JP5786658B2 - Thermoacoustic engine - Google Patents

Thermoacoustic engine Download PDF

Info

Publication number
JP5786658B2
JP5786658B2 JP2011243111A JP2011243111A JP5786658B2 JP 5786658 B2 JP5786658 B2 JP 5786658B2 JP 2011243111 A JP2011243111 A JP 2011243111A JP 2011243111 A JP2011243111 A JP 2011243111A JP 5786658 B2 JP5786658 B2 JP 5786658B2
Authority
JP
Japan
Prior art keywords
cooler
inner peripheral
thermoacoustic engine
heater
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011243111A
Other languages
Japanese (ja)
Other versions
JP2013096387A (en
Inventor
山本 康
康 山本
阿部 誠
阿部  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011243111A priority Critical patent/JP5786658B2/en
Publication of JP2013096387A publication Critical patent/JP2013096387A/en
Application granted granted Critical
Publication of JP5786658B2 publication Critical patent/JP5786658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱音響機関の加熱器、及び冷却器として使用される熱交換器と共鳴部との接続部分における音波の反射量を減少できて、熱音響機関のエンジン出力を向上できる熱音響機関に関する。   The present invention relates to a thermoacoustic engine capable of improving the engine output of a thermoacoustic engine by reducing the amount of reflection of sound waves at a connection portion between a heat exchanger used as a heater and a cooler of a thermoacoustic engine and a resonance unit. About.

最近、熱音響現象を利用する熱音響機関の研究及び開発が進展してきている。この熱音響機関は、温度勾配のある細管流路内の振動流体が圧縮、膨張、加熱、冷却という熱力学的プロセスを実行する熱音響現象を利用するものであり、図1に示すように、この熱音響機関10は、ループ管等の共鳴部11、細管流路の集合体(スタック)で形成される再生器12、この再生器12の両端にそれぞれ配置される加熱器13と冷却器14の一対の熱交換器、及び、空気や窒素やヘリウム等の作動流体Gで構成されており、著しく簡単な構造で熱と音波との間のエネルギー変換を行うことができる。   Recently, research and development of thermoacoustic engines using thermoacoustic phenomena have been progressing. This thermoacoustic engine utilizes a thermoacoustic phenomenon in which the oscillating fluid in the narrow channel with a temperature gradient performs a thermodynamic process of compression, expansion, heating, and cooling, as shown in FIG. The thermoacoustic engine 10 includes a resonating unit 11 such as a loop tube, a regenerator 12 formed of an aggregate (stack) of thin tube channels, and a heater 13 and a cooler 14 disposed at both ends of the regenerator 12, respectively. And a working fluid G such as air, nitrogen, or helium, and can convert energy between heat and sound waves with a remarkably simple structure.

図8〜図10に、従来技術の第1の熱音響機関10Xの加熱器13Xと冷却器14Xの構造を示す。加熱器13Xは、加熱器13Xの管体の壁面13aと外周フィン13bと内周フィン13cを備えて形成されている。この管体の壁面13aは共鳴部11と同じ径で円筒状に形成され、外周フィン13bは、同心円形のリング状の薄板で形成され、管体の壁面13aの外側に、管体の壁面13aの軸線方向に列状に配置される。また、内周フィン13cは、管体の壁面13aの内部に、隙間を設けて並列配置された平板状の薄板で形成され、管体の壁面13aの軸線方向に延びて平行に配置される。   8 to 10 show the structures of the heater 13X and the cooler 14X of the first thermoacoustic engine 10X of the prior art. The heater 13X includes a wall surface 13a of the tubular body of the heater 13X, outer peripheral fins 13b, and inner peripheral fins 13c. The wall surface 13a of the tubular body is formed in a cylindrical shape with the same diameter as the resonance portion 11, and the outer peripheral fins 13b are formed of concentric circular ring-shaped thin plates. The wall surface 13a of the tubular body is formed outside the wall surface 13a of the tubular body. Are arranged in a row in the axial direction. The inner peripheral fins 13c are formed of flat thin plates arranged in parallel with a gap in the wall surface 13a of the tubular body, and are arranged in parallel extending in the axial direction of the wall surface 13a of the tubular body.

冷却器14Xも加熱器13Xと同様に、管体の壁面14aと外周フィン14bと内周フィン14cを備えて形成され、加熱器13Xと同様な構造をしている。この加熱器13Xと冷却器14Xの間に、積層した金網等の蓄熱器(スタック)で形成される再生器12Xが配置されている。   Similarly to the heater 13X, the cooler 14X is formed by including a wall surface 14a of the tubular body, outer peripheral fins 14b, and inner peripheral fins 14c, and has the same structure as the heater 13X. Between the heater 13X and the cooler 14X, a regenerator 12X formed by a heat accumulator (stack) such as a laminated wire mesh is disposed.

この熱音響機関10Xでは、加熱器12Xでは、外周フィン13aで外部から熱を受け取り、内周フィン13bで作動流体Gに熱を受け渡す。一方、冷却器14Xでは、内周フィン13aで作動流体Gから熱を受け取り、外周フィン13bで放熱する。   In this thermoacoustic engine 10X, in the heater 12X, the outer peripheral fin 13a receives heat from the outside, and the inner peripheral fin 13b transfers heat to the working fluid G. On the other hand, in the cooler 14X, heat is received from the working fluid G by the inner peripheral fins 13a and radiated by the outer peripheral fins 13b.

この図8〜図10の構成の熱音響機関10Xでは、内周フィン13c、14cにより流路断面積が小さくなるため、図10の下段に示すように、共鳴部11から加熱器13Xに入る部分P1で流路断面積が小さくなり、加熱器13Xから再生器12Xに入る部分P2でやや流路断面積が大きくなり、再生器12から冷却器14Xに入る部分P4で流路断面積が小さくなり、冷却器14Xから共鳴部11に入る部分P2で流路断面積が大きくなる。つまり、共鳴部11から加熱器13Xに入る部分P1と、冷却器14Xから共鳴部11に入る部分P2に大きな流路断面積の変化がある。   In the thermoacoustic engine 10X having the configuration shown in FIGS. 8 to 10, the cross-sectional area of the flow path is reduced by the inner peripheral fins 13c and 14c. Therefore, as shown in the lower part of FIG. The cross-sectional area of the flow path is reduced at P1, the cross-sectional area of the flow path is slightly increased at the part P2 entering the regenerator 12X from the heater 13X, and the cross-sectional area of the flow path is reduced at the part P4 entering the cooler 14X from the regenerator 12. The cross-sectional area of the flow path becomes large at the portion P2 entering the resonance portion 11 from the cooler 14X. That is, there is a large change in the cross-sectional area of the flow path between the portion P1 entering the heater 13X from the resonance portion 11 and the portion P2 entering the resonance portion 11 from the cooler 14X.

このような共鳴部11から加熱器13Xに入る部分P1と、冷却器14Xから共鳴部11に入る部分P2に大きな流路断面積の変化があると、この部分P1、P2で音波が多く反射されてしまい、熱音響機関10Xの出力が低下してしまうという問題がある。   If there is a large change in the cross-sectional area of the flow path in the part P1 entering the heater 13X from the resonance part 11 and the part P2 entering the resonance part 11 from the cooler 14X, many sound waves are reflected by the parts P1 and P2. Therefore, there is a problem that the output of the thermoacoustic engine 10X is lowered.

つまり、熱音響機関では、音波の反射が発生すると、進行波から定在波が励起され、その一方で、熱音響機関の熱力学的サイクルは、進行波によって実現されるため、進行波成分の割合が定在波の発生により低くなると熱音響機関10Yの出力が低下することになる。   In other words, in the thermoacoustic engine, when a sound wave is reflected, a standing wave is excited from the traveling wave, while the thermodynamic cycle of the thermoacoustic engine is realized by the traveling wave. When the ratio is lowered due to the generation of the standing wave, the output of the thermoacoustic engine 10Y is lowered.

これに対して、図11〜図13に示すように、加熱器13Y若しくは冷却器14Yと共鳴部11との接続部位P1、P2で、断面積変化を少なくするために、加熱器13Yと再生器12Yと冷却器14Yの内径を大きくすることで断面積変化を少なくする熱音響機関10Yが考えられた。この従来技術の熱音響機関10Yの再生器12Yと加熱器13Yと冷却器14Yの構成は、図8〜図10の従来技術の熱音響機関10Xの再生器12Xと加熱器13Xと冷却器14Xの構成と同じであるが、内径が大きくなっている。   On the other hand, as shown in FIGS. 11 to 13, in order to reduce the change in the cross-sectional area at the connection portions P <b> 1 and P <b> 2 between the heater 13 </ b> Y or the cooler 14 </ b> Y and the resonance unit 11, The thermoacoustic engine 10Y that reduces the cross-sectional area change by enlarging the inner diameters of the 12Y and the cooler 14Y has been considered. The configurations of the regenerator 12Y, the heater 13Y, and the cooler 14Y of the conventional thermoacoustic engine 10Y are the same as those of the regenerator 12X, the heater 13X, and the cooler 14X of the conventional thermoacoustic engine 10X of FIGS. Although it is the same as a structure, the internal diameter is large.

そのため、この図11〜図13の構成の熱音響機関10Yでは、内周フィン13c、14cにより流路断面積が小さくなるが、内径を大きくしているため、図13の下段に示すように、共鳴部11から加熱器13Yに入る部分P1で流路断面積が少し大きくなり、蓄熱器が入った再生器12Yに入る部分P3で更に流路断面積が大きくなり、再生器12Yから冷却器14Yに入る部分P4で流路断面積が小さくなり、冷却器14Yから共鳴部11に入る部分P2と流路断面積が更に小さくなる。   Therefore, in the thermoacoustic engine 10Y configured as shown in FIGS. 11 to 13, the flow path cross-sectional area is reduced by the inner peripheral fins 13c and 14c, but the inner diameter is increased, so as shown in the lower part of FIG. The flow path cross-sectional area is slightly increased at the part P1 entering the heater 13Y from the resonance unit 11, and the flow path cross-sectional area is further increased at the part P3 entering the regenerator 12Y containing the heat accumulator, from the regenerator 12Y to the cooler 14Y. The flow path cross-sectional area becomes smaller at the portion P4 that enters, and the flow path cross-sectional area that further enters the resonance portion 11 from the cooler 14Y becomes smaller.

つまり、共鳴部11から加熱器13Xに入る部分P1と、冷却器14Xから共鳴部11に入る部分P2に依然として大きな流路断面積の変化が生じている。従って、これらの部分P1、P2で音波が多く反射されてしまい、熱音響機関10Yの出力が低下してしまうという問題は解決できないまま残っている。   That is, a large change in the flow path cross-sectional area still occurs in the portion P1 entering the heater 13X from the resonance portion 11 and the portion P2 entering the resonance portion 11 from the cooler 14X. Therefore, many sound waves are reflected by these parts P1 and P2, and the problem that the output of the thermoacoustic engine 10Y falls remains unsolvable.

この問題に関連して、本発明者らは、流路断面積の変化が小さい熱音響機関を提供するために、音響筒に加熱器が接続される加熱器接続部から冷却器に反対側の音響筒が接続される冷却器接続部までにわたり、作動流体の流路を複数の細管で形成し、加熱器から再生器を経て冷却器までの間は複数の細管が相互に間隔をあけて配置し、加熱器接続部と冷却器接続部では、音響筒に向かって徐々に複数の細管同市の間隔を狭め、音響筒に至るまでは複数の細管を相互に密着させて配置し、音響筒における流路断面積と複数の細管による総流量断面積との差を所定以下とした熱音響機関を提案している(例えば、特許文献1参照)。   In connection with this problem, in order to provide a thermoacoustic engine having a small change in the cross-sectional area of the flow path, the present inventors have provided the opposite side of the cooler from the heater connection where the heater is connected to the acoustic cylinder. The flow path of the working fluid is formed with a plurality of thin tubes up to the cooler connection part to which the acoustic cylinder is connected, and a plurality of thin tubes are arranged at intervals from the heater to the regenerator to the cooler. In the heater connection portion and the cooler connection portion, the interval between the plurality of thin tubes is gradually narrowed toward the acoustic tube, and the plurality of thin tubes are arranged in close contact with each other until reaching the acoustic tube. A thermoacoustic engine has been proposed in which the difference between the flow path cross-sectional area and the total flow cross-sectional area of the plurality of thin tubes is equal to or less than a predetermined value (see, for example, Patent Document 1).

特開2011−122567号公報JP 2011-122567 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、熱音響機関の加熱器若しくは冷却器と共鳴部との接続部分で流路断面積の変化が大きくなるのを防止して、この接続部分で反射される音波の量を減少できて、音波の反射による熱音響機関の出力の低下を抑制できる熱音響機関を提供することにある。   The present invention has been made in view of the above situation, and its purpose is to prevent a change in the flow path cross-sectional area from increasing at the connecting portion between the heater or cooler of the thermoacoustic engine and the resonance portion. Thus, an object of the present invention is to provide a thermoacoustic engine that can reduce the amount of sound waves reflected at the connecting portion and suppress a decrease in output of the thermoacoustic engine due to reflection of sound waves.

上記のような目的を達成するための本発明の熱音響機関は、加熱器と冷却器と再生器と共鳴部と作動流体を備えた熱音響機関において、前記再生器の内部の断面積を前記共鳴部の内部の断面積よりも大きく形成すると共に、前記加熱器の内周フィンが配置されている壁面をテーパー形状に形成して、前記共鳴部と前記再生器の間に配置すると共に、前記冷却器の内周フィンが配置されている壁面をテーパー形状に形成して、前記再生器と前記共鳴部との間に配置して構成する。   The thermoacoustic engine of the present invention for achieving the above object is a thermoacoustic engine comprising a heater, a cooler, a regenerator, a resonance part, and a working fluid. And forming a wall surface on which the inner peripheral fins of the heater are arranged in a tapered shape so as to be arranged between the resonance unit and the regenerator, The wall surface on which the inner peripheral fins of the cooler are arranged is formed in a tapered shape and is arranged between the regenerator and the resonance unit.

この構成によれば、熱音響機関の加熱器若しくは冷却器と共鳴部との接続部分で流路断面積の変化が大きくなるのを防止するので、この接続部分で反射される音波の量を減少できて、音波の反射による熱音響機関の出力の低下を抑制できる。   According to this configuration, it is possible to prevent a change in the cross-sectional area of the flow path from becoming large at the connection portion between the heater or the cooler of the thermoacoustic engine and the resonance portion, thereby reducing the amount of sound waves reflected at this connection portion. It is possible to suppress a decrease in the output of the thermoacoustic engine due to the reflection of sound waves.

更に、内周フィンが配置される加熱器の形状がテーパー形状になるため、加熱面と内周フィンの接続又は接触の面積が増加し、また、内周フィンが配置される冷却器の形状もテーパー形状になるため、冷却面と内周フィンの接続又は接触の面積が増加し、それぞれ熱伝動の効率が上昇する。   Furthermore, since the shape of the heater in which the inner peripheral fin is arranged becomes a tapered shape, the area of connection or contact between the heating surface and the inner peripheral fin increases, and the shape of the cooler in which the inner peripheral fin is arranged is also increased. Because of the tapered shape, the area of connection or contact between the cooling surface and the inner peripheral fins increases, and the efficiency of heat transfer increases.

上記の熱音響機関において、前記加熱器の内周フィンが接続又は接触する外周側の壁面をテーパー形状に形成し、内周フィンの集合体の内部側はテーパー形状の大径側が先端となる円錐形状をテーパー形状の小径側に刳り抜いた形状に形成すると共に、前記冷却器の内周フィンが接続又は接触する外周側の壁面をテーパー形状に形成し、内周フィンの集合体の内部側はテーパー形状の大径側が先端となる円錐形状をテーパー形状の小径側に刳り抜いた形状に形成すると、比較的簡単な構成で、加熱器と冷却器のそれぞれの内部で流路断面積が変化するのを抑制できる。   In the above-described thermoacoustic engine, the outer peripheral wall surface to which the inner peripheral fin of the heater is connected or contacted is formed in a tapered shape, and the inner side of the inner peripheral fin assembly is a cone having a tapered large diameter side as a tip. In addition to forming the shape of the tapered shape on the small diameter side, the outer peripheral wall surface to which the inner peripheral fin of the cooler is connected or in contact is formed in a tapered shape, and the inner side of the inner peripheral fin assembly is If the conical shape with the tapered diameter on the large-diameter side is formed into a shape that is hollowed out to the small-diameter side of the tapered shape, the cross-sectional area of the flow path changes inside the heater and the cooler with a relatively simple configuration. Can be suppressed.

また、上記の熱音響機関において、前記冷却器の外周部に冷却ジャケットを設けると、比較的簡単な構成で冷却器を冷却することができるようになる。   In the thermoacoustic engine, if a cooling jacket is provided on the outer periphery of the cooler, the cooler can be cooled with a relatively simple configuration.

本発明に係る熱音響機関によれば、熱音響機関の加熱器若しくは冷却器と共鳴部との接続部分で流路断面積の変化が大きくなるのを防止して、この接続部分で反射される音波の量を減少できて、音波の反射による熱音響機関の出力の低下を抑制できる。   According to the thermoacoustic engine of the present invention, it is possible to prevent a change in the flow path cross-sectional area from increasing at the connection portion between the heater or cooler of the thermoacoustic engine and the resonance portion, and to be reflected at this connection portion. The amount of sound waves can be reduced, and a decrease in output of the thermoacoustic engine due to reflection of sound waves can be suppressed.

熱音響機関の構成を示す図である。It is a figure which shows the structure of a thermoacoustic engine. 本発明に係る実施の形態の熱音響機関の外形を示す図である。It is a figure which shows the external shape of the thermoacoustic engine of embodiment which concerns on this invention. 図2の熱音響機関の内部の構成を示す横断面図である。It is a cross-sectional view which shows the structure inside the thermoacoustic engine of FIG. 図2の熱音響機関の構成を示す組立図である。It is an assembly drawing which shows the structure of the thermoacoustic engine of FIG. 図2の熱音響機関の加熱器若しくは冷却器となる熱交換器の素材を示す図である。It is a figure which shows the raw material of the heat exchanger used as the heater or cooler of the thermoacoustic engine of FIG. 図5の熱交換器の内周フィンを示す図である。It is a figure which shows the inner peripheral fin of the heat exchanger of FIG. 図2の熱音響機関の構成と流路断面積の変化を示す図である。It is a figure which shows the structure of the thermoacoustic engine of FIG. 2, and the change of flow-path cross-sectional area. 従来技術の熱音響機関の構成を示す斜視図である。It is a perspective view which shows the structure of the thermoacoustic engine of a prior art. 図8の熱音響機関の加熱器と冷却器の内周フィンの構成を示す横断面図である。It is a cross-sectional view showing the configuration of the inner peripheral fins of the heater and cooler of the thermoacoustic engine of FIG. 図8の熱音響機関の構成と流路断面積の変化を示す図である。It is a figure which shows the structure of the thermoacoustic engine of FIG. 8, and the change of a flow-path cross-sectional area. 従来技術の他の熱音響機関の構成を示す斜視図である。It is a perspective view which shows the structure of the other thermoacoustic engine of a prior art. 図11の熱音響機関の加熱器と冷却器の内周フィンの構成を示す横断面図である。It is a cross-sectional view which shows the structure of the inner peripheral fin of the heater and cooler of the thermoacoustic engine of FIG. 図11の熱音響機関の構成と流路断面積の変化を示す図である。It is a figure which shows the structure of the thermoacoustic engine of FIG. 11, and the change of a flow-path cross-sectional area.

以下、本発明に係る実施の形態の熱音響機関について、図面を参照しながら説明する。図1に示すように、この熱音響機関10は、ループ管等で形成される共鳴部11、再生器12、この再生器12の両端にそれぞれ配置される加熱器13と冷却器14、及び、空気や窒素やヘリウムやアルゴン等の作動流体Gとで構成され、著しく簡単な構造で熱音響現象で熱と音波との間のエネルギー変換を行う。   Hereinafter, a thermoacoustic engine according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the thermoacoustic engine 10 includes a resonance unit 11 formed by a loop tube or the like, a regenerator 12, a heater 13 and a cooler 14 disposed at both ends of the regenerator 12, and It is composed of a working fluid G such as air, nitrogen, helium, or argon, and performs energy conversion between heat and sound waves by a thermoacoustic phenomenon with a remarkably simple structure.

共鳴部11の内部は作動流体Gにより満たされており、この共鳴部11の長さ及び径は封入されたガス状の作動流体Gの自励振動に共振するように決められる。また、再生器12は、細管流路の集合体や金網等の蓄熱器等のスタックで形成されている。加熱器13は熱音響機関10の外部から熱を受け取って作動流体Gを加熱するための熱交換器として構成され、冷却器14は熱音響機関10の外部へ熱を放出して作動流体Gを冷却するための熱交換器として構成される。   The inside of the resonance unit 11 is filled with the working fluid G, and the length and diameter of the resonance unit 11 are determined so as to resonate with the self-excited vibration of the enclosed gaseous working fluid G. In addition, the regenerator 12 is formed of a stack of heat accumulators such as an assembly of thin tube flow paths or a wire mesh. The heater 13 is configured as a heat exchanger for receiving the heat from the outside of the thermoacoustic engine 10 and heating the working fluid G, and the cooler 14 releases the heat to the outside of the thermoacoustic engine 10 to generate the working fluid G. It is configured as a heat exchanger for cooling.

この熱音響機関10では、再生器12の細管流路内の気柱を加熱器13で局部的に加熱、又は、冷却器14で局部的に冷却して、再生器12内の気柱に温度勾配を発生させると、気柱が自励振動を起こすという熱音響現象により、熱エネルギーの一部が力学的な音波(振動)エネルギーに変換される。つまり、再生器12のスタック内の作動流体Gが加熱器13による加熱と冷却器14による冷却、及び、膨張と圧縮の自励振動といった熱力学的過程を経験することで、スターリングサイクルと呼ばれる熱力学的サイクルを繰り返し、熱エネルギーが音波エネルギーに変換される。この音波エネルギーは共鳴部11で共鳴して、定在波として共鳴部11内に蓄えられる。   In this thermoacoustic engine 10, the air column in the narrow channel of the regenerator 12 is locally heated by the heater 13 or locally cooled by the cooler 14, and the temperature of the air column in the regenerator 12 is increased. When a gradient is generated, a part of thermal energy is converted into dynamic sound wave (vibration) energy by a thermoacoustic phenomenon in which the air column causes self-excited vibration. In other words, the working fluid G in the stack of the regenerator 12 experiences a thermodynamic process such as heating by the heater 13, cooling by the cooler 14, and self-excited oscillation of expansion and compression, thereby causing a heat called a Stirling cycle. By repeating the mechanical cycle, heat energy is converted into sonic energy. This sound wave energy resonates in the resonance part 11 and is stored in the resonance part 11 as a standing wave.

本発明においては、図2〜図7に示すように、再生器12の内部の断面積を共鳴部11の内部の断面積よりも大きく形成する。この構成により、再生器12の流路断面積R12と共鳴部11の流路断面積R11が略同じに、好ましくは同一になるようにする。それと共に、加熱器13の内周フィン13cが配置されている壁面13aをテーパー形状に形成して、共鳴部11と再生器12の間に配置する。また、冷却器14の内周フィン14cが配置されている壁面14aをテーパー形状に形成して、再生器12と共鳴部11との間に配置する。   In the present invention, as shown in FIGS. 2 to 7, the cross-sectional area inside the regenerator 12 is formed larger than the cross-sectional area inside the resonance part 11. With this configuration, the flow path cross-sectional area R12 of the regenerator 12 and the flow path cross-sectional area R11 of the resonance unit 11 are made substantially the same, preferably the same. At the same time, the wall surface 13 a on which the inner peripheral fins 13 c of the heater 13 are disposed is formed in a tapered shape and disposed between the resonance unit 11 and the regenerator 12. Further, the wall surface 14 a on which the inner peripheral fin 14 c of the cooler 14 is disposed is formed in a tapered shape, and is disposed between the regenerator 12 and the resonance unit 11.

また、この冷却器14の周囲に冷却ジャケット15を設け、冷却器14の外周部に冷却水(熱媒体)Wが流れるように構成し、作動流体Gと冷却水Wとの間で熱交換するように構成される。この冷却器14の熱交換で温度上昇した冷却水Wは、循環口15aに接続される循環経路15bを経由して図示しないラジエータに行き、この冷却水Wと外気との間での熱交換でする。これにより、比較的簡単な構成で冷却器14を冷却することができるようになる。   Further, a cooling jacket 15 is provided around the cooler 14 so that cooling water (heat medium) W flows around the outer periphery of the cooler 14, and heat is exchanged between the working fluid G and the cooling water W. Configured as follows. The cooling water W that has risen in temperature due to heat exchange of the cooler 14 goes to a radiator (not shown) via a circulation path 15b connected to the circulation port 15a, and exchanges heat between the cooling water W and outside air. To do. Thereby, the cooler 14 can be cooled with a relatively simple configuration.

更に、図2〜図4に示すように、この加熱器13の内周フィン13cが接続(又は接触)する外周側の壁面13aをテーパー形状に形成する。また、内周フィン13cの集合体の内部側はテーパー形状の大径側が先端となる円錐形状をテーパー形状の小径側に刳り抜いた形状に形成する。   Furthermore, as shown in FIGS. 2 to 4, the outer peripheral wall surface 13 a to which the inner peripheral fin 13 c of the heater 13 is connected (or contacted) is formed in a tapered shape. Further, the inner side of the aggregate of the inner peripheral fins 13c is formed in a shape in which a conical shape having a tapered large diameter side as a tip is hollowed out to a small diameter side of the tapered shape.

また、冷却器14の内周フィン14cが接続(又は接触)する外周側の壁面14aをテーパー形状に形成する。また、内周フィン14cの集合体の内部側はテーパー形状の大径側が先端となる円錐形状をテーパー形状の小径側に刳り抜いた形状に形成する。   Moreover, the outer peripheral wall surface 14a to which the inner peripheral fin 14c of the cooler 14 is connected (or contacted) is formed in a tapered shape. Further, the inner side of the aggregate of the inner peripheral fins 14c is formed in a shape in which a conical shape having a tapered large diameter side as a tip is hollowed out to a small diameter side of the tapered shape.

この加熱器13及び冷却器14の熱交換器16の構成は、図5に示すような円錐台形状の外周面16dと、テーパー形状の大径側Bが先端となる円錐形状をテーパー形状の小径側Aに刳り抜いた内周面16eを有する素材16を用いて、ワイヤーカッター等により、図6に示すように、作動流体Gが流通可能な隙間を設ける。これにより、内周フィン16cを形成する。つまり、並行に配列され、大径側Bが固定されている内周フィン16cの組を円周方向Rに複数組(図6では8組)配置する。   The structure of the heat exchanger 16 of the heater 13 and the cooler 14 is such that the outer peripheral surface 16d having a truncated cone shape as shown in FIG. 5 and a conical shape having a tapered large-diameter side B at the tip are tapered small diameters. As shown in FIG. 6, a gap through which the working fluid G can circulate is provided by using a material 16 having an inner peripheral surface 16 e cut out on the side A and using a wire cutter or the like. Thereby, the inner peripheral fin 16c is formed. That is, a plurality of sets (eight sets in FIG. 6) of the inner peripheral fins 16c arranged in parallel and having the large-diameter side B fixed thereto are arranged in the circumferential direction R.

この構成により、熱交換器16(13、14)は、小径側Aと大径側Bは、内周フィン16c(13c、14c)の相互間に設けられた隙間によりで連通し、作動流体Gが流通可能となる。それと共に、作動流体Gと内周フィン16cとの接触により相互間で熱伝達が行われ、加熱器13では、内周フィン16c(13c)から作動流体Gに熱が移動し、冷却器14では、作動流体Gから内周フィン16c(14c)に熱が移動する。   With this configuration, the heat exchanger 16 (13, 14) allows the small diameter side A and the large diameter side B to communicate with each other through a gap provided between the inner peripheral fins 16c (13c, 14c). Can be distributed. At the same time, heat is transferred between the working fluid G and the inner peripheral fin 16c, and in the heater 13, heat is transferred from the inner peripheral fin 16c (13c) to the working fluid G. The heat is transferred from the working fluid G to the inner peripheral fins 16c (14c).

また、それと同時に、流路断面積に関しては、内周フィン16cの先端側が小径側Aにあり、ここでは、内周フィン16cの断面積の総計F(a)はゼロであり、小径側Aから大径側Bに向かうに連れて、内周フィン16cの断面積の総計F(x)は増加し、内周フィン16cの根元側になると、内周フィン16cの断面積の総計F(b)は最大となる。   At the same time, with respect to the cross-sectional area of the flow path, the tip end side of the inner peripheral fin 16c is on the small diameter side A, and here, the total F (a) of the cross sectional area of the inner peripheral fin 16c is zero. The total cross-sectional area F (x) of the inner peripheral fin 16c increases toward the large-diameter side B, and the total cross-sectional area F (b) of the inner peripheral fin 16c reaches the base side of the inner peripheral fin 16c. Is the maximum.

一方、熱交換器16の外周側の壁面はテーパーに形成され、内周フィン16cの集合体の外周面16dもテーパー形状となっているため、熱交換器16の断面積は、小径側Aの断面積S(a)は最小になり、小径側Aから大径側Bに向かうに連れて断面積S(x)は増加し、内周フィン16cの根元側になると断面積S(b)は最大となる。   On the other hand, the outer peripheral wall surface of the heat exchanger 16 is tapered, and the outer peripheral surface 16d of the aggregate of the inner peripheral fins 16c is also tapered, so that the cross-sectional area of the heat exchanger 16 is on the small diameter side A. The cross-sectional area S (a) is minimized, the cross-sectional area S (x) increases from the small-diameter side A toward the large-diameter side B, and the cross-sectional area S (b) becomes the base side of the inner peripheral fin 16c. Maximum.

そして、この両者の差が流路断面積R(x)(=S(x)−F(x))となるので、この両者の差(S(x)−F(x))が一定になるように、隙間の幅と、外周面16dと内周面16eのテーパー形状を設定することで、流路断面積R(x)を一定にすることができる。   Since the difference between the two is the flow path cross-sectional area R (x) (= S (x) −F (x)), the difference between the two (S (x) −F (x)) is constant. Thus, by setting the width of the gap and the tapered shape of the outer peripheral surface 16d and the inner peripheral surface 16e, the flow path cross-sectional area R (x) can be made constant.

例えば、断面積中の隙間の占める割合をY%、内周フィン16の占める割合を(100−Y)%とすれば、小径側Aの半径をr1、大径側Bの半径をr2とすれば、それぞれの断面積は「S(a)=π×r1×r1/4」と「S(b)=π×r2×r2/4」となり、「S(b)×(1−Y/100)=S(a)」から、「r2=r1/SQRT(1−Y/100)」となる。   For example, if the ratio of the clearance in the cross-sectional area is Y% and the ratio of the inner peripheral fin 16 is (100−Y)%, the radius of the small diameter side A is r1 and the radius of the large diameter side B is r2. For example, the cross-sectional areas are “S (a) = π × r1 × r1 / 4” and “S (b) = π × r2 × r2 / 4”, and “S (b) × (1−Y / 100). ) = S (a) ”becomes“ r2 = r1 / SQRT (1-Y / 100) ”.

このように、比較的簡単な構成で、加熱器13と冷却器14のそれぞれの内部で流路断面積R(x)が変化するのを抑制できる。   Thus, it is possible to suppress the flow path cross-sectional area R (x) from changing inside each of the heater 13 and the cooler 14 with a relatively simple configuration.

また、内周フィン13cが配置される加熱器13の形状がテーパー形状になるため、加熱面となる壁面13aと内周フィン13cとが接続(又は接触)する面積が増加し、また、内周フィン14cが配置される冷却器14の形状もテーパー形状になるため、冷却面となる壁面14aと内周フィン14cとが接続(又は接触)する面積が増加し、それぞれ熱伝動の効率が上昇する。   Moreover, since the shape of the heater 13 in which the inner peripheral fins 13c are arranged becomes a tapered shape, the area where the wall surface 13a serving as the heating surface and the inner peripheral fins 13c are connected (or contacted) increases, and the inner periphery Since the shape of the cooler 14 in which the fins 14c are arranged is also tapered, the area where the wall surface 14a serving as the cooling surface and the inner peripheral fin 14c are connected (or contacted) increases, and the efficiency of heat transmission increases. .

更に、熱交換器16(13、14)の小径側Aの流路断面積R(b)を共鳴部11の流路断面積R11と同じになるように、また、大径側Bの流路断面積R(a)を再生器12の流路断面積R12と同じになるように形成する。このように、小径側Aの半径r1と大径側Bの半径r2が決まっている場合は、内周フィン16c間の隙間が占める断面積の割合Y(%)は、「Y=100×(1−(r1/r2)2)」となる。 Further, the flow path cross-sectional area R (b) on the small diameter side A of the heat exchanger 16 (13, 14) is made the same as the flow path cross sectional area R11 of the resonance portion 11, and the flow path on the large diameter side B The cross-sectional area R (a) is formed to be the same as the flow path cross-sectional area R12 of the regenerator 12. Thus, when the radius r1 of the small diameter side A and the radius r2 of the large diameter side B are determined, the ratio Y (%) of the cross-sectional area occupied by the gap between the inner peripheral fins 16c is “Y = 100 × ( 1- (r1 / r2) 2 ) ".

この構成によれば、図7に示すように、熱音響機関10の加熱器13若しくは冷却器14と共鳴部11との接続部分P1、P2で流路断面積の変化が大きくなるのを防止して、この接続部分P1、P2で反射される音波の量を減少できて、音波の反射による熱音響機関10の出力の低下を抑制できる。   According to this configuration, as shown in FIG. 7, it is possible to prevent a change in the flow path cross-sectional area from increasing at the connection portions P <b> 1 and P <b> 2 between the heater 13 or the cooler 14 of the thermoacoustic engine 10 and the resonance portion 11. Thus, it is possible to reduce the amount of the sound wave reflected by the connection portions P1 and P2, and to suppress a decrease in the output of the thermoacoustic engine 10 due to the reflection of the sound wave.

本発明の熱音響機関は、熱音響機関の加熱器若しくは冷却器と共鳴部との接続部分で流路断面積の変化が大きくなるのを防止して、この接続部分で反射される音波の量を減少させて音波の反射による熱音響機関の出力の低下を抑制できるので、数多くの熱音響機関で利用できる。   The thermoacoustic engine of the present invention prevents the change in the cross-sectional area of the flow path from becoming large at the connection portion between the heater or cooler of the thermoacoustic engine and the resonance portion, and the amount of sound waves reflected at this connection portion. Can be used in many thermoacoustic engines.

10 熱音響機関
11 共鳴部
12 再生器
13 加熱器
13a 壁面
13b 外周フィン
13c 内周フィン
14 冷却器
14a 壁面
14b 外周フィン
14c 内周フィン
15 冷却ジャケット
G 作動流体
W 冷却水
DESCRIPTION OF SYMBOLS 10 Thermoacoustic engine 11 Resonance part 12 Regenerator 13 Heater 13a Wall surface 13b Outer peripheral fin 13c Inner peripheral fin 14 Cooler 14a Outer surface fin 14c Inner peripheral fin 15 Cooling jacket G Working fluid W Cooling water

Claims (3)

加熱器と冷却器と再生器と共鳴部と作動流体を備えた熱音響機関において、前記再生器の内部の断面積を前記共鳴部の内部の断面積よりも大きく形成すると共に、前記加熱器の内周フィンが配置されている壁面をテーパー形状に形成して、前記共鳴部と前記再生器の間に配置すると共に、前記冷却器の内周フィンが配置されている壁面をテーパー形状に形成して、前記再生器と前記共鳴部との間に配置したことを特徴とする熱音響機関。   In a thermoacoustic engine including a heater, a cooler, a regenerator, a resonance part, and a working fluid, a cross-sectional area inside the regenerator is formed larger than a cross-sectional area inside the resonance part, and the heater The wall surface on which the inner peripheral fin is disposed is formed in a taper shape, and is disposed between the resonance portion and the regenerator, and the wall surface on which the inner peripheral fin of the cooler is disposed is formed in a taper shape. The thermoacoustic engine is disposed between the regenerator and the resonance unit. 前記加熱器の内周フィンが接続又は接触する外周側の壁面をテーパー形状に形成し、内周フィンの集合体の内部側はテーパー形状の大径側が先端となる円錐形状をテーパー形状の小径側に刳り抜いた形状に形成すると共に、前記冷却器の内周フィンが接続又は接触する外周側の壁面をテーパー形状に形成し、内周フィンの集合体の内部側はテーパー形状の大径側が先端となる円錐形状をテーパー形状の小径側に刳り抜いた形状に形成したことを特徴とする請求項1に記載の熱音響機関。   The outer peripheral wall surface to which the inner peripheral fin of the heater is connected or brought into contact is formed in a tapered shape, and the inner side of the inner peripheral fin assembly is formed in a tapered shape on the small diameter side with a tapered large diameter side at the tip. In addition, the outer peripheral wall surface to which the inner peripheral fin of the cooler is connected or in contact is formed in a tapered shape, and the inner side of the aggregate of the inner peripheral fin is the tip of the tapered large diameter side 2. The thermoacoustic engine according to claim 1, wherein the conical shape is formed into a shape in which the tapered shape is hollowed out toward the small diameter side. 前記冷却器の外周部に冷却ジャケットを設けたことを特徴とする請求項1又は2に記載の熱音響機関。   The thermoacoustic engine according to claim 1, wherein a cooling jacket is provided on an outer peripheral portion of the cooler.
JP2011243111A 2011-11-07 2011-11-07 Thermoacoustic engine Expired - Fee Related JP5786658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243111A JP5786658B2 (en) 2011-11-07 2011-11-07 Thermoacoustic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243111A JP5786658B2 (en) 2011-11-07 2011-11-07 Thermoacoustic engine

Publications (2)

Publication Number Publication Date
JP2013096387A JP2013096387A (en) 2013-05-20
JP5786658B2 true JP5786658B2 (en) 2015-09-30

Family

ID=48618589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243111A Expired - Fee Related JP5786658B2 (en) 2011-11-07 2011-11-07 Thermoacoustic engine

Country Status (1)

Country Link
JP (1) JP5786658B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410677B2 (en) * 2015-06-26 2018-10-24 大阪瓦斯株式会社 Thermoacoustic engine
JP7472713B2 (en) 2020-08-11 2024-04-23 株式会社ジェイテクト Thermoacoustic Device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114380A (en) * 1977-03-03 1978-09-19 Peter Hutson Ceperley Traveling wave heat engine
US6032464A (en) * 1999-01-20 2000-03-07 Regents Of The University Of California Traveling-wave device with mass flux suppression
WO2010107308A1 (en) * 2009-02-25 2010-09-23 Cornelis Maria De Blok Multistage traveling wave thermoacoustic engine with phase distributed power extraction
JP2011122567A (en) * 2009-12-14 2011-06-23 Isuzu Motors Ltd Thermoacoustic engine and alpha-type stirling engine
JP5434680B2 (en) * 2010-03-02 2014-03-05 いすゞ自動車株式会社 Thermoacoustic engine
JP5423531B2 (en) * 2010-03-30 2014-02-19 いすゞ自動車株式会社 Thermoacoustic engine

Also Published As

Publication number Publication date
JP2013096387A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP2005522664A5 (en)
CN101292123B (en) Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir
JP5423531B2 (en) Thermoacoustic engine
JP7169923B2 (en) Heat exchanger
JPH06280678A (en) Stirling engine
CN107702366B (en) Thermoacoustic cooling device
JP2012154251A (en) Muffler
JP2018066501A (en) Thermoacoustic device
JP5786658B2 (en) Thermoacoustic engine
JP2015121361A (en) Stack of thermoacoustic device, and thermoacoustic device
JP5768688B2 (en) Thermoacoustic refrigeration equipment
JP5434680B2 (en) Thermoacoustic engine
JP2005265261A (en) Pulse pipe refrigerator
JP5862250B2 (en) Thermoacoustic refrigeration equipment
JP2006118728A (en) Thermoacoustic refrigeration machine
JP6205936B2 (en) Heat accumulator
JP5310287B2 (en) Thermoacoustic engine
CN101619713B (en) Thermoacoustic engine with spiral passageway resonance tube
RU144956U1 (en) THERMAL-ACOUSTIC INSTALLATION FOR LOW-TEMPERATURE COOLING OF MEDIA WITH COAXIAL GEOMETRY OF A WAVEGUIDE CIRCUIT
JP5532959B2 (en) Thermoacoustic engine
JP2011145006A (en) Thermoacoustic engine
JP7484566B2 (en) Thermoacoustic Device
JP2014143677A (en) Thermoacoustic device and stack of thermoacoustic device
WO2024127514A1 (en) Energy converter and method for using energy converter
JP5446498B2 (en) Thermoacoustic engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5786658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees