱源は内部で時間的に一定の熱量を放出又は吸収するにも関わらず、熱源を取り巻く流体の圧力変化と熱源表面の熱流束変化とが適度な位相関係となると、流体振動が促進されたり、抑制されたりする。図2には基本次数つまり最も波長の長い気柱振動を励起する一端開他端閉管内に置かれる低温熱源と高温熱源の例を示す。低温熱源と高温熱源の間には急峻な温度勾配が形成されるが、ここに蓄熱器7が設置されているので、隣り合う蓄熱板6にはさまれた領域にある流体は蓄熱板6から熱を受け取る過程と蓄熱板に熱を放出する過程を繰り返し、流体振動の駆動源となる。 2-6 is a schematic diagram for demonstrating in detail the said principle of operation of a thermoacoustic generator. Air column vibration in a thermoacoustic generator refers to fluid vibration caused by a high temperature or low temperature heat source instead of a vibration source. Although the heat source releases or absorbs a certain amount of heat in time internally, when the pressure change of the fluid surrounding the heat source and the heat flux change of the heat source surface have an appropriate phase relationship, fluid vibration is promoted, It is suppressed. FIG. 2 shows an example of a low-temperature heat source and a high-temperature heat source placed in one end open / closed end closed tube that excites the fundamental order, that is, the longest wavelength air column vibration. Although steep temperature gradient between the cold heat source and a high temperature heat source is formed, since here the heat accumulator 7 is installed, the fluid in sandwiched engagement cormorants thermal storage plate 6 adjacent area heat storage plate The process of receiving heat from 6 and the process of releasing heat to the heat storage plate are repeated to provide a driving source for fluid vibration.

流体振動が促進又は抑制される機構をおおまかに説明すると次の通りである。図3は、低温熱源(低温側熱交換器9)、高温熱源(高温側熱交換器8)、及び蓄熱板6を二組示したものである。管内に振動が励起しない状態でも管内には圧力と粒子速度の微小な変動が存在する。蓄熱板6表面の熱流束も蓄熱板周囲流体の状態によって変動する。蓄熱板表面極近傍は境界層近傍領域であり蓄熱板6表面からの熱伝導により急速に温度変化が起こる。一方、蓄熱板表面からある程度離れた中央部主流領域は、音波の主な断熱的伝播経路となっている。この領域と境界層近傍領域との熱の授受は主に熱伝導によるが、拡散に要する時間が前記の場合と異なり、無視できない。そのため、境界層近傍領域と同じ温度即ち蓄熱板表面と同じ温度となるには時間遅れが生ずる。このことは、巨視的には蓄熱板間を占める主な流体と蓄熱板との間の熱の移動、即ち熱流束には、流体の粒子運動に対して時間遅れ或いは位相遅れが存在する事を意味する。   The mechanism for promoting or suppressing fluid vibration is roughly described as follows. FIG. 3 shows two sets of a low temperature heat source (low temperature side heat exchanger 9), a high temperature heat source (high temperature side heat exchanger 8), and a heat storage plate 6. Even in the state where no vibration is excited in the tube, there are minute fluctuations in pressure and particle velocity in the tube. The heat flux on the surface of the heat storage plate 6 also varies depending on the state of the fluid around the heat storage plate. The vicinity of the heat storage plate surface pole is the boundary layer vicinity region, and the temperature change rapidly occurs due to heat conduction from the surface of the heat storage plate 6. On the other hand, the central mainstream region that is some distance away from the surface of the heat storage plate is a main adiabatic propagation path of sound waves. Although heat transfer between this region and the region near the boundary layer is mainly due to heat conduction, the time required for diffusion is different from the above case and cannot be ignored. Therefore, there is a time delay for the temperature to be the same as that in the vicinity of the boundary layer, that is, the same temperature as the heat storage plate surface. Macroscopically, this means that the heat transfer between the main fluid occupying between the heat storage plates and the heat storage plate, that is, the heat flux, has a time lag or phase lag with respect to the fluid particle motion. means.

仮に、主流領域の粒子速度が高温熱源側に大きい時には、低温側の流体が蓄熱板6間の領域に進入するため、低温熱源、高温熱源及び蓄熱板周囲の温度分布は図4のように変化し、定常温度勾配に比べて低温側に緩やかで高温側に急峻となり、全体的に定常温度分布よりも低い温度分布が形成される。この時、主流流体温度は蓄熱板表面温度よりも低くなるので、蓄熱板6から流体への熱流束が発生する。しかし、前記の位相遅れの理由により主流流体の粒子速度が最大となってから時間遅れを伴って熱流束が最大となる。   If the particle velocity in the mainstream region is high on the high temperature heat source side, the low temperature side fluid enters the region between the heat storage plates 6, so the temperature distribution around the low temperature heat source, the high temperature heat source, and the heat storage plate changes as shown in FIG. However, compared to the steady temperature gradient, the temperature is gentle on the low temperature side and steep on the high temperature side, and a temperature distribution lower than the steady temperature distribution is formed as a whole. At this time, since the mainstream fluid temperature is lower than the surface temperature of the heat storage plate, a heat flux from the heat storage plate 6 to the fluid is generated. However, the heat flux is maximized with a time delay after the particle velocity of the mainstream fluid is maximized due to the phase delay.

反対に、主流領域の粒子速度が低温熱源側に大きい時(高温熱源に向かう方向を正とすると負方向に大きい時)には、高温側の流体が蓄熱板間の領域に進入するため、低温熱源、高温熱源及び蓄熱板周囲の温度分布は図5のように変化し、定常温度勾配に比べて低温側に急峻で高温側に緩やかとなり、全体的に定常温度分布よりも高い温度分布が形成される。この時、主流流体温度は蓄熱板表面温度よりも高くなるので、流体から蓄熱板への熱流束が発生する。しかし、前記の位相遅れの理由により主流流体の粒子速度が負方向に最大となってから時問遅れを伴って熱流束が最大となる。   On the other hand, when the particle velocity in the mainstream region is large on the low temperature heat source side (when the direction toward the high temperature heat source is positive and large in the negative direction), the fluid on the high temperature side enters the region between the heat storage plates. The temperature distribution around the heat source, high-temperature heat source, and heat storage plate changes as shown in Fig. 5, and is steeper on the low temperature side and gentle on the high temperature side than the steady temperature gradient, and the overall temperature distribution is higher than the steady temperature distribution. Is done. At this time, since the mainstream fluid temperature becomes higher than the heat storage plate surface temperature, a heat flux from the fluid to the heat storage plate is generated. However, the heat flux is maximized with a time delay after the particle velocity of the mainstream fluid is maximized in the negative direction due to the phase delay.

蓄熱板6に挟まれた領域にある主要な流体の素粒子速度、圧力、及び受け取る熱流束の位相関係を整理すると図6に示す事が出来る。一端開他端閉の管内に形成される最低次数の定在波は、開放端から管長の半分の距離では粒子速度が圧力に対して90度進んでいる事を考慮すると熱流束は圧力に対して熱源は90度以内の位相にある事がわかる。この時、流体の圧力が定常圧力よりも僅かに高い時に蓄熱板表面からの熱流束が定常熱流束よりも僅かに多く、周囲流体の圧力が定常圧力よりも僅かに低い時に蓄熱板表面からの熱流束が定常熱流束よりも僅かに少ない、という時間的関係(以降、位相関係という)が満たされる。つまり、高低両熱源、蓄熱板、及び蓄熱板に挟まれた流体は内燃機関と同様な行程を行うので熱源からの熱エネルギーが流体振動或いは流体音という機械的エネルギーとなって現れるのである。   FIG. 6 shows the phase relationship between the elementary fluid velocity, the pressure, and the received heat flux of the main fluid in the region sandwiched between the heat storage plates 6. The standing wave of the lowest order formed in the tube with one end open and the other end is closed, considering that the particle velocity is advanced 90 degrees with respect to the pressure at a distance of half the tube length from the open end. It can be seen that the heat source is in phase within 90 degrees. At this time, when the fluid pressure is slightly higher than the steady pressure, the heat flux from the heat storage plate surface is slightly higher than the steady heat flux, and when the surrounding fluid pressure is slightly lower than the steady pressure, the heat flux from the heat storage plate surface The temporal relationship (hereinafter referred to as phase relationship) that the heat flux is slightly less than the steady heat flux is satisfied. That is, since the fluid sandwiched between the high and low heat sources, the heat storage plate, and the heat storage plate performs the same process as the internal combustion engine, the heat energy from the heat source appears as mechanical energy such as fluid vibration or fluid sound.

以上は、一端開他端閉の管の場合であるが、両端開の管から構成される熱音響発生装置20にもできる。図7は、両端開の管21に適用した場合の作動説明のための模式図である。前記実施形態と同様な部分は同様な符号を付し、詳細な説明は省略し、相違点のみ説明する。両端開放管21で最低次数のモードを考慮すると、管中央が圧力の腹でかつ速度の節となる事から、開放端から管長Lの1/4の位置に開放端から中央に向かって低温熱源(低温側熱交換器)22、高温熱源(高温側熱交換器)23の順に熱源を配置し、その間に蓄熱器24を配置すればよい。図7は高低両熱源の組をL/4、3L/4の位置に二つ配置した場合の熱音響発生装置20の模式図(a)と、その時に空気が受け取る熱流速変動と空気の圧力変動の位相関係をそれぞれの高低熱源の位置に対応して(b)、(c)に示している。そのときの圧力変動と速度変動の最低次モードを図8に示す。図中、実線25は圧力変動を、破線26は熱流速変動をそれぞれ示す。いずれの場合も、熱流束変動と圧力変動の位相差は90度以内にあるので、熱機関を形成し、気柱振動が励起される。片方にのみ配置しても気柱振動は励起される。熱源を使って、管内に発生した気柱振動を積極的に抑制する事もできる。   The above is the case of a tube with one end open and the other end closed, but the thermoacoustic generator 20 composed of a tube with both ends open can also be used. FIG. 7 is a schematic diagram for explaining the operation when applied to the tube 21 having both ends open. Portions similar to those of the above-described embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and only differences are described. Considering the lowest order mode in the open tube 21 at both ends, the center of the tube is an antinode of pressure and a node of speed. Therefore, a low-temperature heat source from the open end to the position of 1/4 of the tube length L toward the center from the open end. A heat source may be arranged in the order of (low temperature side heat exchanger) 22 and high temperature heat source (high temperature side heat exchanger) 23, and a heat accumulator 24 may be arranged therebetween. FIG. 7 is a schematic diagram (a) of the thermoacoustic generator 20 in which two sets of high and low heat sources are arranged at positions L / 4 and 3L / 4, and the heat flow rate fluctuation and air pressure received by the air at that time. The phase relationship of the fluctuation is shown in (b) and (c) corresponding to the positions of the high and low heat sources. FIG. 8 shows the lowest order mode of pressure fluctuation and speed fluctuation at that time. In the figure, a solid line 25 indicates pressure fluctuation, and a broken line 26 indicates heat flow speed fluctuation. In any case, since the phase difference between the heat flux fluctuation and the pressure fluctuation is within 90 degrees, a heat engine is formed and the air column vibration is excited. Even if it is arranged only on one side, the air column vibration is excited. By using a heat source, air column vibrations generated in the pipe can be actively suppressed.

図9は、他の実施形態に係る熱音響発生装置30であり、高低両熱源の配置を図2と反対にした場合、つまり管31の開放端から閉端に向かって高温熱源32、低温熱源33の順に配置した場合である。この状態では、蓄熱器34を通過する空気が管軸方向に振動した時の熱流束変動が図6、図7で説明した位相と逆位相となり、圧力変動と熱流束変動の位相関係は図10に示すごとく圧力の高い時に熱が奪われ、圧力の低い時に熱が供給される熱サイクルを構成する。これは仕事をして熱を奪う事に相当し、管内の力学的エネルギーが減少し、気柱振動の成長が抑制される結果となる。この振動抑制を両端開放管で実現するための高低両熱源配置を図11(a)に示し、そのときの管端からL/4の位置及び3L/4の位置での圧力変動と熱流速変動の位相関係を同図(b)に示す。   FIG. 9 shows a thermoacoustic generator 30 according to another embodiment. When the arrangement of the high and low heat sources is opposite to that in FIG. 2, that is, the high temperature heat source 32 and the low temperature heat source from the open end to the closed end of the tube 31. This is the case of arranging in the order of 33. In this state, the heat flux fluctuation when the air passing through the heat accumulator 34 vibrates in the tube axis direction is opposite to the phase described in FIGS. 6 and 7, and the phase relationship between the pressure fluctuation and the heat flux fluctuation is as shown in FIG. As shown in the figure, a heat cycle is constructed in which heat is taken away when the pressure is high and heat is supplied when the pressure is low. This is equivalent to taking heat away from work, resulting in a decrease in mechanical energy in the tube and suppression of air column vibration growth. FIG. 11A shows an arrangement of high and low heat sources for realizing this vibration suppression with both ends open pipes, and pressure fluctuation and heat flow fluctuation at positions L / 4 and 3L / 4 from the pipe end at that time. The phase relationship is shown in FIG.

図12は、高温熱源及び低温熱源間に蓄熱器を設けてない場合の熱音響発生装置の基本形態を示している。本実施形態の熱音響発生装置40では、一端開他端閉の管41の中央付近に開放端から閉端に向かって低温熱源(熱交換器)42と高温熱源(熱交換器)43が隣接して設置されている。両熱源は管断面に一様に存在しながらもガスの通過を妨げない構造となっており、例えば、図示のようにメッシュ状の金網が管壁に固定されていて管壁を通る熱交換器から熱の授受がされる構造でもよいし、細管をメッシュ状に管断面に配置して、細管内をそれぞれ高温ガスと低温流体を通して管内を通過する空気との熱交換してもよい。高温熱源側に微細火炎バーナーを配置してもよい。いずれにせよ、外部の高温熱源の熱を管内ガスに伝達し、当該管内ガスから熱を奪って外部の低温熱源に捨てる熱の伝達経路が確立され、管内ガスへの熱交換は管断面内一様でかつ管軸方向極めて短い区間で発生する事が要件とされる。管断面形状は任意である。   FIG. 12 shows a basic form of a thermoacoustic generator when no heat accumulator is provided between the high temperature heat source and the low temperature heat source. In the thermoacoustic generator 40 of this embodiment, a low-temperature heat source (heat exchanger) 42 and a high-temperature heat source (heat exchanger) 43 are adjacent to each other in the vicinity of the center of the tube 41 that is open at one end and the other end from the open end toward the closed end. Installed. Both heat sources have a structure that does not prevent the passage of gas while being uniformly present in the cross section of the tube, for example, a heat exchanger that passes through the tube wall with a mesh metal mesh fixed to the tube wall as shown in the figure The structure may be such that heat is transferred from or to the tube, or the thin tubes may be arranged in a cross section of the tube in a mesh shape to exchange heat with the air passing through the tubes through the hot gas and the cold fluid, respectively. A fine flame burner may be arranged on the high temperature heat source side. In any case, a heat transfer path is established in which heat from the external high-temperature heat source is transferred to the gas in the pipe, and heat is taken from the gas in the pipe and discarded to the external low-temperature heat source. It must be generated in a very short section in the pipe axis direction. The tube cross-sectional shape is arbitrary.

以下、上記熱音響発生装置を利用した流体機械の流体振動若しくは流体騒音を抑制する流体振動抑制装置又は流体騒音抑制装置の実施例を図面を基に詳細に説明する。
図13は、燃焼器における燃焼振動を抑制するのに適用した実施例である。燃焼器内部に発生する燃焼振動のうち、熱励起による振動は、バーナー付近で温度勾配が急激に増加している部分が発生源である。前述の熱による気柱振動発生原理と同様にバーナー近傍温度勾配部分でガスが圧力変動とともに周期変動すると高温熱源から熱エネルギーを供給されて熱機関を形成する。燃焼振動発生源である熱機関の作用を小さくする(具体的には熱流束を小さくするとか、圧力変動に対する熱流束変動の位相を乱す若しくは圧力変動と熱流束変動との相関を弱めるなどが該当する)ならば、燃焼振動抑制に繋がる。
燃焼部分からの熱流束を下げるには温度勾配を緩やかにする事が一つの方法である。温度勾配を緩やかにするには、バーナー上流にある比較的低温の未燃ガスと高温ガスとの混合を促進する事が効果的である。本発明に係る気柱振動を励起する熱音響発生装置の管の開口部をバーナー上流付近に設置する事で、気柱振動に伴う開口部の粒子速度変動が温度勾配部分周辺の混合を促進し、熱伝達率が上昇する結果、温度勾配を緩やかとする事が期待できる。温度勾配がある部分のガスの混合により、ガスの圧力変動と受熱熱流束変動の相関を乱し、熱機関として作用する事を妨げる効果も期待できる。
Hereinafter, an embodiment of a fluid vibration suppression device or a fluid noise suppression device that suppresses fluid vibration or fluid noise of a fluid machine using the thermoacoustic generator will be described in detail with reference to the drawings.
FIG. 13 shows an embodiment applied to suppress combustion vibration in a combustor. Of the combustion vibration generated in the combustor, the vibration due to thermal excitation is generated from the portion where the temperature gradient increases rapidly in the vicinity of the burner. Similar to the above-described heat column vibration generation principle, when the gas periodically fluctuates with pressure fluctuations in the temperature gradient portion near the burner, heat energy is supplied from a high-temperature heat source to form a heat engine. Reduce the action of the heat engine that is the combustion vibration source (specifically, reduce the heat flux, disturb the phase of the heat flux fluctuation relative to the pressure fluctuation, or weaken the correlation between the pressure fluctuation and the heat flux fluctuation) If so, it will lead to suppression of combustion vibration.
One way to reduce the heat flux from the combustion part is to moderate the temperature gradient. In order to moderate the temperature gradient, it is effective to promote the mixing of the relatively low temperature unburned gas upstream of the burner with the high temperature gas. By installing the opening of the tube of the thermoacoustic generator for exciting the air column vibration according to the present invention near the upstream of the burner, the particle velocity fluctuation of the opening accompanying the air column vibration promotes mixing around the temperature gradient portion. As a result of the increase in the heat transfer coefficient, it can be expected that the temperature gradient becomes gentle. By mixing the gas in the part where there is a temperature gradient, the effect of disturbing the correlation between the pressure fluctuation of the gas and the fluctuation of the heat receiving heat flux can be expected.

管内の熱源の熱交換器に供給するガスについては、高温側は燃焼ガスを低温側には外気又は燃焼器内の未燃ガスを導入する事と燃焼器自身の動作に呼応して当該振動騒音抑制装置が作動、停止することとなる。即ち、低温側熱交換器に未燃ガスを導入すると、燃焼器始動直後には高低両熱源の温度差が大きいため、気柱振動は強く励起されて前記混合作用とそれに伴う振動騒音抑制作用は大きくなる。燃焼器始動後時間が経過すると熱伝導等によって燃焼器内部の温度が上昇し未燃焼ガス温度も上昇するため、高低両熱源の温度差が低下し、振動騒音抑制作用が弱まり閾値を下回ると作用が停止する。このように低温ガスを選択すると、燃焼振動が始動時に著しい場合には、振動が発生する時にのみ抑制効果が働き、振動が小さい時には抑制効果が下がり気柱振動自身が燃焼性能に悪影響を及ぼさないという特徴がある。   As for the gas supplied to the heat exchanger of the heat source in the pipe, the vibration noise in response to the operation of the combustor itself by introducing the combustion gas on the high temperature side and the outside air or unburned gas in the combustor on the low temperature side. The suppression device will be activated and deactivated. That is, when unburned gas is introduced into the low-temperature side heat exchanger, the temperature difference between the high and low heat sources is large immediately after the combustor is started. growing. When the time after combustor startup elapses, the temperature inside the combustor rises due to heat conduction, etc., and the temperature of the unburned gas also rises. Stops. When the low temperature gas is selected in this way, if the combustion vibration is significant at the start, the suppression effect works only when the vibration occurs, and when the vibration is small, the suppression effect is lowered and the air column vibration itself does not adversely affect the combustion performance. There is a feature.

本実施例は、以上の原理に基くもので、ガスタービンの燃焼器は、近年窒素酸化物(NOx)の排出を抑制するために、極微細火炎を使って均一な燃焼を行なうようにすることが行なわれているが、その場合、バーナー近傍で上流側との間に急峻な温度勾配が形成される。この急峻な温度勾配が原因となって燃焼器内部で気柱振動に相当する燃焼振動が発生する。本実施例では、当該燃焼振動を抑制するために、前記した熱音響発生装置47の管開口端を微細火炎46付近に位置するように設置し、同図(b)に示すように、管48内の低温熱源に繋がる熱交換部49に例えば外気或いは圧縮機抽気等を導入し、高温熱源へ繋がる熱交換部50には燃焼ガスを導入する。   The present embodiment is based on the above principle, and in order to suppress the emission of nitrogen oxides (NOx) in recent years, the combustor of the gas turbine performs uniform combustion using a very fine flame. In this case, a steep temperature gradient is formed between the vicinity of the burner and the upstream side. Due to this steep temperature gradient, combustion vibration corresponding to air column vibration is generated inside the combustor. In the present embodiment, in order to suppress the combustion vibration, the tube opening end of the thermoacoustic generator 47 is installed so as to be positioned near the fine flame 46, and as shown in FIG. For example, outside air or compressor bleed air is introduced into the heat exchanging portion 49 connected to the low temperature heat source, and combustion gas is introduced into the heat exchanging portion 50 connected to the high temperature heat source.

以上のように構成することによって、燃焼器45が始動して燃焼温度が上昇すると当該装置の高低熱源の温度差が上昇して、管内に気柱振動が成長する。気柱振動は開口部で粒子速度の腹となるため、これを火炎近傍に設置する事で火炎上流の低温ガスと火炎近傍の高温ガスの攪拌を促進して、火炎近傍の温度勾配を緩やかにする効果が期待できる。攪拌作用は、火炎近傍の温度勾配が緩やかにして熱流束を弱める作用、及び圧力変動と熱流束変動の位相関係を熱機関として作用する位相関係からずらす作用がある。その結果、火炎近傍の温度勾配部分は熱機関としての働きが妨害され、熱エネルギーから力学的エネルギーへの変換が不十分となり、燃焼振動の成長が抑制される。火炎近傍に粒子速度変動を附加する事は火炎不安定化に繋がる事が懸念されるが、当該装置単体では火炎不安定を及ぼさない程度の細管を多数配置するとか、管長の異なる管を多数配置するとかして複数の粒子速度変動を励起して、燃焼振動発生の源にのみ作用する事で、燃焼不安定を避けることができる。   With the above configuration, when the combustor 45 is started and the combustion temperature rises, the temperature difference between the high and low heat sources of the apparatus rises, and air column vibration grows in the pipe. Since air column vibration becomes an antinode of particle velocity at the opening, it is installed in the vicinity of the flame to promote the stirring of the low temperature gas upstream of the flame and the high temperature gas near the flame, and gradually reduce the temperature gradient near the flame. Can be expected. The stirring action has an action of weakening the heat flux by making the temperature gradient near the flame gentle, and an action of shifting the phase relation between the pressure fluctuation and the heat flux fluctuation from the phase relation acting as a heat engine. As a result, the temperature gradient portion in the vicinity of the flame hinders the function as a heat engine, the conversion from thermal energy to mechanical energy becomes insufficient, and the growth of combustion vibration is suppressed. Adding particle velocity fluctuations in the vicinity of the flame may lead to flame instability, but the device itself may have many thin tubes that do not cause flame instability, or many tubes with different tube lengths. As a result, combustion instability can be avoided by exciting a plurality of particle velocity fluctuations and acting only on the source of combustion oscillation.

攪拌の効果は燃焼ガス温度が上がる程、つまり燃焼器の負荷が増える程増加する。その結果、燃焼器内部では、熱音響発生装置を設置しない場合に比べて急峻な温度勾配が緩和され、燃焼振動を抑制される。したがって、本実施例によれば、管と熱源という簡易構造の熱音響発生装置を設置するだけで、効果的に燃焼器の燃焼振動を抑制することができると共にNOxの低減化も期待できる。しかも、熱音響発生装置を燃焼器への適用に際して燃焼器形状を殆ど変える事がないので、従来の燃焼器に容易に適用可能である。
以上は、ガスタービンなどの燃焼器を例に説明したが、同様な効果は、ボイラーの燃焼振動やロケット燃焼器の不安定燃焼などにも適用できる。また、後流と干渉して発生する回転機械騒音や超音速ノズルから発生する衝撃波関連騒音の低減ついても、原因となる渦を小さい多数の渦に分割したり、壁面近傍の運動量促進による剥離を防止したりする事で騒音発生源を弱め、もって騒音発生を抑制する事ができる。
The effect of stirring increases as the combustion gas temperature increases, that is, as the load on the combustor increases. As a result, a steep temperature gradient is relieved in the combustor compared to the case where no thermoacoustic generator is installed, and combustion vibration is suppressed. Therefore, according to the present embodiment, it is possible to effectively suppress the combustion vibration of the combustor and reduce NOx only by installing a thermoacoustic generator having a simple structure including a tube and a heat source. Moreover, since the shape of the combustor is hardly changed when the thermoacoustic generator is applied to the combustor, it can be easily applied to a conventional combustor.
The above description has been made by taking a combustor such as a gas turbine as an example, but the same effect can be applied to combustion vibration of a boiler, unstable combustion of a rocket combustor, and the like. In addition, to reduce rotating machine noise generated by interference with the wake and shock wave related noise generated from supersonic nozzles, the cause vortex is divided into a large number of small vortices, and separation by promoting momentum near the wall surface is performed. By preventing it, the noise source can be weakened and the noise generation can be suppressed.

図14は、曲がり管直後の圧縮機や航空機翼面など、曲がり部の後ろにあるインペラに不均一流れが流入して故障や騒音、あるいは揚力低下を引き起こす現象の発生を防止するために、曲がり管部に本発明の熱音響発生装置を適用した実施例を示す。図14は曲がり管55の直後に圧縮機またはポンプ等のインペラ56を設置してある場合の模式図であり、曲がり部の直後では流れの剥離が生じるので、不均一流れや剥離渦が後ろにあるインペラ56に衝突すると大きな干渉音が発生し、場合によっては回転ぶれを起し破損に至ることがある。そこで、本実施例では、本発明の熱音響発生装置57を曲がり部やその直前に配置して、機械装置の負荷に応じて熱音響振動を発生させて、剥離部の運動量輸送を促進することによって、渦や不均一流れの発生を抑制するようにした。   FIG. 14 shows a case where a bend is made in order to prevent the occurrence of a failure, noise, or a phenomenon that causes a reduction in lift due to a non-uniform flow flowing into an impeller behind the bend, such as a compressor or aircraft wing surface immediately after the bend. The Example which applied the thermoacoustic generator of this invention to the pipe part is shown. FIG. 14 is a schematic diagram in the case where an impeller 56 such as a compressor or a pump is installed immediately after the bent pipe 55. Since flow separation occurs immediately after the bent portion, uneven flow and separation vortex are behind. When an impeller 56 collides with the impeller 56, a large interference sound is generated. Therefore, in this embodiment, the thermoacoustic generator 57 of the present invention is arranged at the bent portion or immediately before it to generate thermoacoustic vibration according to the load of the mechanical device, thereby promoting the momentum transport of the peeling portion. To suppress the generation of vortices and uneven flow.

熱音響発生装置57は、図示の開口部、即ち粒子速度運動の腹となる部分を剥離位置に設置し、開口部側に位置する低温熱源58の熱交換器に低温流体を導入し、高温熱源59の熱交換器に機械装置の排熱を導入し、気柱振動を励起するようにした。熱音響発生装置の開口部が曲がり管の流体流れ場に面する位置には、穴明き板60又は柔軟構造膜を設置し、流体を加振するようにした。以上のように熱音響発生装置を曲がり管の曲がり部又はその直前に設置することによって、熱音響発生装置で発生した気柱振動が流体を加振し、流れ場の速度勾配が大きいところでの運動量輸送を促進し、剥離を防止すると共に、大規模渦が発生するとそれを破砕して微細渦にする作用効果がある。それにより、渦や不均一流れが後流側にあるインペラと干渉して振動騒音を発生することを抑制することができる。   The thermoacoustic generator 57 installs the illustrated opening, that is, the part that becomes the antinode of the particle velocity motion at the peeling position, introduces a low temperature fluid into the heat exchanger of the low temperature heat source 58 located on the opening side, The exhaust heat of the mechanical device was introduced into 59 heat exchangers to excite the air column vibration. At the position where the opening of the thermoacoustic generator faces the fluid flow field of the bent pipe, a perforated plate 60 or a flexible structure film is installed to excite the fluid. As described above, by installing the thermoacoustic generator at the bent portion of the bent tube or immediately before it, the air column vibration generated by the thermoacoustic generator vibrates the fluid, and the momentum where the velocity gradient of the flow field is large It has the effect of promoting transportation, preventing separation, and crushing large-scale vortices into fine vortices. Thereby, it is possible to suppress the generation of vibration noise due to the vortex and the non-uniform flow interfering with the impeller on the downstream side.

上記液実施例の応用例として、ロケットモーターのポンプに適用した場合、高温熱源に、燃焼ガスを導入し、低温熱源に液体燃料を導入すると、低負荷時は燃焼ガスの温度が低いため高温熱源と低温熱源の温度差が小さく気柱振動は発生しない。低負荷時はポンプの始動性などが重要であるため、気柱振動はかえって不要なので低負荷時に熱音響発生装置が作動しないのは好都合である。一方、高負荷時になると燃焼ガス温度が上昇するため、低温熱源と高温熱源の温度差が大きくなり、気柱振動が発生する。高負荷時は流量も多く、剥離の影響はインペラの損壊につながるので熱音響発生装置の動作は、それらの剥離の影響を防止するために好都合である。このように、本発明では、高温熱源、低温熱源を適用する機械装置から採用することによって、特別な制御機構を必要とせずに機械装置の負荷に応じて自動的にあるいは能動的に熱音響振動を発生させて、剥離部の運動量輸送を促進することができる。   As an application example of the above liquid embodiment, when applied to a rocket motor pump, when a combustion gas is introduced into a high-temperature heat source and liquid fuel is introduced into a low-temperature heat source, the temperature of the combustion gas is low at low loads, so the high-temperature heat source The temperature difference between the low-temperature heat source and the air column vibration is small, and no air column vibration occurs. Since the startability of the pump is important when the load is low, air column vibration is not necessary, so it is convenient that the thermoacoustic generator does not operate when the load is low. On the other hand, when the load is high, the combustion gas temperature rises, so the temperature difference between the low-temperature heat source and the high-temperature heat source becomes large, and air column vibration occurs. The operation of the thermoacoustic generator is advantageous in order to prevent the influence of the peeling because the flow rate is high at high loads and the influence of the peeling leads to damage of the impeller. As described above, in the present invention, by adopting the high-temperature heat source and the mechanical device to which the low-temperature heat source is applied, the thermoacoustic vibration is automatically or actively performed according to the load of the mechanical device without requiring a special control mechanism. Can be generated, and the momentum transport of the peeling portion can be promoted.

また、他の適用例として、航空機の離陸時の主翼表面の乱流促進のために利用できる。現在、離陸時の主翼表面の乱流促進のためにヴォルテクスジェネレータなどが使われているが、該主翼表面の乱流促進は離陸時に必要であり、巡航時には不要である。そこで、小型軽量で且つ離陸時のみ自動的に作動するような主翼表面の乱流促進手段が求められている。
そこで、主翼表面に現在のヴォルテクスジェネレータに代えて本発明の熱音響発生装置を設置し、高温熱源にタービン入口の燃焼ガス又はエンジン排気を導入するようにすれば、離陸時にはエンジン出力が最大となるのでタービン入口温度も最大となり、高温熱源と低温熱源の温度差が大きく熱音響発生装置に気柱振動が発生し、主翼表面の乱流を促進する。一方、巡航時には高温熱源温度が低下し、気柱振動の作用を停止する事が可能である。
As another application example, it can be used to promote turbulent flow on the surface of the main wing during takeoff of an aircraft. Currently, a vortex generator or the like is used to promote turbulent flow on the surface of the main wing at takeoff, but turbulent flow promotion on the surface of the main wing is necessary at takeoff and not at cruising. Therefore, there is a demand for a turbulent flow promoting means on the surface of the main wing that is small and light and that automatically operates only during takeoff.
Therefore, if the thermoacoustic generator of the present invention is installed on the surface of the main wing in place of the current Vortex generator and the combustion gas or engine exhaust at the turbine inlet is introduced into the high-temperature heat source, the engine output becomes maximum at takeoff. Therefore, the turbine inlet temperature becomes maximum, the temperature difference between the high temperature heat source and the low temperature heat source is large, and air column vibration is generated in the thermoacoustic generator, which promotes turbulent flow on the surface of the main blade. On the other hand, during cruising, the temperature of the high-temperature heat source decreases, and the action of air column vibration can be stopped.

図15は、本発明の熱音響発生装置をジェットエンジンの騒音を軽減するために、ジェットエンジンのノズル部に適用した実施例を示している。
航空機のジェットエンジンのノズルからの排気ガス流速は、ノズル外周面の大気流速よりも高速であるので、ノズル後方では高速流れと低速流れの差が大きく渦が励起され、ジェット騒音が起こる。また後方に衝撃波があるとその渦が衝撃波と干渉して帰還回路を形成し、高周波の高い鋭い騒音であるスクリーチ音を発生する。その騒音の発生を抑制するために、本実施例では、熱音響発生装置65をジェットエンジンのノズル66の先端近傍外周面の大気流れ場の流れ方向に開口部が面するように設置してある。即ち、熱音響発生装置の開口部側に低温熱源67を設け、閉塞側に高温熱源68を設け、高温熱源には排気ガスを導き、低温熱源に、開口部が粒子速度変動の腹となるように気柱振動を励起するように設置してある。
FIG. 15 shows an embodiment in which the thermoacoustic generator of the present invention is applied to a nozzle portion of a jet engine in order to reduce the noise of the jet engine.
Since the exhaust gas flow velocity from the nozzle of an aircraft jet engine is higher than the atmospheric flow velocity on the outer peripheral surface of the nozzle, the difference between the high-speed flow and the low-speed flow is large behind the nozzle, and the vortex is excited and jet noise occurs. In addition, if there is a shock wave behind, the vortex interferes with the shock wave to form a feedback circuit, generating a screech sound that is a high-frequency, sharp noise. In order to suppress the generation of the noise, in this embodiment, the thermoacoustic generator 65 is installed so that the opening faces the flow direction of the atmospheric flow field on the outer peripheral surface near the tip of the nozzle 66 of the jet engine. . That is, a low-temperature heat source 67 is provided on the opening side of the thermoacoustic generator, a high-temperature heat source 68 is provided on the closed side, exhaust gas is guided to the high-temperature heat source, and the opening becomes an antinode of particle velocity fluctuations to the low-temperature heat source. It is installed to excite the air column vibration.

このように、ノズル近傍に熱音響発生装置による気柱振動が発生することによって低速流と高速流の混合が促進され、平均速度を早く低下させジェット騒音を低減することができる。また、生成渦を多数の小型渦にすることができ、衝撃波との干渉を弱め、かつ帰還回路を壊すことで衝撃波関連騒音を弱めることができる。そして、高温熱源に排気ガスを利用することによって、従来のミキサの場合と相違して、巡航時等出力が低い場合、即ち熱音響発生装置の作用を必要としない場合は自然に作用しなくなるので、それによる圧力損失が生じる恐れもない。
なお、図15において、中心線より下半分のノズル後方に破線で記載されている部分は、速度分布を模式的に表している。
前記実施例のようにノズル近傍に熱音響発生装置を設けることによって低速流れと高速流れの混合が促進され、その結果排気平均速度が低減され、ジェット騒音低減につながる。
In this way, air column vibrations generated by the thermoacoustic generator near the nozzles promote the mixing of the low-speed flow and the high-speed flow, so that the average speed can be reduced quickly and jet noise can be reduced. Further, the generated vortex can be made into a large number of small vortices, the interference with the shock wave can be weakened, and the shock wave related noise can be weakened by breaking the feedback circuit. And by using exhaust gas as a high-temperature heat source, unlike the conventional mixer, when the output is low during cruising, that is, when the action of the thermoacoustic generator is not required, it will not work naturally. There is no risk of pressure loss due to this.
In FIG. 15, the portion indicated by a broken line behind the nozzle in the lower half of the center line schematically represents the velocity distribution.
By providing the thermoacoustic generator near the nozzle as in the above embodiment, mixing of the low speed flow and the high speed flow is promoted, and as a result, the average exhaust speed is reduced, leading to a reduction in jet noise.

本実施例は、分岐管のあるダクトの騒音低減に適用した実施例である。
図16に示すように、ダクト70の途中に端部が閉じて閉端となっている分岐管71があると、上流にある騒音源からダクト内を伝播する騒音は、騒音源から見て音響インピーダンスがゼロになるので伝播する音は理論的には全て分岐管に向かい、分岐管から下流へは音が伝播しない。長さLの分岐管入口からL/2の位置に高低両熱源を配置すると次の効果が生じる。
1)分岐管入口から順に低温熱源、高温熱源の順に熱源を置くと、分岐管内で波長が4Lの定在波気柱振動が励起され、分岐管入口の音響インピーダンスがゼロになるとともに管内部での摩擦損失を増加するので、熱源がない場合に比べて吸音効果が増す。この場合、分岐管内壁には摩擦損失、吸音を促進するように、吸音材を敷き詰めたり、メッシュ、粗状、突起等を設けることもよい。
2)分岐管入口から順に高温熱源、低音熱源の順に熱源を置くと、分岐管内部に励起される波長4Lの定在波気柱振動は、熱源近傍で力学的エネルギーが熱源において熱エネルギーとして吸い上げられるため、励起した振動は減衰する。分岐管入口の音響インピーダンスは依然としてゼロなので分岐管に入る音波は内部で定在波を励起しても熱源において吸収されるため、熱源が無い時に比べて吸音効果が増す。
This embodiment is an embodiment applied to noise reduction of a duct having a branch pipe.
As shown in FIG. 16, when there is a branch pipe 71 whose end is closed and closed in the middle of the duct 70, the noise propagating in the duct from the upstream noise source is acoustic as viewed from the noise source. Since the impedance becomes zero, all the sound that propagates theoretically goes to the branch pipe, and no sound propagates downstream from the branch pipe. When the high and low heat sources are arranged at a position L / 2 from the entrance of the branch pipe having the length L, the following effects are produced.
1) When a heat source is placed in the order of a low-temperature heat source and a high-temperature heat source from the branch pipe inlet, standing wave column vibration with a wavelength of 4L is excited in the branch pipe, and the acoustic impedance at the branch pipe inlet becomes zero and Therefore, the sound absorption effect is increased as compared with the case where there is no heat source. In this case, the inner wall of the branch pipe may be covered with a sound absorbing material or provided with a mesh, a rough shape, a protrusion, or the like so as to promote friction loss and sound absorption.
2) When a heat source is placed in the order of a high-temperature heat source and a low-acoustic heat source from the branch pipe inlet, the standing wave column vibration with a wavelength of 4L excited inside the branch pipe absorbs mechanical energy as heat energy in the heat source near the heat source. Therefore, the excited vibration is attenuated. Since the acoustic impedance at the entrance of the branch pipe is still zero, the sound wave entering the branch pipe is absorbed by the heat source even when the standing wave is excited inside, so that the sound absorption effect is increased as compared to when there is no heat source.

本発明は、熱音響現象により流体振動若しくは流体騒音を抑制することができ、単に熱音響発生装置を流体流れ場に設置するのみで、熱音響発生装置の低温熱源及び高温熱源を機械装置自体から採用することができ、非常に構成が簡単であり、且つ対象の機械装置の負荷に応じて前記抑制効果を簡易に自動調整することができると共に自律機能を発揮させることができ、しかも発生源に間接的に作用するため、種々の流体機械、例えばボイラー、熱交換器、ポンプ、ガスタービン、蒸気タービン、空気調和装置、ダクト配管等の流体騒音や流体振動抑制装置に適用可能である。   The present invention can suppress fluid vibration or fluid noise due to the thermoacoustic phenomenon, and simply install the thermoacoustic generator in the fluid flow field and remove the low-temperature heat source and the high-temperature heat source of the thermoacoustic generator from the mechanical device itself. It can be adopted, has a very simple configuration, can automatically adjust the suppression effect according to the load of the target mechanical device, can exhibit an autonomous function, and is a source of generation. Since it acts indirectly, it can be applied to various fluid machines such as boilers, heat exchangers, pumps, gas turbines, steam turbines, air conditioners, duct pipes, etc.

本発明の実施形態に係る一端開一端閉の熱音響発生装置の一部断面正面概略図である。1 is a partial cross-sectional front schematic view of a thermoacoustic generator with one end open and one end closed according to an embodiment of the present invention. その作用説明の模式図である。It is a schematic diagram of the action explanation. 熱音響発生装置における高低温両熱源及び蓄熱器2組間の熱輸送の説明図である。It is explanatory drawing of the heat transport between the high-low-temperature both heat sources and two sets of heat accumulators in a thermoacoustic generator. 図3において速度変動がX>0の時の流体温度分布説明図である。FIG. 4 is an explanatory diagram of fluid temperature distribution when the speed fluctuation is X> 0 in FIG. 3. 図3において速度変動がX<0の時の流体温度分布説明図である。FIG. 4 is an explanatory diagram of fluid temperature distribution when the speed fluctuation is X <0 in FIG. 3. 図1に示す熱音響発生装置のX=L/2における圧力、速度、流体受熱量の位相関係図である。FIG. 2 is a phase relationship diagram of pressure, velocity, and fluid heat receiving amount at X = L / 2 of the thermoacoustic generator shown in FIG. 1. (a)は本発明の実施形態に係る両端開の熱音響発生装置の断面模式図、(b)及び(c)はそのX=L/4及びX=3L/4における圧力、速度、流体受熱量の位相関係図である。(A) is a schematic cross-sectional view of a thermoacoustic generator having both ends open according to an embodiment of the present invention, and (b) and (c) are pressure, velocity, fluid receiving at X = L / 4 and X = 3L / 4. It is a phase relationship diagram of heat quantity. 図7に示す熱音響発生装置の管内に出来る圧力変動と速度変動の基本モード図である。It is a basic mode figure of the pressure fluctuation and speed fluctuation which can be made in the pipe of the thermoacoustic generator shown in FIG. 本発明の他の実施形態に係る一端開他端閉の熱音響発生装置の断面模式図である。It is a cross-sectional schematic diagram of the thermoacoustic generator of one end opening and closing the other end which concerns on other embodiment of this invention. 図9に示す熱音響発生装置のX=L/2における圧力、速度、流体受熱量の位相関係図である。FIG. 10 is a phase relationship diagram of pressure, velocity, and fluid heat receiving amount at X = L / 2 of the thermoacoustic generator shown in FIG. 9. (a)は本発明の他の実施形態に係る両端開の熱音響発生装置の断面模式図、(b)及び(c)はそのX=L/4及びX=3L/4における圧力、速度、流体受熱量の位相関係図である。(A) is the cross-sectional schematic diagram of the thermoacoustic generator of both ends open which concerns on other embodiment of this invention, (b) and (c) are the pressure in this X = L / 4 and X = 3L / 4, speed, It is a phase relationship figure of fluid heat receiving amount. (a)は本発明の他の実施形態に係る一端開一端閉の熱音響発生装置の断面正面概略図であり、(b)はそのA−A断面図である。(A) is the cross-sectional front schematic diagram of the thermoacoustic generator of the one end open end closed which concerns on other embodiment of this invention, (b) is the AA sectional drawing. (a)は燃焼器内燃焼振動に適用した場合の本発明の実施形態に係る振動騒音抑制装置の説明図であり、(b)はその拡大図である。(A) is explanatory drawing of the vibration noise suppression apparatus which concerns on embodiment of this invention at the time of applying to the combustion vibration in a combustor, (b) is the enlarged view. 曲がり管直後の回転部材の振動騒音抑制に適用した場合の本発明の他の実施形態に係る振動騒音抑制装置の説明図である。It is explanatory drawing of the vibration noise suppression apparatus which concerns on other embodiment of this invention at the time of applying to the vibration noise suppression of the rotating member immediately after a bending pipe. ノズル後流れの混合ジェット騒音抑制に適用した場合の本発明の他の実施形態に係る振動騒音抑制装置の説明図である。It is explanatory drawing of the vibration noise suppression apparatus which concerns on other embodiment of this invention at the time of applying to the mixing jet noise suppression of a nozzle back flow. ダクト騒音における分岐管の性能向上に適用した場合の本発明の他の実施形態に係る振動騒音抑制装置の説明図である。It is explanatory drawing of the vibration noise suppression apparatus which concerns on other embodiment of this invention at the time of applying to the performance improvement of the branch pipe in duct noise.

符号の説明Explanation of symbols

1、20、30、40、47、57、65 熱音響発生装置
2、21、31、41、48 管
3 断熱管部
4、5 管本体部
6 蓄熱板
7、24 蓄熱器
8、23、32、50、59、68 高温熱源(高温側熱交換器)
9、22、33、42、49、58、67 低温熱源(低温側熱交換器)
10、11 熱交換用配管
25 圧力変動
26 速度変動
45 燃焼器
46 微細火炎
55 曲がり管
56 インペラ
60 穴明き板
70 ダクト
1, 20, 30, 40, 47, 57, 65 Thermoacoustic generator 2, 21, 31, 41, 48 Tube 3 Heat insulation tube portion 4, 5 Tube body portion 6 Heat storage plate 7, 24 Heat storage device 8, 23, 32 , 50, 59, 68 High temperature heat source (high temperature side heat exchanger)
9, 22, 33, 42, 49, 58, 67 Low temperature heat source (low temperature side heat exchanger)
10, 11 Heat exchange piping 25 Pressure fluctuation 26 Speed fluctuation 45 Combustor 46 Fine flame 55 Curved pipe 56 Impeller 60 Perforated plate 70 Duct

Claims (7)

流体機械の流体振動や流体騒音を抑制する装置であって、少なくとも一端が開放する管内に高温側熱交換器と低温側熱交換器を隣接して設置して熱音響発生器を構成し、該熱音響発生器をその管の開放端が流体機械の流体流れ場に面するように設置し、前記高温側熱交換器に高温ガスを前記低温側熱交換器に低温流体をそれぞれ導入して前記高温側熱交換器と前記低温側熱交換器間に局所的な温度勾配を形成して、前記熱音響発生器に前記開放端が粒子速度の腹となるように気柱振動を発生させ、前記流体流れ場の速度勾配又は温度勾配の急峻な部分の流体に作用させて、流体の速度勾配や温度勾配を緩和することによって、流体振動や流体騒音を抑制するようにしてなり、前記高温側熱交換器には前記流体機械の駆動によって生じる高温ガスを導入するようにしてなることを特徴とする流体振動若しくは流体騒音抑制装置。 An apparatus for suppressing fluid vibration and fluid noise of a fluid machine, wherein a thermoacoustic generator is configured by installing a high temperature side heat exchanger and a low temperature side heat exchanger adjacent to each other in a pipe having at least one end opened. The thermoacoustic generator is installed so that the open end of the pipe faces the fluid flow field of the fluid machine, and a high temperature gas is introduced into the high temperature side heat exchanger and a low temperature fluid is introduced into the low temperature side heat exchanger, respectively. Forming a local temperature gradient between the high temperature side heat exchanger and the low temperature side heat exchanger, causing the thermoacoustic generator to generate air column vibrations so that the open end becomes an antinode of the particle velocity, is allowed to act on the fluid in the steep part of the velocity gradient or temperature gradient of the fluid flow field, by relaxing the velocity gradient or temperature gradient of the fluid, become so as to inhibit fluid vibration and fluid noise, the high-temperature-side heat The exchanger has a high temperature gas generated by driving the fluid machine. Fluid vibration or fluid noise control apparatus characterized by being configured to introduce. 前記高温側熱交換器と低温側熱交換器との間に一方向への整流作用と蓄熱効果を持つ整流蓄熱器を設置してなる請求項1に記載の流体振動若しくは流体騒音抑制装置。   The fluid vibration or fluid noise suppression device according to claim 1, wherein a rectifying regenerator having a rectifying action and a heat accumulating effect in one direction is installed between the high temperature side heat exchanger and the low temperature side heat exchanger. 前記熱音響発生器の管が一端開他端閉の管であり、管内中央に開放端から閉端に向かって低温側熱交換器、高温側熱交換器の順に配置してなる請求項1又は2に記載の流体振動若しくは流体騒音抑制装置。   The tube of the thermoacoustic generator is a tube that is open at one end and closed at the other end, and is arranged in the order of a low temperature side heat exchanger and a high temperature side heat exchanger from the open end toward the closed end in the center of the tube. 2. The fluid vibration or fluid noise suppression device according to 2. 前記管が両端開放管であり、両開放端から管長のそれぞれ1/4の位置に開放端から中心に向かって低温側熱交換器、高温側熱交換器の順に配置してなる請求項1又は2に記載の流体振動若しくは流体騒音抑制装置。   The said pipe | tube is a both-ends open pipe, It arrange | positions in order of a low temperature side heat exchanger and a high temperature side heat exchanger from the open end toward the center at each 1/4 position of the pipe length from both open ends. 2. The fluid vibration or fluid noise suppression device according to 2. 前記流体機械が燃焼器を有する流体機械であり、前記流体流れ場が、前記燃焼器の燃焼室であり、前記管の開放端を燃焼用バーナー付近の温度勾配が急峻な位置であるバーナー上流付近に設置し、当該燃焼器内部の高温ガスを高温側熱交換器に、未燃低温ガス又は燃焼器排気ガスを低温側熱交換器にそれぞれ導入することを特徴とする請求項1〜何れかに記載の流体振動若しくは流体騒音抑制装置。 Wherein the fluid machine is a fluid machine having a combustor, wherein the fluid flow field, a combustion chamber of the combustor, the burner upstream near the open end of the pipe a temperature gradient in the vicinity of the combustion burner is steep position placed in, the combustor inside the hot gas to the hot-side heat exchanger, in any one of claims 1-4, characterized by introducing each non燃低warm gas or combustor exhaust gases to the low temperature side heat exchanger The fluid vibration or fluid noise suppression device described in 1. 前記流体機械が曲がり管直後に回転翼を有する流体機械であり、前記流体流れ場が、前記曲がり管内であり、前記気柱振動を発生する管を前記曲がり管の曲がり部直前又は曲がり部に開放端が面するように設置してなり、前記高温側熱交換器に当該流体機械の排熱を導入し、前記低温側熱交換器に当該流体機械に供給される低温流体を導入することを特徴とする請求項1〜何れかに記載の流体振動若しくは流体騒音抑制装置。 A fluid machine having a rotating blade to bend tube after the fluid machine, the fluid flow field, is said bend pipe, open the tube for generating the air column vibration in the bending portion before or bend of the bent pipe It is installed so that the end faces, the exhaust heat of the fluid machine is introduced into the high temperature side heat exchanger, and the low temperature fluid supplied to the fluid machine is introduced into the low temperature side heat exchanger. The fluid vibration or fluid noise suppression device according to any one of claims 1 to 4 . 前記流体機械がジェットエンジンであり、前記流体流れ場が、高速ガスを噴出するノズル近傍の低速流れ場であり、前記ノズル外周のノズル端近傍に前記管を開放端が面するように配置し、前記高温側熱交換器に当該ノズルから噴出する排気ガスを導入することを特徴とする請求項1〜何れかに記載の流体振動若しくは流体騒音抑制装置。 The fluid machine is a jet engine, the fluid flow field is a low-speed flow field in the vicinity of a nozzle that ejects a high-speed gas, and the pipe is disposed in the vicinity of the nozzle end on the outer periphery of the nozzle so that the open end faces ; claim 1-4 fluidic oscillator or fluid noise suppression device according to any one, characterized by introducing the exhaust gas ejected from the nozzle to the hot side heat exchanger.
JP2004291734A 2004-10-04 2004-10-04 Fluid vibration or fluid noise suppression device for fluid machinery Expired - Fee Related JP4117489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291734A JP4117489B2 (en) 2004-10-04 2004-10-04 Fluid vibration or fluid noise suppression device for fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291734A JP4117489B2 (en) 2004-10-04 2004-10-04 Fluid vibration or fluid noise suppression device for fluid machinery

Publications (2)

Publication Number Publication Date
JP2006105009A JP2006105009A (en) 2006-04-20
JP4117489B2 true JP4117489B2 (en) 2008-07-16

Family

ID=36375044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291734A Expired - Fee Related JP4117489B2 (en) 2004-10-04 2004-10-04 Fluid vibration or fluid noise suppression device for fluid machinery

Country Status (1)

Country Link
JP (1) JP4117489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614869A (en) * 2015-05-21 2018-01-19 中央精机株式会社 Heat and acoustic power generating system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029521A1 (en) * 2006-09-02 2008-03-13 The Doshisha Thermoacoustic device
JP5056356B2 (en) * 2007-11-01 2012-10-24 日産自動車株式会社 Hybrid drive system
JP5279027B2 (en) * 2009-05-26 2013-09-04 国立大学法人宇都宮大学 Thermoacoustic cooler
JP5453950B2 (en) * 2009-06-18 2014-03-26 いすゞ自動車株式会社 Thermoacoustic engine
JP5434680B2 (en) * 2010-03-02 2014-03-05 いすゞ自動車株式会社 Thermoacoustic engine
JP5423531B2 (en) * 2010-03-30 2014-02-19 いすゞ自動車株式会社 Thermoacoustic engine
JP5941148B2 (en) * 2012-08-07 2016-06-29 京セラ株式会社 Hybrid system
JP6482350B2 (en) * 2015-03-26 2019-03-13 大阪瓦斯株式会社 Vaporization equipment
JP2018071821A (en) * 2016-10-25 2018-05-10 三菱電機株式会社 Thermoacoustic device
JPWO2020045675A1 (en) * 2018-08-31 2020-09-03 京セラ株式会社 Thermoacoustic device
CN111159857B (en) * 2019-12-13 2024-02-13 天津大学 Two-dimensional transient temperature field reconstruction method for sonic nozzle pipe wall
JP6894050B1 (en) * 2020-01-29 2021-06-23 京セラ株式会社 Thermoacoustic device
WO2023181608A1 (en) * 2022-03-22 2023-09-28 株式会社デンソー Heat-sound converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614869A (en) * 2015-05-21 2018-01-19 中央精机株式会社 Heat and acoustic power generating system

Also Published As

Publication number Publication date
JP2006105009A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4117489B2 (en) Fluid vibration or fluid noise suppression device for fluid machinery
US6640544B2 (en) Gas turbine combustor, gas turbine, and jet engine
US6973790B2 (en) Gas turbine combustor, gas turbine, and jet engine
JP5112926B2 (en) System for reducing combustor dynamics
JP5377747B2 (en) Turbine combustion system
US20170089238A1 (en) Heat-exchange and noise-reduction panel for a propulsion assembly
US8635874B2 (en) Gas turbine combustor including an acoustic damper device
JP6148504B2 (en) System and method for attenuating combustor dynamics in a micromixer
Lepers et al. Investigation of thermoacoustic stability limits of an annular gas turbine combustor test-rig with and without Helmholtz-resonators
JP2017535708A (en) Panels with improved heat exchange and noise reduction for turbomachinery
JP2007198375A (en) Exhaust duct flow splitter system
US5349813A (en) Vibration of systems comprised of hot and cold components
JP5409959B2 (en) Burner device and vibration damping method for this kind of burner
EP2693121A1 (en) Near-wall roughness for damping devices reducing pressure oscillations in combustion systems
US20100037622A1 (en) Contoured Impingement Sleeve Holes
JP2015212546A (en) Fuel supply system
JP5647039B2 (en) gas turbine
Macquisten et al. Passive damper LP tests for controlling combustion instability
JP2014240705A (en) Chimney silencer
WO2017042250A1 (en) Gas turbine combustor liner with helmholtz damper
US20190017439A1 (en) Turbomachine vane comprising an electroacoustic source with improved assembly mode, row of outlet guide vanes and turbomachine comprising such a vane
Kim et al. Acoustic damping characterization of a double-perforated liner in an aero-engine combustor
Zhenpeng et al. AN ACOUSTIC ANALOGY MODEL FOR HELMHOLTZ RESONATORS WITH COOLING BIAS FLOW
JP7422402B2 (en) thermoacoustic silencer
JP5823012B2 (en) gas turbine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees