JPH11344266A - Acoustic freezer - Google Patents

Acoustic freezer

Info

Publication number
JPH11344266A
JPH11344266A JP15439698A JP15439698A JPH11344266A JP H11344266 A JPH11344266 A JP H11344266A JP 15439698 A JP15439698 A JP 15439698A JP 15439698 A JP15439698 A JP 15439698A JP H11344266 A JPH11344266 A JP H11344266A
Authority
JP
Japan
Prior art keywords
acoustic
tube
heat
heat medium
sound wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15439698A
Other languages
Japanese (ja)
Inventor
Kenichi Sato
佐藤  賢一
Mitsuhiro Masuda
光博 増田
Takahiro Nakamura
隆広 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15439698A priority Critical patent/JPH11344266A/en
Publication of JPH11344266A publication Critical patent/JPH11344266A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1404Pulse-tube cycles with loudspeaker driven acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1405Pulse-tube cycles with travelling waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise the general heat efficiency in a freezing system which freezes the object, using an acoustic freezer. SOLUTION: A speaker 23 is arranged opposite to the duct line of an acoustic pipe 1, and also a cold accumulating member 4 is arranged in the specified position within the acoustic pipe 1. Moreover, plural pieces of thin pipes 6 are arranged in contact with each end face of the end face on low temperature side and the end face on high temperature side of a cold accumulating member 4, and these thin pipes 6 pierce the acoustic pipe, in the direction orthogonal to the axis of the pipe. Then, the cooling of a freezing chamber 8 is performed by the heat medium flowing in the thin pipe 6 opposite to the end on a low temperature side, and also the heat radiation to outside is performed by the heat medium flowing in the thin pipe 6 opposite to the end on a high temperature side. As a heat medium, ammonium or acetone is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、音響管の管路に対
向させて音波発生装置を配備すると共に、音響管内の所
定位置には蓄冷部材を配備してなる音響冷凍装置に関
し、特に、冷却対象の冷却と外界への放熱を効率的に行
なうことが出来る音響冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic refrigeration system in which a sound wave generator is provided facing a pipe of an acoustic tube, and a regenerative member is provided at a predetermined position in the acoustic tube. The present invention relates to an acoustic refrigeration apparatus capable of efficiently cooling an object and radiating heat to the outside.

【0002】[0002]

【従来の技術】従来より、音波を利用して冷凍を行なう
音響冷凍装置が知られている(例えば特公平3-46745号参
照)。例えば図11に示す音響冷凍装置(200)は、一端(2
02A)が閉止し、他端(202B)が開口した共鳴管(202)を具
え、該共鳴管(202)の開口端(202B)に対向して、音響発
生用のスピーカ(201)が配備されている。又、共鳴管(20
2)の適所には、スタックと称される蓄冷部材(203)が内
蔵されている。蓄冷部材(203)は、ナイロン、ポリエス
テル、その他熱伝導性の低い資材からなる同心円状の複
数の円筒、渦巻き状の1枚の板、或いは互いに平行な複
数枚の板から構成されている。
2. Description of the Related Art Conventionally, there is known an acoustic refrigeration apparatus for refrigeration using sound waves (see, for example, Japanese Patent Publication No. 3-46745). For example, the acoustic refrigerator (200) shown in FIG.
02A) is closed, and the other end (202B) is provided with a resonance tube (202) having an opening, and a speaker (201) for generating sound is provided facing the open end (202B) of the resonance tube (202). ing. Also, the resonance tube (20
A cold storage member (203) called a stack is built in an appropriate place in 2). The cold storage member (203) is composed of a plurality of concentric cylinders made of nylon, polyester, or other material having low thermal conductivity, a single spiral plate, or a plurality of parallel plates.

【0003】ここで、スピーカ(201)への印加電流の周
波数は、共鳴管(202)内で音波が共鳴することとなる値
に設定される。スピーカ(203)から共鳴管(202)の閉止端
(202A)へ向けて音波が発生されると、共鳴管(202)内に
は、図11に示す如き圧力分布Pが形成され、圧力変動
の大きい腹の部分と、圧力変動の小さな節の部分とが交
互に発生する。又、図中に矢印Wで示す様に、ガスの変
位にも腹と節が生じることになる。この結果、蓄冷器(2
03)の両端に温度差が発生する。そして、蓄冷器(203)の
低温端と高温端がそれぞれ熱交換器(図示省略)を介して
対象物の冷却と外界への放熱を行なうのである。
Here, the frequency of the current applied to the speaker (201) is set to a value at which sound waves resonate in the resonance tube (202). From the speaker (203) to the closed end of the resonance tube (202)
When a sound wave is generated toward (202A), a pressure distribution P as shown in FIG. 11 is formed in the resonance tube (202), and an antinode part having a large pressure fluctuation and a node part having a small pressure fluctuation are formed. And occur alternately. Further, as shown by an arrow W in the figure, the gas displacement also has an antinode and a node. As a result, the regenerator (2
A temperature difference occurs at both ends of 03). Then, the low-temperature end and the high-temperature end of the regenerator (203) perform cooling of the object and heat radiation to the outside via a heat exchanger (not shown), respectively.

【0004】上記の音響冷凍装置(200)は、微小なガス
塊についての断熱圧縮、等圧変化、断熱膨張、及び等圧
変化の4つの行程からなるブレイトンサイクルによって
説明することが出来る。しかしながら、上記の音響冷凍
装置(200)が構成するブレイトンサイクルにおいては、
ガス塊が膨張したときの温度と蓄冷器(203)の温度との
差によって熱を吸収させたり、ガス塊が圧縮されたとき
の温度と蓄冷器(203)の温度との差によって熱を放出さ
せているため、熱的移動過程が不可逆的となっており、
カルノーサイクルよりも熱効率が低い欠点がある。
The above-described acoustic refrigeration apparatus (200) can be described by a Brayton cycle consisting of four steps of adiabatic compression, isobaric pressure change, adiabatic expansion, and isobaric pressure change of a minute gas mass. However, in the Brayton cycle constituted by the acoustic refrigerator (200),
Heat is absorbed by the difference between the temperature when the gas mass expands and the temperature of the regenerator (203), or heat is released by the difference between the temperature when the gas mass is compressed and the temperature of the regenerator (203). The thermal transfer process is irreversible,
There is a disadvantage that the thermal efficiency is lower than that of the Carnot cycle.

【0005】そこで、出願人は、熱的移動行程が可逆的
となって、理想的なガスサイクルであるカルノーサイク
ルに近いガスサイクルを実現出来る音響冷凍装置を提案
している(特願平9-134993号)。図5〜図10に基づい
て、該音響冷凍装置の基本構造及び原理について説明す
る。
Therefore, the applicant has proposed an acoustic refrigeration apparatus in which the thermal transfer process is reversible and a gas cycle close to an ideal gas cycle, the Carnot cycle, can be realized (Japanese Patent Application No. Hei 9-1997). 134993). The basic structure and principle of the acoustic refrigerator will be described with reference to FIGS.

【0006】図5に示す如く、音波を進行させるべき音
響管(1)は、中空環状の閉ループの管路を形成してい
る。該音響管(1)の周長は、音波の波長の整数倍となる
様に設定する。尚、以下の例では、音響管(1)の中心線
の長さを周長とする。音波発生装置としてのスピーカ
(2)(3)は、音波の1/4波長の奇数倍に等しい距離だ
け互いに離間させて、音響管(1)内に音波を放射するよ
うに音響管(1)に取り付けられる。又、スピーカ(2)
(3)には音波発生制御装置(50)が接続され、スピーカ
(2)(3)から放射される音波の位相が互いに音波の1/
4波長の奇数倍だけずれるように駆動制御される。
As shown in FIG. 5, an acoustic tube (1) through which a sound wave is to be transmitted forms a hollow annular closed-loop conduit. The circumference of the acoustic tube (1) is set to be an integral multiple of the wavelength of the sound wave. In the following example, the length of the center line of the acoustic tube (1) is defined as the circumference. Speaker as sound wave generator
(2) and (3) are attached to the acoustic tube (1) so as to emit acoustic waves into the acoustic tube (1) while being separated from each other by a distance equal to an odd multiple of 音波 wavelength of the acoustic wave. Also, speaker (2)
A sound wave generation control device (50) is connected to (3), and a speaker
(2) The phases of the sound waves emitted from (3) are 1 /
Drive control is performed so as to shift by an odd multiple of four wavelengths.

【0007】次に、音響冷凍装置の動作原理について、
図6を参照して説明する。各スピーカ(2)(3)から放射
された音波は、音響管(1)内に入ってから2方向に分岐
し、音響管(1)内を進行する。そして、両スピーカ(2)
(3)から放射されて音響管(1)内を進行する2つの音波
が互いに重なり合う。ここで、スピーカ(2)(3)の配置
間隔と音波の位相差の関係から、図の左方向へ進行する
音波2Lと3Lとは、同位相となり、互いに重ね合わさ
れて増幅し、図の右方向へ進行する音波2Rと3Rと
は、逆位相となり、互いに打ち消し合う。この結果、一
方向(左方向)にのみ進行する音波だけが残り、該音波は
更に音響管(1)内を一周して同じ位相の音波と重ね合わ
されるため、共鳴と同様に振幅が増大されることにな
る。
Next, the operation principle of the acoustic refrigerator is described.
This will be described with reference to FIG. The sound waves radiated from the speakers (2) and (3) enter the acoustic tube (1), branch in two directions, and travel in the acoustic tube (1). And both speakers (2)
Two sound waves emitted from (3) and traveling in the acoustic tube (1) overlap each other. Here, from the relationship between the arrangement intervals of the speakers (2) and (3) and the phase difference between the sound waves, the sound waves 2L and 3L traveling to the left in the drawing have the same phase, are superimposed on each other and amplified, and The sound waves 2R and 3R traveling in the directions have opposite phases and cancel each other. As a result, only the sound wave traveling in one direction (left direction) remains, and the sound wave further goes around in the acoustic tube (1) and is superimposed with the sound wave of the same phase, so that the amplitude is increased similarly to the resonance. Will be.

【0008】次に、図7に示す如く、音響冷凍装置の音
響管(1)内に、熱交換性が良く、圧力損失の小さい蓄冷
部材(40)を配備した場合における冷凍原理について、図
8を参照して説明する。蓄冷部材(40)を通過する進行音
波は、その位置により位相のずれがあり、ある場所に位
置する微小なガス塊に着目すると、その中心位置を境
に、音波の進行方向では膨張行程が生じ、その反対方向
では圧縮行程が生じている。この膨張行程及び圧縮行程
において、蓄冷部材(40)を用いて熱吸収及び熱放出が行
なわれることによって、熱が音波の進行方向とは逆方向
へ順次運ばれることになる。この伝熱行程は可逆的であ
るため、従来の音響冷凍装置よりも熱効率が高くなるの
である。
Next, as shown in FIG. 7, the principle of refrigeration when a regenerative member (40) having good heat exchange properties and a small pressure loss is arranged in an acoustic tube (1) of an acoustic refrigeration apparatus will be described with reference to FIG. This will be described with reference to FIG. The traveling sound wave passing through the cold storage member (40) has a phase shift depending on its position, and when focusing on a minute gas mass located at a certain position, an expansion stroke occurs in the traveling direction of the sound wave at the center position as a boundary. In the opposite direction, a compression stroke occurs. In the expansion step and the compression step, heat is absorbed and released using the cold storage member (40), so that heat is sequentially transferred in the direction opposite to the traveling direction of the sound wave. Since the heat transfer process is reversible, the heat efficiency is higher than that of the conventional acoustic refrigerator.

【0009】更に、本発明の音響冷凍装置のガスサイク
ルについて、図9及び図10を参照して説明する。カル
ノーサイクルは等温行程と断熱行程から構成され、図9
に示す様に、T−S線図では、A・H・G・Dの長方形
のサイクル線図として示される。ここで、A→Hは断熱
膨張行程(エントロピー一定)を示し、H→Gは等温膨張
行程を示し、G→Dは断熱圧縮行程を示し、D→Aは等
温膨張行程を示している。
Further, the gas cycle of the acoustic refrigerator according to the present invention will be described with reference to FIGS. The Carnot cycle consists of an isothermal process and an adiabatic process.
As shown in the figure, the TS diagram shows a rectangular cycle diagram of A, H, G and D. Here, A → H indicates an adiabatic expansion stroke (constant entropy), H → G indicates an isothermal expansion stroke, G → D indicates an adiabatic compression stroke, and D → A indicates an isothermal expansion stroke.

【0010】図10に示す様に、ガス塊となる伝熱性の
良い蓄冷部材中を一方向に音波が通過する場合、微小な
ガス塊は往復運動をすると同時に圧力変化を生じる。圧
力変化は、ガス塊が音波進行方向に最も移動したとき
に、圧力上昇が速く、強く圧縮される。ここで蓄冷部材
の伝熱性がよいため、等温圧縮が行なわれることにな
る。この等温圧縮行程は、図9及び図10においてD→
Aで示される。次に、ガス塊が音波進行方向と反対方向
へ移動するときに、蓄冷部材の温度勾配に沿って熱が放
出され、ガス塊は略等積変化で冷却される。この行程
は、図9及び図10においてA→Bで示される。
As shown in FIG. 10, when a sound wave passes in one direction through a regenerative member having good heat conductivity as a gas mass, the minute gas mass reciprocates and changes pressure at the same time. The pressure change is such that when the gas mass moves most in the direction of sound wave travel, the pressure rises rapidly and is strongly compressed. Here, since the heat storage member has good heat conductivity, isothermal compression is performed. This isothermal compression stroke is represented by D →
Indicated by A. Next, when the gas mass moves in the direction opposite to the sound wave traveling direction, heat is released along the temperature gradient of the cold storage member, and the gas mass is cooled by a substantially equal volume change. This process is indicated by AB in FIGS. 9 and 10.

【0011】その後、音波進行方向の反対方向の端部に
おいては、圧力の低下が速く、強く膨張する。このと
き、蓄冷部材から熱が吸収される等温膨張行程となる。
この行程は、図9及び図10においてB→Cで示され
る。ガスが音波進行方向へ移動するときにも、蓄冷部材
の温度勾配に沿って熱を吸収する等積変化となる。この
行程は、図9及び図10においてC→Dで示される。
Thereafter, at the end in the direction opposite to the traveling direction of the sound wave, the pressure decreases rapidly and expands strongly. At this time, an isothermal expansion process in which heat is absorbed from the cold storage member is performed.
This process is indicated by B → C in FIGS. 9 and 10. Even when the gas moves in the direction in which the sound wave travels, there is an equal volume change that absorbs heat along the temperature gradient of the cold storage member. This process is indicated by C → D in FIGS. 9 and 10.

【0012】以上により、図9に示すD→A→B→C→
Dの1サイクルによって、熱を音波進行方向とは逆方向
へ運ぶことが可能となる。この様に、等温行程と等積行
程によって構成されるサイクルは、スターリングサイク
ルと呼ばれ、カルノーサイクルの断熱行程が等積行程と
なったものである。従って、上記音響冷凍装置によれ
ば、カルノーサイクルと同等の効率が得られることにな
る。
As described above, D → A → B → C → shown in FIG.
One cycle of D makes it possible to transfer heat in the direction opposite to the direction of sound wave travel. Thus, a cycle constituted by the isothermal process and the isostatic process is called a Stirling cycle, and the adiabatic process of the Carnot cycle is an isostatic process. Therefore, according to the acoustic refrigeration apparatus, efficiency equivalent to the Carnot cycle can be obtained.

【0013】[0013]

【発明が解決しようとする課題】ところで、上記音響冷
凍装置によって冷凍庫等の対象物を冷凍する冷凍システ
ムにおける総合的な熱効率(システム熱効率)は、蓄冷部
材を用いたガスサイクルの熱効率のみならず、蓄冷部材
の低温部及び高温部がそれぞれ冷却対象の冷却と外界へ
の放熱を行なう際の熱交換の効率によっても左右される
ので、ガスサイクルの熱効率がカルノーサイクルの熱効
率に近づいたとしても、前記熱交換の効率が改善されな
い限り、高いシステム熱効率は得られない。しかしなが
ら、従来の音響冷凍装置においては、音響管の管壁を介
して蓄冷部材と熱媒体の間の熱交換が行なわれており、
蓄冷部材の低温部及び高温部がそれぞれ冷却対象の冷却
と外界への放熱を行なう際の熱交換効率は低く、この結
果、システム熱効率が低くなる問題があった。特に図1
1のような音響冷凍装置の場合、音響管及び蓄冷部材が
熱伝導性の小さい材質から形成されていたため、この問
題は極めて顕著なものとなっていた。そこで本発明の目
的は、従来よりも高いシステム熱効率を得ることが可能
な音響冷凍装置を提供することである。
The overall thermal efficiency (system thermal efficiency) of a refrigeration system that freezes an object such as a freezer by the acoustic refrigerator is not only the thermal efficiency of a gas cycle using a cold storage member, Even if the heat efficiency of the gas cycle approaches the heat efficiency of the Carnot cycle, the low-temperature portion and the high-temperature portion of the cold storage member are also affected by the efficiency of heat exchange when cooling the object to be cooled and releasing heat to the outside, respectively. Unless the efficiency of heat exchange is improved, high system thermal efficiency cannot be obtained. However, in the conventional acoustic refrigerator, heat exchange between the cold storage member and the heat medium is performed via the wall of the acoustic tube,
The heat exchange efficiency when the low-temperature portion and the high-temperature portion of the cold storage member perform cooling of the object to be cooled and heat radiation to the outside, respectively, is low. In particular, FIG.
In the case of the acoustic refrigeration apparatus as described in 1, the acoustic tube and the cold storage member are formed of a material having low thermal conductivity, so that this problem has been extremely remarkable. Therefore, an object of the present invention is to provide an acoustic refrigeration apparatus capable of obtaining a higher system thermal efficiency than conventional ones.

【0014】[0014]

【課題を解決する為の手段】本発明に係る音響冷凍装置
は、音響管の管路に対向して音波発生装置が配備される
と共に、音響管内の所定位置には蓄冷部材が配備され、
音波発生装置から発せられる音波によって蓄冷部材に温
度勾配を形成し、該蓄冷部材の低温部と高温部がそれぞ
れ冷却対象の冷却と外界への放熱を行なうものである。
特徴的構成において、音響管には、蓄冷部材の低温側端
部及び高温側端部の各端部と対向する位置に、音響管を
管軸と交叉する方向に貫通する複数本の細管が配設さ
れ、低温側端部と対向する細管を流れる熱媒体によって
冷却対象の冷却が行なわれると共に、高温側端部と対向
する細管を流れる熱媒体によって外界への放熱が行なわ
れる。
According to the acoustic refrigeration apparatus of the present invention, a sound wave generator is provided facing a pipe of an acoustic tube, and a cold storage member is provided at a predetermined position in the acoustic tube.
A temperature gradient is formed in the cool storage member by the sound waves emitted from the sound wave generator, and the low-temperature portion and the high-temperature portion of the cool storage member perform cooling of the object to be cooled and heat radiation to the outside world, respectively.
In the characteristic configuration, the acoustic tube is provided with a plurality of thin tubes penetrating the acoustic tube in a direction intersecting the tube axis at positions opposite to the low-temperature end and the high-temperature end of the regenerative member. The cooling target is cooled by the heat medium flowing through the thin tube facing the low-temperature side end, and heat is released to the outside world by the heat medium flowing through the thin tube facing the high-temperature end.

【0015】上記本発明の音響冷凍装置においては、蓄
冷部材の低温側端部及び高温側端部の各端部と対向して
複数本の細管が配設されているので、蓄冷部材の低温側
端部及び高温側端部と、各端部と対向して配備された複
数本の細管を流れる熱媒との間の熱交換が、効率よく行
なわれる。
In the acoustic refrigeration apparatus of the present invention, since a plurality of thin tubes are disposed opposite to the low-temperature end and the high-temperature end of the cold storage member, the low temperature side of the cold storage member is provided. The heat exchange between the ends and the high-temperature side ends and the heat medium flowing through the plurality of thin tubes arranged opposite to each end is efficiently performed.

【0016】具体的には、前記複数本の細管はそれぞれ
蓄冷部材の端面と接触して配置されている。従って、蓄
冷部材の低温側端部及び高温側端部と複数本の細管とが
固体接触して、両者間では熱伝導によって熱が伝達され
る。この結果、高い熱交換率が得られる。
Specifically, each of the plurality of thin tubes is arranged in contact with the end face of the cold storage member. Therefore, the low-temperature end and the high-temperature end of the cold storage member and the plurality of thin tubes are in solid contact, and heat is transferred between the two by heat conduction. As a result, a high heat exchange rate is obtained.

【0017】又、具体的構成においては、音響管を包囲
して、前記複数本の細管の入口に連通する入口室と、前
記複数本の細管の出口に連通する出口室とが形成され、
該入口室へ熱媒体が流入すると共に、該出口室から熱媒
体が流出する。該具体的構成においては、音響管を包囲
して入口室と出口室が形成されているので、蓄冷部材を
収容した音響管の外周壁を介して、蓄冷部材の端部と入
口室及び出口室の熱媒体とが熱交換を行なう。従って、
熱損失が少なく、高い熱交換率が得られる。
In a specific configuration, an inlet chamber surrounding the acoustic tube and communicating with the inlets of the plurality of thin tubes and an outlet chamber communicating with the outlets of the plurality of thin tubes are formed.
The heat medium flows into the inlet chamber, and the heat medium flows out of the outlet chamber. In this specific configuration, since the entrance chamber and the exit chamber are formed so as to surround the acoustic tube, the end of the regenerative member, the entrance chamber, and the exit chamber are provided through the outer peripheral wall of the acoustic tube that contains the regenerative member. Performs heat exchange with the heat medium. Therefore,
Low heat loss and high heat exchange rate.

【0018】更に他の具体的構成においては、細管を流
れる熱媒体として水を採用することが出来、更に望まし
くは、アンモニア、アセトン等、粘性の低い媒体が用い
られる。従って、細管として、例えば内径が1mm以下
の極めて小径の円管を用いたとしても、該細管内を流れ
る熱媒体が受ける粘性抵抗は小さく、熱媒体を循環させ
るための動力は少なくて済む。
In still another specific configuration, water can be used as the heat medium flowing through the thin tube, and more preferably, a low-viscosity medium such as ammonia or acetone is used. Therefore, even if a very small circular tube having an inner diameter of 1 mm or less is used as the thin tube, the viscous resistance of the heat medium flowing through the thin tube is small and the power for circulating the heat medium is small.

【0019】[0019]

【発明の効果】本発明に係る音響冷凍装置によれば、蓄
冷部材の低温部及び高温部がそれぞれ冷却対象の冷却と
外界への放熱を行なう際の熱交換効率として、高い効率
が得られるので、従来よりもシステム熱効率が向上す
る。
According to the acoustic refrigeration apparatus of the present invention, a high efficiency can be obtained as the heat exchange efficiency when the low-temperature portion and the high-temperature portion of the regenerative member perform cooling of the object to be cooled and heat radiation to the outside. Thus, the system thermal efficiency is improved as compared with the related art.

【0020】[0020]

【発明の実施の形態】以下、本発明を図7に基本構造を
表わす音響冷凍装置に実施した形態につき、図面に沿っ
て具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to an acoustic refrigerator having a basic structure shown in FIG. 7 will be specifically described with reference to the drawings.

【0021】図1に示す如く、周長が音波の波長の整数
倍である中空環状の音響管(1)の管路に対向して、音波
発生手段となる第1スピーカ(2)と第2スピーカ(3)と
が、音波の1/4波長の奇数倍の間隔をもって配置され
ている。両スピーカ(2)(3)には音波発生制御回路(図
示省略)が接続され、第1スピーカ(2)から発せられる
第1音波と第2スピーカ(3)から発せられる第2音波の
位相が音波の1/4波長の奇数倍だけ異なるよう、両ス
ピーカ(2)(3)の動作が制御される。又、音響管(1)の
適所には蓄冷部材(4)が内蔵されている。
As shown in FIG. 1, a first loudspeaker (2) and a second loudspeaker, which are sound wave generating means, face a pipe of a hollow annular sound tube (1) whose circumference is an integral multiple of the wavelength of a sound wave. Speakers (3) are arranged at an interval of an odd multiple of 1/4 wavelength of the sound wave. A sound wave generation control circuit (not shown) is connected to both speakers (2) and (3), and the phases of the first sound wave emitted from the first speaker (2) and the second sound wave emitted from the second speaker (3) are determined. The operations of the two speakers (2) and (3) are controlled so that they differ by an odd multiple of 1 / wavelength of the sound wave. In addition, a cool storage member (4) is built in an appropriate position of the acoustic tube (1).

【0022】スピーカ(2)(3)から音響管(1)内に音波
を放射すると、各スピーカから放射される音波は、音響
管(1)内で2方向に分岐して、一方向に進む音波と他方
向に進む音波が生成される。そして、第1スピーカ(2)
から発せられる第1音波と第2スピーカ(3)から発せら
れる第2音波は、両スピーカ(2)(3)の配置間隔及び発
生される音波の位相から、一方向へ進行する音波は重ね
合わされて増幅され、他方向へ進行する音波は打ち消さ
れることになる。このため、一方向に進行する音波だけ
が音響管(1)内に残り、更に音響管(1)内を一周して同
じ位相の音波と重ね合わされ、共鳴と同様に振幅が増大
されることになる
When sound waves are radiated from the speakers (2) and (3) into the acoustic tube (1), the sound waves radiated from each speaker are branched in two directions in the acoustic tube (1) and proceed in one direction. A sound wave traveling in the other direction is generated. And the first speaker (2)
The first sound wave emitted from the first speaker and the second sound wave emitted from the second speaker (3) are superimposed on the sound wave traveling in one direction from the arrangement interval of the two speakers (2) and (3) and the phase of the generated sound wave. The sound wave that is amplified and propagates in the other direction is canceled. For this reason, only the sound wave traveling in one direction remains in the sound tube (1), and further goes around the sound tube (1) and is superimposed with the sound wave of the same phase, so that the amplitude is increased like resonance. Become

【0023】この様にして形成された一方向にのみ進行
する音波が蓄冷部材(4)を通過することによって、各場
所に位置する微小なガス塊の圧力及び変位は、その位置
により位相のずれを生じる。これによって、各場所に位
置するガス塊は、その変位の中心位置を境に、音波の進
行方向に位置するときは膨張が起こり、その反対方向に
位置するときは圧縮が起こる。この膨張行程及び圧縮行
程において、熱吸収及び熱放出が行なわれるため、熱が
音波進行方向の逆方向へ順次運ばれることになる。この
結果、蓄冷部材(4)に温度勾配が形成され、一方の端部
が高温、他方の端部が低温となる。
When the sound wave thus formed, which travels only in one direction, passes through the cold storage member 4, the pressure and displacement of the minute gas mass located at each location are shifted in phase depending on the location. Is generated. As a result, the gas mass located at each location expands when located in the traveling direction of the sound wave, and compresses when located in the opposite direction, from the center position of the displacement. In the expansion stroke and the compression stroke, heat is absorbed and released, so that heat is sequentially transferred in the direction opposite to the direction in which the sound wave travels. As a result, a temperature gradient is formed in the cold storage member (4), and one end has a high temperature and the other end has a low temperature.

【0024】上記音響冷凍装置の音響管(1)には、蓄冷
部材(4)の低温側端部及び高温側端部の各端面と接触す
る位置に、音響管(1)を管軸と直交する方向に貫通する
複数本の細管(6)が配設されており、低温側端部と対向
する細管(6)は、冷却対象となる冷凍庫(8)に配備され
た低温側熱交換器(81)との間で、低温側の熱媒体循環系
統S1を構成すると共に、高温側端部と対向する細管
(6)は、外界への放熱をい行なうための高温側熱交換器
(82)との間で、高温側の熱媒体循環系統S2を構成して
いる。低温側及び高温側の熱媒体循環系統S1、S2に
はそれぞれ、熱媒体を循環させるためのポンプ(9)が接
続されている。
The acoustic tube (1) of the above-mentioned acoustic refrigerator has the acoustic tube (1) perpendicular to the tube axis at a position in contact with each of the low-temperature side end and the high-temperature side end of the cold storage member (4). A plurality of thin tubes (6) penetrating in the direction in which the low temperature side heat exchanger (8) is disposed in a freezer (8) to be cooled is provided. 81), a heat medium circulation system S1 on the low temperature side is formed, and a thin tube facing the high temperature side end is formed.
(6) is a high temperature side heat exchanger for radiating heat to the outside world
A high-temperature side heat medium circulation system S2 is configured with (82). A pump (9) for circulating the heat medium is connected to each of the heat medium circulation systems S1 and S2 on the low temperature side and the high temperature side.

【0025】図2及び図3は、前記蓄冷部材の低温側端
部及び高温側端部の各端部に配設された複数本の細管
(6)を前記熱媒体循環系統と接続するための具体的な構
造を表わしている。音響管(1)には、前述の如く、蓄冷
部材(4)の低温側端部及び高温側端部の各端部と対応し
てそれぞれ、内径が1mmの複数本の細管(6)が垂直方
向に貫通しており、該細管(6)の入口及び出口を包囲し
て、ジャケット(7)が設けられている。該ジャケット
(7)の内部は、仕切り板(75)によって上下に仕切られて
おり、細管(6)の入口が繋がる入口室(71)と細管(6)の
出口が繋がる出口室(72)とを形成している。入口室(71)
には入口管(73)が接続され、入口室(71)には出口管(74)
が接続されており、入口管(73)及び出口管(74)が前記熱
媒体循環系統と繋がっている。
FIGS. 2 and 3 show a plurality of thin tubes arranged at each of a low-temperature end and a high-temperature end of the cold storage member.
The specific structure for connecting (6) to the heat medium circulation system is shown. As described above, the acoustic tube (1) is provided with a plurality of thin tubes (6) having an inner diameter of 1 mm each corresponding to each of the low-temperature side end and the high-temperature side end of the cold storage member (4). And a jacket (7) is provided surrounding the inlet and outlet of the capillary (6). The jacket
The inside of (7) is vertically partitioned by a partition plate (75) to form an inlet chamber (71) to which the inlet of the thin tube (6) is connected and an outlet chamber (72) to which the outlet of the thin tube (6) is connected. doing. Entrance room (71)
Is connected to the inlet pipe (73), and the inlet chamber (71) is connected to the outlet pipe (74).
Are connected, and an inlet pipe (73) and an outlet pipe (74) are connected to the heat medium circulating system.

【0026】熱媒体循環系統には、熱媒体として水、望
ましくはアンモニアやアセトン等の如く低粘性であり、
比較的飽和蒸気圧の低い自然冷媒を、若干加圧状態で封
入する。但し、熱媒体としてアンモニアやアセトンを採
用する場合、これらの熱媒体は可燃性であって、毒性を
有しているので、熱媒体循環系統からの熱媒体の漏れを
確実に防止する必要がある。
The heat medium circulation system has a low viscosity such as water, preferably ammonia or acetone as a heat medium,
A natural refrigerant having a relatively low saturated vapor pressure is sealed in a slightly pressurized state. However, when using ammonia or acetone as the heat medium, these heat mediums are flammable and toxic, so it is necessary to reliably prevent the heat medium from leaking from the heat medium circulation system. .

【0027】そこで、この様な熱媒体を循環させるため
のポンプ(9)として、図4に示す如き密閉型のポンプを
採用する。該ポンプ(9)においては、熱媒体循環系統を
構成する配管(90)に、スクリュー(94)を回転可能に収容
したハウジング(91)が接続され、該ハウジング(91)を包
囲してステータ(92)が配備されると共に、ハウジング(9
1)内には、スクリュー(94)の外周部にロータ(93)が固定
され、ステータ(92)及びロータ(93)によって駆動モータ
が構成されている。該ポンプ(9)によれば、熱媒体の流
路が完全に密閉されることになるので、熱媒体循環系統
から熱媒体が漏れる虞れはない。
Therefore, as a pump (9) for circulating such a heat medium, a closed type pump as shown in FIG. 4 is employed. In the pump (9), a housing (91) that rotatably accommodates a screw (94) is connected to a pipe (90) that constitutes a heat medium circulation system, and the housing (91) is surrounded by a stator ( 92) is deployed and the housing (9
In 1), a rotor (93) is fixed to an outer peripheral portion of a screw (94), and a drive motor is constituted by the stator (92) and the rotor (93). According to the pump (9), since the flow path of the heat medium is completely sealed, there is no possibility that the heat medium leaks from the heat medium circulation system.

【0028】上記音響冷凍装置によれば、第1スピーカ
(2)及び第2スピーカ(3)から音響管(1)内に音波を放
射することによって、前述の如く、蓄冷部材において起
こる膨張行程及び圧縮行程によって熱吸収及び熱放出が
行なわれ、カルノーサイクルに近い熱サイクルが実現さ
れる。この結果、図11に示す従来の音響冷凍装置より
も高い冷凍効率が得られる。
According to the above acoustic refrigerator, the first speaker
By radiating sound waves from the second speaker (2) and the second speaker (3) into the acoustic tube (1), as described above, heat absorption and heat release are performed by the expansion process and the compression process occurring in the cold storage member, and the Carnot cycle is performed. A heat cycle close to is realized. As a result, higher refrigeration efficiency than the conventional acoustic refrigeration apparatus shown in FIG. 11 can be obtained.

【0029】又、蓄冷部材(4)の両端面に接触させて複
数本の細管(6)が配置されているので、蓄冷部材(4)と
複数本の細管(6)とが固体接触して、両者間では熱伝導
によって熱が伝達される。更に、内径が1mmの複数本
の細管(6)が採用されているため、伝熱面積が大きくな
る。尚、上述の如く、熱媒体としてアンモニアやアセト
ンを採用して、細管(6)の配備に伴う流動抵抗の増大が
抑えられている。この結果、蓄冷部材(4)と複数本の細
管(6)を流れる熱媒との間の熱交換が効率良く行なわ
れ、音響冷凍装置によって冷凍庫を冷凍するシステムに
おける総合なシステム熱効率が改善されることになる。
又、アンモニアやアセトン等の自然冷媒の採用によっ
て、環境汚染の問題も回避される。
Further, since the plural thin tubes (6) are arranged in contact with both end surfaces of the cold storage member (4), the cold storage member (4) and the plural thin tubes (6) come into solid contact with each other. Heat is transmitted between the two by heat conduction. Furthermore, since a plurality of thin tubes (6) having an inner diameter of 1 mm are employed, the heat transfer area is increased. As described above, by using ammonia or acetone as the heat medium, an increase in flow resistance due to the provision of the thin tube (6) is suppressed. As a result, heat exchange between the cold storage member (4) and the heat medium flowing through the plurality of thin tubes (6) is efficiently performed, and the overall system thermal efficiency in the system for freezing the freezer by the acoustic refrigerator is improved. Will be.
The use of natural refrigerants such as ammonia and acetone also avoids the problem of environmental pollution.

【0030】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、本発明は、図5乃至図10
によって説明した音響冷凍装置に限らず、図11に示す
従来の音響冷凍装置に実施することも可能である。又、
第1及び第2のスピーカ(2)(3)は、音波の1/4波長
の奇数倍だけずらして、複数位置に配設することも可能
であり、これによって、各スピーカに加わる負荷が軽減
され、音響冷凍装置の長寿命化を図ることが出来る。更
に又、音波の発生には、上述の如きラウドスピーカに限
らず、リニアモータによって振動板を駆動するものや、
圧電素子を振動源とするもの等を採用することが出来
る。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, the present invention relates to FIGS.
The present invention is not limited to the acoustic refrigeration apparatus described above, but can be implemented in the conventional acoustic refrigeration apparatus shown in FIG. or,
The first and second loudspeakers (2) and (3) can be arranged at a plurality of positions shifted by an odd multiple of 音波 wavelength of the sound wave, thereby reducing the load applied to each loudspeaker. As a result, the life of the acoustic refrigerator can be extended. Further, the generation of the sound wave is not limited to the loudspeaker as described above, and a diaphragm driven by a linear motor,
A device using a piezoelectric element as a vibration source can be employed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る音響冷凍装置を用いた冷凍システ
ムの系統図である。
FIG. 1 is a system diagram of a refrigeration system using an acoustic refrigeration apparatus according to the present invention.

【図2】本発明に係る音響冷凍装置の要部を破断して示
す斜視図である。
FIG. 2 is a perspective view showing a main part of the acoustic refrigerator according to the present invention in a cutaway manner.

【図3】該音響冷凍装置の管軸に沿う断面図である。FIG. 3 is a sectional view taken along a tube axis of the acoustic refrigerator.

【図4】密閉型ポンプの断面図である。FIG. 4 is a cross-sectional view of the hermetic pump.

【図5】出願人の提案にかかる音響冷凍装置の動作原理
を説明するための第1の図である。
FIG. 5 is a first diagram for explaining the operation principle of the acoustic refrigerator according to the proposal of the applicant.

【図6】同上の第2の図である。FIG. 6 is a second diagram of the above.

【図7】該音響冷凍装置の基本構造を示す概略図であるFIG. 7 is a schematic diagram showing a basic structure of the acoustic refrigerator.

【図8】該音響冷凍装置の伝熱行程を説明するための図
である。
FIG. 8 is a view for explaining a heat transfer process of the acoustic refrigerator.

【図9】該音響冷凍装置の冷凍サイクルを表わすT−S
線図である。
FIG. 9 shows a TS representing a refrigeration cycle of the acoustic refrigerator.
FIG.

【図10】該冷凍サイクルを説明するための図である。FIG. 10 is a diagram for explaining the refrigeration cycle.

【図11】従来の音響冷凍装置の断面図である。FIG. 11 is a sectional view of a conventional acoustic refrigerator.

【符号の説明】[Explanation of symbols]

(1) 音響管 (2) 第1スピーカ (3) 第2スピーカ (4) 蓄冷部材 (6) 細管 (7) ジャケット (71) 入口室 (72) 出口室 (73) 入口管 (74) 出口管 (75) 仕切り板 (8) 冷凍庫 (81) 低温側熱交換器 (82) 高温側熱交換器 (9) ポンプ (1) Acoustic tube (2) First speaker (3) Second speaker (4) Cold storage member (6) Thin tube (7) Jacket (71) Inlet room (72) Outlet room (73) Inlet tube (74) Outlet tube (75) Partition plate (8) Freezer (81) Low temperature heat exchanger (82) High temperature heat exchanger (9) Pump

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 音響管の管路に対向して音波発生装置が
配備されると共に、音響管内の所定位置には蓄冷部材が
配備され、音波発生装置から発せられる音波によって蓄
冷部材に温度勾配を形成し、該蓄冷部材の低温部と高温
部がそれぞれ冷却対象の冷却と外界への放熱を行なう音
響冷凍装置において、音響管には、蓄冷部材の低温側端
部及び高温側端部の各端部と対向する位置に、音響管を
管軸と交叉する方向に貫通する複数本の細管が配設さ
れ、低温側端部と対向する細管を流れる熱媒体によって
冷却対象の冷却が行なわれると共に、高温側端部と対向
する細管を流れる熱媒体によって外界への放熱が行なわ
れることを特徴とする音響冷凍装置。
A sound wave generator is provided facing a pipe of an acoustic tube, and a cool storage member is provided at a predetermined position in the sound tube, and a temperature gradient is applied to the cool storage member by sound waves emitted from the sound wave generator. A low-temperature part and a high-temperature part of the regenerator member cool and cool the object to be cooled and radiate heat to the outside, respectively. A plurality of thin tubes penetrating the acoustic tube in a direction intersecting with the tube axis are arranged at positions facing the portion, and the cooling target is cooled by a heat medium flowing through the thin tube facing the low-temperature side end, An acoustic refrigeration apparatus characterized in that heat is radiated to the outside by a heat medium flowing through a thin tube facing a high temperature side end.
【請求項2】 前記複数本の細管はそれぞれ蓄冷部材の
端面と接触して配置されている請求項1に記載の音響冷
凍装置。
2. The acoustic refrigeration apparatus according to claim 1, wherein each of the plurality of thin tubes is disposed in contact with an end face of the cold storage member.
【請求項3】 音響管を包囲して、前記複数本の細管の
入口に連通する入口室と、前記複数本の細管の出口に連
通する出口室とが形成され、該入口室へ熱媒体が流入す
ると共に、該出口室から熱媒体が流出する請求項1又は
請求項2に記載の音響冷凍装置。
3. An inlet chamber surrounding the acoustic tube and communicating with the inlets of the plurality of thin tubes, and an outlet room communicating with the outlets of the plurality of thin tubes are formed, and the heat medium is supplied to the inlet chamber. The acoustic refrigeration apparatus according to claim 1 or 2, wherein the heat medium flows out from the outlet chamber while flowing in.
【請求項4】 熱媒体として、水、アンモニア、若しく
はアセトンが用いられる請求項1乃至請求項3の何れか
に記載の音響冷凍装置。
4. The acoustic refrigerating apparatus according to claim 1, wherein water, ammonia, or acetone is used as the heat medium.
JP15439698A 1998-06-03 1998-06-03 Acoustic freezer Pending JPH11344266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15439698A JPH11344266A (en) 1998-06-03 1998-06-03 Acoustic freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15439698A JPH11344266A (en) 1998-06-03 1998-06-03 Acoustic freezer

Publications (1)

Publication Number Publication Date
JPH11344266A true JPH11344266A (en) 1999-12-14

Family

ID=15583237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15439698A Pending JPH11344266A (en) 1998-06-03 1998-06-03 Acoustic freezer

Country Status (1)

Country Link
JP (1) JPH11344266A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040002021A (en) * 2002-06-29 2004-01-07 현대자동차주식회사 Air conditioner system for automobile using thermoacoustic effect
JP2006189217A (en) * 2005-01-07 2006-07-20 Doshisha Heat exchanger and thermoacoustic device using the heat exchanger
JP2006189219A (en) * 2005-01-07 2006-07-20 Doshisha Thermoacoustic device
JP2006189218A (en) * 2005-01-07 2006-07-20 Doshisha Thermoacoustic device
WO2008029521A1 (en) * 2006-09-02 2008-03-13 The Doshisha Thermoacoustic device
EP2159519A2 (en) * 2008-08-28 2010-03-03 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
EP2161517A1 (en) * 2008-09-04 2010-03-10 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
JP2010276216A (en) * 2009-05-26 2010-12-09 Utsunomiya Univ Thermoacoustic cold air blower
WO2017098938A1 (en) * 2015-12-07 2017-06-15 中央精機株式会社 Method for producing thermoacoustic engine
WO2017098939A1 (en) * 2015-12-07 2017-06-15 中央精機株式会社 Thermoacoustic engine
JP2020076556A (en) * 2018-11-09 2020-05-21 大阪瓦斯株式会社 Cryogenic refrigeration system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040002021A (en) * 2002-06-29 2004-01-07 현대자동차주식회사 Air conditioner system for automobile using thermoacoustic effect
JP4554374B2 (en) * 2005-01-07 2010-09-29 学校法人同志社 Heat exchanger and thermoacoustic apparatus using the heat exchanger
JP2006189217A (en) * 2005-01-07 2006-07-20 Doshisha Heat exchanger and thermoacoustic device using the heat exchanger
JP2006189219A (en) * 2005-01-07 2006-07-20 Doshisha Thermoacoustic device
JP2006189218A (en) * 2005-01-07 2006-07-20 Doshisha Thermoacoustic device
JP4652822B2 (en) * 2005-01-07 2011-03-16 学校法人同志社 Thermoacoustic device
WO2008029521A1 (en) * 2006-09-02 2008-03-13 The Doshisha Thermoacoustic device
JPWO2008029521A1 (en) * 2006-09-02 2010-01-21 学校法人同志社 Thermoacoustic device
GB2454429A (en) * 2006-09-02 2009-05-06 Doshisha Thermoacoustic device
GB2454429B (en) * 2006-09-02 2011-03-23 Doshisha Thermoacoustic Apparatus
US8443599B2 (en) 2006-09-02 2013-05-21 The Doshisha Thermoacoustic apparatus
EP2159519A2 (en) * 2008-08-28 2010-03-03 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
EP2159519A3 (en) * 2008-08-28 2010-07-07 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
EP2161517A1 (en) * 2008-09-04 2010-03-10 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
JP2010276216A (en) * 2009-05-26 2010-12-09 Utsunomiya Univ Thermoacoustic cold air blower
WO2017098938A1 (en) * 2015-12-07 2017-06-15 中央精機株式会社 Method for producing thermoacoustic engine
WO2017098939A1 (en) * 2015-12-07 2017-06-15 中央精機株式会社 Thermoacoustic engine
JP2020076556A (en) * 2018-11-09 2020-05-21 大阪瓦斯株式会社 Cryogenic refrigeration system

Similar Documents

Publication Publication Date Title
JP3015786B1 (en) Loop tube air column acoustic wave refrigerator
JP3949135B2 (en) Piezoelectric pump and Stirling refrigerator
US5107683A (en) Multistage pulse tube cooler
US6779349B2 (en) Sterling refrigerating system and cooling device
US6079960A (en) Linear compressor with a coaxial piston arrangement
KR100513207B1 (en) Superconducting Rotor With Conduction Cooling System
JPWO2004085934A1 (en) Cooling system
CN107223196B (en) Thermoacoustic heat pump
CN108826729B (en) Expansion machine unit and pulse tube type free piston Stirling refrigerator
CN101236025B (en) Double-drive stirling travelling wave refrigerating device
JPH11344266A (en) Acoustic freezer
CN110701822B (en) Heat energy driven thermoacoustic and electric card coupled refrigerating system
JP3702964B2 (en) Multistage low temperature refrigerator
JP4362632B2 (en) Pulse tube refrigerator
JP2007530911A (en) Cryogenic cooler system with frequency-converting mechanical resonator
CN108626903B (en) Pulse tube type free piston Stirling refrigerator
US5609034A (en) Cooling system
JP3602823B2 (en) Pulsating tube refrigerator
JPH1068556A (en) Thermoacoustic refrigerator
JP2000337724A (en) Acoustic refrigeration system
JP2008292084A (en) Stirling refrigerating machine
JP2004353967A (en) Pulse tube refrigerator
CN115031434B (en) Regenerative refrigeration system and mechanism of thermoacoustic self-circulation heat exchanger
RU2435113C1 (en) Thermo-acoustic cooling device
JPH10325625A (en) Acoustic refrigerating device