JP4652821B2 - Thermoacoustic device - Google Patents

Thermoacoustic device Download PDF

Info

Publication number
JP4652821B2
JP4652821B2 JP2005002624A JP2005002624A JP4652821B2 JP 4652821 B2 JP4652821 B2 JP 4652821B2 JP 2005002624 A JP2005002624 A JP 2005002624A JP 2005002624 A JP2005002624 A JP 2005002624A JP 4652821 B2 JP4652821 B2 JP 4652821B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
temperature side
stack
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005002624A
Other languages
Japanese (ja)
Other versions
JP2006189218A (en
Inventor
眞一 坂本
好章 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
Original Assignee
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha filed Critical Doshisha
Priority to JP2005002624A priority Critical patent/JP4652821B2/en
Priority to US11/662,297 priority patent/US20080110180A1/en
Priority to PCT/JP2005/007685 priority patent/WO2006073006A1/en
Publication of JP2006189218A publication Critical patent/JP2006189218A/en
Application granted granted Critical
Publication of JP4652821B2 publication Critical patent/JP4652821B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/02Hot gas positive-displacement engine plants of open-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1403Pulse-tube cycles with heat input into acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1405Pulse-tube cycles with travelling waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1416Pulse-tube cycles characterised by regenerator stack details

Description

本発明は、熱音響効果を利用して冷却対象物を冷却し、若しくは、加熱対象物を加熱することのできる熱音響装置に関するものであり、より詳しくは、管内に発生する音エネルギーを増幅させ、また、その増幅された音エネルギーから熱エネルギーに効率よく変換することのできる熱音響装置に関するものである。   The present invention relates to a thermoacoustic apparatus capable of cooling an object to be cooled using a thermoacoustic effect or heating an object to be heated, and more specifically, amplifies sound energy generated in a tube. also it relates to a thermoacoustic device capable of efficiently converting from the amplified sound energy into heat energy.

音響効果を利用した熱交換装置に関しては、下記の特許文献1などに記載されるものが存在する。   With respect to heat exchange apparatus using the acoustic effect, there are those described in Patent Document 1 below.

この特許文献1に記載される装置は、周長が音波の波長の整数倍であるループ状の共鳴管と、音波の1/4波長の奇数倍の間隔をもって配置される複数のスピーカと、これらのスピーカから発せられる音波の位相を1/4周期の奇数倍だけ異なるようにする音波発生制御手段と、ループ状の共鳴管内の所定位置に配設される蓄冷部材とを有してなるもので、一方向にのみ進行する音波だけを共鳴管内に残し、共鳴と同じように音波の振幅を増幅させるようにしたものである。この熱音響装置によれば、各スピーカから放出された音波がループ状の共鳴管内で2方向に進行し、その際、スピーカが配置される間隔によって一方向の波を重ね合わせて増幅させ、また、他方向については逆位相の波で打ち消して、一方向へのみ増幅された音波を発生させることができる。
特開平10−325625号公報
The apparatus described in Patent Document 1 includes a loop-shaped resonance tube whose circumference is an integral multiple of the wavelength of a sound wave, a plurality of speakers arranged at intervals of an odd multiple of a quarter wavelength of the sound wave, and these Sound wave generation control means for making the phase of the sound wave emitted from the speaker differ by an odd multiple of a quarter period, and a cold storage member disposed at a predetermined position in the loop-shaped resonance tube. Only the sound wave traveling in one direction is left in the resonance tube, and the amplitude of the sound wave is amplified in the same manner as the resonance. According to this thermoacoustic apparatus, the sound wave emitted from each speaker travels in two directions in the loop-shaped resonance tube, and at that time, the waves in one direction are superimposed and amplified depending on the interval at which the speakers are arranged, and The other direction can be canceled with waves having opposite phases, and a sound wave amplified only in one direction can be generated.
JP-A-10-325625

ところで、特許文献1に記載される装置は、スピーカを用いて音波を入力するものであるため、廃熱などを利用して冷却対象物を冷却することはできない。また、上記特許文献1のように、管の外部にスピーカを取り付ける構造では、スピーカの音波が管の外周部で反射されてしまい、管内に安定した音波を入力することができない。また、スピーカを管の近傍に取り付けた場合は、管全体がスピーカと同様に振動してしまい、管内の音波をうまく打ち消し合わせることができなくなる。   By the way, since the apparatus described in patent document 1 inputs a sound wave using a speaker, it cannot cool a cooling target object using waste heat etc. Further, in the structure in which the speaker is attached to the outside of the tube as in Patent Document 1, the sound wave of the speaker is reflected by the outer peripheral portion of the tube, and a stable sound wave cannot be input into the tube. When the speaker is attached in the vicinity of the tube, the entire tube vibrates in the same manner as the speaker, and the sound waves in the tube cannot be canceled well.

そこで、本発明は上記課題に着目してなされたもので、管内に大きい定在波及び進行波を確実に発生させることのできる熱音響装置を提供することを目的とする。   Therefore, the present invention has been made paying attention to the above problems, and an object thereof is to provide a thermoacoustic apparatus capable of reliably generating large standing waves and traveling waves in a tube.

本発明は上記課題を解決するために、作動流体が封入される管と、第一高温側熱交換器及び第一低温側熱交換器に挟まれ第一のスタックからなる第一の熱交換器と、第二高温側熱交換器及び第二低温側熱交換器に挟まれ第二のスタックからなる第二の熱交換器とを具備してなり、前記第一高温側熱交換器に高温の熱を入力することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二低温側熱交換器を冷却して当該熱を出力し、若しくは、前記第一低温側熱交換器に低温の熱を入力することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二高温側熱交換器を加熱して当該熱を出力する熱音響装置であって、前記第一の熱交換器と第二の熱交換器とを同じ構成とし、当該第一の熱交換器および第二の熱交換器を管内の音波の粒子速度変動と音圧変動が同相となる位置の近傍に複数箇所設け、第一の熱交換器および第二の熱交換器の加熱・冷却を選択することによって、複数の第一の熱交換器に熱を入力して第二の熱交換器から熱を出力し、若しくは、第一の熱交換器に熱を入力して複数の第二の熱交換器から熱の出力するようにしたものである。 For the present invention to solve the above problems, a tube working fluid is sealed, a first heat exchanger comprising a first stack sandwiched between the first high-temperature-side heat exchanger and the first low-temperature heat exchanger and vessels, it comprises a and a second high-temperature-side heat exchanger and the second heat exchanger comprising a second stack sandwiched between the second low-temperature heat exchanger, the first high-temperature-side heat exchanger By generating high-temperature heat, a self-excited standing wave and traveling wave are generated, and the second low-temperature side heat exchanger is cooled by the standing wave and traveling wave to output the heat , or By inputting low temperature heat to the first low temperature side heat exchanger, a standing wave and a traveling wave are generated by self-excitation, and the second high temperature side heat exchanger is heated by the standing wave and the traveling wave to a thermoacoustic device that outputs heat the same structure and said first heat exchanger and the second heat exchanger The first heat exchanger and the second heat exchanger are provided at a plurality of positions in the vicinity of the position where the particle velocity fluctuation and the sound pressure fluctuation of the sound wave in the pipe are in phase, and the first heat exchanger and the second heat exchanger By selecting heating / cooling of the heat exchanger, heat is input to the plurality of first heat exchangers and output from the second heat exchanger, or heat is input to the first heat exchanger. The heat is output from the plurality of second heat exchangers by inputting .

このように構成すれば、あらかじめ高温側熱交換器と低温側熱交換器に挟まれたスタックを音波の粒子速度変動と音圧変動が同相となる位置の近傍に取り付けておけば、熱の入力位置及び熱の出力位置を選択するだけで音波発生側のスタックや熱出力側のスタックの数を増減させることができるようになる。 With this configuration, if a stack sandwiched between the high-temperature side heat exchanger and the low-temperature side heat exchanger is attached in the vicinity of the position where the particle velocity fluctuation and the sound pressure fluctuation are in phase, the heat input By simply selecting the position and the heat output position, the number of stacks on the sound wave generation side and the number of stacks on the heat output side can be increased or decreased.

また、このような発明において、前記管に対して、第一の熱交換器もしくは第二の熱交換器の位置を変更するための可変機構を設けるようにする。In such an invention, a variable mechanism for changing the position of the first heat exchanger or the second heat exchanger is provided for the pipe.

この一態様として、第一の熱交換器もしくは第二の熱交換器を管の一部に取り付け、当該管の一部を、管の本体に対してスライド可能に分離するように構成することもできる。As one aspect of this, the first heat exchanger or the second heat exchanger may be attached to a part of the pipe, and the part of the pipe may be configured to be slidably separated from the main body of the pipe. it can.

本発明では、作動流体が封入される管と、第一高温側熱交換器及び第一低温側熱交換器に挟まれ第一のスタックからなる第一の熱交換器と、第二高温側熱交換器及び第二低温側熱交換器に挟まれ第二のスタックからなる第二の熱交換器とを具備してなり、前記第一高温側熱交換器に高温の熱を入力することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二低温側熱交換器を冷却して当該熱を出力し、若しくは、前記第一低温側熱交換器に低温の熱を入力することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二高温側熱交換器を加熱して当該熱を出力する熱音響装置にいて、前記第一の熱交換器と第二の熱交換器とを同じ構成とし、当該第一の熱交換器および第二の熱交換器を管内の音波の粒子速度変動と音圧変動が同相となる位置の近傍に複数箇所設け、第一の熱交換器および第二の熱交換器の加熱・冷却を選択することによって、複数の第一の熱交換器に熱を入力して第二の熱交換器から熱を出力し、若しくは、第一の熱交換器に熱を入力して複数の第二の熱交換器から熱の出力するようにしたので、熱の入力位置及び熱の出力位置を選択するだけで音波発生側のスタックや熱出力側のスタックの数を増減させることができるようになる。 In the present invention, a tube working fluid is sealed, a first heat exchanger comprising a first stack sandwiched between the first high-temperature-side heat exchanger and the first low-temperature heat exchanger, the second hot side it comprises a and a second heat exchanger comprising a second stack sandwiched between the heat exchanger and the second low-temperature heat exchanger, to enter the high-temperature heat to the first high-temperature-side heat exchanger To generate a standing wave and a traveling wave by self-excitation, and to cool the second low-temperature side heat exchanger by the standing wave and the traveling wave and output the heat , or to the first low-temperature side heat exchanger A thermoacoustic apparatus that generates a standing wave and a traveling wave by self-excitation by inputting low-temperature heat to the second heat, and heats the second high-temperature side heat exchanger by the standing wave and the traveling wave to output the heat. The first heat exchanger and the second heat exchanger have the same configuration, and the first heat exchanger Two or more heat exchangers are installed near the position where the particle velocity fluctuation and sound pressure fluctuation of the sound wave in the pipe are in phase, and heating and cooling of the first heat exchanger and the second heat exchanger are selected. Heat is input to the plurality of first heat exchangers and heat is output from the second heat exchanger, or heat is input to the first heat exchanger and a plurality of second heats are input. Since heat is output from the exchanger, the number of stacks on the sound wave generation side and the number of stacks on the heat output side can be increased or decreased simply by selecting the heat input position and the heat output position.

以下、本発明に係る熱音響装置1の第一の実施の形態について図面を参照して説明する。   Hereinafter, a first embodiment of a thermoacoustic apparatus 1 according to the present invention will be described with reference to the drawings.

この実施の形態における熱音響装置1は、図1に示すように、全体として略長方形状に構成されたループ管2の内部に、第一高温側熱交換器4、第一低温側熱交換器5、第一のスタック3aからなる複数の第一の熱交換器300と、第二高温側熱交換器6、第二低温側熱交換器7、第二のスタック3bからなる複数の第二の熱交換器310とを設けて構成されるもので、第一の熱交換器300側の第一高温側熱交換器4を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波による音エネルギーを第二の熱交換器310側へ移送することによって第二の熱交換器310側に設けられた第二の熱交換器310側で熱エネルギーに変換し、第二低温側熱交換器7を冷却させるようにしたものである。   As shown in FIG. 1, the thermoacoustic apparatus 1 according to this embodiment includes a first high temperature side heat exchanger 4 and a first low temperature side heat exchanger inside a loop tube 2 configured as a substantially rectangular shape as a whole. 5. A plurality of first heat exchangers 300 made up of the first stack 3a, a second high temperature side heat exchanger 6, a second low temperature side heat exchanger 7, and a plurality of second heat exchangers made up of the second stack 3b. The heat exchanger 310 is provided, and the first high temperature side heat exchanger 4 on the first heat exchanger 300 side is heated to generate a standing wave and a traveling wave by self-excitation. The sound energy generated by the standing wave and the traveling wave is transferred to the second heat exchanger 310 side by transferring the sound energy to the second heat exchanger 310 side, and converted into heat energy on the second heat exchanger 310 side. The second low temperature side heat exchanger 7 is cooled.

そして、この実施の形態では、音圧の高い定在波及び進行波をループ管2内に発生させるべく、音波の粒子速度変動と音圧変動が同相となる位置の近傍に複数の第一の熱交換器300を配置し、また、ループ管2内に発生した定在波及び進行波の音エネルギーから熱エネルギーへの変換効率を良くすべく、音波の粒子速度変動と音圧変動が同相となる位置の近傍に複数の第二の熱交換器310を配置するようにしている。以下、この熱音響装置1の具体的構成について詳細に説明する。   In this embodiment, in order to generate a standing wave and a traveling wave having a high sound pressure in the loop tube 2, a plurality of first waves are located in the vicinity of a position where the particle velocity fluctuation of the sound wave and the sound pressure fluctuation are in phase. The heat exchanger 300 is arranged, and in order to improve the conversion efficiency from the sound energy of the standing wave and traveling wave generated in the loop tube 2 to the heat energy, the particle velocity fluctuation and the sound pressure fluctuation of the sound wave are in phase. A plurality of second heat exchangers 310 are arranged in the vicinity of the position. Hereinafter, a specific configuration of the thermoacoustic apparatus 1 will be described in detail.

熱音響装置1を構成するループ管2は、閉曲線をなすように一対の直線管部2aと、これらの直線管部2aを連結する連結管部2bとを設けて構成される。これらの直線管部2a、連結管部2bは、金属製のパイプによって構成されるが、材質は金属に限らず、透明なガラス、若しくは、樹脂などによって構成することもできる。透明なガラスや樹脂などの材料で構成した場合は、実験等における第一のスタック3aや第二のスタック3bの位置の確認や管内の状況を容易に観察することができる。   The loop tube 2 constituting the thermoacoustic device 1 is configured by providing a pair of straight tube portions 2a and a connecting tube portion 2b for connecting these straight tube portions 2a so as to form a closed curve. The straight tube portion 2a and the connecting tube portion 2b are made of metal pipes, but the material is not limited to metal, and can be made of transparent glass or resin. When it is made of a material such as transparent glass or resin, it is possible to easily confirm the positions of the first stack 3a and the second stack 3b in an experiment or the like and observe the state in the tube.

そして、このように構成されたループ管2の内部には、第一高温側熱交換器4、第一低温側熱交換器5、第一のスタック3aからなる複数の第一の熱交換器300と、第二高温側熱交換器6、第二低温側熱交換器7、第二のスタック3bからなる複数の第二の熱交換器310とを設けている。これらの複数の第一の熱交換器300はいずれも同じ構成を有しており、また、それぞれの第二の熱交換器310も同じ構成を有している。   And inside the loop pipe | tube 2 comprised in this way, the several 1st heat exchanger 300 which consists of the 1st high temperature side heat exchanger 4, the 1st low temperature side heat exchanger 5, and the 1st stack 3a. And a plurality of second heat exchangers 310 including the second high temperature side heat exchanger 6, the second low temperature side heat exchanger 7, and the second stack 3b. The plurality of first heat exchangers 300 all have the same configuration, and each second heat exchanger 310 also has the same configuration.

この第一高温側熱交換器4及び第一低温側熱交換器5は、共に熱容量の大きい金属などで構成され、図3に示すように、その内側にループ管2の軸方向に沿った微小径の導通路30を設けている。これらの熱交換器4、5のうち、第一高温側熱交換器4は、第一のスタック3aの上面に接するように取り付けられ、外部から供給される廃熱などによって相対的に第一低温側熱交換器5よりも高い温度に加熱される。なお、この第一高温側熱交換器4は、廃熱だけでなく、外部から供給される電力などを用いて加熱できるようにしても良い。   The first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5 are both made of a metal having a large heat capacity, and as shown in FIG. A small-diameter conduction path 30 is provided. Among these heat exchangers 4 and 5, the first high temperature side heat exchanger 4 is attached so as to be in contact with the upper surface of the first stack 3a, and is relatively first low temperature by waste heat supplied from the outside. Heated to a temperature higher than that of the side heat exchanger 5. The first high temperature side heat exchanger 4 may be heated not only with waste heat but also with electric power supplied from the outside.

一方、第一低温側熱交換器5は、同様に、第一のスタック3aの下面に接するように取り付けられ、その外周部分に水などを循環させて相対的に第一高温側熱交換器4よりも低い温度、例えば、15℃〜16℃に設定される。   On the other hand, the first low temperature side heat exchanger 5 is similarly attached so as to be in contact with the lower surface of the first stack 3a, and relatively circulates water or the like around its outer peripheral portion to relatively move the first high temperature side heat exchanger 4. The lower temperature, for example, 15 ° C to 16 ° C is set.

これら第一高温側熱交換器4と第一低温側熱交換器5との間に設けられる第一のスタック3aは、ループ管2の内側壁面に接する円柱状のもので、図3に示すように、熱伝導率の異なる複数のスタック構成要素3eL、3eHを積層して構成される。これらのスタック構成要素3eL、3eHは、例えば、セラミクス、燒結金属、金網、金属製不織布などの素材が用いられ、第一高温側熱交換器4側から順に、熱伝導率の低いスタック構成要素3eL、熱伝導率の高いスタック構成要素3eH、熱伝導率の低いスタック構成要素3eLと配される。これらのスタック構成要素3eL、3eHのうち、熱伝導率の高いスタック構成要素3eHは、相対的に熱伝導率の低いスタック構成要素3eLよりも厚く構成され、このようにすることによって、作動流体と熱交換を行いうる面積を大きくしている。これらの各スタック構成要素3eL、3eHの内側には、図2に示すように、ループ管2の軸方向に沿った微小径の貫通した導通路30を複数有している。これらの各スタック構成要素3eL、3eHは、それぞれ密着するように上下方向に積層されている。なお、このように各スタック構成要素3eL、3eHを積層する場合、接着剤を用いて積層すると、その内側に設けられた微小径の導通路30を溢れ出た接着剤で塞いでしまう可能性がある。このため、接着剤を用いることなく、例えば、第一高温側熱交換器4と第一低温側熱交換器5との幅を第一のスタック3aの厚み幅と同じ幅に設定し、この第一高温側熱交換器4と第一低温側熱交換器5との挟み込み力によってそれぞれのスタック構成要素3eL、3eHを挟み込む。また、この第一のスタック3aがループ管2の起立する直線管部2a内に設けられる場合は、それぞれのスタック構成要素3eL、3eHの自重によって各スタック構成要素3eL、3eHを密着させるようにする。   The first stack 3a provided between the first high-temperature side heat exchanger 4 and the first low-temperature side heat exchanger 5 is a columnar shape in contact with the inner wall surface of the loop pipe 2, as shown in FIG. In addition, a plurality of stack components 3eL and 3eH having different thermal conductivities are stacked. For these stack components 3eL and 3eH, for example, materials such as ceramics, sintered metal, wire mesh, and metal nonwoven fabric are used, and the stack components 3eL having a low thermal conductivity in this order from the first high temperature side heat exchanger 4 side. , high thermal conductivity stack components 3EH, disposed lower stack components 3eL thermal conductivity. Of these stack components 3eL and 3eH, the stack component 3eH having a high thermal conductivity is configured to be thicker than the stack component 3eL having a relatively low thermal conductivity. The area where heat exchange can be performed is increased. Inside each of these stack components 3eL, 3eH, as shown in FIG. 2, a plurality of conductive paths 30 having a small diameter along the axial direction of the loop tube 2 are provided. Each of these stack components 3eL and 3eH are stacked in the vertical direction so as to be in close contact with each other. In addition, when laminating | stacking each stack structural element 3eL and 3eH in this way, when laminating | stacking using an adhesive agent, there exists a possibility that the small diameter conduction path 30 provided in the inside may be plugged up with the overflowing adhesive agent. is there. For this reason, without using an adhesive, for example, the width of the first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5 is set to the same width as the thickness width of the first stack 3a. The stack components 3eL and 3eH are sandwiched by the sandwiching force between the one high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5. When the first stack 3a is provided in the straight tube portion 2a where the loop tube 2 stands, the stack components 3eL and 3eH are brought into close contact with each other by the own weight of the stack components 3eL and 3eH. .

また、この各スタック構成要素3eL、3eHの平面方向における熱伝導率は一定となるように、例えば、単一の素材で構成される。平面方向における熱伝導率が不均一であると、第一のスタック3aの内側と外側で温度差が生じ、不均一な音波が発生して定在波及び進行波の発生時間が遅くなり、熱交換の効率性が悪くなってしまう。このため、各スタック構成要素3eL、3eHを単一の素材で構成し、平面方向における熱伝導率を同じにする。   Further, the stack constituent elements 3eL and 3eH are made of, for example, a single material so that the thermal conductivity in the plane direction is constant. If the thermal conductivity in the plane direction is non-uniform, a temperature difference occurs between the inside and the outside of the first stack 3a, non-uniform sound waves are generated, and the generation time of the standing wave and the traveling wave is delayed. The efficiency of exchange will deteriorate. For this reason, each stack component 3eL, 3eH is comprised with a single raw material, and the heat conductivity in a plane direction is made the same.

そして、このように構成された第一の熱交換器300、第一低温側熱交換器5、第一のスタック3aで構成された第一の熱交換器300は、第一高温側熱交換器4の向きを統一した状態でループ管2内における音波の粒子速度変動と音圧変動が同相となる位置の近傍に設けられる。図4は、ループ管2を開放した状態であって、音波の粒子速度変動と音圧変動が同相となる位置と、第一の熱交換器300及び第二の熱交換器310との位置関係を示したものである。一般に、音波の特性は、第一高温側熱交換器4と第一低温側熱交換器5との温度差やループ管2内の圧力などによって変化する。このため、第一の熱交換器300の位置を変更するための可変機構を設け、若しくは、音波の波長を圧力で調整するための圧力調整機構を設けると良い。この可変機構としては、例えば、図5に示すように、第一の熱交換器300を取り付けたループ管の一部20を、ループ管2の本体に対してスライド可能に分離し、その分離したループ管の一部20をループ管2の本体に対してスライドさせるようにして第一の熱交換器300の位置を調整する機構などが考えられる。また、圧力調整機構としては、後述する気体注入装置9a、9bなどが考えられる。   And the 1st heat exchanger 300 comprised by the 1st heat exchanger 300 comprised in this way, the 1st low temperature side heat exchanger 5, and the 1st stack 3a is the 1st high temperature side heat exchanger. 4 is provided in the vicinity of the position where the particle velocity fluctuation and the sound pressure fluctuation of the sound wave in the loop tube 2 are in phase with the direction of 4 unified. FIG. 4 shows a state in which the loop tube 2 is opened, and the positional relationship between the position where the particle velocity fluctuation and the sound pressure fluctuation of the sound wave are in phase, and the first heat exchanger 300 and the second heat exchanger 310. Is shown. In general, the characteristics of sound waves vary depending on the temperature difference between the first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5, the pressure in the loop tube 2, and the like. For this reason, it is good to provide the variable mechanism for changing the position of the 1st heat exchanger 300, or the pressure adjustment mechanism for adjusting the wavelength of a sound wave with a pressure. As this variable mechanism, for example, as shown in FIG. 5, a part 20 of the loop pipe to which the first heat exchanger 300 is attached is separated so as to be slidable with respect to the main body of the loop pipe 2 and separated. A mechanism for adjusting the position of the first heat exchanger 300 by sliding a part 20 of the loop tube with respect to the main body of the loop tube 2 is conceivable. Further, as the pressure adjusting mechanism, gas injection devices 9a and 9b, which will be described later, can be considered.

次に、このように構成された第一の熱交換器300の作用について説明する。まず、この第一の熱交換器300の第一高温側熱交換器4を加熱するとともに第一低温側熱交換器5を冷却すると、この第一高温側熱交換器4と第一低温側熱交換器5の方向(軸方向)へ向けて熱が移送される。この際、第一高温側熱交換器4で約600℃に加熱された熱が第一のスタック3aを介して第一低温側熱交換器5へ移送されことになるが、第一のスタック3aの端部に設けられた熱伝導率の低いスタック構成要素3eLによってその熱の移送が阻害される。これにより、第一低温側熱交換器5にその熱が移送されることなく、第一高温側熱交換器4と第一低温側熱交換器5の温度差を大きくすることができる。一方、この第一高温側熱交換器4で約600℃に加熱された熱は、第一のスタック3aの導通路30内の作動流体を介して、第一低温側熱交換器5側へ移送される。これによって第一高温側熱交換器4と第一低温側熱交換器5との間に温度勾配が形成されるが、この作動流体に生じた温度勾配によって作動流体のゆらぎが生じ、第一のスタック3aとの間で熱交換を行いながら音波が発生する。このとき、相対的に熱伝導率の高いスタック構成要素3eHとの間で大きな熱交換が行われ、迅速に音波を発生させて熱交換の効率性を向上させることができる。   Next, the operation of the first heat exchanger 300 configured as described above will be described. First, when the first high temperature side heat exchanger 4 of the first heat exchanger 300 is heated and the first low temperature side heat exchanger 5 is cooled, the first high temperature side heat exchanger 4 and the first low temperature side heat are heated. Heat is transferred toward the direction of the exchanger 5 (axial direction). At this time, the heat heated to about 600 ° C. in the first high temperature side heat exchanger 4 is transferred to the first low temperature side heat exchanger 5 through the first stack 3a. its transfer heat is inhibited by the end thermal conductivity lower stack components 3eL provided. Accordingly, the temperature difference between the first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5 can be increased without transferring the heat to the first low temperature side heat exchanger 5. On the other hand, the heat heated to about 600 ° C. by the first high temperature side heat exchanger 4 is transferred to the first low temperature side heat exchanger 5 side via the working fluid in the conduction path 30 of the first stack 3a. Is done. As a result, a temperature gradient is formed between the first high-temperature side heat exchanger 4 and the first low-temperature side heat exchanger 5, and the fluctuation of the working fluid occurs due to the temperature gradient generated in the working fluid. Sound waves are generated while exchanging heat with the stack 3a. At this time, a large heat exchange is performed with the stack component 3eH having a relatively high thermal conductivity, and sound waves can be quickly generated to improve the efficiency of the heat exchange.

このように発生した音波は、ループ管2内において定在波及び進行波となり、複数箇所の第一の熱交換器300で増幅される。そして、音圧の高い音エネルギーとして、第二の熱交換器310側へと移送される。   The sound wave generated in this way becomes a standing wave and a traveling wave in the loop tube 2 and is amplified by the first heat exchangers 300 at a plurality of locations. And it transfers to the 2nd heat exchanger 310 side as sound energy with a high sound pressure.

この第二の熱交換器310は、第二高温側熱交換器6、第二低温側熱交換器7、第二のスタック3bから構成される。この第二高温側熱交換器6及び第二低温側熱交換器7は、共に熱容量の大きい金属などで構成され、第一のスタック3aと同様に、第二のスタック3bの両端側に取り付けられるとともに、その内部に定在波及び進行波を導通させるための微小径の導通路30を設けている。この第二高温側熱交換器6は、外周部分に水を循環させて、例えば、15℃〜16℃に設定される。一方、第二低温側熱交換器7は、熱の出力部を有しており、外部の冷却対象物を冷却できるようにしている。この冷却対象物としては、例えば、外気や、発熱を伴う家電製品、パーソナルコンピュータのCPUなどが考えられる。また、第二のスタック3bは、第一のスタック3aと同様の構成を有している。すなわち、第二高温側熱交換器6側から順に、熱伝導率の低いスタック構成要素3eL、熱伝導率の高いスタック構成要素3eH、熱伝導率の低いスタック構成要素3eLと3層に配している。また、熱伝導率の高いスタック構成要素3eHは相対的に熱伝導率の低いスタック構成要素3eLよりも厚く構成される。このように構成された第二の熱交換器310は、図4に示すように、ループ管2における音波の粒子速度変動と音圧変動が同相になる位置の近傍に設けられる。また、この第二の熱交換器310は、図5に示すように、第二の熱交換器310を固定したループ管の一部20をループ管2の本体に対してスライド可能に分離し、その分離したループ管の一部20をループ管2の本体に対してスライドさせるようにして第二の熱交換器310の位置を調整する機構内に組み込まれる。   The second heat exchanger 310 includes a second high temperature side heat exchanger 6, a second low temperature side heat exchanger 7, and a second stack 3b. The second high temperature side heat exchanger 6 and the second low temperature side heat exchanger 7 are both made of metal having a large heat capacity, and are attached to both ends of the second stack 3b in the same manner as the first stack 3a. In addition, a small-diameter conduction path 30 is provided in the interior for conducting the standing wave and the traveling wave. This 2nd high temperature side heat exchanger 6 circulates water to an outer peripheral part, and is set to 15 to 16 degreeC, for example. On the other hand, the 2nd low temperature side heat exchanger 7 has a heat output part, and can cool an external cooling target object. As this cooling target object, for example, outside air, household electrical appliances that generate heat, CPUs of personal computers, and the like are conceivable. The second stack 3b has a configuration similar to that of the first stack 3a. That is, in order from the second high temperature side heat exchanger 6 side, the stack component 3eL having a low thermal conductivity, the stack component 3eH having a high thermal conductivity, and the stack component 3eL having a low thermal conductivity are arranged in three layers. Yes. In addition, the stack component 3eH having a high thermal conductivity is configured to be thicker than the stack component 3eL having a relatively low thermal conductivity. As shown in FIG. 4, the second heat exchanger 310 configured as described above is provided in the vicinity of the position where the particle velocity fluctuation of the sound wave and the sound pressure fluctuation are in phase in the loop tube 2. Further, as shown in FIG. 5, the second heat exchanger 310 separates a part 20 of the loop pipe to which the second heat exchanger 310 is fixed so as to be slidable with respect to the main body of the loop pipe 2, The part 20 of the separated loop tube is slid with respect to the main body of the loop tube 2 and is incorporated in a mechanism for adjusting the position of the second heat exchanger 310.

なお、第一の熱交換器300と第二の熱交換器310を全て同じ構造にしておき、それぞれ第一の熱交換器300と第二の熱交換器310を兼用できるようにしておいてもよい。この場合、第一の熱交換器300に設けられた第一高温側熱交換器4や第一低温側熱交換器5、及び、第二の熱交換器310に設けられた第二高温側熱交換器6や第二低温側熱交換器7をあらかじめ高温側・低温側に設定しておかずに、適宜、各熱交換器4、5、6、7の金属板を加熱・冷却を選択することによって第一高温側熱交換器4、第一低温側熱交換器5、第二高温側熱交換器6、第二低温側熱交換器7と設定する。このようにすれば、音圧を上げたい場合は、図7に示すように、第一の熱交換器300の数を増やした熱音響装置1b、すなわち、熱の入力箇所が3カ所の熱音響装置1bとすれば良く、また、音圧が充分で冷却温度が充分でない場合は、図8に示すように、第二の熱交換器310の数を増やした熱音響装置1c、すなわち、冷熱の出力箇所が3カ所の熱音響装置1cとすれば良い。Note that the first heat exchanger 300 and the second heat exchanger 310 may all have the same structure, and the first heat exchanger 300 and the second heat exchanger 310 may be used together. Good. In this case, the first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5 provided in the first heat exchanger 300 and the second high temperature side heat provided in the second heat exchanger 310 are provided. Select the heating and cooling of the metal plates of the heat exchangers 4, 5, 6, and 7 as appropriate without setting the exchanger 6 and the second low temperature side heat exchanger 7 on the high temperature side and the low temperature side in advance. The first high temperature side heat exchanger 4, the first low temperature side heat exchanger 5, the second high temperature side heat exchanger 6, and the second low temperature side heat exchanger 7 are set. In this way, when it is desired to increase the sound pressure, as shown in FIG. 7, the thermoacoustic apparatus 1b having the first heat exchanger 300 increased in number, that is, thermoacoustics having three heat input locations. If the sound pressure is sufficient and the cooling temperature is not sufficient, as shown in FIG. 8, the thermoacoustic device 1c with the increased number of second heat exchangers 310, that is, cold What is necessary is just to set it as the thermoacoustic apparatus 1c with three output locations.

このループ管2の内部には、ヘリウム、アルゴンなどのような不活性ガスが封入される。なお、このような不活性ガスに限らず、窒素や空気などのような作動流体を封入しても良い。これらの作動流体は、0.01MPa〜5MPaに設定される。   Inside the loop tube 2, helium, an inert gas such as argon is sealed. The invention is not limited to such inert gas, the working fluid, such as nitrogen or air may be enclosed. These working fluids are set to 0.01 MPa to 5 MPa.

このような作動流体を封入するに際してプラントル数が小さく、また、比重も小さいヘリウムなどを使用すれば、音波の発生までの時間を短縮化することができる。しかし、このような作動流体を用いると、音速が早くなってしまい、スタック内壁との間でうまく熱交換を行うことができない。また、逆に、プラントル数が大きく、また、比重も大きいアルゴンなどを使用すると、今度は粘性が高くなって音波を迅速に発生させることができなくなる。このため、好ましくは、ヘリウムとアルゴンの混合ガスを用いるようにする。このような混合ガスの封入は、次のようにして行う。   When such a working fluid is sealed, if helium or the like having a small Prandtl number and a small specific gravity is used, the time until the generation of sound waves can be shortened. However, when such a working fluid is used, the speed of sound increases and heat exchange cannot be performed with the inner wall of the stack. On the other hand, if argon or the like having a large Prandtl number and a large specific gravity is used, this time, the viscosity becomes high and it becomes impossible to quickly generate sound waves. For this reason, it is preferable to use a mixed gas of helium and argon. Such a mixed gas is sealed as follows.

まず、始めにプラントル数が小さく、また、比重も小さいヘリウムをループ管2内に封入しておき、迅速に音波を発生させる。そして、発生した音波の音速を低下させるべく、次にアルゴンなどのようなプラントル数が大きく、また、比重も大きいガスを注入する。このアルゴンの混入に際しては、図1に示すように、上側に設けられた連結管部2bの中央部分にヘリウム気体注入装置9aとアルゴン気体注入装置9bを設け、そこからアルゴンを注入する。すると、アルゴンは、左右の直線管部2aに均一に分離し、下方に向かって内部のヘリウムと混合する。これらの混合ガスの圧力は、0.01MPa〜5MPaに設定される。   First, helium having a small Prandtl number and a small specific gravity is sealed in the loop tube 2 to quickly generate sound waves. Then, in order to lower the sound speed of the generated sound wave, a gas having a large Prandtl number and a large specific gravity such as argon is injected next. When mixing argon, as shown in FIG. 1, a helium gas injection device 9a and an argon gas injection device 9b are provided in the central portion of the connecting pipe portion 2b provided on the upper side, and argon is injected therefrom. Then, argon is uniformly separated into the left and right straight tube portions 2a and mixed with the internal helium downward. The pressure of these mixed gases is set to 0.01 MPa to 5 MPa.

次に、このように構成された熱音響装置1の動作状態について説明する。   Next, the operation state of the thermoacoustic apparatus 1 configured as described above will be described.

まず、ループ管2にヘリウム気体注入装置9aを用いてヘリウムを封入しておき、この状態で第一の熱交換器300の第一低温側熱交換器5及び第二の熱交換器310の第二高温側熱交換器6の外周部分に水を循環させる。この状態で第一の熱交換器300の第一高温側熱交換器4を約600℃に加熱し、また、第一低温側熱交換器5を約15〜16℃に設定する。すると、第一高温側熱交換器4から第一低温側熱交換器5への方向に熱が移送される。この際、第一高温側熱交換器4からの熱が第一のスタック3aの部材を介して第一低温側熱交換器5へ移送されるが、この熱の移送は、熱伝導率の低いスタック構成要素3eLの存在によって阻害される。これにより、第一高温側熱交換器4と第一低温側熱交換器5との温度差を大きくすることができる。一方、この第一高温側熱交換器4の熱(600℃)は、第一のスタック3aの導通路30内の作動流体によって第一低温側熱交換器5側へ移送される。これにより第一高温側熱交換器4と第一低温側熱交換器5との間に温度勾配が形成され、この作動流体に生じた温度勾配によって作動流体のゆらぎが生じ、第一のスタック3aとの間で熱交換を行いながら音波が発生する。このとき、相対的に厚く、かつ、熱伝導率の高く構成されたスタック構成要素3eHとの間で大きな熱交換が行われ、迅速に音波を発生させ、熱交換の効率性を向上させることができる。また、他の第一の熱交換器300についても同様に音波を発生させることができ、複数の第一の熱交換器300によって音波を増幅させることができる。このように発生した音波は、定在波及び進行波による音エネルギーとして、第二の熱交換器310側へ移送される。この音エネルギーは、エネルギー保存の法則に基づき、第一の熱交換器300での熱エネルギーの移送方向(第一高温側熱交換器4から第一低温側熱交換器5の方向)と逆方向、すなわち、第一低温側熱交換器5から第一高温側熱交換器4の方向に移送される。   First, helium is sealed in the loop tube 2 using the helium gas injection device 9a, and in this state, the first low temperature side heat exchanger 5 of the first heat exchanger 300 and the second heat exchanger 310 of the second heat exchanger 310 are used. Water is circulated in the outer peripheral portion of the second high temperature side heat exchanger 6. In this state, the first high temperature side heat exchanger 4 of the first heat exchanger 300 is heated to about 600 ° C., and the first low temperature side heat exchanger 5 is set to about 15 to 16 ° C. Then, heat is transferred in the direction from the first high temperature side heat exchanger 4 to the first low temperature side heat exchanger 5. At this time, the heat from the first high-temperature side heat exchanger 4 is transferred to the first low-temperature side heat exchanger 5 through the members of the first stack 3a, but this heat transfer has a low thermal conductivity. It is inhibited by the presence of the stack component 3eL. Thereby, the temperature difference of the 1st high temperature side heat exchanger 4 and the 1st low temperature side heat exchanger 5 can be enlarged. On the other hand, the heat (600 ° C.) of the first high temperature side heat exchanger 4 is transferred to the first low temperature side heat exchanger 5 side by the working fluid in the conduction path 30 of the first stack 3a. As a result, a temperature gradient is formed between the first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5, and the fluctuation of the working fluid occurs due to the temperature gradient generated in the working fluid, and the first stack 3a. Sound waves are generated while exchanging heat with each other. At this time, a large heat exchange is performed with the stack constituent element 3eH which is relatively thick and has a high thermal conductivity, so that sound waves can be quickly generated and the efficiency of the heat exchange can be improved. it can. Similarly, the other first heat exchanger 300 can generate sound waves, and the plurality of first heat exchangers 300 can amplify the sound waves. The sound waves generated in this way are transferred to the second heat exchanger 310 side as sound energy by standing waves and traveling waves. This sound energy is based on the law of conservation of energy, and the direction opposite to the direction of heat energy transfer in the first heat exchanger 300 (the direction from the first high temperature side heat exchanger 4 to the first low temperature side heat exchanger 5). , i.e., it is transferred from the first low-temperature heat exchanger 5 in the direction of the first high-temperature-side heat exchanger 4.

そして、この定在波及び進行波が発生した直後に、連結管部2bの上側に設けられたアルゴン気体注入装置9bからアルゴンを注入し、一定の圧力に設定して熱交換の効率性を良くする。   Immediately after the standing wave and traveling wave are generated, argon is injected from the argon gas injection device 9b provided on the upper side of the connecting pipe portion 2b, and the pressure is set to a constant pressure to improve the efficiency of heat exchange. To do.

次に、第二の熱交換器310側では、定在波及び進行波に基づいて、第二のスタック3bの導通路30内の作動流体を膨張・収縮させる。そして、その際に熱交換された熱エネルギーを音エネルギーの移送方向と逆方向、すなわち、第二低温側熱交換器7から第二高温側熱交換器6側へ移送する。このとき、第二高温側熱交換器6側に高い熱が蓄積され、また、第二低温側熱交換器7側に低い熱が蓄積される。そして、これらの温度差によって、高い熱が第二のスタック3bを介して第二低温側熱交換器7側へ移送されるが、第二高温側熱交換器6及び第二低温側熱交換器7側に熱伝導率の低いスタック構成要素3eLを設けているため、熱の移送が阻害される。これによって、第二低温側熱交換器7の温度をより低くすることができ、冷却対象物をより冷却することができる。   Next, on the second heat exchanger 310 side, the working fluid in the conduction path 30 of the second stack 3b is expanded and contracted based on the standing wave and the traveling wave. Then, the heat energy exchanged at that time is transferred in the direction opposite to the sound energy transfer direction, that is, from the second low temperature side heat exchanger 7 to the second high temperature side heat exchanger 6 side. At this time, high heat is accumulated on the second high temperature side heat exchanger 6 side, and low heat is accumulated on the second low temperature side heat exchanger 7 side. Due to these temperature differences, high heat is transferred to the second low temperature side heat exchanger 7 side via the second stack 3b, but the second high temperature side heat exchanger 6 and the second low temperature side heat exchanger are transferred. since there is provided a stack components 3eL low thermal conductivity to 7 side, the transfer of heat is inhibited. Thereby, the temperature of the 2nd low temperature side heat exchanger 7 can be made lower, and a cooling target object can be cooled more.

また、この第二の熱交換器310で熱エネルギーに変換されなかった音エネルギーは、第二の熱交換器310の導通路30を通過し、次の位置に存在する第二の熱交換器310に移送される。そして、そこで同様にして音エネルギーから熱エネルギーへと変換され、その第二の熱交換器310の第二低温側熱交換器7を冷却する。   The sound energy that has not been converted into heat energy by the second heat exchanger 310 passes through the conduction path 30 of the second heat exchanger 310 and is present at the second position. It is transferred to. Then, in the same manner, sound energy is converted into heat energy, and the second low temperature side heat exchanger 7 of the second heat exchanger 310 is cooled.

このように上記実施の形態によれば、作動流体が封入されるループ管2と、このループ管2内に設けられ第一高温側熱交換器4及び第一低温側熱交換器5に挟まれ第一のスタック3aからなる第一の熱交換器300と、第二高温側熱交換器6及び第二低温側熱交換器7に挟まれ第二のスタック3bからなる第二の熱交換器310とを具備してなり、第一高温側熱交換器4に高温の熱を入力することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって第二低温側熱交換器7を冷却して当該熱を出力する熱音響装置1において、第一の熱交換器300と第二の熱交換器310とを同じ構成とし、第一の熱交換器300および第二の熱交換器310をループ管2の音波の粒子速度変動と音圧変動が同相となる位置の近傍に複数箇所設け、第一の熱交換器300および第二の熱交換器310の加熱・冷却を選択することによって、複数の第一の熱交換器300に熱を入力して第二の熱交換器310から熱を出力し、若しくは、第一の熱交換器300に熱を入力して複数の第二の熱交換器310から熱の出力するようにしたので、熱の入力位置及び熱の出力位置を選択するだけで音波発生側のスタックや熱出力側のスタックの数を増減させることができるようになる。 As described above, according to the embodiment, the loop pipe 2 in which the working fluid is sealed, and the first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5 provided in the loop pipe 2 are sandwiched. and a first heat exchanger 300 comprising a first stack 3a, a second heat exchanger comprising a second stack 3b sandwiched between the second high-temperature-side heat exchanger 6 and the second low-temperature heat exchanger 7 310, and by generating high temperature heat to the first high temperature side heat exchanger 4 , a standing wave and a traveling wave are generated by self-excitation, and a second low temperature is generated by the standing wave and the traveling wave. In the thermoacoustic apparatus 1 that cools the side heat exchanger 7 and outputs the heat, the first heat exchanger 300 and the second heat exchanger 310 have the same configuration, and the first heat exchanger 300 and the second heat exchanger 310 have the same configuration. The position at which the particle velocity fluctuation and the sound pressure fluctuation of the sound wave in the loop tube 2 are in phase with the second heat exchanger 310 By providing a plurality of locations in the vicinity and selecting heating / cooling of the first heat exchanger 300 and the second heat exchanger 310, heat is input to the plurality of first heat exchangers 300 and the second heat Since heat is output from the exchanger 310 or heat is input to the first heat exchanger 300 and heat is output from the plurality of second heat exchangers 310, the heat input position and the heat The number of stacks on the sound wave generation side and the number of stacks on the heat output side can be increased or decreased simply by selecting the output position.

なお、本発明は上記実施の形態に限定されることなく、種々の形態で実施することができる。   Note that the present invention is not limited to the above embodiment, and can be implemented in various forms.

えば、上記実施の形態では、第一のスタック3a側を加熱して第二のスタック3b側を冷却する熱音響装置1を例に挙げて説明したが、これとは逆に、第一のスタック3a側を冷却して第二のスタック3b側を加熱するようにしても良い。この熱音響装置1の例を図6に示す。 For example, in the above embodiment, the thermoacoustic device 1 for cooling the second stack 3b side of heating the first stack 3a side is described as an example, conversely, the first from this The stack 3a side may be cooled to heat the second stack 3b side. An example of this thermoacoustic apparatus 1 is shown in FIG.

図6において、上記実施の形態と同じ符号を示すものは同じ構造を有するものを示している。この実施の形態における熱音響装置1bは、第一の実施の形態と同様に、複数の第一の熱交換器300と複数の第二の熱交換器310を有する。そして、この実施の形態では、第一低温側熱交換器5にマイナス数十度、若しくは、これよりも低い温度に冷却するとともに、第一高温側熱交換器4及び第二低温側熱交換器7に不凍性の液体を循環させる。すると熱音響効果の原理により、第一のスタック3aに形成された温度勾配によって自励の音波が発生する。この定在波及び進行波の音エネルギーの進行方向は、第一のスタック3aにおける熱エネルギーの移送方向(第一高温側熱交換器4から第一低温側熱交換器5の方向)と逆方向に向かうように発生し、他の第一の熱交換器300で増幅される。この定在波及び進行波による音エネルギーは、第二のスタック3b側へ移送され、第二のスタック3b側では、定在波及び進行波に基づく作動流体の圧力変化及び体積変化によって作動流体が膨張・収縮を繰り返し、その際に生じた熱エネルギーを音エネルギーの移送方向と逆方向である第二低温側熱交換器7から第二高温側熱交換器6側へ移送する。このようにして第二高温側熱交換器6を加熱する。   In FIG. 6, those having the same reference numerals as those in the above embodiment are those having the same structure. The thermoacoustic device 1b in this embodiment includes a plurality of first heat exchangers 300 and a plurality of second heat exchangers 310, as in the first embodiment. In this embodiment, the first low temperature side heat exchanger 5 is cooled to a temperature of minus several tens of degrees or lower, and the first high temperature side heat exchanger 4 and the second low temperature side heat exchanger 5 are cooled. 7 circulate antifreeze liquid. Then, due to the principle of the thermoacoustic effect, self-excited sound waves are generated by the temperature gradient formed in the first stack 3a. The traveling direction of the sound energy of the standing wave and traveling wave is opposite to the heat energy transfer direction in the first stack 3a (the direction from the first high temperature side heat exchanger 4 to the first low temperature side heat exchanger 5). And is amplified by the other first heat exchanger 300. The sound energy due to the standing wave and traveling wave is transferred to the second stack 3b side, and on the second stack 3b side, the working fluid is caused by the pressure change and volume change of the working fluid based on the standing wave and traveling wave. The expansion and contraction are repeated, and the heat energy generated at that time is transferred from the second low-temperature side heat exchanger 7 to the second high-temperature side heat exchanger 6 side, which is opposite to the sound energy transfer direction. In this way, the second high temperature side heat exchanger 6 is heated.

本発明の一実施の形態を示す熱音響装置の概略図Schematic of thermoacoustic apparatus showing an embodiment of the present invention 同形態におけるスタックを軸方向から見た図A view of the stack in the same form as seen from the axial direction 同形態におけるスタックの断面図Cross-sectional view of the stack in the same form 同形態における第一の熱交換器及び第二の熱交換器の可変機構を示す図The figure which shows the variable mechanism of the 1st heat exchanger in the same form, and a 2nd heat exchanger 同形態における定在波と第一の熱交換器及び第二の熱交換器との位置関係を示す図Diagram showing the positional relationship between the standing wave and the first heat exchanger and second heat exchanger in the form 他の実施の形態における熱音響装置の概略図Schematic of thermoacoustic apparatus in another embodiment 他の実施の形態における熱音響装置の概略図Schematic of thermoacoustic apparatus in another embodiment 他の実施の形態における熱音響装置の概略図Schematic of thermoacoustic apparatus in another embodiment

1・・・熱音響装置
2・・・ループ管
2a・・・直線管部
2b・・・連結管部
3a・・・第一のスタック
3b・・・第二のスタック
30・・・導通路
30eL、30eH・・・スタック構成要素
4・・・第一高温側熱交換器
5・・・第一低温側熱交換器
6・・・第二高温側熱交換器
7・・・第二低温側熱交換器
300・・・第一の熱交換器
310・・・第二の熱交換器
DESCRIPTION OF SYMBOLS 1 ... Thermoacoustic apparatus 2 ... Loop pipe 2a ... Straight pipe part 2b ... Connection pipe part 3a ... 1st stack 3b ... 2nd stack 30 ... Conducting path 30eL , 30 eH ... stack component 4 ... first high temperature side heat exchanger 5 ... first low temperature side heat exchanger 6 ... second high temperature side heat exchanger 7 ... second low temperature side heat Exchanger 300 ... first heat exchanger 310 ... second heat exchanger

Claims (3)

作動流体が封入される管と、第一高温側熱交換器及び第一低温側熱交換器に挟まれ第一のスタックからなる第一の熱交換器と、第二高温側熱交換器及び第二低温側熱交換器に挟まれ第二のスタックからなる第二の熱交換器とを具備してなり、前記第一高温側熱交換器に高温の熱を入力することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二低温側熱交換器を冷却して当該熱を出力し、若しくは、前記第一低温側熱交換器に低温の熱を入力することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二高温側熱交換器を加熱して当該熱を出力する熱音響装置であって、
前記第一の熱交換器と第二の熱交換器とを同じ構成とし、当該第一の熱交換器および第二の熱交換器を管内の音波の粒子速度変動と音圧変動が同相となる位置の近傍に複数箇所設け、第一の熱交換器および第二の熱交換器の加熱・冷却を選択することによって、複数の第一の熱交換器に熱を入力して第二の熱交換器から熱を出力し、若しくは、第一の熱交換器に熱を入力して複数の第二の熱交換器から熱の出力するようにしたことを特徴とする熱音響装置。
A tube working fluid is sealed, a first heat exchanger comprising a first stack sandwiched between the first high-temperature-side heat exchanger and the first low-temperature heat exchanger, and a second high-temperature-side heat exchanger by self-excitation by the second low-temperature side; and a second heat exchanger made consisting of the second stack sandwiched between the heat exchanger and entering the high-temperature heat to the first high-temperature-side heat exchanger to generate a standing wave and a traveling wave, this was cooled to the second low-temperature heat exchanger by the standing wave and a traveling wave to output the heat, or cold heat to the first low-temperature heat exchanger to generate a standing wave and a traveling wave due to self-excited by entering, a thermoacoustic apparatus for outputting the heat to heat the second high-temperature-side heat exchanger by this standing wave and the traveling wave,
The first heat exchanger and the second heat exchanger have the same configuration, and the first heat exchanger and the second heat exchanger have the same phase of sound velocity fluctuation and sound pressure fluctuation in the pipe. Provide multiple locations in the vicinity of the position, select the heating and cooling of the first heat exchanger and the second heat exchanger, input heat to the multiple first heat exchangers, the second heat exchange A thermoacoustic device characterized in that heat is output from the vessel or heat is input to the first heat exchanger and heat is output from the plurality of second heat exchangers .
前記管に対して、前記第一の熱交換器もしくは第二の熱交換器の位置を変更するための可変機構を設けた請求項1に記載の熱音響装置。The thermoacoustic apparatus of Claim 1 which provided the variable mechanism for changing the position of said 1st heat exchanger or a 2nd heat exchanger with respect to the said pipe | tube. 前記第一の熱交換器もしくは第二の熱交換器を管の一部に取り付け、当該管の一部を、管の本体に対してスライド可能に分離した請求項1に記載の熱音響装置。The thermoacoustic device according to claim 1, wherein the first heat exchanger or the second heat exchanger is attached to a part of a pipe, and the part of the pipe is separated so as to be slidable with respect to a main body of the pipe.
JP2005002624A 2005-01-07 2005-01-07 Thermoacoustic device Expired - Fee Related JP4652821B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005002624A JP4652821B2 (en) 2005-01-07 2005-01-07 Thermoacoustic device
US11/662,297 US20080110180A1 (en) 2005-01-07 2005-04-22 Thermoacoustic Device
PCT/JP2005/007685 WO2006073006A1 (en) 2005-01-07 2005-04-22 Thermoacoustic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002624A JP4652821B2 (en) 2005-01-07 2005-01-07 Thermoacoustic device

Publications (2)

Publication Number Publication Date
JP2006189218A JP2006189218A (en) 2006-07-20
JP4652821B2 true JP4652821B2 (en) 2011-03-16

Family

ID=36647495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002624A Expired - Fee Related JP4652821B2 (en) 2005-01-07 2005-01-07 Thermoacoustic device

Country Status (3)

Country Link
US (1) US20080110180A1 (en)
JP (1) JP4652821B2 (en)
WO (1) WO2006073006A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035069B2 (en) * 2003-02-27 2008-01-16 財団法人名古屋産業科学研究所 Piping equipment equipped with a sound amplifying / attenuator using thermoacoustic effect
US20090314276A1 (en) 2006-07-10 2009-12-24 Panasonic Corporation Heating cooking apparatus
WO2010107308A1 (en) * 2009-02-25 2010-09-23 Cornelis Maria De Blok Multistage traveling wave thermoacoustic engine with phase distributed power extraction
JP2010261687A (en) * 2009-05-11 2010-11-18 Isuzu Motors Ltd Thermoacoustic engine
JP5487710B2 (en) * 2009-05-11 2014-05-07 いすゞ自動車株式会社 Stirling engine
JP5453910B2 (en) * 2009-05-11 2014-03-26 いすゞ自動車株式会社 Thermoacoustic engine
JP5526600B2 (en) * 2009-05-19 2014-06-18 いすゞ自動車株式会社 Thermoacoustic engine
JP5600966B2 (en) * 2010-02-26 2014-10-08 いすゞ自動車株式会社 Thermoacoustic engine
JP5609159B2 (en) * 2010-02-26 2014-10-22 いすゞ自動車株式会社 Thermoacoustic engine
JP5434680B2 (en) * 2010-03-02 2014-03-05 いすゞ自動車株式会社 Thermoacoustic engine
JP5423484B2 (en) * 2010-03-04 2014-02-19 いすゞ自動車株式会社 Thermoacoustic engine
JP2011231940A (en) * 2010-04-23 2011-11-17 Honda Motor Co Ltd Thermoacoustic engine
CN102734975B (en) 2011-04-01 2014-04-02 中科力函(深圳)热声技术有限公司 Difunctional thermally driven traveling wave thermal acoustic refrigeration system
CN102734097B (en) * 2011-04-01 2014-05-14 中科力函(深圳)热声技术有限公司 Bifunctional multistage travelling wave thermo-acoustic system
DE102011109176A1 (en) * 2011-08-01 2013-02-07 Lauer & Weiss GmbH Thermal-acoustic energy conversion system for use as motor for converting thermal energy into mechanical energy, has housing for accommodating working gas under high pressure, and plunger element comprising stabilization device
NL2007434C2 (en) * 2011-09-16 2013-03-19 Stichting Energie Thermo-acoustic system.
JP5840543B2 (en) * 2012-03-21 2016-01-06 住友重機械工業株式会社 Regenerative refrigerator
WO2014043790A1 (en) 2012-09-19 2014-03-27 Etalim Inc. Thermoacoustic transducer apparatus including a transmission duct
JP6179341B2 (en) * 2013-10-23 2017-08-16 いすゞ自動車株式会社 Thermoacoustic heater
CN103670788B (en) * 2013-12-11 2015-07-08 中国科学院理化技术研究所 Acoustic resonance type multi-level traveling wave thermo-acoustic engine system through use of cold sources and heat sources at same time
WO2015115005A1 (en) 2014-01-31 2015-08-06 日本碍子株式会社 Heat-sound wave converting part and heat-sound wave converter
WO2016049703A1 (en) * 2014-10-02 2016-04-07 Siddons Enertec Pty. Ltd. Thermoacoustic refrigerator
CN104775932B (en) * 2015-04-28 2016-03-02 中国科学院理化技术研究所 The traveling wave thermoacoustic engine system of the multistage amplification of a kind of sound merit
JP6627707B2 (en) * 2016-10-06 2020-01-08 株式会社デンソー Energy conversion device
US10302071B2 (en) * 2017-10-27 2019-05-28 Northrop Grumman Systems Corporation Toroidal spiral cascading of multiple heat engine stages in traveling wave thermoacoustic engines
US10419855B2 (en) 2017-11-30 2019-09-17 Apple Inc. Cooling for audio appliances
CN111271189B (en) * 2020-02-18 2022-07-05 中国科学院理化技术研究所 Combined cooling heating and power system based on thermoacoustic effect and positive and negative electrocaloric effect
CN113864143B (en) * 2020-06-30 2023-06-27 中国科学院理化技术研究所 Thermo-acoustic system
CN113864144B (en) * 2020-06-30 2023-06-27 中国科学院理化技术研究所 Thermo-acoustic system
FR3130947A1 (en) * 2021-12-21 2023-06-23 Equium Groupe Acoustic power modulation in a thermoacoustic machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088378A (en) * 1998-07-17 2000-03-31 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Loop tube air pipe acoustic wave refrigerator
JP2002535597A (en) * 1999-01-20 2002-10-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Traveling wave device with suppressed mass flux

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114380A (en) * 1977-03-03 1978-09-19 Peter Hutson Ceperley Traveling wave heat engine
US4858441A (en) * 1987-03-02 1989-08-22 The United States Of America As Represented By The United States Department Of Energy Heat-driven acoustic cooling engine having no moving parts
US5165243A (en) * 1991-06-04 1992-11-24 The United States Of America As Represented By The United States Department Of Energy Compact acoustic refrigerator
JPH11337206A (en) * 1998-05-27 1999-12-10 Sanyo Electric Co Ltd Sound refrigerating device
JPH11344266A (en) * 1998-06-03 1999-12-14 Sanyo Electric Co Ltd Acoustic freezer
US6574968B1 (en) * 2001-07-02 2003-06-10 University Of Utah High frequency thermoacoustic refrigerator
US7062921B2 (en) * 2002-12-30 2006-06-20 Industrial Technology Research Institute Multi-stage thermoacoustic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088378A (en) * 1998-07-17 2000-03-31 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Loop tube air pipe acoustic wave refrigerator
JP2002535597A (en) * 1999-01-20 2002-10-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Traveling wave device with suppressed mass flux

Also Published As

Publication number Publication date
JP2006189218A (en) 2006-07-20
US20080110180A1 (en) 2008-05-15
WO2006073006A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4652821B2 (en) Thermoacoustic device
JP4554374B2 (en) Heat exchanger and thermoacoustic apparatus using the heat exchanger
JP4652822B2 (en) Thermoacoustic device
JP4958910B2 (en) Thermoacoustic device
Wang et al. Operating characteristics and performance improvements of a 500 W traveling-wave thermoacoustic electric generator
Owoyele et al. Performance analysis of a thermoelectric cooler with a corrugated architecture
US7804046B2 (en) Acoustic heater and acoustic heating system
Wang et al. Numerical analysis on a four-stage looped thermoacoustic Stirling power generator for low temperature waste heat
Tartibu Developing more efficient travelling-wave thermo-acoustic refrigerators: A review
JPWO2004085934A1 (en) Cooling system
JP5570899B2 (en) Thermoelectric acoustic engine and method of use
US10712054B2 (en) Thermoacoustic device
US20070193281A1 (en) Thermoacoustic apparatus and thermoacoustic system
JP2011033330A (en) Thermo-electro acoustic refrigerator and method for using the same
JP4364032B2 (en) Thermoacoustic device
JP6257412B2 (en) Method for manufacturing thermal / sonic wave conversion component, thermal / sonic wave conversion component, and thermal / sonic wave transducer
Prashantha et al. Theoretical Evaluation of a 10‐Watt Cooling Power Thermoacoustic Refrigerator
US20150253043A1 (en) Thermoacoustic energy converting element part and thermoacoustic energy converter
Senga et al. Design and experimental verification of a cascade traveling-wave thermoacoustic amplifier
JP2010071559A (en) Thermoacoustic cooling device
US10495072B2 (en) Thermoacoustic energy converting element part, thermoacoustic energy converter, and method of manufacturing thermoacoustic energy converting element part
Yang et al. Performance optimization of the regenerator of a looped thermoacoustic engine powered by low‐grade heat
WO2023181608A1 (en) Heat-sound converter
Ngcukayitobi Development of a multi-stage travelling-wave thermoacoustic system for electricity generation
Tartibu A multi-objective optimisation approach for small-scale standing wave thermoacoustic coolers design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees